Table of Contents

Class: HiddenLayer Bio/NeuralNetwork/BackPropagation/Layer.py
Base Classes   
AbstractLayer
Methods   
__init__
backpropagate
update
  __init__ 
__init__ (
        self,
        num_nodes,
        next_layer,
        activation=logistic_function,
        )

Initialize a hidden layer.

Arguments:

  • num_nodes -- The number of nodes in this hidden layer.

  • next_layer -- The next layer in the neural network that this is connected to.

  • activation -- The transformation function used to transform predicted values.

  backpropagate 
backpropagate (
        self,
        outputs,
        learning_rate,
        momentum,
        )

Recalculate all weights based on the last round of prediction.

Arguments:

  • learning_rate -- The learning rate of the network

  • momentum - The amount of weight to place on the previous weight change.

  • outputs - The output values we are using to see how good our network is at predicting things.

  update 
update ( self,  previous_layer )

Update the values of nodes from the previous layer info.

Arguments:

  • previous_layer -- The previous layer in the network.


Table of Contents

This document was automatically generated on Mon Jul 1 12:03:11 2002 by HappyDoc version 2.0.1