Description of Some Topological Parameters

http://www.bioinformatics.net/aminonet
Topological parameters of a network

Any graph or network has two basic components - nodes and edges. An un-weighted network can be represented as an adjacency matrix (A). Any element of adjacency matrix \(A \) \(a_{ij} \), is given as

\[
a_{ij} = \begin{cases}
1, & \text{if } i \neq j \text{ and } i \text{ and } j \text{ nodes are connected by an edge} \\
0, & \text{if } i \neq j \text{ and } i \text{ and } j \text{ nodes are not connected} \\
0, & \text{if } i = j.
\end{cases}
\]

(1)

0.1 Degree of a node and its distribution

The degree of any node \(i \) is represented by

\[
k_i = \sum_j a_{ij}.
\]

(2)

Higher degree of a node implies stronger connectivity of the node in the network. The probability of degree distribution is represented by

\[
P(k) = \frac{N(k)}{\sum N(k)}.
\]

(3)

where \(N(k) \) is the number of nodes in the network with degree \(k \).
The average degree of a network is given by

\[< k > = \frac{\sum_i k_i}{N} \] (4)

where \(N \) the total number of nodes in the network.

Higher average degree implies good inter-connectivity among the nodes in the network.

0.2 Strength of a node and its distribution

If \(w_{ij} \) is the number of possible interactions between any \(i^{th} \) and \(j^{th} \) nodes, then the strength \((s_i)\) of a node \(i \) is given by

\[s_i = \sum_j a_{ij} w_{ij}. \] (5)

The spread in the strength of a node has been characterized by a distribution function \(P(s) \); where

\[P(s) = \frac{N(s)}{\sum N(s)} \] (6)

\(N(s) \) being the number of nodes with strength \(s \). The average strength of a network is given by

\[< s > = \frac{\sum_i s_i}{N} \] (7)

where \(N \) the total number of nodes in the network.

0.3 Average Weight of a node

If \(w_{ij} \) is the number of possible interactions between any \(i^{th} \) and \(j^{th} \) atoms, then the average weight \(< w_{ij} > \) of an atom \(i \) is given by

\[< w_{ij} > = \frac{\sum_i \sum_j w_{ij}}{M}. \] (8)
Where \(M \) is the total number of interactions among atoms.

0.4 Characteristic path length of a network

The characteristic path length \((L) \) of a network is the shortest path length between two nodes averaged over all pairs of nodes and is given by

\[
L = \frac{\sum_i \sum_j L_{i,j}}{N(N-1)} \tag{9}
\]

where \(L_{i,j} \) is the shortest path length between \(i^{th} \) node and \(j^{th} \) node.

Higher characteristic path length implies network is almost in linear chain and lower characteristic path length shows the network is in compact form.

0.5 Clustering coefficient of a network

The clustering coefficient \((C) \) is a measure of local cohesiveness. Traditionally the clustering coefficient \(C_i \) of a node \(i \) is the ratio between the total number \((e_i) \) of the edges actually connecting its nearest neighbors to the \(i^{th} \) node and the total number of all possible edges between all these nearest neighbors \(\frac{k_i(k_i-1)}{2} \); if the \(i^{th} \) vertex has \(k_i \) neighbors] and is given by

\[
C_i = \frac{2e_i}{k_i(k_i-1)} \tag{10}
\]

where \(e_i \) is the total number of edges actually connecting the \(i^{th} \) node’s nearest neighbors. Then the clustering coefficient of a network is the average of its all individual \(C_i \) ’s.

The average clustering coefficient of a network is given by

\[
\langle C \rangle = \frac{\sum_i C_i}{N} \tag{11}
\]

Here, \(N \) is the total number of nodes of the network.
0.6 Small World Property of a network

A small-world network is a type of graph in which most nodes can be reached from every other node by a small number of hops or steps. Human social networks, for example, famously connect any two people on Earth - or any player to Diego Maradona - in six steps or less. This small world property has been observed for many real networks.

To examine if there is any ‘Small World’ property in a network, one can follow Watts & Strogatz’s method [1]. According to them, a network has the small world property if

\[C \gg C_r \quad \text{and} \quad L \geq L_r. \]

Here, \(C_r \) and \(L_r \) are respectively the clustering coefficient and characteristic path length for the corresponding random network having same number of nodes and edges.

For a random network having \(N \) number of nodes with average degree \(<k> \), the characteristic path length \((L_r) \) and the clustering coefficient \((C_r) \) can be calculated using the expressions

\[L_r \approx \frac{\ln N}{\ln <k>} \quad \text{and} \quad C_r \approx \frac{<k>}{N} \]

given in [1].

Here we define the ratio

\[p = \frac{C}{C_r} \] (12)

and the ratio

\[q = \frac{L}{L_r} \] (13)

if \(p \gg 1 \) and \(q \approx 1 \) then we can say the network has ‘Small World’ property.

0.7 Weighted clustering coefficient of a network

Combining the topological information with the weight distribution of the network, Barrat et al [2] have introduced an analogous parameter to \(C \) and that is known as weighted clustering coefficient, \(C^w \). The weighted clustering coefficient \(C^w \) takes into account the importance of the clustered structure on the basis of
amount of interaction intensity actually found on the local triplets and is given by

\[C^w_i = \frac{1}{s_i(k_i - 1)} \sum_{j,h} \frac{w_{ij} + w_{ih}}{2} a_{ij} a_{ih} a_{jh} \]

(14)

where \(s_i \) is strength of \(i^{th} \) node, \(k_i \) is degree of \(i^{th} \) node, \(w_{ij} \) is the number of connections between \(i^{th} \) and \(j^{th} \) nodes of the network.

\(C \) and \(C^w \) provide global information on the correlation between weights and topology, especially by comparing them with their topological analogs. For a large randomized network (lack of correlations) it is easy to find that \(C^w = C \) and \(C^w(k) = C(k) \). In real weighted networks, however, two opposite cases are found. If \(C^w > C \), then the interconnected triplets are more likely formed by the edges with larger weights. On the other hand, \(C^w < C \) signals a network in which the topological clustering is generated by edges with low weight.

The average weighted clustering coefficient of a network is given by

\[\langle C^w \rangle = \frac{\sum_i C^w_i}{N} \]

(15)

where \(N \) is the total number of nodes of the network.

0.8 Mixing behavior of nodes

Interaction dynamics of a network is a very interesting phenomena. The pattern of connectivity among the nodes of varying degrees affects the interaction dynamics of the network. If the high-degree nodes in a network tend to be connected with other high-degree nodes, then the network is ‘assortative’. On the other hand, the network is said to be ‘disassortative’ if the high-degree nodes tend to be connected with other low-degree nodes.

This mixing behavior of nodes of a network can be understood by two different methods discussed below.

To study the tendency for nodes in networks to be connected to other nodes that are like (or unlike) them, one can calculate the Pearson correlation coefficient\((r)\) of
the degrees at either ends of an edge. For an undirected unweighted network the r-value can be calculated using the expression suggested by Newman [3] and is given as

\[r = \frac{M^{-1} \sum_i j_i k_i - [M^{-1} \sum_i 0.5(j_i + k_i)]^2}{M^{-1} \sum_i 0.5(j_i^2 + k_i^2) - [M^{-1} \sum_i 0.5(j_i + k_i)]^2} \]

(16)

Here \(j_i \) and \(k_i \) are the degrees of the vertices at the ends of the \(i^{th} \) edge, with \(i = 1, \ldots, M \); where \(M \) is the total number of edges. The networks having positive \(r \) values are assortative in nature.

The coefficient \(r \) measures the tendency of degree correlation. This parameter helps us to understand whether the network is assortative or disassortative type. The coefficient \(r \) is a normalized coefficient (\(-1 \leq r \leq 1 \)). For positive \(r \) value one can say that the network has been evolved due to assortative mixing of its nodes. On the other hand the network having negative \(r \) value is evolved due to disassortative mixing of its nodes. One cannot predict the mixing behavior when \(r \) is 0.

0.9 Residue Centrality

The residue centrality [4] is calculated using the changes of the characteristic path length under removal of node \(k \) with its links

\[\Delta L_k = |L - L_{rem,k}| \]

(17)

where \(L \) is the characteristic path length given by Equation 9 with \(L_{rem,k} \) represents the characteristic path length after the removal of node \(k \) and corresponding links from the network.

The statistically significant central nodes are evaluated using the Z-score values [5] of the node centrality defined as

\[Z_k = \frac{\Delta L_k - \Delta L}{\sigma} \]

(18)

where, \(\Delta L_k \) is the change of characteristic path length under removal of node \(k \); \(\Delta L \) is the change of characteristic path length under node removal averaged over all nodes in the network, \(\sigma \) is the corresponding standard deviation.
0.10 Closeness Centrality

Closeness centrality is used to find central vertices. It gives higher values to more central vertices. Closeness centrality of a node x, is denoted by $C_{res}(x)$ and is calculated as follows

$$C_{res}(x) = \frac{N - 1}{\sum_{y \in U; y \neq x} d(x, y)}$$

(19)

where $d(x, y)$ is the geodesic distance between node x and node y. U is the set of all nodes and N is the number of nodes in the network.

The closeness value is therefore the inverse of the average distance between x and other nodes (\bar{d}) i.e., $C_{res}(x) = 1/\bar{d}$
Bibliography

