
A Co-Evolution Simulator (aCES), User Manual

From “aCES: A Co-Evolution Simulator generates co-varying proteins and nucleic acids”

Authored by Devin Camenares

Assistant Professor, Department of Biochemistry

Alma College

614 W. Superior St, Alma MI 48801

camenaresd@alma.edu

Purpose:

This tool will take necessary parameters and generate up to five FASTA files that contain a simulated multiple sequence

alignment. This alignment can be generated with a user-determined number of sequences, sequence and residue type, and

the conservation of similarity and identity can (and must) be specified by the user. Most importantly, co-evolution

constraints of both intra- and inter-molecule fashion can be applied to the generation of sequences.

Input:

This tool requires a text file with the parameters or constraints for the simulation. The input file provided, both the blank

and the example, are annotated to help guide the user. These annotations are provided before or after a block of code

that is bracketed by “@@START .. “ and “… @@END”. Any text outside those brackets is ignored by the

program; any text inside must conform to the expected input format. For clarity, consider the beginning of the

following example input file, which defines the nature of each molecule:

1. This line defines the start of the block

defining all molecule characteristics. Anything

before this line is ignored by the program.

2. After the ## the number of sequences

for each molecule is specified. In this

example, the program will ‘evolve’ 450

sequences each for molecules A, B, C, D, and

E.

3. This begins the block defining molecule

A – the number indicates the total length of

the sequence/molecule.

4. Following the colon in the molecule

definition line is the grouping of residues that

can be chosen from when creating the

sequence. In this example, the simulation will

create a protein, and treat each of the twenty

amino acids (initially) as equal choices. For DNA or RNA, the input on this line should read as “A, G, T, C” or

“A, G, U, C” respectively, in any order. It is also possible to group the amino acids or any other characters

together. For example, the line “MC, VIAL, DE, KR, FWY, TSNQ, H, P, G” will create a two-dimensional

array of choices. The first dimension of choice, in which there are 9 possibilities, relates to the chemical nature of

the amino acid. The second dimension of choice governs the selection of the exact amino acid identity. For the

purposes of simulating co-evolution, the program will only consider the first dimension – in this respect, D (Asp)

and E (Glu) are treated as identical with that particular grouping.

mailto:camenaresd@alma.edu

5. This line indicates, separated by commas 1) the number of a given residue 2) the default identity choice, in the

first dimension 3) the default identity choice in the second dimension 4) the percentage conservation, 0-100 in the

first dimension, and 5) the percentage conservation, 0-100, in the second dimension. If a # symbol is present, the

program will select a value at random from the available space.

6. The beginning of a block that defines molecule B – this follows the same format as was outlined for molecule A

in items 3-5 above. This same pattern also applies for molecules C, D, and E.

7. This line defines the end of the entire block for defining each molecule. Any code after this line will be ignored

by the program.

This is followed by a second block that defines the co-evolution constraints within and between the molecules simulated.

Again, for the example input this appears as follows:

1. This line defines the start of the block for defining all co-

evolution. Anything before this line is ignored by the program.

2. This line defines the overall parameters for how co-evolution

will be simulated. The numbers after the MI# indicate the following,

separated by commas: 1) The maximum number of iterations of

adjustments to the distribution of a pair of residue identities, 2) the %

threshold for a MI score to deviate from the target and be selected, and 3)

The multiplier that is used to the random adjustment variable in each

iteration. A larger number creates more volatile swings possible in each iteration (i.e. the multiplier for how many

standard deviations from the mean value of a normal distribution will be sampled).

3. This line defines each specific co-evolution constraint. It indicates the following, separated by commas: 1) the

first molecule in the co-evolving pair and 2) the residue in this molecule, 3) the second molecule in the pair and 4)

the co-evolving residue in this molecule, and 5) the strength of the constraint, as a percentage of possible co-

evolution from 0-100. Note that this is modulated by the overall conservation of the residues in question – a

constraint of 100% co-evolution will actually produce very little co-evolution if each residue is already invariant

(100% conservation).

4. This line defines the end of the entire block for defining co-evolution. Any code after this line will be ignored by

the program.

** NOTICE: The program has not been exhaustively tested with incorrect input formats. It is likely to freeze or abort if

incorrect inputs are provided. You are encouraged to use the debugging option to help identify the problem – please email

your input, debugging logs and results of failed runs to camenaresd@alma.edu for additional assistance.

Once the input file contains your desired constraints in the correct format, you can proceed to load the program. The

interface for this program is described in the following section.

Interface:

• Job ID: This textfield, with a timestamp generated number, will be used to append each file name with a unique

ID. This may also be used to name the directory (see below). Note that a new ID is automatically generated each

time the program is loaded anew.

mailto:camenaresd@alma.edu

• Generate New ID: As the name implies, this button will generate a new ID (so that previous work is not

overwritten). The new Job ID is displayed in the textfield (item #3)

• Output Folder Name/Location: This selection option will allow you to use either the unique Job ID as the

output folder directory (which is created anew if it does not exist) or a common folder simply named ‘output’.

The latter option may be useful if you want all the results from multiple runs to be in the same folder; the files

themselves will still be appended with the unique ID, to allow them to be distinguished from another.

• Debugging Mode: Checking this box will lead the program to output a file that details the steps being taken – this

will report information in several stages:

a. New Molecule Created: All the inputs will be read and values that are captured are reported line by line.

This includes parameters that may not have been specified, in which case a random number will be

chosen and displayed. [Category #1 is the first dimension of choice, Category #2 is the 2nd dimension.

Thus, if you are using grouped amino acids, first dimension is the chemical nature of the amino acid and

the 2nd dimension is the actual identity. The co-evolution algorithm ignores the 2nd dimension.]

b. Fill in unspecified positions: similar to the preceding lines, but for any positions that were not explicitly

defined.

c. MI pair: for any specified co-evolution constraint, the target level of MI, as well as the final MI score

and the number of iterations used to reach this score is displayed.

d. MI Needed! Every time the program encounters a residue that participates in a direct co-evolution

interaction, it will call upon the already established distribution to determine the probability of a particular

residue being selected. It reports on the first line of this block the residues in question and the residue

choice for the partner residue. The next three lines report the counts of residues it has available to choose

from, with the total listed after the asterisk. The PbS-T line reports a probability cutoff array – the

program then selects a random number from 0-100 and compares this against the array to select the

residue, which is then displayed on the following line.

• Phylogenetic Weight: Here, the user can specify, with a number from 0 to 100, the degree or percentage of the

time they want a bifurcating phylogenetic structure to be mimicked. When the user provides residue conservation

and co-evolution constraints, the program pre-loads (randomly generates within the constraints) a distribution for

these residues across the entire set of ‘organisms’ to be simulated. By default, the program then randomly assigns

these residues to each sequence, leading to a star phylogeny, in which each sequence is mostly independent of the

others. In an effort to mimic the more realistic bifurcating phylogeny, the program can also be instructed to

choose the pre-loaded residues in a particular order, which creates a greater degree of similarity between

‘organisms’. The phylogenetic weight, specified here (and by default 0), is the percentage of the time in which the

bifurcating instructions are followed. A demonstration of this effect is shown below:

In the above figure, four different settings for phylogeny are shown, indicating the % of time a bifurcating process

was used. From left to right, each vertical panel is 0%, 50%, 80%, and 100%. The top panels show a heatmap for

co-evolution, with a peak signal expected in the circled region (and very prominent in the 0% bifurcating setting).

The bottom panels shown a phylogenetic tree for the sequences, with an inset zoomed onto the root or center of

the tree.

The difference shown here is a drastic one – this is intentional, as a small sequence set makes the tree structure

easier to visualize. However, a consequence of this is a strong obfuscation of the co-evolution signal.

The heatmaps were generated using my own mutual information program, and the bottom trees were generated

using a combination of Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and iTOL

(https://itol.embl.de/).

• Open MSA Parameters File: Selecting this button will allow you to choose the parameters file for generating the

simulated MSA. After selecting the file, the parameters will be immediately processed and the result delivered.

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://itol.embl.de/

