Imagerie quantitative, Modélisation Application à l'étude des télomères

- Jean-Patrick Pommier
 - CEA-CIRIL

Structure des télomères

- Motifs ADN (TTAGGG)n: 10' < n < 20000
- Principalement localisés à l'extrémité des chromosomes
- Associés à des protéines spécifiques
- Structures dynamiques: addition/soustraction de motifs

Localisation des signaux télomériques

HIS sur chromosomes métaphasiques humains, avec une sonde PNA (CCCTAA)3-Cy3

Souris

Hamster lignée V79

Des sabliers cellulaires: La réplication incomplète des télomères

La fourche de réplication de l'ADN réplique incomplètement l'extrémité d'une molécule linéaire.

Modèle de la réplication incomplète

Contrôle du cycle cellulaire

Imagerie 1D 2D 3D modélisation des artéfacts

1D

Longueur des télomères par Southern Blot

- Séparation des FRTs par électrophorèse + autoradiographie
 - Migration non linéaire
 - Diffusion croissante des FRTs le long du gel

<u>Marqueurs de poids moléculaires:</u> Lambda Hind₃ (λ), échelle de 1Kb (*ladder*)

Plac: ADN génomique de placenta (contrôle de haut poids moléculaire)

PY: ADN génomique de lymphocytes d'un individu atteint de pachydermose.

BET: Image du gel coloré au bromodure d'éthidium révélant la position des bandes des marqueurs de poids moléculaires.

Modélisation de la migration électrophorétique: Un problème inverse non résolu

- Modélisation du signal densitométrique
- Modélisation de la migration
- Modélisation de la diffusion

Ajustement du signal densitométrique

Paramètres du modèle densitométrique

pic _i	$L_i(Kb)$	a_i	b_i	C _i	Δa_i	Δb_i	Δ_{C_i}
1	12,216	92,848	173,0725	4,1950	5,5869	0,0990	0,5827
2	11,198	64,4153	181,9267	3,9077	5,6882	0,1417	0,8054
3	10,180	99,2449	192,5683	4,2617	5,5695	0,0939	0,5592
4	9,160	137,7236	205,3595	5,3527	5,2672	0,0717	0,4797
5	8,140	161,7112	220,5162	6,9880	4,9339	0,0652	0,5008
6	7,126	169,9586	238,7317	9,5579	4,5681	0,0671	0,6049
7	6,108	172,9184	260,9510	12,5994	4,2660	0,0707	0,7327
8	5,090	174,5426	288,8329	17,8071	3,9167	0,0764	0,9437
9	4,072	173,4970	325,3510	29,4937	3,4647	0,0872	1,3994
10	3,040	169,6108	374,1301	39,8270	3,2222	0,0962	1,8004
11	2,038	132,5175	440,7583	68,4398	2,6461	0,1413	3,4702
12	1,636	112,3703	475,2230	94,2022	2,6831	0,1811	5,5633
13	1,000	48,1582	543,3760	113,9341	3,0048	0,5082	20,3023

Modélisation empirique de la diffusion de l'ADN dans le gel

Modélisation complète de la migration

Modélisation du signal autoradiographique télomérique

$$O_{1}(x) = \alpha_{i}(x) \leftarrow E(x, x_{i})$$

Observé Idéal Déformation

$$E(x, x_i) = \frac{L^{-1}(x)}{\sqrt{2\pi}\sigma_i(x)} \times \exp\left[-\frac{1}{2} \times \left(\frac{x - x_i}{\sigma_i(x)}\right)^2\right]$$
$$L = L^{-1}(x) = c \times \left[\frac{a - x}{x - d}\right]^{\frac{1}{b}}$$
Terme de migration
$$\sigma(x) = \sqrt{\frac{1}{2} \times c(x)}$$
Terme de diffusion (ex hyperbolique)

2D

Longueur des télomères par microscopie à épifluorescence sur chromosomes métaphasiques

Prétraitement des images

Illumination Sensibilité spectrale Crosstalk Segmentation Quantification des signaux Codage

Correction de l'illumination par un standard fluorescent homogène

 $C(x, y) = r(x, y) \leftrightarrow (x, y)$

$$\hat{C}(x,y) = \kappa \leftrightarrow \frac{C(x,y)}{f(x,y)}$$

Sensibilité relative aux fluorochromes

Dépôt de 2µl d'une solution 100µM d'un fluorochrome de référence

Le « crosstalk » des fluorochromes (simulation)

Canal rouge

Canal vert

Canal bleu

Crosstalk du DAPI

Crosstalk du FITC

Sonde FITC

Compensation spectrale

Compensation spectrale

Inversion de la matrice (Scilab)

	matrice de dégradation		
	FITC	Cy3	CY5
XF100-2	0,8264	0,0182	0,0022
XF108-2	0,1231	0,9589	0,0248
XF110-2	0,0002	0,0005	0,9434
	matrice de reconst	truction	
	FITC	Cy3	CY5
XF100-2	1,219	-0,023	-0,
XF108-2	-0,157	1,046	-0,0
XF110-2	0,001	-0,006	1,0

Ambiguïté potentielle (Image brute)

Il existe bien des sites (CAG)_n proches des télomères

Satellite CY5

3D en épifluorescence: Difficulté supplémentaire

- Au 100X, l'objectif collecte de la lumière hors focus
- Résolution par sections optiques+déconvolution

Visualisation d'objets en 3D Sections optiques---> rendu 3D

Quantification des signaux fluorescents sur chromosomes

• Extraction des mesures et codage

Mesure des signaux télomériques par segmentation binaire

Orphelii

T

. .

- ē ē

Traitements et codages des images de chromosomes et des sig télomériques pour la mesure du volume des spots

A-Détail d'une image brute de chromosomes colorés au DAPI. B- Ima en négatif. C-Amplification des bandes chromosomiqué D-Image brute de la composante télomère du cham E-Image D en négatif. Une table c couleur est associée à l'image pour mieux distinguer les spies. Image

surfacique d'une paire de spots **F**-Soustraction locale du fond par u opérateur type chapeau haut de form **E1**-Effet sur l'image surfacique de spots, de la soustraction du fond. **G**-Image binaire obtenue après t seuillage global de l'image **FH**-Superposition des images C et H pe facilité l'identification des spots **I**-Etiquetage des spots en type de sg (paire, double, orphelin). **J**-Etiquetage des spots en coordonn cytogénétiques (bras court-bras long, ou pter-q-ter).

Etiquetage des chromosomes

Combinais on des informations

About Cytogenetic Assistant

×

Version 1.0

Chromosomes Analysis System

Copyright 1998 CEA

OK.

System Info...

₿_jp4	37#24						. 🗆 🗵
10000	1.0	CLIDOLIDOCUT.	COMERC D	CONFIC O	PAIR_	PAR_	
_	ND	CHHOMUSUME	CUNFIG_P		VOLUME P	VOLUME Q	
9	Q	23	Sort by Index	0	77345.000000	68210.000000	14
45	1	23	Sort By Colum	n t	80359.000000	49426.000000	
11	0	22	Export To Exc	el 1	110518.000000	87923.000000	1
40	1	22		0	52692.000000	127384.000000	1
4	1	21	1	1	107422.000000	59054.000000	1
32	0	21	0	1	113981.000000	51898.000000	1
35	1	20	1	1	69158.000000	58027.000000	1
50	0	20	0	0	62962.000000	46176.000000	1
16	1	19	1	1	67986.000000	94125.000000	1
23	0	- 19	1	0	25673.000000	136214.000000	1
20	0	18	1	1	132311.000000	112338.000000	1
24	1	18	1	1	110258.000000	102913.000000	1
22	0	17	1	1	72811.000000	33072.000000	1
10	0	16	1	1	113918.000000	87437.000000	
. 28	1	16	1	1	92333.000000	69621.000000	1
12	1	15	1	1	87757.000000	101847.000000	1
39	0	15	1	0	70148.000000	105768.000000	1
15	1	14	1	1	103232.000000	66745.000000	1
44	0	14	1	0	79211.000000	79961.000000	1
34	1	13	1	1	122105.000000	104389.000000	1
42	0	13	1	0	32013.000000	20585.000000	1
17	1	12	1	1	68871.000000	82464.000000	1
30	0	12	1	1	95036 000000	59815.000000	1
6	0	11	1	0	45431.000000	80350 000000	1
18	1	11	1	0	83310.000000	134044.000000	
31	0	10	0	1	131789.000000	104942.000000	1
41	1	10	1	1	76032.000000	24669.000000	1
19	1	9	1	Û	84032 000000	153486.000000	1
29	0	9	1	1	58075 000000	58360.000000	1
36	0	8	1	1	31-489.000000	130605.000000	1
46	1	8	1	1	77048.000000	82125.000000	1
3	1	7	1	1	165899.000000	142903.000000	1
49	0	7	1	1	51231.000000	127224.000000	1
8	1	6	0	INULLI	94350.000000	[NULL]	1
26	0	6	1	0	78901.000000	35134.000000	1
25	0	5	1	1	99217.000000	60011.000000	1
47	1	S. 15	1	1	150378.000000	53933.000000	
43	0	4	1	1	79587.000000	105062.000000	1
48	1	- 4	1	1	52128.000000	58854.000000	1
5	0	- 3	1	0	68748.000000	88356.000000	1
14	1	3	1	0	212003.000000	157983.000000	
13	0	2	1	1	149490.000000	87397.000000	
27	1	2	1	1	75500.000000	61683.000000	1
33	0	1	1	1	100068.000000	123334.000000	1
38	1	1	0	1	208851.000000	94606.000000	1
21	1	0	1	1	85968.000000	129869.000000	1
	0	0	1	INULLI	66833.000000	[NULL]	1
				E. S. Mark			· · · · ·

Le goulot d'étranglement de la cytogénétique

Automatisation totale ?

Approches de la segmentation des objets d'une image

Recherche des centromères et du bout des chromosomes par morphologie (Data Driven)

Isolation d'un visage par Active Shape Model (MatLab)

http://www.isbe.man.ac.uk/val/asmtk/ASMAnimate.html

Faisabilité de l'approche model driven pour la cytogénétique?

Compilation de la librairie GSnake (LinuxPPC) Création de modèles de références (chromosomes i solés): ->chromosome générique Tests sur images réelles Combiner une information multispectrale?

http://www.cs.wisc.edu/computer-vision/projects/gsnake.html

Analyse statistique des signaux FISH sur chromosomes

Standardisation des mesures

- Variabilité des mesures d'intensité des signaux
 - D'un champ à l'autre.
 - D'une lame à l'autre.
 - Selon les expériences
 - Biais dans l'analyse des mesures absolues
 - Calibration externe, mesures en Kb (Lansdorp)
- <u>Nécessité d'une indépendance des mesures / conditions</u>
 - Calibration inteme
 - Standardisation interne : mesures centrées-réduites

$$S_{i,k}^{*} = \frac{S_{i} - \overline{S_{k}}}{\sigma_{k}}$$

Analyse de cluster

La différence de longueur entre homologues est associée à un troisième marqueur (hétérochromatine)

Séparation des mesures des homologues

Floating Show dat Show fun Data Redraw	a otion Auto	-2.0000 🗌 Auto	2.5000	Set 1: 1: 1: 2: 3 ≥	
		Mati	riceT4		2
E R	1	2	3	4 ×□	5 ^v
\mathbb{E}	metaphase N	1pa	_1qa	_1pb	_1qb
1	1	-1.01960	-0.82939	0.20059	-0.46762
2	2	-1.15396	-0.25848	2.08100	-0.31957
3	3	-1.02595	-1.04085	0.55433	0.4232
4	4	-1.46086	-1.41641	0.60602	0.36526
5	5	-0.86666	-0.78140	2.14330	-0.2327
6	6	-1.20652	-0.74224	1.88122	0.74010
7	7	-1.06557	-1.09643	0.82798	-0.2377
8	8	-0.92427	-1.07252	1.10380	-0.72463
9	9	-1.52321	-1.30697	0.62202	-0.14024
10	10	-1.45768	-1.35385	1.04258	0.4612
· 000.00					• •

Classification hiérarchique des télomères

Remerciements

- Annie Chétioui
- Laure Sabatier, Michelle Ricoul
- Jean-Paul Renard, Xavier Vignon (INRA)
- Vincent Mouli, Denis Furling (Cytosquelette et développement)
- Christophe Gratin (ADCIS)