Table of Contents

Class: KeerthiTrainer Bio/Tools/Classification/SVM.py

Sequential Minimal Optimization Trainer

This is an implementation of Sequential Minimal Optimization plus the 2 modifications suggested by S.S. Keerthi, et al.: http://guppy.mpe.nus.edu.sg/~mpessk/

Methods: train Train a new SVM.

Methods   
_F
_examine_example
_in_I_0
_in_I_1
_in_I_2
_in_I_3
_in_I_4
_take_step
train
  _F 
_F ( self,  i )

  _examine_example 
_examine_example ( self,  i2 )

  _in_I_0 
_in_I_0 ( self,  i )

  _in_I_1 
_in_I_1 ( self,  i )

  _in_I_2 
_in_I_2 ( self,  i )

  _in_I_3 
_in_I_3 ( self,  i )

  _in_I_4 
_in_I_4 ( self,  i )

  _take_step 
_take_step (
        self,
        i1,
        i2,
        )

  train 
train (
        self,
        training_set,
        results,
        kernel_fn,
        C,
        epsilon,
        update_fn=None,
        )

train(self, training_set, results, kernel_fn, C, epsilon, update_fn=None) -> SVM

Exceptions   
ValueError, "I could not find positive and negative training examples"

Table of Contents

This document was automatically generated on Mon Jul 1 12:03:03 2002 by HappyDoc version 2.0.1