1 |
#define EXTERN extern |
2 |
|
3 |
#include "pcwin.h" |
4 |
#include "pcmod.h" |
5 |
#include "utility.h" |
6 |
#include "asnsym.h" |
7 |
|
8 |
double TOLER = 0.002; |
9 |
double TOL2 = 0.00002; |
10 |
|
11 |
double SIGN(double,double); |
12 |
static void vibsym(int); |
13 |
static int tstc3(double **,double **,int,int,int,double *); |
14 |
static int tstc4(double **,double **,int,int,int,double *); |
15 |
static int tstc5(double **,double **,int,int,int,double *); |
16 |
static void secmom(double **, double *, double *, double *, int *, double (*)[3]); |
17 |
static void orients(double **, double **,double *, double *,int,int); |
18 |
static void tcopy(double **, double **,int); |
19 |
static int findcn(double **,double **,double *, double *, int *); |
20 |
static int findc2(double **,double **, double **, int *); |
21 |
static int findv(double **,double **, double **, int *); |
22 |
static int findsn(double **,double **, double **, int *); |
23 |
static void tform(double (*)[3], double **, double **,int); |
24 |
static void reflect(double **, double **,int); |
25 |
static int tcomp(double **,double **); |
26 |
static void circset(double **, double **,int,int *,int *); |
27 |
static void rotates(double **a,double **b,int,double); |
28 |
static void sphere(double **,double **, double **,int *, int *); |
29 |
static void sym_invert(double **, double **); |
30 |
static void triang(double **,int,int,int,double *, double *,double *,double *,double *,double *); |
31 |
static void zero_array(double **,int); |
32 |
static void hqrii(double *,int,int,double *,double (*)[3]); |
33 |
static void sphset(double **, double **,int *, int *,int *); |
34 |
|
35 |
// ======================== |
36 |
void zero_array(double **a,int num) |
37 |
{ |
38 |
int i; |
39 |
for (i=1; i <= num; i++) |
40 |
{ |
41 |
a[i][0] = 0.0; |
42 |
a[i][1] = 0.0; |
43 |
a[i][2] = 0.0; |
44 |
} |
45 |
} |
46 |
void triang(double **a,int iat,int jat,int kat,double *alpha, double *beta, |
47 |
double *gamma,double *dij, double *dik, double *djk) |
48 |
{ |
49 |
double xi,yi,zi,xj,yj,zj,xk,yk,zk,dotjk,dotik,dotij; |
50 |
|
51 |
xi = a[iat][0]; |
52 |
yi = a[iat][1]; |
53 |
zi = a[iat][2]; |
54 |
xj = a[jat][0]; |
55 |
yj = a[jat][1]; |
56 |
zj = a[jat][2]; |
57 |
xk = a[kat][0]; |
58 |
yk = a[kat][1]; |
59 |
zk = a[kat][2]; |
60 |
*dij = sqrt( (xi-xj)*(xi-xj) + (yi-yj)*(yi-yj) + (zi-zj)*(zi-zj) ); |
61 |
*dik = sqrt( (xi-xk)*(xi-xk) + (yi-yk)*(yi-yk) + (zi-zk)*(zi-zk) ); |
62 |
*djk = sqrt( (xj-xk)*(xj-xk) + (yj-yk)*(yj-yk) + (zj-zk)*(zj-zk) ); |
63 |
dotjk = (xj-xi)*(xk-xi) + (yj-yi)*(yk-yi) + (zj-zi)*(zk-zi); |
64 |
dotik = (xi-xj)*(xk-xj) + (yi-yj)*(yk-yj) + (zi-zj)*(zk-zj); |
65 |
dotij = (xi-xk)*(xj-xk) + (yi-yk)*(yj-yk) + (zi-zk)*(zj-zk); |
66 |
*alpha = acos(dotjk/(*dij**dik)); |
67 |
*beta = acos(dotik/(*dij**djk)); |
68 |
*gamma = acos(dotij/(*dik**djk)); |
69 |
|
70 |
} |
71 |
/* ================================================= */ |
72 |
int tstc3(double **a,double **b,int iat,int jat,int kat,double *center) |
73 |
{ |
74 |
int itst, iz; |
75 |
double p1[3]; |
76 |
double phi3,theta3,fact3; |
77 |
double alpha,beta,gamma,dij,dik,djk; |
78 |
double px,py,pz; |
79 |
|
80 |
p1[0] = p1[1] = p1[2] = 0.0; |
81 |
itst = 0; |
82 |
phi3 = (8.0/3.0)*atan(1.0); |
83 |
theta3 = 0.5*phi3; |
84 |
fact3 = 2.0/3.0; |
85 |
|
86 |
triang(a,iat,jat,kat,&alpha,&beta,&gamma,&dij,&dik,&djk); |
87 |
|
88 |
if (fabs(alpha-theta3) < TOLER && fabs(dij-dik) < TOLER) |
89 |
{ |
90 |
px = 0.5*(a[jat][0] + a[kat][0]); |
91 |
py = 0.5*(a[jat][1] + a[kat][1]); |
92 |
pz = 0.5*(a[jat][2] + a[kat][2]); |
93 |
center[0] = a[iat][0] + fact3*(px - a[iat][0]); |
94 |
center[1] = a[iat][1] + fact3*(py - a[iat][1]); |
95 |
center[2] = a[iat][2] + fact3*(pz - a[iat][2]); |
96 |
|
97 |
orients(a,b,p1,center,3,natom); |
98 |
tcopy(b,a,natom); |
99 |
rotates(a,b,3,phi3); |
100 |
iz = tcomp(a,b); |
101 |
return (iz); |
102 |
} |
103 |
return FALSE; |
104 |
} |
105 |
int tstc4(double **a,double **b,int iat,int jat,int kat,double *center) |
106 |
{ |
107 |
int itst, iz; |
108 |
double p1[3]; |
109 |
double alpha,beta,gamma,dij,dik,djk; |
110 |
double halfpi; |
111 |
|
112 |
p1[0] = p1[1] = p1[2] = 0.0; |
113 |
itst = 0; |
114 |
halfpi = 2.0*atan(1.0); |
115 |
|
116 |
triang(a,iat,jat,kat,&alpha,&beta,&gamma,&dij,&dik,&djk); |
117 |
|
118 |
if (fabs(alpha-halfpi) < TOLER && fabs(dij-dik) < TOLER) |
119 |
{ |
120 |
center[0] = 0.5*(a[jat][0] + a[kat][0]); |
121 |
center[1] = 0.5*(a[jat][1] + a[kat][1]); |
122 |
center[2] = 0.5*(a[jat][2] + a[kat][2]); |
123 |
} else if (fabs(beta-halfpi) < TOLER && fabs(dij-djk) < TOLER) |
124 |
{ |
125 |
center[0] = 0.5*(a[iat][0] + a[kat][0]); |
126 |
center[1] = 0.5*(a[iat][1] + a[kat][1]); |
127 |
center[2] = 0.5*(a[iat][2] + a[kat][2]); |
128 |
} else if (fabs(gamma-halfpi) < TOLER && fabs(dik-djk) < TOLER) |
129 |
{ |
130 |
center[0] = 0.5*(a[jat][0] + a[iat][0]); |
131 |
center[1] = 0.5*(a[jat][1] + a[iat][1]); |
132 |
center[2] = 0.5*(a[jat][2] + a[iat][2]); |
133 |
} else if (fabs(dij-dik) < TOLER && fabs(dij-djk) < TOLER && TOLER && fabs(dik-djk)) |
134 |
{ |
135 |
center[0] = a[iat][0]; |
136 |
center[1] = a[iat][1]; |
137 |
center[2] = a[iat][2]; |
138 |
} else |
139 |
return FALSE; |
140 |
|
141 |
orients(a,b,p1,center,3,natom); |
142 |
tcopy(b,a,natom); |
143 |
rotates(a,b,3,halfpi); |
144 |
iz = tcomp(a,b); |
145 |
return (iz); |
146 |
|
147 |
} |
148 |
int tstc5(double **a,double **b,int iat,int jat,int kat,double *center) |
149 |
{ |
150 |
int itst, iz; |
151 |
double p1[3]; |
152 |
double piovr4, phi5,theta5,fact5; |
153 |
double alpha,beta,gamma,dij,dik,djk; |
154 |
double px,py,pz; |
155 |
|
156 |
p1[0] = p1[1] = p1[2] = 0.0; |
157 |
itst = 0; |
158 |
piovr4 = atan(1.0); |
159 |
phi5 = 1.6*piovr4; |
160 |
theta5 = 2.4*piovr4; |
161 |
fact5 = 1.0/(2.0*sin(0.8*piovr4)*sin(0.8*piovr4)); |
162 |
|
163 |
triang(a,iat,jat,kat,&alpha,&beta,&gamma,&dij,&dik,&djk); |
164 |
|
165 |
if (fabs(alpha-theta5) < TOLER && fabs(dij-dik) < TOLER) |
166 |
{ |
167 |
px = 0.5*(a[jat][0] + a[kat][0]); |
168 |
py = 0.5*(a[jat][1] + a[kat][1]); |
169 |
pz = 0.5*(a[jat][2] + a[kat][2]); |
170 |
center[0] = a[iat][0] + fact5*(px - a[iat][0]); |
171 |
center[1] = a[iat][1] + fact5*(py - a[iat][1]); |
172 |
center[2] = a[iat][2] + fact5*(pz - a[iat][2]); |
173 |
} else if (fabs(beta-theta5) < TOLER && fabs(dij-djk) < TOLER) |
174 |
{ |
175 |
px = 0.5*(a[iat][0] + a[kat][0]); |
176 |
py = 0.5*(a[iat][1] + a[kat][1]); |
177 |
pz = 0.5*(a[iat][2] + a[kat][2]); |
178 |
center[0] = a[jat][0] + fact5*(px - a[jat][0]); |
179 |
center[1] = a[jat][1] + fact5*(py - a[jat][1]); |
180 |
center[2] = a[jat][2] + fact5*(pz - a[jat][2]); |
181 |
} else if (fabs(gamma-theta5) < TOLER && fabs(dik-djk) < TOLER) |
182 |
{ |
183 |
px = 0.5*(a[jat][0] + a[iat][0]); |
184 |
py = 0.5*(a[jat][1] + a[iat][1]); |
185 |
pz = 0.5*(a[jat][2] + a[iat][2]); |
186 |
center[0] = a[kat][0] + fact5*(px - a[kat][0]); |
187 |
center[1] = a[kat][1] + fact5*(py - a[kat][1]); |
188 |
center[2] = a[kat][2] + fact5*(pz - a[kat][2]); |
189 |
} else |
190 |
return FALSE; |
191 |
orients(a,b,p1,center,3,natom); |
192 |
tcopy(b,a,natom); |
193 |
rotates(a,b,3,phi5); |
194 |
iz = tcomp(a,b); |
195 |
return (iz); |
196 |
} |
197 |
/* ====================================== */ |
198 |
void sphset(double **a, double **aset,int *npop, int *nset,int *numset) |
199 |
{ |
200 |
int i,j1,j,iset, num; |
201 |
double xtmp,ytmp,ztmp; |
202 |
|
203 |
for (i=1; i <= natom; i++) |
204 |
{ |
205 |
aset[i][0] = i; |
206 |
aset[i][1] = atom.atomwt[i]; |
207 |
xtmp = a[i][0]; |
208 |
ytmp = a[i][1]; |
209 |
ztmp = a[i][2]; |
210 |
aset[i][2] = sqrt(xtmp*xtmp+ytmp*ytmp+ztmp*ztmp); |
211 |
} |
212 |
iset = 0; |
213 |
for (i=1; i < natom; i++) |
214 |
{ |
215 |
num = 0; |
216 |
if (aset[i][0] != 0.0) |
217 |
{ |
218 |
iset++; |
219 |
num++; |
220 |
nset[i] = iset; |
221 |
aset[i][0] = 0.0; |
222 |
j1 = i + 1; |
223 |
for (j=j1; j <= natom; j++) |
224 |
{ |
225 |
if (aset[j][0] != 0.0) |
226 |
{ |
227 |
if (fabs(aset[j][1]-aset[i][1]) <= TOLER && |
228 |
fabs(aset[j][2]-aset[i][2]) <= TOLER) |
229 |
{ |
230 |
num++; |
231 |
nset[j] = iset; |
232 |
aset[j][0] = 0.0; |
233 |
} |
234 |
} |
235 |
} |
236 |
npop[iset] = num; |
237 |
} |
238 |
} |
239 |
*numset = iset; |
240 |
} |
241 |
void sphere(double **a, double **b, double **c, int *nset, int *norder) |
242 |
{ |
243 |
int i,j,k,keyset, numset, minnum; |
244 |
int mpop, num3, i2, j1, j2, k1, iat=0,jat,kat; |
245 |
int iz,iz1,iz2,key,ihop,ixyz; |
246 |
double savez,curz,x,y,z,cmax,theta,tst; |
247 |
int *npop; |
248 |
double halfpi,pi; |
249 |
double p1[3],center[3],save1[3],save2[3]; |
250 |
|
251 |
halfpi = 2.0*atan(1.0); |
252 |
pi = 2.0*halfpi; |
253 |
p1[0] = p1[1] = p1[2] = 0.0; |
254 |
save2[0] = save2[1] = save2[2] = 0.0; |
255 |
savez = 0.0; |
256 |
jat = 0; |
257 |
keyset = 0; |
258 |
npop = ivector(0,natom+1); |
259 |
sphset(a,c,npop,nset,&numset); |
260 |
|
261 |
minnum = natom; |
262 |
*norder = 0; |
263 |
for (i=1; i <= numset; i++) |
264 |
{ |
265 |
j = npop[i]; |
266 |
if (npop[i] <= minnum && npop[i] > 3) |
267 |
{ |
268 |
minnum = npop[i]; |
269 |
keyset = i; |
270 |
} |
271 |
} |
272 |
|
273 |
key = natom; |
274 |
mpop = 0; |
275 |
for (i=1; i <= natom; i++) |
276 |
{ |
277 |
if (nset[i] == keyset) |
278 |
{ |
279 |
mpop++; |
280 |
if (key < i) |
281 |
key = i; |
282 |
nset[mpop] = i; |
283 |
} |
284 |
} |
285 |
|
286 |
if (mpop < 3) |
287 |
{ |
288 |
*norder = 0; |
289 |
free_ivector(npop,0,natom+1); |
290 |
return; |
291 |
} |
292 |
num3 = 0; |
293 |
i2 = mpop-2; |
294 |
j2 = mpop-1; |
295 |
for (i=1; i <= i2; i++) |
296 |
{ |
297 |
iat = nset[i]; |
298 |
j1 = i + 1; |
299 |
for (j=j1; j <= j2; j++) |
300 |
{ |
301 |
jat = nset[j]; |
302 |
k1 = j+1; |
303 |
for (k=k1; k <= mpop; k++) |
304 |
{ |
305 |
kat = nset[k]; |
306 |
if (*norder <= 3) |
307 |
{ |
308 |
tcopy(a,c,natom); |
309 |
iz = tstc5(c,b,iat,jat,kat,center); |
310 |
if (iz == TRUE) |
311 |
{ |
312 |
*norder = 5; |
313 |
savez = fabs(c[key][2]); |
314 |
save1[0] = center[0]; |
315 |
save1[1] = center[1]; |
316 |
save1[2] = center[2]; |
317 |
}else |
318 |
{ |
319 |
tcopy(a,c,natom); |
320 |
zero_array(b,natom); |
321 |
iz1 = tstc4(c,b,iat,jat,kat,center); |
322 |
if (iz1 == TRUE) |
323 |
{ |
324 |
*norder = 4; |
325 |
tcopy(c,a,natom); |
326 |
} else |
327 |
{ |
328 |
if (num3 != 2) |
329 |
{ |
330 |
tcopy(a,c,natom); |
331 |
iz2 = tstc3(c,b,iat,jat,kat,center); |
332 |
if (iz2 == TRUE) |
333 |
{ |
334 |
ihop = num3+1; |
335 |
if (ihop == 1) |
336 |
{ |
337 |
*norder = 3; |
338 |
num3 = 1; |
339 |
save1[0] = center[0]; |
340 |
save1[1] = center[1]; |
341 |
save1[2] = center[2]; |
342 |
} else if (ihop == 2) |
343 |
{ |
344 |
num3 = 2; |
345 |
save2[0] = center[0]; |
346 |
save2[1] = center[1]; |
347 |
save2[2] = center[2]; |
348 |
} |
349 |
} |
350 |
} |
351 |
} |
352 |
} |
353 |
} else if (*norder == 5) |
354 |
{ |
355 |
tcopy(a,c,natom); |
356 |
iz = tstc5(c,b,iat,jat,kat,center); |
357 |
if (iz == TRUE) |
358 |
{ |
359 |
curz = fabs(c[key][2]); |
360 |
if (fabs(curz-savez) > TOLER && (savez < curz )) |
361 |
{ |
362 |
savez = curz; |
363 |
save1[0] = center[0]; |
364 |
save1[1] = center[1]; |
365 |
save1[2] = center[2]; |
366 |
} |
367 |
} |
368 |
} else if (*norder == 4) |
369 |
{ |
370 |
tcopy(a,c,natom); |
371 |
iz = tstc4(c,b,iat,jat,kat,center); |
372 |
if (iz == TRUE) |
373 |
{ |
374 |
if (fabs(center[2]) < TOLER) |
375 |
{ |
376 |
x = center[0]; |
377 |
y = center[1]; |
378 |
theta = halfpi; |
379 |
if (fabs(y) > TOLER) theta = atan(x/y); |
380 |
rotates(c,a,3,theta); |
381 |
goto L_5; |
382 |
} |
383 |
} |
384 |
} |
385 |
} |
386 |
} |
387 |
} |
388 |
L_5: |
389 |
if (*norder == 0) |
390 |
{ |
391 |
center[0] = 0.5*(a[iat][0] + a[jat][0]); |
392 |
center[1] = 0.5*(a[iat][1] + a[jat][1]); |
393 |
center[2] = 0.5*(a[iat][2] + a[jat][2]); |
394 |
orients(a,b,p1,center,3,natom); |
395 |
x = b[iat][0]; |
396 |
y = b[iat][1]; |
397 |
theta = halfpi; |
398 |
if (fabs(y) > TOLER) theta = atan(x/y); |
399 |
rotates(b,a,3,theta); |
400 |
} else if (*norder == 3) |
401 |
{ |
402 |
center[0] = 0.5*(save1[0] + save2[0]); |
403 |
center[1] = 0.5*(save1[1] + save2[1]); |
404 |
center[2] = 0.5*(save1[2] + save2[2]); |
405 |
orients(a,b,p1,center,3,natom); |
406 |
tcopy(b,a,natom); |
407 |
b[0][0] = save1[0]; |
408 |
b[0][1] = save1[1]; |
409 |
b[0][2] = save1[2]; |
410 |
b[1][0] = save2[0]; |
411 |
b[1][1] = save2[1]; |
412 |
b[1][2] = save2[2]; |
413 |
orients(b,c,p1,center,3,2); |
414 |
tcopy(c,b,2); |
415 |
save1[0] = b[0][0]; |
416 |
save1[1] = b[0][1]; |
417 |
save1[2] = b[0][2]; |
418 |
save2[0] = b[1][0]; |
419 |
save2[1] = b[1][1]; |
420 |
save2[2] = b[1][2]; |
421 |
x = 0.5*(save1[0]-save2[1]); |
422 |
y = 0.5*(save1[1]+save2[0]); |
423 |
theta = halfpi; |
424 |
if (fabs(y) > TOLER) theta = atan(x/y); |
425 |
rotates(a,b,3,theta); |
426 |
tcopy(b,a,natom); |
427 |
|
428 |
} else if (*norder == 4) |
429 |
{ |
430 |
x = a[key][0]; |
431 |
y = a[key][1]; |
432 |
z = a[key][2]; |
433 |
cmax = fabs(z); |
434 |
ixyz = 3; |
435 |
for (i=1; i <= 2; i++) |
436 |
{ |
437 |
tst = fabs(a[key][i]); |
438 |
if (fabs(tst-cmax) > TOLER && (cmax <= tst)) |
439 |
{ |
440 |
ixyz = i; |
441 |
cmax = tst; |
442 |
} |
443 |
} |
444 |
if (ixyz < 3) |
445 |
{ |
446 |
if (ixyz == 2) |
447 |
ixyz = 1; |
448 |
else |
449 |
ixyz = 2; |
450 |
rotates(a,b,ixyz,halfpi); |
451 |
tcopy(b,a,natom); |
452 |
} |
453 |
if (a[key][3] < 0.0) |
454 |
{ |
455 |
rotates(a,b,1,pi); |
456 |
tcopy(b,a,natom); |
457 |
} |
458 |
} else if (*norder == 5) |
459 |
{ |
460 |
orients(a,b,p1,save1,3,natom); |
461 |
tcopy(b,a,natom); |
462 |
if (a[key][3] < 0.0) |
463 |
{ |
464 |
rotates(a,b,1,pi); |
465 |
tcopy(b,a,natom); |
466 |
} |
467 |
} |
468 |
|
469 |
|
470 |
free_ivector(npop,0,natom+1); |
471 |
} |
472 |
void sym_invert(double **a, double **b) |
473 |
{ |
474 |
int i,j; |
475 |
double t[3][3]; |
476 |
for (i=0; i < 3; i++) |
477 |
{ |
478 |
for (j=0; j <3; j++) |
479 |
t[i][j] = 0.0; |
480 |
} |
481 |
t[0][0] = -1.0; |
482 |
t[1][1] = -1.0; |
483 |
t[2][2] = -1.0; |
484 |
tform(t,a,b,natom); |
485 |
} |
486 |
void reflect(double **a, double **b, int iaxis) |
487 |
{ |
488 |
int i,j; |
489 |
double t[3][3]; |
490 |
for (i=0; i < 3; i++) |
491 |
{ |
492 |
for (j=0; j <3; j++) |
493 |
t[i][j] = 0.0; |
494 |
t[i][i] = 1.0; |
495 |
} |
496 |
t[iaxis-1][iaxis-1] = -1.0; |
497 |
tform(t,a,b,natom); |
498 |
} |
499 |
/* ==================================== */ |
500 |
int tcomp(double **a, double **b) |
501 |
{ |
502 |
int i,j, k; |
503 |
int *nrs; |
504 |
double dsum, x1, x2; |
505 |
|
506 |
nrs = ivector(0,natom+1); |
507 |
for (i=0; i <= natom; i++) |
508 |
nrs[i] = 0; |
509 |
|
510 |
for (i=1; i <= natom; i++) |
511 |
{ |
512 |
for (j=1; j <= natom; j++) |
513 |
{ |
514 |
if (fabs(atom.atomwt[i]-atom.atomwt[j]) <= TOLER) |
515 |
{ |
516 |
if (nrs[i] == 0) |
517 |
{ |
518 |
dsum = 0; |
519 |
for (k=0; k < 3; k++) |
520 |
{ |
521 |
x1 = a[i][k]; |
522 |
x2 = b[j][k]; |
523 |
dsum += (a[i][k]-b[j][k])*(a[i][k]-b[j][k]); |
524 |
} |
525 |
if (dsum <= TOLER) |
526 |
{ |
527 |
nrs[i] = j; |
528 |
goto L_5; |
529 |
} |
530 |
} |
531 |
} |
532 |
} |
533 |
free_ivector(nrs,0,natom+1); |
534 |
return FALSE; |
535 |
L_5: |
536 |
continue; |
537 |
} |
538 |
free_ivector(nrs,0,natom+1); |
539 |
return TRUE; |
540 |
} |
541 |
void tcopy(double **a, double **b, int num) |
542 |
{ |
543 |
int i,j; |
544 |
for (i=1; i <= num; i++) |
545 |
{ |
546 |
for (j=0; j < 3; j++) |
547 |
b[i][j] = a[i][j]; |
548 |
} |
549 |
} |
550 |
void tform(double t[][3], double **a, double **b, int num) |
551 |
{ |
552 |
int i; |
553 |
for (i=1; i <= num; i++) |
554 |
{ |
555 |
b[i][0] = t[0][0]*a[i][0] + t[0][1]*a[i][1] + t[0][2]*a[i][2]; |
556 |
b[i][1] = t[1][0]*a[i][0] + t[1][1]*a[i][1] + t[1][2]*a[i][2]; |
557 |
b[i][2] = t[2][0]*a[i][0] + t[2][1]*a[i][1] + t[2][2]*a[i][2]; |
558 |
} |
559 |
} |
560 |
/* ==================================== */ |
561 |
void circset(double **a, double **aset,int ixyz,int *nset,int *numset) |
562 |
{ |
563 |
int i,j, i1, i2, i3, iset,j1; |
564 |
double q2, q3, an,ap,ad; |
565 |
|
566 |
i1 = ixyz; |
567 |
i2 = ixyz%3+1; |
568 |
i3 = i2%3 +1; |
569 |
i1--; |
570 |
i2--; |
571 |
i3--; |
572 |
for (i=1; i <= natom; i++) |
573 |
{ |
574 |
aset[i][0] = atom.atomwt[i]; |
575 |
aset[i][1] = a[i][i1]; |
576 |
q2 = a[i][i2]; |
577 |
q3 = a[i][i3]; |
578 |
aset[i][2] = sqrt(q2*q2+q3*q3); |
579 |
} |
580 |
// set 0 on axis atoms |
581 |
for (i=1; i <= natom; i++) |
582 |
{ |
583 |
if (fabs(aset[i][2]) <= TOLER) |
584 |
{ |
585 |
nset[i] = 0; |
586 |
aset[i][0] = 0.0; |
587 |
} |
588 |
} |
589 |
// remaining sets |
590 |
iset = 0; |
591 |
for (i=1; i < natom; i++) // loop is natom-1 |
592 |
{ |
593 |
if (aset[i][0] != 0.0) |
594 |
{ |
595 |
iset++; |
596 |
nset[i] = iset; |
597 |
an = aset[i][0]; |
598 |
ap = aset[i][1]; |
599 |
ad = aset[i][2]; |
600 |
aset[i][0] = 0.0; |
601 |
j1 = i+1; |
602 |
for (j=j1; j <= natom; j++) |
603 |
{ |
604 |
if (fabs(aset[j][0]-an) <= TOL2 && |
605 |
fabs(aset[j][1]-ap) <= TOLER && |
606 |
fabs(aset[j][2]-ad) <= TOLER) |
607 |
{ |
608 |
nset[j] = iset; |
609 |
aset[j][0] = 0.0; |
610 |
} |
611 |
} |
612 |
} |
613 |
} |
614 |
*numset = iset; |
615 |
for (i=1; i <= natom; i++) |
616 |
aset[i][0] = atom.atomwt[i]; |
617 |
} |
618 |
/* =============================================== */ |
619 |
void rotates(double **a,double **b,int iaxis,double theta) |
620 |
{ |
621 |
int i,j,i1,i2,i3; |
622 |
double s,c; |
623 |
double t[3][3]; |
624 |
|
625 |
i1 = iaxis; |
626 |
i2 = iaxis%3 +1; |
627 |
i3 = i2%3 + 1; |
628 |
i1--; |
629 |
i2--; |
630 |
i3--; |
631 |
s = sin(theta); |
632 |
c = cos(theta); |
633 |
for (i=0; i < 3; i++) |
634 |
{ |
635 |
for (j=0; j < 3; j++) |
636 |
t[i][j] = 0.0; |
637 |
} |
638 |
t[i1][i1] = 1.0; |
639 |
t[i2][i2] = c; |
640 |
t[i2][i3] = s; |
641 |
t[i3][i2] = -s; |
642 |
t[i3][i3] = c; |
643 |
tform(t,a,b,natom); |
644 |
} |
645 |
/* =============================================== */ |
646 |
void orients(double **a, double **b, double *p1, double *p2, int nset, int num) |
647 |
{ |
648 |
int i,j, i1, i2, i3; |
649 |
double trvec[3], t[3][3]; |
650 |
double v1, v2, v3, vnorm; |
651 |
double alph, beta, gamm, v2v2, v3v3, v2233; |
652 |
double tol = 1.0e-17; |
653 |
|
654 |
trvec[0] = p1[0]; |
655 |
trvec[1] = p1[1]; |
656 |
trvec[2] = p1[2]; |
657 |
|
658 |
for (i=1; i <= num; i++) |
659 |
{ |
660 |
for (j=0; j < 3; j++) |
661 |
a[i][j] -= trvec[j]; |
662 |
} |
663 |
|
664 |
i1 = nset; |
665 |
i2 = i1%3 + 1; |
666 |
i3 = i2%3 + 1; |
667 |
i1--; |
668 |
i2--; |
669 |
i3--; |
670 |
v1 = p2[i1] - p1[i1]; |
671 |
v2 = p2[i2] - p1[i2]; |
672 |
v3 = p2[i3] - p1[i3]; |
673 |
vnorm = sqrt(v1*v1 + v2*v2 + v3*v3); |
674 |
if (vnorm == 0.0) |
675 |
return; |
676 |
if ( fabs(v1) < TOLER && fabs(v2) < TOLER && fabs(v3) < TOLER) |
677 |
return; |
678 |
if (fabs(v2) < tol && fabs(v3) < tol) |
679 |
{ |
680 |
if (v1 > 0.0) |
681 |
{ |
682 |
t[i1][i1] = 1.0; |
683 |
t[i2][i2] = 1.0; |
684 |
t[i3][i3] = 1.0; |
685 |
t[i1][i2] = t[i2][i1] = 0.0; |
686 |
t[i1][i3] = t[i3][i1] = 0.0; |
687 |
t[i3][i2] = t[i2][i3] = 0.0; |
688 |
} else |
689 |
{ |
690 |
t[i1][i1] = -1.0; |
691 |
t[i2][i2] = 1.0; |
692 |
t[i3][i3] = 1.0; |
693 |
t[i1][i2] = t[i2][i1] = 0.0; |
694 |
t[i1][i3] = t[i3][i1] = 0.0; |
695 |
t[i3][i2] = t[i2][i3] = 0.0; |
696 |
} |
697 |
} else |
698 |
{ |
699 |
alph = v1/vnorm; |
700 |
beta = v2/vnorm; |
701 |
gamm = v3/vnorm; |
702 |
v2v2 = v2*v2; |
703 |
v3v3 = v3*v3; |
704 |
v2233 = 1.0/(v2v2+v3v3); |
705 |
t[i1][i1] = alph; |
706 |
t[i1][i2] = beta; |
707 |
t[i1][i3] = gamm; |
708 |
t[i2][i1] = -t[i1][i2]; |
709 |
t[i3][i1] = -t[i1][i3]; |
710 |
t[i2][i3] = v2*v3*(alph-1.0)*v2233; |
711 |
t[i3][i2] = t[i2][i3]; |
712 |
t[i2][i2] = (v2v2*alph +v3v3)*v2233; |
713 |
t[i3][i3] = (v3v3*alph +v2v2)*v2233; |
714 |
} |
715 |
tform(t,a,b,num); |
716 |
for (i=1; i <= num; i++) |
717 |
{ |
718 |
for (j=0; j < 3; j++) |
719 |
b[i][j] += trvec[j]; |
720 |
} |
721 |
} |
722 |
/* ================================== */ |
723 |
int findi(double **a, double **b) |
724 |
{ |
725 |
int iz; |
726 |
sym_invert(a,b); |
727 |
iz = tcomp(a,b); |
728 |
return (iz); |
729 |
} |
730 |
int findh(double **a, double **b, int nset) |
731 |
{ |
732 |
int iz; |
733 |
reflect(a,b,nset); |
734 |
iz = tcomp(a,b); |
735 |
return (iz); |
736 |
} |
737 |
int findcn(double **a, double **b,double *p1, double *p2, int *maxcn) |
738 |
{ |
739 |
int i,j,k,l, iz, iaxis; |
740 |
int i1, i2; |
741 |
double halfpi, pi,theta; |
742 |
double t[3][3]; |
743 |
|
744 |
halfpi = 2.0*atan(1.0); |
745 |
pi = 2.0*halfpi; |
746 |
iaxis = 0; |
747 |
for (i=6; i >= 2; i--) |
748 |
{ |
749 |
theta = 2.0*pi/(float)i; |
750 |
for (j=0; j < 3; j++) |
751 |
{ |
752 |
for (k=0; k < 3; k++) |
753 |
{ |
754 |
for (l=0; l < 3; l++) |
755 |
{ |
756 |
t[k][l] = 0.0; |
757 |
} |
758 |
} |
759 |
i1 = j+1; |
760 |
i2 = j+2; |
761 |
if (i1 > 2) i1 -= 3; |
762 |
if (i2 > 2) i2 -= 3; |
763 |
t[i1][i1] = cos(theta); |
764 |
t[i2][i2] = cos(theta); |
765 |
t[i1][i2] = sin(theta); |
766 |
t[i2][i1] = -sin(theta); |
767 |
t[j][j] = 1.0; |
768 |
tform(t,a,b,natom); |
769 |
iz = tcomp(a,b); |
770 |
if (iz == TRUE) |
771 |
{ |
772 |
*maxcn = i; |
773 |
for (k=0; k < 3; k++) |
774 |
{ |
775 |
p1[k] = 0.0; |
776 |
p2[k] = 0.0; |
777 |
if (k == j) p2[k] = 1.0; |
778 |
} |
779 |
orients(b,a,p1,p2,3,natom); |
780 |
return TRUE; |
781 |
} |
782 |
} |
783 |
} |
784 |
*maxcn = 1; |
785 |
return FALSE; |
786 |
} |
787 |
int findsn(double **a, double **b, double **c, int *maxcn) |
788 |
{ |
789 |
int iz; |
790 |
double pi,theta; |
791 |
pi = 4.0*atan(1.0); |
792 |
theta = pi/(*maxcn); |
793 |
rotates(a,b,3,theta); |
794 |
reflect(b,c,3); |
795 |
iz = tcomp(a,c); |
796 |
return iz; |
797 |
} |
798 |
int findc2(double **a, double **b, double **aset, int *nset) |
799 |
{ |
800 |
int i,j,k, j1, numset, iset, jset, iz; |
801 |
double halfpi, pi, x,y,theta, xi,yi; |
802 |
double proi, ani,disi; |
803 |
|
804 |
halfpi = 2.0*atan(1.0); |
805 |
pi = 2.0*halfpi; |
806 |
|
807 |
circset(a,aset,3,nset,&numset); |
808 |
for (i=1; i <= numset; i++) |
809 |
{ |
810 |
for (j=1; j <= natom; j++) |
811 |
{ |
812 |
if(nset[j] == i) // atom belongs to set |
813 |
{ |
814 |
if ( fabs(aset[j][1]) < TOLER ) |
815 |
{ |
816 |
j1 = j+1; |
817 |
for (k=j1; k <= natom; k++) |
818 |
{ |
819 |
if (nset[k] == i) |
820 |
{ |
821 |
x = (a[j][0]+a[k][0])*0.5; |
822 |
y = (a[j][1]+a[k][1])*0.5; |
823 |
theta = halfpi; |
824 |
if (fabs(y) > TOLER) theta = -atan(x/y); |
825 |
rotates(a,b,3,theta); |
826 |
rotates(b,aset,2,pi); |
827 |
iz = tcomp(b,aset); |
828 |
if (iz == TRUE) |
829 |
{ |
830 |
tcopy(b,a,natom); |
831 |
return TRUE; |
832 |
} |
833 |
} |
834 |
} |
835 |
} |
836 |
} |
837 |
} |
838 |
} |
839 |
// |
840 |
circset(a,aset,3,nset,&numset); |
841 |
iset = 1; |
842 |
for (i=1; i <= natom; i++) |
843 |
if (nset[i] == iset) goto L_10; |
844 |
return FALSE; |
845 |
// |
846 |
L_10: |
847 |
proi = aset[i][1]; |
848 |
ani = aset[i][0]; |
849 |
disi = aset[i][2]; |
850 |
xi = a[i][0]; |
851 |
yi = a[i][1]; |
852 |
j1 = iset+1; |
853 |
for (j=j1; j <= numset; j++) |
854 |
{ |
855 |
for (k=1; k <= natom; k++) |
856 |
{ |
857 |
if (nset[k] == j) |
858 |
{ |
859 |
jset = j; |
860 |
goto L_20; |
861 |
} |
862 |
} |
863 |
return FALSE; |
864 |
L_20: |
865 |
if ( fabs(proi+aset[k][1]) > TOLER || fabs(ani-aset[k][0]) > TOL2 || |
866 |
fabs(disi-aset[k][2]) > TOLER ) |
867 |
goto L_30; |
868 |
|
869 |
for (k=1; k <= natom; k++) |
870 |
{ |
871 |
if (nset[k] == jset) |
872 |
{ |
873 |
x = (xi+a[k][0])*0.5; |
874 |
y = (yi+a[k][1])*0.5; |
875 |
theta = halfpi; |
876 |
if (fabs(y) > TOL2) theta = -atan(x/y); |
877 |
rotates(a,b,3,theta); |
878 |
rotates(b,aset,2,pi); |
879 |
iz = tcomp(b,aset); |
880 |
if (iz == TRUE) |
881 |
{ |
882 |
tcopy(b,a,natom); |
883 |
return TRUE; |
884 |
} |
885 |
} |
886 |
} |
887 |
L_30: |
888 |
continue; |
889 |
} |
890 |
return FALSE; |
891 |
} |
892 |
int findv(double **a, double **b, double **aset, int *nset) |
893 |
{ |
894 |
int i,j, j1, numset, iset, jset, iz; |
895 |
double halfpi, pi, x,y,theta; |
896 |
|
897 |
halfpi = 2.0*atan(1.0); |
898 |
pi = 2.0*halfpi; |
899 |
|
900 |
circset(a,aset,3,nset,&numset); |
901 |
iset = 1; |
902 |
for (i=1; i < natom; i++) |
903 |
{ |
904 |
if (nset[i] == iset) |
905 |
{ |
906 |
jset = i; |
907 |
goto L_5; |
908 |
} |
909 |
} |
910 |
return FALSE; |
911 |
L_5: |
912 |
j1 = jset + 1; |
913 |
for (j=j1; j <= natom; j++) |
914 |
{ |
915 |
if (nset[j] == iset) |
916 |
{ |
917 |
x = (a[i][0]+a[j][0])*0.5; |
918 |
y = (a[i][1]+a[j][1])*0.5; |
919 |
if (fabs(x) <= TOLER && fabs(y) <= TOLER) |
920 |
{ |
921 |
x = 0.5*a[j][0]; |
922 |
y = 0.5*a[j][1]; |
923 |
} |
924 |
theta = halfpi; |
925 |
if (fabs(y) > TOLER) theta = -atan(x/y); |
926 |
rotates(a,b,3,theta); |
927 |
reflect(b,aset,1); |
928 |
iz = tcomp(b,aset); |
929 |
if (iz == TRUE) |
930 |
{ |
931 |
tcopy(b,a,natom); |
932 |
return TRUE; |
933 |
} |
934 |
} |
935 |
} |
936 |
return FALSE; |
937 |
} |
938 |
/* ======================================================= */ |
939 |
// compute moments of inertia |
940 |
void secmom(double **xyz, double *xi,double *yi, double *zi, int *ishape,double t[3][3]) |
941 |
{ |
942 |
int i,j,k,ii; |
943 |
float b[3]; |
944 |
double a[6], eigval[3], eigvec[3][3], atemp; |
945 |
double summ, wti, xx,yy,zz; |
946 |
|
947 |
for (i=0; i < 3; i++) |
948 |
{ |
949 |
b[i] = 0.0; |
950 |
eigval[i] = 0.0; |
951 |
for (j=0; j < 3; j++) |
952 |
eigvec[i][j] = 0.0; |
953 |
} |
954 |
for (i=0; i < 6; i++) |
955 |
a[i] = 0.0; |
956 |
|
957 |
summ = 0.0; |
958 |
for (i=1; i <= natom; i++) |
959 |
{ |
960 |
wti = atom.atomwt[i]; |
961 |
for (j=0; j < 3; j++) |
962 |
b[j] += xyz[i][j]*wti; |
963 |
summ += wti; |
964 |
} |
965 |
for (i=0; i < 3; i++) |
966 |
b[i] /= summ; |
967 |
for (i=1; i <= natom; i++) |
968 |
{ |
969 |
for (j=0; j < 3; j++) |
970 |
xyz[i][j] -= b[j]; |
971 |
} |
972 |
// compute moments of inertia , sort and place smallest moment on x axis |
973 |
for (i=1; i <= natom; i++) |
974 |
{ |
975 |
wti = atom.atomwt[i]; |
976 |
*xi = xyz[i][0]; |
977 |
*yi = xyz[i][1]; |
978 |
*zi = xyz[i][2]; |
979 |
xx = *xi* *xi; |
980 |
yy = *yi* *yi; |
981 |
zz = *zi* *zi; |
982 |
a[0] += wti*(yy+zz); |
983 |
a[2] += wti*(zz+xx); |
984 |
a[5] += wti*(xx+yy); |
985 |
a[1] -= wti**xi**yi; |
986 |
a[3] -= wti**xi**zi; |
987 |
a[4] -= wti**yi**zi; |
988 |
} |
989 |
summ = fabs(a[1]) + fabs(a[3]) + fabs(a[4]); |
990 |
if (summ <= 1.0e-15) |
991 |
{ |
992 |
eigval[0] = a[0]; |
993 |
eigval[1] = a[2]; |
994 |
eigval[2] = a[5]; |
995 |
eigvec[0][0] = 1.0; |
996 |
eigvec[1][1] = 1.0; |
997 |
eigvec[2][2] = 1.0; |
998 |
} else |
999 |
{ |
1000 |
hqrii(a,3,3,eigval,eigvec); |
1001 |
} |
1002 |
|
1003 |
for (i=0; i < 2; i++) |
1004 |
{ |
1005 |
ii = i + 1; |
1006 |
for (j=ii; j < 3; j++) |
1007 |
{ |
1008 |
if (eigval[i] > eigval[j]) |
1009 |
{ |
1010 |
atemp = eigval[i]; |
1011 |
eigval[i] = eigval[j]; |
1012 |
eigval[j] = atemp; |
1013 |
for (k=0; k < 3; k++) |
1014 |
{ |
1015 |
atemp = eigvec[k][i]; |
1016 |
eigvec[k][i] = eigvec[k][j]; |
1017 |
eigvec[k][j] = atemp; |
1018 |
} |
1019 |
} |
1020 |
} |
1021 |
} |
1022 |
*xi = eigval[0] / 6.0228; |
1023 |
*yi = eigval[1] / 6.0228; |
1024 |
*zi = eigval[2] / 6.0228; |
1025 |
// now rotate the molecule |
1026 |
for (i=1; i <= natom; i++) |
1027 |
{ |
1028 |
for (j=0; j < 3; j++) |
1029 |
{ |
1030 |
b[j] = 0.0; |
1031 |
for (k=0; k < 3; k++) |
1032 |
b[j] += eigvec[j][k]*xyz[i][k]; |
1033 |
} |
1034 |
xyz[i][0] = b[0]; |
1035 |
xyz[i][1] = b[1]; |
1036 |
xyz[i][2] = b[2]; |
1037 |
} |
1038 |
// assign shape |
1039 |
*ishape = 0; |
1040 |
if (*xi <= 0.01) |
1041 |
*ishape = 1; |
1042 |
else |
1043 |
{ |
1044 |
if (fabs(*xi+*yi-*zi) <= 0.01) |
1045 |
*ishape = 6; |
1046 |
else |
1047 |
{ |
1048 |
if (fabs( (*zi/(*yi))-(*yi/(*xi))) <= 0.01) |
1049 |
*ishape = 5; |
1050 |
else |
1051 |
{ |
1052 |
atemp = (2.0/(*yi) - 1.0/(*zi) - 1.0/(*xi))/ (1.0/(*xi) - 1.0/(*zi)); |
1053 |
if (atemp <= -0.999) |
1054 |
*ishape = 3; |
1055 |
else |
1056 |
{ |
1057 |
if (atemp >= 0.999) |
1058 |
*ishape = 4; |
1059 |
else |
1060 |
*ishape = 2; |
1061 |
} |
1062 |
} |
1063 |
} |
1064 |
} |
1065 |
} |
1066 |
// assign point group, symmetry number and chirality |
1067 |
void vibsym(int mode) |
1068 |
{ |
1069 |
int i; |
1070 |
double **a; |
1071 |
char ngrp[4]; |
1072 |
|
1073 |
a = dmatrix (0, natom+1, 0,3); |
1074 |
for (i=1; i <= natom; i++) |
1075 |
{ |
1076 |
a[i][0] = atom.x[i]; |
1077 |
a[i][1] = atom.y[i]; |
1078 |
a[i][2] = atom.z[i]; |
1079 |
} |
1080 |
|
1081 |
if (mode == 0) |
1082 |
{ |
1083 |
strcpy(ngrp,""); |
1084 |
ptgrp(mode, ngrp,a); |
1085 |
} |
1086 |
free_dmatrix(a ,0, natom+1, 0,3); |
1087 |
} |
1088 |
|
1089 |
void ptgrp(int mode,char *ngrp,double **a) |
1090 |
{ |
1091 |
int i, j, k, ishape, numsym, iaxis, maxcn, xxx; |
1092 |
int iz, iz1, iz2, iopt; |
1093 |
int chiral, *nset; |
1094 |
double **b, **c; |
1095 |
double t[3][3], p1[3], p2[3]; |
1096 |
double xi, yi, zi; |
1097 |
float halfpi, pi; |
1098 |
char string[256]; |
1099 |
|
1100 |
numsym = 0; |
1101 |
halfpi = 2.0*atan(1.0); |
1102 |
pi = 2.0*halfpi; |
1103 |
chiral = FALSE; |
1104 |
strcpy(ngrp,"Cs"); |
1105 |
|
1106 |
|
1107 |
b = dmatrix (0, natom+1, 0,3); |
1108 |
c = dmatrix (0, natom+1, 0,3); |
1109 |
nset = ivector(0,natom+1); |
1110 |
|
1111 |
secmom(a, &xi, &yi, &zi, &ishape, t); |
1112 |
|
1113 |
if (ishape == 1) // linear |
1114 |
{ |
1115 |
p1[0] = 0.0; |
1116 |
p1[1] = 0.0; |
1117 |
p1[2] = 0.0; |
1118 |
p2[0] = 1.0; |
1119 |
p2[1] = 0.0; |
1120 |
p2[1] = 0.0; |
1121 |
orients(a,b,p1,p2,3,natom); |
1122 |
tcopy(b,a,natom); |
1123 |
iaxis = findh(a,b,3); |
1124 |
if (iaxis == TRUE) |
1125 |
{ |
1126 |
strcpy(ngrp,"D*h"); |
1127 |
numsym = 2; |
1128 |
} else |
1129 |
{ |
1130 |
strcpy(ngrp,"C*v"); |
1131 |
numsym = 1; |
1132 |
} |
1133 |
} else if (ishape == 2) // asymmetric |
1134 |
/*------------------------* |
1135 |
ASyMMETRiC TOP MOLECULES |
1136 |
*------------------------* |
1137 |
|
1138 |
These molecules can have no axes of order greater than 2. Thus |
1139 |
the possible point groups are: D2H, D2, C2V, C2H, C2, Ci, CS, |
1140 |
and C1. FiNDCN routine finds the principal axes and align the |
1141 |
principal axes with the z-axis. */ |
1142 |
{ |
1143 |
iaxis = findcn(a,b,p1,p2,&maxcn); |
1144 |
if (maxcn == 1) |
1145 |
{ |
1146 |
j = findh(a,b,3); |
1147 |
if (j == TRUE) |
1148 |
{ |
1149 |
strcpy(ngrp,"Cs"); |
1150 |
numsym = 1; |
1151 |
}else |
1152 |
{ |
1153 |
i = findh(a,b,2); |
1154 |
if (i == TRUE) |
1155 |
{ |
1156 |
strcpy(ngrp,"Cs"); |
1157 |
numsym = 1; |
1158 |
} else |
1159 |
{ |
1160 |
k = findh(a,b,1); |
1161 |
if (k == TRUE) |
1162 |
{ |
1163 |
strcpy(ngrp,"Cs"); |
1164 |
numsym = 1; |
1165 |
} else |
1166 |
{ |
1167 |
xxx = findi(a,b); |
1168 |
if (xxx == TRUE) |
1169 |
{ |
1170 |
strcpy(ngrp,"Ci"); |
1171 |
numsym = 1; |
1172 |
} else |
1173 |
{ |
1174 |
strcpy(ngrp,"C1"); |
1175 |
numsym = 1; |
1176 |
chiral = TRUE; |
1177 |
} |
1178 |
} |
1179 |
} |
1180 |
} |
1181 |
} else // maxcn == 2 |
1182 |
{ |
1183 |
iaxis = findc2(a,b,c,nset); |
1184 |
if (iaxis == FALSE) |
1185 |
{ |
1186 |
i = findv(a,b,c,nset); |
1187 |
if (i == TRUE) |
1188 |
{ |
1189 |
strcpy(ngrp,"C2v"); |
1190 |
numsym = 2; |
1191 |
} else |
1192 |
{ |
1193 |
j = findh(a,b,3); |
1194 |
if (j == TRUE) |
1195 |
{ |
1196 |
strcpy(ngrp,"C2h"); |
1197 |
numsym = 2; |
1198 |
} else |
1199 |
{ |
1200 |
strcpy(ngrp,"C2"); |
1201 |
numsym = 2; |
1202 |
chiral = TRUE; |
1203 |
} |
1204 |
} |
1205 |
} else |
1206 |
{ |
1207 |
i = findh(a,b,3); |
1208 |
if (i == TRUE) |
1209 |
{ |
1210 |
strcpy(ngrp,"D2h"); |
1211 |
numsym = 4; |
1212 |
} else |
1213 |
{ |
1214 |
j = findv(a,b,c,nset); |
1215 |
if (j == TRUE) |
1216 |
{ |
1217 |
strcpy(ngrp,"D2d"); |
1218 |
numsym = 4; |
1219 |
} else |
1220 |
{ |
1221 |
strcpy(ngrp,"D2"); |
1222 |
numsym = 4; |
1223 |
chiral = TRUE; |
1224 |
} |
1225 |
} |
1226 |
} |
1227 |
} |
1228 |
} else if (ishape == 3 || ishape == 4) //prolate |
1229 |
{ |
1230 |
/*-----------------------* |
1231 |
SyMMETRiC TOP MOLECULES |
1232 |
*-----------------------* |
1233 |
|
1234 |
These molecules can belong to any axial point group, thus only |
1235 |
the cubic point groups (T, Td, Th, O, Oh, i, ih) are impossible. |
1236 |
However, except in rare cases the unique axis is a rotation axis |
1237 |
of order 3 or greater. */ |
1238 |
|
1239 |
iz = findcn(a,b,p1,p2,&maxcn); |
1240 |
iz = findsn(a,b,c,&maxcn); |
1241 |
if (iz == TRUE) |
1242 |
{ |
1243 |
iz1 = findv(a,b,c,nset); |
1244 |
if (iz1 == FALSE) |
1245 |
{ |
1246 |
sprintf(ngrp,"S%1d",2*maxcn); |
1247 |
numsym = maxcn; |
1248 |
goto L_2000; |
1249 |
} |
1250 |
} |
1251 |
iz = findc2(a,b,c,nset); |
1252 |
if (iz == FALSE) |
1253 |
{ |
1254 |
iz1 = findv(a,b,c,nset); |
1255 |
if (iz1 == TRUE) |
1256 |
{ |
1257 |
sprintf(ngrp,"C%1dv",maxcn); |
1258 |
numsym = maxcn; |
1259 |
} else |
1260 |
{ |
1261 |
iz2 = findh(a,b,3); |
1262 |
if (iz2 == TRUE) |
1263 |
{ |
1264 |
sprintf(ngrp,"C%1dh",maxcn); |
1265 |
numsym = maxcn; |
1266 |
} else |
1267 |
{ |
1268 |
sprintf(ngrp,"C%1d",maxcn); |
1269 |
numsym = maxcn; |
1270 |
chiral = TRUE; |
1271 |
} |
1272 |
} |
1273 |
}else |
1274 |
{ |
1275 |
iz1 = findh(a,b,3); |
1276 |
if (iz1 == TRUE) |
1277 |
{ |
1278 |
sprintf(ngrp,"D%1dh",maxcn); |
1279 |
numsym = 2*maxcn; |
1280 |
} else |
1281 |
{ |
1282 |
iz2 = findv(a,b,c,nset); |
1283 |
if (iz2 == TRUE) |
1284 |
{ |
1285 |
sprintf(ngrp,"D%1dd",maxcn); |
1286 |
numsym = 2*maxcn; |
1287 |
} else |
1288 |
{ |
1289 |
sprintf(ngrp,"D%1d",maxcn); |
1290 |
numsym = 2*maxcn; |
1291 |
chiral = TRUE; |
1292 |
} |
1293 |
} |
1294 |
} |
1295 |
// SPHERiCAL TOP MOLECULES |
1296 |
} else if (ishape == 5) // spherical |
1297 |
{ |
1298 |
sphere(a,b,c,nset,&maxcn); |
1299 |
iopt = maxcn - 2; |
1300 |
if (iopt == 1) |
1301 |
{ |
1302 |
iz = findi(a,b); |
1303 |
if (iz == TRUE) |
1304 |
{ |
1305 |
sprintf(ngrp,"Th"); |
1306 |
numsym = 12; |
1307 |
} else |
1308 |
{ |
1309 |
iz1 = findv(a,b,c,nset); |
1310 |
if (iz1 == TRUE) |
1311 |
{ |
1312 |
sprintf(ngrp,"Td"); |
1313 |
numsym = 12; |
1314 |
} else |
1315 |
{ |
1316 |
sprintf(ngrp,"T"); |
1317 |
numsym = 12; |
1318 |
chiral = TRUE; |
1319 |
} |
1320 |
} |
1321 |
} else if (iopt == 2) |
1322 |
{ |
1323 |
iz = findi(a,b); |
1324 |
if (iz == TRUE) |
1325 |
{ |
1326 |
sprintf(ngrp,"Oh"); |
1327 |
numsym = 24; |
1328 |
} else |
1329 |
{ |
1330 |
sprintf(ngrp,"O"); |
1331 |
numsym = 24; |
1332 |
chiral = TRUE; |
1333 |
} |
1334 |
} else if (iopt == 3) |
1335 |
{ |
1336 |
iz = findi(a,b); |
1337 |
if (iz == TRUE) |
1338 |
{ |
1339 |
sprintf(ngrp,"Ih"); |
1340 |
numsym = 60; |
1341 |
} else |
1342 |
{ |
1343 |
sprintf(ngrp,"I"); |
1344 |
numsym = 60; |
1345 |
chiral = TRUE; |
1346 |
} |
1347 |
} |
1348 |
} else if (ishape == 6) // planar |
1349 |
{ |
1350 |
iz = findh(a,b,1); |
1351 |
iz1 = findh(a,b,2); |
1352 |
iz2 = findcn(a,b,p1,p2,&maxcn); |
1353 |
if (maxcn == 2) |
1354 |
{ |
1355 |
if (iz == TRUE && iz1 == TRUE) |
1356 |
{ |
1357 |
sprintf(ngrp,"D%1dh",maxcn); |
1358 |
numsym = maxcn*2; |
1359 |
} else |
1360 |
{ |
1361 |
if (iz == TRUE || iz1 == TRUE) |
1362 |
{ |
1363 |
sprintf(ngrp,"C%1dv",maxcn); |
1364 |
numsym = maxcn; |
1365 |
}else |
1366 |
{ |
1367 |
i = findh(a,b,3); |
1368 |
if (i == TRUE) |
1369 |
{ |
1370 |
sprintf(ngrp,"C%1dh",maxcn); |
1371 |
numsym = maxcn; |
1372 |
} else |
1373 |
{ |
1374 |
sprintf(ngrp,"C%1d",maxcn); |
1375 |
numsym = maxcn; |
1376 |
chiral = TRUE; |
1377 |
} |
1378 |
} |
1379 |
} |
1380 |
} else |
1381 |
{ |
1382 |
iz = findsn(a,b,c,&maxcn); |
1383 |
if (iz == TRUE) |
1384 |
{ |
1385 |
iz1 = findv(a,b,c,nset); |
1386 |
if (iz1 == FALSE) |
1387 |
{ |
1388 |
sprintf(ngrp,"S%1d",2*maxcn); |
1389 |
numsym = maxcn; |
1390 |
goto L_2000; |
1391 |
} |
1392 |
} |
1393 |
iz = findc2(a,b,c,nset); |
1394 |
if (iz == FALSE) |
1395 |
{ |
1396 |
iz1 = findv(a,b,c,nset); |
1397 |
if (iz1 == TRUE) |
1398 |
{ |
1399 |
sprintf(ngrp,"C%1dv",maxcn); |
1400 |
numsym = maxcn; |
1401 |
} else |
1402 |
{ |
1403 |
iz2 = findh(a,b,3); |
1404 |
if (iz2 == TRUE) |
1405 |
{ |
1406 |
sprintf(ngrp,"C%1dh",maxcn); |
1407 |
numsym = maxcn; |
1408 |
} else |
1409 |
{ |
1410 |
sprintf(ngrp,"C%1d",maxcn); |
1411 |
numsym = maxcn; |
1412 |
chiral = TRUE; |
1413 |
} |
1414 |
} |
1415 |
} else |
1416 |
{ |
1417 |
iz1 = findh(a,b,3); |
1418 |
if (iz1 == TRUE) |
1419 |
{ |
1420 |
sprintf(ngrp,"D%1dh",maxcn); |
1421 |
numsym = 2*maxcn; |
1422 |
} else |
1423 |
{ |
1424 |
iz2 = findv(a,b,c,nset); |
1425 |
if (iz2 == TRUE) |
1426 |
{ |
1427 |
sprintf(ngrp,"D%1dd",maxcn); |
1428 |
numsym = 2*maxcn; |
1429 |
} else |
1430 |
{ |
1431 |
sprintf(ngrp,"D%1d",maxcn); |
1432 |
numsym = 2*maxcn; |
1433 |
chiral = TRUE; |
1434 |
} |
1435 |
} |
1436 |
} |
1437 |
} |
1438 |
} |
1439 |
L_2000: |
1440 |
free_dmatrix(b ,0, natom+1, 0,3); |
1441 |
free_dmatrix(c ,0, natom+1, 0,3); |
1442 |
free_ivector(nset, 0, natom+1); |
1443 |
|
1444 |
if (mode == 2) |
1445 |
{ |
1446 |
symmetry.chiral = chiral; |
1447 |
symmetry.numsym = numsym; |
1448 |
symmetry.ishape = ishape; |
1449 |
symmetry.xi = xi; |
1450 |
symmetry.yi = yi; |
1451 |
symmetry.zi = zi; |
1452 |
} |
1453 |
|
1454 |
if (mode == 0) |
1455 |
{ |
1456 |
sprintf(string,"Symmetry group: %s\nMoments of Inertia\nIx: %7.2f\nIy: %7.2f\nIz: %7.2f",ngrp,xi,yi,zi); |
1457 |
message_alert(string,"Symmetry Information"); |
1458 |
} |
1459 |
} |
1460 |
/* ========================================== */ |
1461 |
void hqrii(double *a,int n,int m,double *e,double v[3][3]) |
1462 |
{ |
1463 |
#define V(I_,J_) (*(v+(I_)*(n)+(J_))) |
1464 |
int _do0, _do1, _do10, _do11, _do12, _do13, _do14, _do15, |
1465 |
_do16, _do17, _do18, _do19, _do2, _do20, _do21, _do22, _do3, |
1466 |
_do4, _do5, _do6, _do7, _do8, _do9, i, i_, ig, ii, im1, iord, |
1467 |
ip1, irank, itere, itere_, j, j_, jrank, k, k_, kk, kk_, kp1, |
1468 |
kpiv, krank, l, ll, nm1, nm2=0; |
1469 |
double c, del, ee, eps, eps1, eps2, eps3, ff, fn, gersch, h, r, |
1470 |
ra, rn, s, seps, sinv, sorter, sum, summ, t, u, vn, w[5][5], |
1471 |
ww, z, zero; |
1472 |
|
1473 |
double *const A = &a[0] - 1; |
1474 |
double *const E = &e[0] - 1; |
1475 |
|
1476 |
/************************************************************* |
1477 |
* |
1478 |
* HQRII IS A DIAGONALISATION ROUTINE, WRITTEN BY YOSHITAKA BEPPU OF |
1479 |
* NAGOYA UNIVERSITY, JAPAN. |
1480 |
* FOR DETAILS SEE 'COMPUTERS & CHEMISTRY' VOL.6 1982. PAGE 000. |
1481 |
* |
1482 |
* ON INPUT A = MATRIX TO BE DIAGONALISED (PACKED CANONICAL) |
1483 |
* N = SIZE OF MATRIX TO BE DIAGONALISED. |
1484 |
* M = NUMBER OF EIGENVECTORS NEEDED. |
1485 |
* E = ARRAY OF SIZE AT LEAST N |
1486 |
* V = ARRAY OF SIZE AT LEAST NMAX*M |
1487 |
* |
1488 |
* ON OUTPUT E = EIGENVALUES |
1489 |
* V = EIGENVECTORS IN ARRAY OF SIZE NMAX*M |
1490 |
* |
1491 |
************************************************************************ */ |
1492 |
|
1493 |
/* EPS3 AND EPS ARE MACHINE-PRECISION DEPENDENT |
1494 |
* */ |
1495 |
eps3 = 1.e-30; |
1496 |
zero = 0.e0; |
1497 |
ll = (n*(n + 1))/2 + 1; |
1498 |
eps = 1.e-8; |
1499 |
iord = -1; |
1500 |
nm1 = n - 1; |
1501 |
if( n == 2 ) |
1502 |
goto L_90; |
1503 |
nm2 = n - 2; |
1504 |
krank = 0; |
1505 |
/* HOUSEHOLDER TRANSFORMATION */ |
1506 |
for( k = 1, _do0 = nm2; k <= _do0; k++ ) |
1507 |
{ |
1508 |
k_ = k - 1; |
1509 |
kp1 = k + 1; |
1510 |
krank += k; |
1511 |
w[k_][1] = A[krank]; |
1512 |
sum = 0.; |
1513 |
jrank = krank; |
1514 |
for( j = kp1, _do1 = n; j <= _do1; j++ ) |
1515 |
{ |
1516 |
j_ = j - 1; |
1517 |
w[j_][1] = A[jrank + k]; |
1518 |
jrank += j; |
1519 |
sum += (w[j_][1])*(w[j_][1]); |
1520 |
} |
1521 |
s = SIGN( sqrt( sum ), w[kp1 - 1][1] ); |
1522 |
w[k_][0] = -s; |
1523 |
w[kp1 - 1][1] += s; |
1524 |
A[k + krank] = w[kp1 - 1][1]; |
1525 |
h = w[kp1 - 1][1]*s; |
1526 |
if( fabs( h ) < eps3 ) |
1527 |
goto L_80; |
1528 |
summ = 0.e0; |
1529 |
irank = krank; |
1530 |
for( i = kp1, _do2 = n; i <= _do2; i++ ) |
1531 |
{ |
1532 |
i_ = i - 1; |
1533 |
sum = 0.e0; |
1534 |
for( j = kp1, _do3 = i; j <= _do3; j++ ) |
1535 |
{ |
1536 |
j_ = j - 1; |
1537 |
sum += A[j + irank]*w[j_][1]; |
1538 |
} |
1539 |
if( i >= n ) |
1540 |
goto L_40; |
1541 |
ip1 = i + 1; |
1542 |
jrank = i*(i + 3)/2; |
1543 |
for( j = ip1, _do4 = n; j <= _do4; j++ ) |
1544 |
{ |
1545 |
j_ = j - 1; |
1546 |
sum += A[jrank]*w[j_][1]; |
1547 |
jrank += j; |
1548 |
} |
1549 |
L_40: |
1550 |
w[i_][0] = sum/h; |
1551 |
irank += i; |
1552 |
summ += w[i_][0]*w[i_][1]; |
1553 |
} |
1554 |
u = summ*0.5e0/h; |
1555 |
jrank = krank; |
1556 |
for( j = kp1, _do5 = n; j <= _do5; j++ ) |
1557 |
{ |
1558 |
j_ = j - 1; |
1559 |
w[j_][0] = w[j_][1]*u - w[j_][0]; |
1560 |
for( i = kp1, _do6 = j; i <= _do6; i++ ) |
1561 |
{ |
1562 |
i_ = i - 1; |
1563 |
A[i + jrank] += w[i_][0]*w[j_][1] + w[j_][0]*w[i_][1]; |
1564 |
} |
1565 |
jrank += j; |
1566 |
} |
1567 |
L_80: |
1568 |
A[krank] = h; |
1569 |
} |
1570 |
L_90: |
1571 |
w[nm1 - 1][1] = A[(nm1*(nm1 + 1))/2]; |
1572 |
w[n - 1][1] = A[(n*(n + 1))/2]; |
1573 |
w[nm1 - 1][0] = A[nm1 + (n*(n - 1))/2]; |
1574 |
w[n - 1][0] = 0.e0; |
1575 |
gersch = fabs( w[0][1] ) + fabs( w[0][0] ); |
1576 |
for( i = 1, _do7 = nm1; i <= _do7; i++ ) |
1577 |
{ |
1578 |
i_ = i - 1; |
1579 |
if ( fabs( w[i_ + 1][1] ) + fabs( w[i_][0] ) + fabs( w[i_ + 1][0] ) > gersch) |
1580 |
gersch = fabs( w[i_ + 1][1] ) + fabs( w[i_][0] ) + fabs( w[i_ + 1][0] ); |
1581 |
} |
1582 |
del = eps*gersch; |
1583 |
for( i = 1, _do8 = n; i <= _do8; i++ ) |
1584 |
{ |
1585 |
i_ = i - 1; |
1586 |
w[i_][2] = w[i_][0]; |
1587 |
E[i] = w[i_][1]; |
1588 |
v[m-1][i_] = E[i]; |
1589 |
} |
1590 |
if( fabs( del ) < eps3 ) |
1591 |
goto L_220; |
1592 |
/* QR-METHOD WITH ORIGIN SHIFT */ |
1593 |
k = n; |
1594 |
L_120: |
1595 |
l = k; |
1596 |
L_130: |
1597 |
if( fabs( w[l - 2][2] ) < del ) |
1598 |
goto L_140; |
1599 |
l -= 1; |
1600 |
if( l > 1 ) |
1601 |
goto L_130; |
1602 |
L_140: |
1603 |
if( l == k ) |
1604 |
goto L_170; |
1605 |
ww = (E[k - 1] + E[k])*0.5e0; |
1606 |
r = E[k] - ww; |
1607 |
z = SIGN( sqrt( (w[k - 2][2])*(w[k - 2][2]) + r*r ), r ) + ww; |
1608 |
ee = E[l] - z; |
1609 |
E[l] = ee; |
1610 |
ff = w[l - 1][2]; |
1611 |
r = sqrt( ee*ee + ff*ff ); |
1612 |
j = l; |
1613 |
goto L_160; |
1614 |
L_150: |
1615 |
r = sqrt( (E[j])*(E[j]) + (w[j - 1][2])*(w[j - 1][2]) ); |
1616 |
w[j - 2][2] = s*r; |
1617 |
ee = E[j]*c; |
1618 |
ff = w[j - 1][2]*c; |
1619 |
L_160: |
1620 |
c = E[j]/r; |
1621 |
s = w[j - 1][2]/r; |
1622 |
ww = E[j + 1] - z; |
1623 |
E[j] = (ff*c + ww*s)*s + ee + z; |
1624 |
E[j + 1] = c*ww - s*ff; |
1625 |
j += 1; |
1626 |
if( j < k ) |
1627 |
goto L_150; |
1628 |
w[k - 2][2] = E[k]*s; |
1629 |
E[k] = E[k]*c + z; |
1630 |
goto L_120; |
1631 |
L_170: |
1632 |
k -= 1; |
1633 |
if( k > 1 ) |
1634 |
goto L_120; |
1635 |
/* * * * * * * * * * * * * |
1636 |
* |
1637 |
* AT THIS POINT THE ARRAY 'E' CONTAINS THE UN-ORDERED EIGENVALUES |
1638 |
* |
1639 |
* * * * * * * * * * * * * |
1640 |
* STRAIGHT SELECTION SORT OF EIGENVALUES */ |
1641 |
sorter = 1.e0; |
1642 |
if( iord < 0 ) |
1643 |
sorter = -1.e0; |
1644 |
j = n; |
1645 |
L_180: |
1646 |
l = 1; |
1647 |
ii = 1; |
1648 |
ll = 1; |
1649 |
for( i = 2, _do9 = j; i <= _do9; i++ ) |
1650 |
{ |
1651 |
i_ = i - 1; |
1652 |
if( (E[i] - E[l])*sorter > 0.e0 ) |
1653 |
goto L_190; |
1654 |
l = i; |
1655 |
goto L_200; |
1656 |
L_190: |
1657 |
ii = i; |
1658 |
ll = l; |
1659 |
L_200: |
1660 |
; |
1661 |
} |
1662 |
if( ii == ll ) |
1663 |
goto L_210; |
1664 |
ww = E[ll]; |
1665 |
E[ll] = E[ii]; |
1666 |
E[ii] = ww; |
1667 |
L_210: |
1668 |
j = ii - 1; |
1669 |
if( j >= 2 ) |
1670 |
goto L_180; |
1671 |
L_220: |
1672 |
if( !m ) |
1673 |
return; |
1674 |
/*************** |
1675 |
* ORDERING OF EIGENVALUES COMPLETE. |
1676 |
*************** |
1677 |
* INVERSE-ITERATION FOR EIGENVECTORS */ |
1678 |
fn = (float)( n ); |
1679 |
eps1 = 1.e-5; |
1680 |
seps = sqrt( eps ); |
1681 |
eps2 = 0.05e0; |
1682 |
rn = 0.e0; |
1683 |
ra = eps*0.6180339887485e0; |
1684 |
/* 0.618... IS THE FIBONACCI NUMBER (-1+SQRT(5))/2. */ |
1685 |
ig = 1; |
1686 |
for( i = 1, _do10 = m; i <= _do10; i++ ) |
1687 |
{ |
1688 |
i_ = i - 1; |
1689 |
im1 = i - 1; |
1690 |
for( j = 1, _do11 = n; j <= _do11; j++ ) |
1691 |
{ |
1692 |
j_ = j - 1; |
1693 |
w[j_][2] = 0.e0; |
1694 |
w[j_][3] = w[j_][0]; |
1695 |
w[j_][4] = v[m-1][j_] - E[i]; |
1696 |
rn += ra; |
1697 |
if( rn >= eps ) |
1698 |
rn -= eps; |
1699 |
v[i_][j_] = rn; |
1700 |
} |
1701 |
for( j = 1, _do12 = nm1; j <= _do12; j++ ) |
1702 |
{ |
1703 |
j_ = j - 1; |
1704 |
if( fabs( w[j_][4] ) >= fabs( w[j_][0] ) ) |
1705 |
goto L_240; |
1706 |
w[j_][1] = -w[j_][4]/w[j_][0]; |
1707 |
w[j_][4] = w[j_][0]; |
1708 |
t = w[j_ + 1][4]; |
1709 |
w[j_ + 1][4] = w[j_][3]; |
1710 |
w[j_][3] = t; |
1711 |
w[j_][2] = w[j_ + 1][3]; |
1712 |
if( fabs( w[j_][2] ) < eps3 ) |
1713 |
w[j_][2] = del; |
1714 |
w[j_ + 1][3] = 0.e0; |
1715 |
goto L_250; |
1716 |
L_240: |
1717 |
if( fabs( w[j_][4] ) < eps3 ) |
1718 |
w[j_][4] = del; |
1719 |
w[j_][1] = -w[j_][0]/w[j_][4]; |
1720 |
L_250: |
1721 |
w[j_ + 1][3] += w[j_][2]*w[j_][1]; |
1722 |
w[j_ + 1][4] += w[j_][3]*w[j_][1]; |
1723 |
} |
1724 |
if( fabs( w[n - 1][4] ) < eps3 ) |
1725 |
w[n - 1][4] = del; |
1726 |
for( itere = 1; itere <= 5; itere++ ) |
1727 |
{ |
1728 |
itere_ = itere - 1; |
1729 |
if( itere == 1 ) |
1730 |
goto L_280; |
1731 |
for( j = 1, _do13 = nm1; j <= _do13; j++ ) |
1732 |
{ |
1733 |
j_ = j - 1; |
1734 |
if( fabs( w[j_][2] ) < eps3 ) |
1735 |
goto L_270; |
1736 |
t = v[i_][j_]; |
1737 |
v[i_][j_] = v[i_][j_+1]; |
1738 |
v[i_][j_+1] = t; |
1739 |
L_270: |
1740 |
v[i_][j_+1] += v[i_][j_]*w[j_][1]; |
1741 |
} |
1742 |
L_280: |
1743 |
v[i_][n-1] /= w[n - 1][4]; |
1744 |
v[i_][nm1 - 1] = (v[i_][nm1 - 1] - v[i_][n-1]*w[nm1 - 1][3])/w[nm1 - 1][4]; |
1745 |
vn = 1.0e-20; |
1746 |
if (fabs( v[i_][n-1] ) > vn) |
1747 |
vn = fabs( v[i_][n-1] ); |
1748 |
if ( fabs( v[i_][nm1 - 1] ) > vn) |
1749 |
vn = fabs( v[i_][nm1 - 1] ); |
1750 |
if( n == 2 ) |
1751 |
goto L_300; |
1752 |
k = nm2; |
1753 |
L_290: |
1754 |
v[i_][k - 1] = (v[i_][k - 1] - v[i_][k]*w[k - 1][3] - v[i_][k + 1]* |
1755 |
w[k - 1][2])/w[k - 1][4]; |
1756 |
if (vn < 1.0e-20) |
1757 |
vn = 1.0e-20; |
1758 |
if (fabs( v[i_][k - 1] ) > vn) |
1759 |
vn = fabs( v[i_][n-1] ); |
1760 |
k -= 1; |
1761 |
if( k >= 1 ) |
1762 |
goto L_290; |
1763 |
L_300: |
1764 |
s = eps1/vn; |
1765 |
for( j = 1, _do14 = n; j <= _do14; j++ ) |
1766 |
{ |
1767 |
j_ = j - 1; |
1768 |
v[i_][j_] *= s; |
1769 |
} |
1770 |
if( itere > 1 && vn > 1 ) |
1771 |
goto L_330; |
1772 |
} |
1773 |
/* TRANSFORMATION OF EIGENVECTORS */ |
1774 |
L_330: |
1775 |
if( n == 2 ) |
1776 |
goto L_380; |
1777 |
krank = nm2*(n + 1)/2; |
1778 |
kpiv = nm2*nm1/2; |
1779 |
for( k = nm2; k >= 1; k-- ) |
1780 |
{ |
1781 |
k_ = k - 1; |
1782 |
kp1 = k + 1; |
1783 |
if( fabs( A[kpiv] ) <= eps3 ) |
1784 |
goto L_360; |
1785 |
sum = 0.e0; |
1786 |
for( kk = kp1, _do15 = n; kk <= _do15; kk++ ) |
1787 |
{ |
1788 |
kk_ = kk - 1; |
1789 |
sum += A[krank]*v[i_][kk_]; |
1790 |
krank += kk; |
1791 |
} |
1792 |
s = -sum/A[kpiv]; |
1793 |
for( kk = n, _do16 = kp1; kk >= _do16; kk-- ) |
1794 |
{ |
1795 |
kk_ = kk - 1; |
1796 |
krank -= kk; |
1797 |
v[i_][kk_] += A[krank]*s; |
1798 |
} |
1799 |
L_360: |
1800 |
kpiv -= k; |
1801 |
krank -= kp1; |
1802 |
} |
1803 |
L_380: |
1804 |
for( j = ig, _do17 = i; j <= _do17; j++ ) |
1805 |
{ |
1806 |
j_ = j - 1; |
1807 |
if( fabs( E[j] - E[i] ) < eps2 ) |
1808 |
goto L_400; |
1809 |
} |
1810 |
j = i; |
1811 |
L_400: |
1812 |
ig = j; |
1813 |
if( ig == i ) |
1814 |
goto L_430; |
1815 |
/* RE-ORTHOGONALISATION */ |
1816 |
for( k = ig, _do18 = im1; k <= _do18; k++ ) |
1817 |
{ |
1818 |
k_ = k - 1; |
1819 |
sum = 0.e0; |
1820 |
for( j = 1, _do19 = n; j <= _do19; j++ ) |
1821 |
{ |
1822 |
j_ = j - 1; |
1823 |
sum += v[k_][j_]*v[i_][j_]; |
1824 |
} |
1825 |
s = -sum; |
1826 |
for( j = 1, _do20 = n; j <= _do20; j++ ) |
1827 |
{ |
1828 |
j_ = j - 1; |
1829 |
v[i_][j_] += v[k_][j_]*s; |
1830 |
} |
1831 |
} |
1832 |
/* NORMALISATION */ |
1833 |
L_430: |
1834 |
sum = 1.e-24; |
1835 |
for( j = 1, _do21 = n; j <= _do21; j++ ) |
1836 |
{ |
1837 |
j_ = j - 1; |
1838 |
sum += (v[i_][j_])*(v[i_][j_]); |
1839 |
} |
1840 |
sinv = 1.e0/sqrt( sum ); |
1841 |
for( j = 1, _do22 = n; j <= _do22; j++ ) |
1842 |
{ |
1843 |
j_ = j - 1; |
1844 |
v[i_][j_] *= sinv; |
1845 |
} |
1846 |
} |
1847 |
return; |
1848 |
#undef V |
1849 |
} |