

BranchClust

A Phylogenetic Algorithm for Selecting
Gene Families

Version 1.01

Tutorial

http://www.bioinformatics.org/branchclust

Copyright © Maria Poptsova and J. Peter Gogarten 2006-2007

 2

Tutorial

Selection of orthologous families with BranchClust is a multi-stage process that includes
processing BLAST results, assembling superfamilies, alignment, reconstruction of
phylogenetic trees, and applying the BranchClust method itself. Here we describe step-by-
step procedures used for selection of orthologous families for a set of different taxa. All perl
scripts described here are freely available and can be downloaded as one archive from the
web-site:

http://www.bioinformatics.org/branchclust/

All following procedures could be divided into 6 major stages:

I. Downloading complete genomes and collection of significant hits
II. Creation of taxa identification table
III. Assemblage of superfamilies
IV. Reconstruction of superfamily trees.
V. Selection of orthologous families with BranchClust
VI. Visualization of results with TreeDyn

For all the programs described below, it is assumed that they are run from inside one
directory. Perl-scripts create output files that are further used as input by other programs so
that each step should be performed in order described in the tutorial.

The scripts and programs were tested under both Mac OSX Darwin and Debian Linux
operating sytems. Modules or standalone programs such as BioPerl, blastall, clustalw and
treedyn need to be installed in the system. These programs are available from

BioPerl – http://www.bioperl.org
Blastall - http://www.ncbi.nlm.nih.gov/BLAST/download.shtml
Clustalw - http://bips.u-strasbg.fr/fr/Documentation/ClustalX/
TreeDyn - http://www.treedyn.org

I. Downloading complete genomes and collection of significant hits

1. Download files in fasta format (*.faa) with genes represented as amino acid sequences
from NCBI web site:

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria

Result: fasta/*.faa

Note! Some bacterial genomes consist of more than one chromosome. To include all
chromosomes in the analysis, download all *.faa files from species directory and put them in
one file.

Put all genomes in fasta directory. All files must have an extension *.faa.

 3

EXAMPLE: 13 gamma proteobacteria
1. Buchnera aphidicola str. Bp (Baizongia pistaciae)
2. Escherichia coli CFT073
3. Haemophilus influenzae Rd KW20
4. Pasteurella multocida subsp. multocida str. Pm70
5. Pseudomonas aeruginosa
6. Salmonella typhimurium
7. Vibrio cholerae O1 biovar eltor str. N16961
8. Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
9. Xanthomonas campestris pv. campestris str. ATCC 33913
10. Xanthomonas axonopodis pv. citri str. 306
11. Xylella fastidiosa 9a5c
12. Yersinia pestis CO92
13. Yersinia pestis KIM

Put all genomes in fasta directory, rename them at your own convenience.

>ls fasta
buch.faa pasteur.faa vcholera.faa xancit.faa ypkim.faa
ecoli.faa pseudo.faa wiggle.faa xylella.faa
hinflue.faa salmon.faa xancam.faa ypco.faa

2. Create database consisting of all genomes:

> perl create_one_faa.pl

Result: fasta_all/allgenomes.faa

EXAMPLE: 13 gamma proteobacteria
Database fasta_all/allgenomes.faa composed of 13 genomes contains 43 694 genes

3. Format database for use with BLAST:

> perl format_faa.pl

4. Blast database composed of all genomes against itself:

> perl do_blast.pl

Note! You can modify Blast parameters at your own convenience (see blastall string in the
script). By default, E-value=e-4, tabular format.

Output: blast/all_vs_all.out

EXAMPLE: 13 gamma proteobacteria
Blast result file blast/all_vs_all.out has 1 759 999 hits.

5. Parse Blast results:

> perl parse_blast.pl

Input: blast/all_vs_all.out
Output: parsed/all_vs_all.parsed

 4

Script requires BioPerl module. In the script parse_blast.pl replace path to the library with
your path or contact system administrator and install BioPerl module in the system.

Script takes Blast results and creates output file in such a way that each gene from the input
database with all the hits collected from the database including genome of the query is
located in one line.

EXAMPLE: 13 gamma proteobacteria
After processing raw Blast output the file parsed/all_vs_all.parsed has 43 686 lines.

II. Creation of taxa identification table gi_numbers.out

All genome files in fasta format should be located in fasta directory.

1. Create taxa identification table:

>perl extract_gi_numbers.pl

Result: gi_numbers.out
Additional: gi_numbers.log

Each taxa is identified by gi-number template. Script automatically takes care of double-
entries and increases resolution if necessary.

EXAMPLE: 13 gamma proteobacteria
>more gi_numbers.out

Buchnera aphidicola str. Bp (Baizongia pistaciae) | 2790....
Escherichia coli CFT073 | 2624.... 2625....
Haemophilus influenzae Rd KW20 | 1627.... 3099.... 1867....
Pasteurella multocida subsp. multocida str. Pm70 | 15602... 15603...
156019.. 1560187. 1560188. 1560189. 15601866 15601867
15601868 15601869
Pseudomonas aeruginosa PAO1 | 1559.... 156000.. 156001.. 156002..
156003.. 156004.. 156005.. 156006.. 1560070. 1560071.
1560072. 1560073. 1560074. 1560075. 1560076.
Salmonella typhimurium LT2 | 1676.... 3954.... 3998.... 1723....
3244....
Vibrio cholerae O1 biovar eltor str. N16961 | 1564.... 156010.. 156011..
156012.. 156013.. 156014.. 156015.. 156016.. 156017..
1560180. 1560181. 1560182. 1560183. 1560184. 1560185.
15601860 15601861 15601862 15601863 15601864 156008..
156009.. 1560077. 1560078. 1560079.
Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis | 5047....
3249....
Xanthomonas campestris pv. campestris str. ATCC 33913 | 2122.... 2123....
Xanthomonas axonopodis pv. citri str. 306 | 2124.... 2126....
Xylella fastidiosa 9a5c | 1583.... 1095.... 1542....
Yersinia pestis CO92 | 1608.... 4054.... 4078.... 1612....
Yersinia pestis KIM | 2212....

III. Assemblage of superfamilies

1. Assemble Blast hits in superfamilies:

> perl parse_superfamilies.pl <NUMBER_OF_TAXA>

Result: parsed/all_vs_all.fam
Intermidiate result: parsed/all_vs_all.temp

 5

First it filters Blast results so that each line contains at least <NUMBER_OF_TAXA> different
species: results are saved in the intermediate file parsed/all_vs_all.temp. At the second
stage it combines different sets according to the following rules.

Each line after parsing Blast output (file parsed/all_vs_all.parsed) contains all
significant hits for a given query gene in all genomes including the genome of the query. It
could happen (and it does happen) that another gene from that line, when used as a query,
would assemble a slightly different set of genes. If we take first line as a starting set than we
shall add to this set all the genes that would have been selected if each member of the set
were used as a query.

Superfamily selection scheme works as follows: it takes one line, for each gene in the line it
searches for the occurrence of this gene in all other lines. The content from all intersecting
lines is combined in one superfamily. All intersected lines are removed from the file, and
assemblage starts from the next available line.

EXAMPLE: 13 gamma proteobacteria
For the case of 13 different species we run the script with the requirement that at least 8
different taxa should be present:

> perl parse_superfamilies.pl 8

As a result file parsed/all_vs_all.fam has 1205 lines, i.e. 1205 superfamilies.

IV. Reconstruction of superfamilies trees

At this point list of all superfamilies is stored in the file parsed/all_vs_all.fam. Each
line of the file represents one superfamily.

For each superfamily we do alignment and reconstruct a phylogenetic tree.

1. Prepare files containing all gene sequences for a given superfamily:

> perl prepare_fa.pl <FILE-WITH-SUPERFAMILIES>

Here <FILE-WITH-SUPERFAMILIES> is all_vs_all.fam

Result: fa/fam_##.fa

EXAMPLE: 13 gamma proteobacteria
> perl parse_superfamilies.pl parsed/all_vs_all.fam

2. Alignment of superfamilies:

> perl do_clustalw_aln.pl

Result: dist/fam_##.aln

3. Trees reconstruction using distance method with Kimura correction:

 6

Note! Distance method here used for speed, it can be replaced with any other method of tree
reconstruction and any other program (phyml, tree-puzzle, paup, etc.). However, for the
purpose of clustering, when we are not looking at the evolutionary history inside each family,
the results obtained with the distance method are not different from those obtained with the
maximum likelihood method.

> perl do_clustalw_dist_kimura.pl

 Result: dist/fam_##.ph

4. Prepare trees to use further with BranchClust:

> perl prepare_trees.pl

 Result: trees/fam_##.tre

V. Selection of orthologous families with BranchClust

1. BranchClust method:

> perl branchclust_all.pl <MANY>

Results: clusters/clusters_##.out
 clusters/family_##.list
Additional: clusters_##.log

Program branchclust_all.pl is a wrapper that applies BranchClust algorithm to each
superfamily tree. Requires branchclust.pl located in the same directory. Requires taxa
identification file, gi_numbers.out.

Parameter <MANY> is a number less or equal to the number of different taxa in question.
See description of the BranchClust algorithm for the choice of this parameter. In general it is
recommended to use around 50-80% of the number of different taxa.

Each superfamily tree is analyzed and divided into clusters. Each cluster contains a potential
family of orthologs together with paralogs. Here it is the typical BranchClust output for
superfamily consisting of one cluster.

------------ CLUSTER -----------
30995452 16273249 15602639 15602307 15598924 21243223 21230752 15601922 15601924 16123078
22125245 22125244 16766857 26250079 16082793 16767596 16764401 16082788

------------ FAMILY ------------
26250079 30995452 15602639 15598924 16766857 21230752 21243223 16123078 22125245
INCOMPLETE: 9

>>>>> IN-PARALOGS -----------
 16273249 15602307 15601922 15601924 22125244

<<<<< OUT-OF_CLUSTER PARALOGS -----------
 16082793 16767596 16764401 16082788

First the cluster itself is reported then the potential family of orthologs with in- and out-of-
cluster paralogs. The following relation is satisfied: CLUSTER = FAMILY + IN_PARALOGS + OUT-OF-
CLUSTER PARALOGS. Superfamily could be composed of many clusters, in this case all the
clusters are printed in order into one file.

 7

Each result file Clusters_##.out corresponds to one superfamily.

In addition to clusters, the list of all families assembled from one superfamily is printed in a
separate file family_##.list. Here it is the typical example of family list:

26248867 15601281 15597585 16764354 15600941 21233415 21244798 15838496 16120414 22124883
INCOMPLETE: 10
27904517 26250482 16272430 15603355 15600751 16767153 15642761 32491162 21230753 21244378
15837749 16124233
22128007
COMPLETE: 13

Each taxon is represented only once per a family. All complete, i.e. containing all taxa, and
incomplete, i.e. missing some taxa, families are reported.

You can apply BranchClust algorithm to only one tree. It is done with the program
branchclust.pl:

> perl branchclust.pl <TREE> <MANY>

Results: clusters.out
 family.list
Additional: clusters.log

EXAMPLE: 13 gamma proteobacteria
For the case of 13 different species we run the program with parameter MANY = 8

> perl branchclust_all.pl 8

If you want to try different values of parameter MANY for one superfamily then you use
branchclust.pl program and pass the superfamily tree as a first parameter and MANY as
the second:

> perl branchclust.pl trees/fam_16.tre 5

2. Make a list of all families:

> perl make_fam_list.pl <NU_OF_ALL_TAXA> <NU_OF_INCOMPLETE_TAXA>

<NU_OF_ALL_TAXA> - number of different taxa
<NU_OF_INCOMPLETE_TAXA> - even incomplete families with missing genomes
will be included.

Result: families.list

EXAMPLE: 13 gamma proteobacteria
If we would like to print out only complete families where all species are present then the
command line is:

> perl make_fam_list.pl 13 13

If we would like to print out also incomplete families with at least 7 taxa being present
then the command line is:

 8

> perl make_fam_list.pl 13 7

3. Analysis of clusters and selected families:

Prints out how many gene families were assembled in general, and reports the numbers for
complete and incomplete collections:

> perl summary.pl

Result: summary.out

EXAMPLE: 13 gamma proteobacteria
> perl summary.pl
> more summary.out

complete: 366
incomplete: 2592
total: 2958
------ details -------
incomplete 12: 242
incomplete 11: 405
incomplete 10: 318
incomplete 9: 339
incomplete 8: 395
incomplete 7: 117
incomplete 6: 55
incomplete 5: 62
incomplete 4: 103
incomplete 3: 118
incomplete 2: 152
incomplete 1: 286

For each cluster you can print gene names taken from original fasta-files:

> perl names_for_cluster_all.pl

Results: clusters/clusters_##.out.names

You can print gene names for the individual file:

> perl names_for_cluster.pl <CLUSTER-FILE>

Results: <CLUSTER-FILE>.names

EXAMPLE: 13 gamma proteobacteria
> perl names_for_cluster.pl clusters/clusters_6.out
> more clusters/clusters_6.out.names
...
------------ FAMILY ------------
>gi|27904576|ref|NP_777702.1| flagellum-specific ATP synthase [Buchnera aphidicola str. Bp
(Baizongia pistaciae)]
>gi|26248210|ref|NP_754250.1| Flagellum-specific ATP synthase [Escherichia coli CFT073]
>gi|15596301|ref|NP_249795.1| flagellum-specific ATP synthase FliI [Pseudomonas aeruginosa
PAO1]
>gi|16765310|ref|NP_460925.1| flagellum-specific ATP synthase [Salmonella typhimurium LT2]
>gi|15642129|ref|NP_231761.1| flagellum-specific ATP synthase FliI [Vibrio cholerae O1
biovar eltor str. N16961]
>gi|32490806|ref|NP_871060.1| hypothetical protein WGLp057 [Wigglesworthia glossinidia

 9

endosymbiont of Glossina brevipalpis]
>gi|21231371|ref|NP_637288.1| flagellar protein [Xanthomonas campestris pv. campestris str.
ATCC 33913]
>gi|21242695|ref|NP_642277.1| flagellar protein [Xanthomonas axonopodis pv. citri str. 306]
>gi|16122080|ref|NP_405393.1| flagellum-specific ATP synthase [Yersinia pestis CO92]
>gi|22126362|ref|NP_669785.1| flagellum-specific ATP synthase [Yersinia pestis KIM]

INCOMPLETE: 10
>>>>> IN-PARALOGS -----------
<<<<< OUT-OF_CLUSTER PARALOGS -----------
>gi|22127336|ref|NP_670759.1| flagellum-specific ATP synthase [Yersinia pestis KIM]
>gi|16121036|ref|NP_404349.1| putative flagellum-specific ATP synthase [Yersinia pestis
CO92]
>gi|22124440|ref|NP_667863.1| flagellum-specific ATP synthase [Yersinia pestis KIM]
>gi|16120605|ref|NP_403918.1| putative type III secretion system ATP synthase [Yersinia
pestis CO92]
>gi|16764765|ref|NP_460380.1| needle complex ATPase [Salmonella typhimurium LT2]
>gi|21241185|ref|NP_640767.1| HrcN protein [Xanthomonas axonopodis pv. citri str. 306]
>gi|21230693|ref|NP_636610.1| HrpB6 protein [Xanthomonas campestris pv. campestris str.
ATCC 33913]
>gi|16082728|ref|NP_395174.1| needle complex secretion ATPase [Yersinia pestis CO92]
>gi|15596894|ref|NP_250388.1| ATP synthase in type III secretion system [Pseudomonas
aeruginosa PAO1]
>gi|16766200|ref|NP_461815.1| needle complex secretion ATPase [Salmonella typhimurium LT2]

…

Detailed summary prints out the table where each row contains information about the number
of genes in the cluster, number of genes in the family, number of paralogs and the name
associated with the family extracted from an arbitrarily taken gene:

> perl detailed_summary.pl

Result: detailed_summary.out

EXAMPLE: 13 gamma proteobacteria
> perl detailed_summary.pl
> more detailed_summary.out

superfamily_## family_## nu_of_genes_in_the_family nu_of_paralogs family_name
1 1 13 0 glucose-inhibited division protein A
10 1 13 0 DNA polymerase III, beta-subunit
100 1 11 0 50S ribosomal protein L35
1000 1 10 2 Hypothetical protein yhhQ
1001 1 10 7 FixC protein
1002 1 8 0 Hypothetical protein yhiQ
1003 1 11 0 Hypothetical protein yhiR
1004 1 7 1 Probable cytochrome C peroxidase
1005 1 10 1 DNA-3-methyladenine glycosylase I
1006 1 8 4 Hypothetical acetyltransferase yiaC
1007 1 7 4 Putative hexulose-6-phosphate isomerase
1008 1 11 1 tRNA (Guanosine-2'-O-)-methyltransferase
1009 1 12 0 Glycerol-3-phosphate dehydrogenase
101 1 13 0 RpL20
1010 1 11 0 Protein-export protein secB
1011 1 11 20 Lipopolysaccharide core biosynthesis glycosyl transferase
1012 1 12 0 3-deoxy-D-manno-octulosonic-acid transferase
1013 1 12 0 Phosphopantetheine adenylyltransferase
1014 1 12 0 DNA/pantothenate metabolism flavoprotein
1015 1 11 10 Putative conserved protein
1016 1 12 0 Protein yicC
1017 1 12 0 DNA-directed RNA polymerase omega chain
1018 1 7 0 Sodium/glutamate symport carrier protein
1019 1 8 2 Putative symporter yjcG
1019 2 8 7 Sodium/pantothenate symporter
1019 3 8 2 Putative symporter yidK
…
…

VI. Results visualization with TreeDyn

 10

Graphic representation of a clustered tree can be automated using the TreeDyn program. One
can color different clusters in different colors and label leaves in a superfamily tree according
to their belonging either to a family or to in- or out-of-cluster paralogs. Additionally, one can
include gene annotation and species names.

TreeDyn requires an annotation file for a given tree and a script with TreeDyn operations.
You must first obtain names for the genes in a cluster (see names_for_cluster.pl above).

Generation of TreeDyn annotation file:

> perl generate_tlf.pl <CLUSTER_FILE.names>

Result: labelfile.tlf

Example of script with TreeDyn operations is given in the file commands.tds.

In TreeDyn program:
1. File/Open tree(s)… - Open tree-file (from trees/fam_##.tre)
2. File/Load annotations … Load file labelfile.tlf
3. Menu File/Load script… Load script with operations commands.tds.

EXAMPLE: 13 gamma proteobacteria

> perl generate_tlf.pl clusters/clusters_6.out.names

In TreeDyn open tree-file fam_6.tre, load annotation file labelfile.tlf, open script
commands.tds. You can save the created image as *.png.

Result of BranchClust selection for the superfamily #6.

