ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/gclib/gclib/GAlnExtend.h
Revision: 106
Committed: Mon Oct 10 21:45:05 2011 UTC (8 years, 2 months ago) by gpertea
File size: 22022 byte(s)
Log Message:
Line User Rev File contents
1 gpertea 93 #ifndef _GALIGNEXTEND_H
2    
3     //greedy gapped alignment extension
4     //(mostly lifted from NCBI's megablast gapped extension code)
5    
6     #include "GBase.h"
7     #include "GList.hh"
8     #include <string.h>
9    
10 gpertea 106 //#define GDEBUG 1
11 gpertea 93
12     enum {
13     gxEDIT_OP_MASK = 0x3,
14     gxEDIT_OP_ERR = 0x0,
15     gxEDIT_OP_INS = 0x1,
16     gxEDIT_OP_DEL = 0x2,
17     gxEDIT_OP_REP = 0x3
18     };
19    
20     #define GX_EDITOP_VAL(op) ((op) >> 2)
21     #define GX_EDITOP_GET(op) ((op) & gxEDIT_OP_MASK)
22     #define GX_EDITOP_CONS(op, val) (((val) << 2) | ((op) & gxEDIT_OP_MASK))
23    
24     #ifdef GDEBUG
25     enum {c_black=0,
26     c_red, c_green,c_brown,c_blue,c_magenta,c_cyan,c_white
27     };
28    
29     void color_fg(int c, FILE* f=stderr);
30     void color_bg(int c, FILE* f=stderr);
31     void color_resetfg(FILE* f=stderr);
32     void color_resetbg(FILE* f=stderr);
33     void color_reset(FILE* f=stderr);
34     void color_normal(FILE* f=stderr);
35     #endif
36    
37     struct GXEditScript{
38     uint32 *ops; // array of edit operations
39     uint32 opsize, opnum; // size of allocation, number in use
40     uint32 oplast; // most recent operation added
41     //methods
42    
43     GXEditScript() {
44     init();
45     }
46     ~GXEditScript() {
47     GFREE(ops);
48     }
49     void init() {
50     ops = NULL;
51     opsize = 0;
52     opnum = 0;
53     oplast = 0;
54     getReady(8);
55     }
56    
57     int getReady(uint32 n) {
58     uint32 m = n + n/2;
59     if (opsize <= n) {
60     GREALLOC(ops, m*sizeof(uint32));
61     opsize = m;
62     }
63     return 1;
64     }
65    
66     int getReady2(uint32 n) {
67     if (opsize - opnum <= n)
68     return getReady(n + opnum);
69     return 1;
70     }
71    
72     int Put(uint32 op, uint32 n) {
73     if (!getReady2(2))
74     return 0;
75     oplast = op;
76     ops[opnum] = GX_EDITOP_CONS(op, n);
77     opnum += 1;
78     ops[opnum] = 0; // sentinel
79     return 1;
80     }
81     uint32* First() {
82     return opnum > 0 ? & ops[0] : NULL;
83     }
84    
85     uint32* Next(uint32 *op) {
86     // assumes flat address space !
87     if (&ops[0] <= op && op < &ops[opnum-1])
88     return op+1;
89     else
90     return 0;
91     }
92    
93     int More(uint32 op, uint32 k) {
94     if (op == gxEDIT_OP_ERR) {
95     GError("GXEditScript::opMore: bad opcode %d:%d", op, k);
96     return -1;
97     }
98    
99     if (GX_EDITOP_GET(oplast) == op) {
100     uint32 l=ops[opnum-1];
101     ops[opnum-1]=GX_EDITOP_CONS((GX_EDITOP_GET(l)),
102     (GX_EDITOP_VAL(l) + k));
103     }
104     else {
105     Put(op, k);
106     }
107    
108     return 0;
109     }
110    
111     GXEditScript* Append(GXEditScript *et) {
112     uint32 *op;
113     for (op = et->First(); op; op = et->Next(op))
114     More(GX_EDITOP_GET(*op), GX_EDITOP_VAL(*op));
115     return this;
116     }
117    
118     int opDel(uint32 k) {
119     return More(gxEDIT_OP_DEL, k);
120     }
121     int opIns(uint32 k) {
122     return More(gxEDIT_OP_INS, k);
123     }
124     int opRep(uint32 k) {
125     return More(gxEDIT_OP_REP, k);
126     }
127    
128     GXEditScript *reverse() {
129     const uint32 mid = opnum/2;
130     const uint32 end = opnum-1;
131     for (uint32 i = 0; i < mid; ++i) {
132     const uint32 t = ops[i];
133     ops[i] = ops[end-i];
134     ops[end-i] = t;
135     }
136     return this;
137     }
138     };
139    
140    
141     /** Bookkeeping structure for greedy alignment. When aligning
142     two sequences, the members of this structure store the
143     largest offset into the second sequence that leads to a
144     high-scoring alignment for a given start point */
145     struct SGreedyOffset {
146     int insert_off; // Best offset for a path ending in an insertion
147     int match_off; // Best offset for a path ending in a match
148     int delete_off; // Best offset for a path ending in a deletion
149     };
150    
151     // ----- pool allocator -----
152     // works as a linked list of allocated memory blocks
153     struct GXMemPool {
154     SGreedyOffset* memblock;
155     int used, size;
156     GXMemPool *next;
157     static int kMinSpace;
158     //methods
159     GXMemPool(int num_offsp=0) { //by default allocate a large block here (10M)
160     num_offsp=GMAX(kMinSpace, num_offsp);
161     GMALLOC(memblock, num_offsp*sizeof(SGreedyOffset));
162     if (memblock == NULL) {
163     GError("Failed to allocated GXMemPool(%d) for greedy extension!\n",num_offsp);
164     return;
165     }
166     used = 0;
167     size = num_offsp;
168     next = NULL;
169     }
170    
171     void refresh() {
172     GXMemPool* sp=this;
173     while (sp) {
174     sp->used = 0;
175     sp = sp->next;
176     }
177     }
178     ~GXMemPool() {
179     GXMemPool* next_sp;
180     GXMemPool* sp=this->next;
181     while (sp) {
182     next_sp = sp->next;
183     GFREE(sp->memblock);
184     delete sp;
185     sp = next_sp;
186     }
187     GFREE(memblock);
188     }
189    
190     SGreedyOffset* getSpace(int num_alloc) { // SGreedyOffset[num_alloc] array
191     //can use the first found memory block with enough room,
192     // or allocate a new large block
193     SGreedyOffset* v;
194     if (num_alloc < 0) return NULL;
195     GXMemPool* S=this;
196     while (used+num_alloc > S->size) {
197     //no room in current block, get a new mem block
198     if (next == NULL) {
199     next=new GXMemPool(num_alloc); //allocates a large contiguous memory block
200     }
201     S = S->next;
202     }
203     v = S->memblock+S->used;
204     S->used += num_alloc;
205     //align to first 8-byte boundary
206     int m8 = S->used & 7; //modulo 8
207     if (m8)
208     S->used += 8 - m8;
209     return v;
210     }
211    
212     void* getByteSpace(int byte_size) { //amount to use or allocate memory, in bytes
213     return (void*)getSpace(byte_size/sizeof(SGreedyOffset));
214     }
215    
216     };
217    
218     #define GREEDY_MAX_COST_FRACTION 5
219     /* (was 2) sequence_length / (this number) is a measure of how hard the
220     alignment code will work to find the optimal alignment; in fact
221     this gives a worst case bound on the number of loop iterations */
222    
223     #define GREEDY_MAX_COST 1000
224     // The largest diff distance (max indels+mismatches) to be examined for an optimal alignment
225     // (should be increased for large sequences)
226    
227     #define GX_GALLOC_ERROR "Error: failed to allocate memory for greedy alignment!\n"
228    
229     // all auxiliary memory needed for the greedy extension algorithm
230 gpertea 101 class CGreedyAlignData {
231     int d_diff;
232     int max_d;
233     public:
234 gpertea 93 int** last_seq2_off; // 2-D array of distances
235     int* max_score; // array of maximum scores
236     GXMemPool* space; // local memory pool for SGreedyOffset structs
237 gpertea 101 //
238     int match_reward;
239     int mismatch_penalty;
240     int x_drop;
241 gpertea 93 // Allocate memory for the greedy gapped alignment algorithm
242 gpertea 101 CGreedyAlignData(int reward, int penalty, int xdrop) {
243 gpertea 93 //int max_d, diff_d;
244     if (penalty<0) penalty=-penalty;
245     if (reward % 2) {
246     //scale params
247 gpertea 101 match_reward = reward << 1;
248     mismatch_penalty = (penalty << 1);
249     x_drop = xdrop<<1;
250 gpertea 93 }
251 gpertea 101 else {
252     match_reward=reward;
253     mismatch_penalty = penalty;
254     x_drop=xdrop;
255     }
256 gpertea 93 //if (gap_open == 0 && gap_extend == 0)
257     // gap_extend = (reward >> 1) + penalty;
258     const int max_dbseq_length=255; //adjust this accordingly
259     max_d = GMIN(GREEDY_MAX_COST,
260     (max_dbseq_length/GREEDY_MAX_COST_FRACTION + 1));
261    
262     last_seq2_off=NULL; // 2-D array of distances
263     max_score=NULL; // array of maximum scores
264     space=NULL; // local memory pool for SGreedyOffset structs
265     //if (score_params.gap_open==0 && score_params.gap_extend==0) {
266     //non-affine, simpler Greedy algorithm
267 gpertea 101 d_diff = (x_drop+match_reward/2)/(mismatch_penalty+match_reward)+1;
268 gpertea 93 GMALLOC(last_seq2_off, ((max_d + 2) * sizeof(int*)));
269     if (!last_seq2_off)
270     GError(GX_GALLOC_ERROR);
271     GCALLOC(last_seq2_off[0], ((max_d + max_d + 6) * sizeof(int) * 2));
272     //allocates contiguous memory for 2 rows here
273     if (!last_seq2_off[0])
274     GError(GX_GALLOC_ERROR);
275     last_seq2_off[1] = last_seq2_off[0] + max_d + max_d + 6; //memory allocated already for this row
276    
277     GCALLOC(max_score, (sizeof(int) * (max_d + 1 + d_diff)));
278     space = new GXMemPool();
279     if (!max_score || !space)
280     GError(GX_GALLOC_ERROR);
281     } //consructor
282    
283     void reset() {
284     space->refresh();
285     if (last_seq2_off) {
286     GFREE((last_seq2_off[0]));
287     }
288     GFREE(max_score);
289     GCALLOC(last_seq2_off[0], ((max_d + max_d + 6) * sizeof(int) * 2));
290     if (!last_seq2_off[0]) GError(GX_GALLOC_ERROR);
291     //allocates contiguous memory for 2 rows here
292     last_seq2_off[1] = last_seq2_off[0] + max_d + max_d + 6;
293     GCALLOC(max_score, (sizeof(int) * (max_d + 1 + d_diff)));
294     if (!max_score) GError(GX_GALLOC_ERROR);
295     }
296 gpertea 101 ~CGreedyAlignData() {
297 gpertea 93 if (last_seq2_off) {
298     GFREE(last_seq2_off[0]);
299     GFREE(last_seq2_off);
300     }
301     GFREE(max_score);
302     delete space;
303     }
304    
305     };
306    
307    
308     #define GAPALIGN_SUB ((unsigned char)0) /*op types within the edit script*/
309     #define GAPALIGN_INS ((unsigned char)1)
310     #define GAPALIGN_DEL ((unsigned char)2)
311     #define GAPALIGN_DECLINE ((unsigned char)3)
312    
313     struct GapXEditScript {
314     unsigned char op_type; // GAPALIGN_SUB, GAPALIGN_INS, or GAPALIGN_DEL
315     int num; // Number of operations
316     GapXEditScript* next;
317     GapXEditScript() {
318     op_type=0;
319     num=0;
320     next=NULL;
321     }
322     void print();
323     };
324    
325     class CSeqGap { //
326     public:
327     int offset;
328     int len;
329     CSeqGap(int gofs=0,int glen=1) {
330     offset=gofs;
331     len=glen;
332     }
333     };
334    
335     class CAlnGapInfo {
336     int a_ofs; //alignment start on seq a (0 based)
337     int b_ofs; //alignment start on seq b (0 based)
338     int a_len; //length of alignment on seq a
339     int b_len; //length of alignment on seq b
340     public:
341     GVec<CSeqGap> a_gaps;
342     GVec<CSeqGap> b_gaps;
343     CAlnGapInfo(GXEditScript* ed_script, int astart=0, int bstart=0):a_gaps(),b_gaps() {
344     a_ofs=astart;
345     b_ofs=bstart;
346     a_len=0;
347     b_len=0;
348     if (ed_script==NULL) return;
349     for (uint32 i=0; i<ed_script->opnum; i++) {
350     int num=((ed_script->ops[i]) >> 2);
351     char op_type = 3 - ( ed_script->ops[i] & gxEDIT_OP_MASK );
352     if (op_type == 3 || op_type < 0 )
353     GError("Error: encountered op_type %d in ed_script?!\n", (int)op_type);
354     CSeqGap gap;
355     switch (op_type) {
356     case GAPALIGN_SUB: a_len+=num;
357     b_len+=num;
358     break;
359     case GAPALIGN_INS: a_len+=num;
360     gap.offset=b_ofs+b_len;
361     gap.len=num;
362     b_gaps.Add(gap);
363     break;
364     case GAPALIGN_DEL: b_len+=num;
365     gap.offset=a_ofs+a_len;
366     gap.len=num;
367     a_gaps.Add(gap);
368     break;
369     }
370     }
371     }
372    
373     #ifdef GDEBUG
374     void printAlignment(FILE* f, const char* sa, int sa_len,
375     const char* sb, int sb_len) {
376     //print seq A
377     char al[1024]; //display buffer for seq A
378     int ap=0; //index in al[] for current character printed
379     int g=0;
380     int aend=a_ofs+a_len;
381     if (a_ofs<b_ofs) {
382     for (int i=0;i<b_ofs-a_ofs;i++) {
383     fprintf(f, " ");
384     al[++ap]=' ';
385     }
386     }
387     for (int i=0;i<aend;i++) {
388     if (g<a_gaps.Count() && a_gaps[g].offset==i) {
389     for (int j=0;j<a_gaps[g].len;j++) {
390     fprintf(f, "-");
391     al[++ap]='-';
392     }
393     g++;
394     }
395     if (i==a_ofs) color_bg(c_blue,f);
396     fprintf(f, "%c", sa[i]);
397     al[++ap]=sa[i];
398     }
399     color_reset(f);
400     if (aend<sa_len)
401     fprintf(f, &sa[aend]);
402     fprintf(f, "\n");
403     //print seq B
404     ap=0;
405     g=0;
406     int bend=b_ofs+b_len;
407     if (a_ofs>b_ofs) {
408     for (int i=0;i<a_ofs-b_ofs;i++) {
409     fprintf(f, " ");
410     ap++;
411     }
412     }
413     for (int i=0;i<b_ofs;i++) {
414     fprintf(f, "%c", sb[i]);
415     ap++;
416     }
417     for (int i=b_ofs;i<bend;i++) {
418     if (g<b_gaps.Count() && b_gaps[g].offset==i) {
419     for (int j=0;j<b_gaps[g].len;j++) {
420     fprintf(f, "-");
421     ap++;
422     }
423     g++;
424     }
425     if (i==b_ofs) color_bg(c_blue,f);
426     ap++;
427     bool mismatch=(sb[i]!=al[ap] && al[ap]!='-');
428     if (mismatch) color_bg(c_red,f);
429     fprintf(f, "%c", sb[i]);
430     if (mismatch) color_bg(c_blue,f);
431     }
432     color_reset(f);
433     if (bend<sb_len)
434     fprintf(f, &sb[bend]);
435     fprintf(f, "\n");
436     }
437     #endif
438     };
439    
440     struct GXAlnInfo {
441     const char *qseq;
442     int ql,qr;
443     const char *sseq;
444     int sl,sr;
445     int score;
446     double pid;
447     GXEditScript* editscript;
448     CAlnGapInfo* gapinfo;
449     GXAlnInfo(const char* q, int q_l, int q_r, const char* s, int s_l, int s_r,
450     int sc=0, double percid=0) {
451     qseq=q;
452     sseq=s;
453     ql=q_l;
454     qr=q_r;
455     sl=s_l;
456     sr=s_r;
457     score=sc;
458     pid=percid;
459     editscript=NULL;
460     gapinfo=NULL;
461     }
462     ~GXAlnInfo() {
463     delete editscript;
464     delete gapinfo;
465     }
466     bool operator<(GXAlnInfo& d) {
467     return ((score==d.score)? pid>d.pid : score>d.score);
468     }
469     bool operator>(GXAlnInfo& d) {
470     return ((score==d.score)? pid<d.pid : score<d.score);
471     }
472     bool operator==(GXAlnInfo& d) {
473     return (score==d.score && pid==d.pid);
474     }
475    
476     };
477    
478    
479    
480     struct GXSeed {
481     int b_ofs; //0-based coordinate on seq b (x coordinate)
482     int a_ofs; //0-based coordinate on seq a (y coordinate)
483     int len; //length of exact match after extension
484     bool operator<(GXSeed& d){
485     return ((b_ofs==d.b_ofs) ? a_ofs<d.a_ofs : b_ofs<d.b_ofs);
486     }
487     bool operator>(GXSeed& d){
488     return ((b_ofs==d.b_ofs) ? a_ofs>d.a_ofs : b_ofs>d.b_ofs);
489     }
490     bool operator==(GXSeed& d){
491     return (b_ofs==d.b_ofs && a_ofs==d.a_ofs); //should never be the case, seeds are uniquely constructed
492     }
493     GXSeed(int aofs=0, int bofs=0, int l=4) {
494     a_ofs=aofs;
495     b_ofs=bofs;
496     len=l;
497     }
498     };
499    
500     int cmpSeedDiag(const pointer p1, const pointer p2);
501     //seeds are "equal" if they're on the same diagonal (for selection purposes only)
502    
503     int cmpSeedScore(const pointer p1, const pointer p2); //also takes position into account
504     //among seeds with same length, prefer those closer to the left end of the read (seq_b)
505    
506     struct GXBand {
507     //bundle of seed matches on 3 adjacent diagonals
508     int diag; //first anti-diagonal (b_ofs-a_ofs) in this group of 3
509     //seeds for this, and diag+1 and diag+2 are stored here
510     int min_a, max_a; //maximal coordinates of the bundle
511     int min_b, max_b;
512 gpertea 101 int w_min_b; //weighted average of left start coordinate
513     int avg_len;
514 gpertea 93 GList<GXSeed> seeds; //sorted by x coordinate (b_ofs)
515     int score; //sum of seed scores (- overlapping_bases/2 - gaps)
516 gpertea 101 bool tested;
517 gpertea 93 GXBand(int start_diag=-1, GXSeed* seed=NULL):seeds(true, false, false) {
518     diag=start_diag;
519     min_a=MAX_INT;
520     min_b=MAX_INT;
521     max_a=0;
522     max_b=0;
523     score=0;
524 gpertea 101 avg_len=0;
525     w_min_b=0;
526     tested=false;
527 gpertea 93 if (seed!=NULL) addSeed(seed);
528     }
529     void addSeed(GXSeed* seed) {
530     seeds.Add(seed);
531     score+=seed->len;
532 gpertea 101 avg_len+=seed->len;
533     w_min_b+=seed->b_ofs * seed->len;
534 gpertea 93 //if (diag<0) diag=seed->diag; //should NOT be done like this
535     if (seed->a_ofs < min_a) min_a=seed->a_ofs;
536     if (seed->a_ofs+ seed->len > max_a) max_a=seed->a_ofs+seed->len;
537     if (seed->b_ofs < min_b) min_b=seed->b_ofs;
538     if (seed->b_ofs+seed->len > max_b) max_b=seed->b_ofs+seed->len;
539     }
540 gpertea 101
541 gpertea 93 void finalize() {
542     //!! to be called only AFTER all seeds have been added
543     // seeds are sorted by b_ofs
544     //penalize seed gaps and overlaps on b sequence
545 gpertea 101 if (avg_len==0) return;
546     w_min_b/=avg_len;
547     avg_len>>=1;
548 gpertea 93 for (int i=1;i<seeds.Count();i++) {
549     GXSeed& sprev=*seeds[i-1];
550     GXSeed& scur=*seeds[i];
551     if (scur==sprev) GError("Error: duplicate seeds found (%d-%d:%d-%d)!\n",
552     scur.a_ofs+1, scur.a_ofs+scur.len, scur.b_ofs+1, scur.b_ofs+scur.len);
553     int b_gap=scur.b_ofs-sprev.b_ofs-sprev.len;
554     int a_gap=scur.a_ofs-sprev.a_ofs-sprev.len;
555     int max_gap=b_gap;
556     int min_gap=a_gap;
557     if (min_gap>max_gap) swap(max_gap, min_gap);
558 gpertea 101 int _penalty=0;
559 gpertea 93 if (min_gap<0) { //overlap
560 gpertea 101 if (max_gap>0) { _penalty=GMAX((-min_gap), max_gap); }
561     else _penalty=-min_gap;
562 gpertea 93 }
563     else { //gap
564 gpertea 101 _penalty=max_gap;
565 gpertea 93 }
566 gpertea 101 score-=(_penalty>>1);
567     //score-=_penalty;
568     }//for each seed
569 gpertea 93 }
570    
571     //bands will be sorted by decreasing score eventually, after all seeds are added
572     //more seeds better than one longer seed?
573     bool operator<(GXBand& d){
574 gpertea 101 //return ((score==d.score) ? seeds.Count()>d.seeds.Count() : score>d.score);
575     return ((score==d.score) ? w_min_b<d.w_min_b : score>d.score);
576 gpertea 93 }
577     bool operator>(GXBand& d){
578 gpertea 101 //return ((score==d.score) ? seeds.Count()<d.seeds.Count() : score<d.score);
579     return ((score==d.score) ? w_min_b>d.w_min_b : score<d.score);
580 gpertea 93 }
581     bool operator==(GXBand& d){
582 gpertea 101 //return (score==d.score && seeds.Count()==d.seeds.Count());
583     return (score==d.score && w_min_b==d.w_min_b);
584 gpertea 93 }
585    
586     };
587    
588     class GXBandSet:public GList<GXBand> {
589     public:
590 gpertea 99 GXSeed* qmatch; //long match (mismatches allowed) if a very good match was extended well
591 gpertea 104 GXSeed* tmatch; //terminal match to be used if there is no better alignment
592 gpertea 93 int idxoffset; //global anti-diagonal->index offset (a_len-1)
593     //used to convert a diagonal to an index
594     //diagonal is always b_ofs-a_ofs, so the minimum value is -a_len+1
595     //hence offset is a_len-1
596     GXBand* band(int diag) { //retrieve the band for given anti-diagonal (b_ofs-a_ofs)
597     return Get(diag+idxoffset);
598     }
599     GXBand* band(int a_ofs, int b_ofs) { //retrieve the band for given anti-diagonal (b_ofs-a_ofs)
600     return Get(b_ofs-a_ofs+idxoffset);
601     }
602     GXBandSet(int a_len, int b_len):GList<GXBand>(a_len+b_len-1, false, true, false) {
603     idxoffset=a_len-1;
604 gpertea 99 qmatch=NULL;
605 gpertea 104 tmatch=NULL; //terminal match to be used if everything else fails
606 gpertea 93 //diag will range from -a_len+1 to b_len-1, so after adjustment
607     //by idxoffset we get a max of a_len+b_len-2
608     int bcount=a_len+b_len-1;
609     for (int i=0;i<bcount;i++)
610     this->Add(new GXBand(i-idxoffset));
611     //unsorted, this should set fList[i]
612     }
613 gpertea 99 ~GXBandSet() {
614     delete qmatch;
615     }
616 gpertea 93 void addSeed(GXSeed* seed) {
617     //MUST be unsorted !!!
618     int idx=(seed->b_ofs-seed->a_ofs)+idxoffset;
619     fList[idx]->addSeed(seed);
620     if (idx>0) fList[idx-1]->addSeed(seed);
621     if (idx<fCount-1) fList[idx+1]->addSeed(seed);
622     }
623     };
624    
625    
626     GXBandSet* collectSeeds_R(GList<GXSeed>& seeds, const char* seqa, int a_len, const char* seqb, int b_len); //for overlap at 3' end of seqb
627    
628     GXBandSet* collectSeeds_L(GList<GXSeed>& seeds, const char* seqa, int a_len, const char* seqb, int b_len); //for overlap at 5' end of seqb
629    
630     void printEditScript(GXEditScript* ed_script);
631    
632    
633     int GXGreedyExtend(const char* seq1, int len1,
634     const char* seq2, int len2,
635     bool reverse, int xdrop_threshold,
636     int match_cost, int mismatch_cost,
637     int& seq1_align_len, int& seq2_align_len,
638 gpertea 101 CGreedyAlignData& aux_data,
639 gpertea 93 GXEditScript *edit_block);
640    
641    
642     enum GAlnTrimType {
643     galn_NoTrim=0,
644     galn_TrimLeft,
645     galn_TrimRight
646     };
647    
648 gpertea 101 struct CAlnTrim {
649     GAlnTrimType type;
650     int boundary; //base index (either left or right) excluding terminal poly-A stretches
651     void prepare(GAlnTrimType trim_type, const char* s, int s_len) {
652     type=trim_type;
653     boundary=0;
654     if (type==galn_TrimLeft) {
655     int s_lbound=0;
656     if (s[0]=='A' && s[1]=='A' && s[2]=='A') {
657     s_lbound=3;
658     while (s_lbound<s_len-1 && s[s_lbound]=='A') s_lbound++;
659     }
660     else if (s[1]=='A' && s[2]=='A' && s[3]=='A') {
661     s_lbound=4;
662     while (s_lbound<s_len-1 && s[s_lbound]=='A') s_lbound++;
663     }
664     boundary=s_lbound+3;
665     return;
666     }
667     if (type==galn_TrimRight) {
668     int r=s_len-1;
669     if (s[r]=='A' && s[r-1]=='A' && s[r-2]=='A') {
670     r-=3;
671     while (r>0 && s[r]=='A') r--;
672     }
673     else if (s[r-1]=='A' && s[r-2]=='A' && s[r-3]=='A') {
674     r-=4;
675     while (r>0 && s[r]=='A') r--;
676     }
677     boundary=r-3;
678     }
679     }
680    
681     CAlnTrim(GAlnTrimType trim_type, const char* s, int s_len) {
682     prepare(trim_type, s, s_len);
683     }
684    
685     bool validate(int sl, int sr, int alnpid, int adist) {
686     int alnlen=sr-sl+1;
687     sl--;sr--; //boundary is 0-based
688     int badj=0;
689     int admax=3;
690     if (alnlen<11) {
691     //stricter boundary check
692     badj=2;
693     admax=1;
694 gpertea 106 if (alnlen<=6) { badj++; admax=0; }
695 gpertea 101 }
696     if (adist>admax) return false;
697     if (type==galn_TrimRight) {
698     return (sr>=boundary+badj);
699     }
700     else {
701     //left side should be more stringent
702     if (alnpid<91) {
703     if (alnlen<11) return false;
704     badj++;
705     }
706     return (sl<=boundary-badj);
707     }
708     }
709    
710     };
711    
712    
713 gpertea 93 // reward MUST be >1, always
714     GXAlnInfo* GreedyAlignRegion(const char* q_seq, int q_alnstart, int q_max,
715 gpertea 101 const char* s_seq, int s_alnstart, int s_max,
716     int reward, int penalty, int xdrop, CGreedyAlignData* gxmem=NULL,
717     CAlnTrim* trim=NULL, bool editscript=false);
718     GXAlnInfo* GreedyAlignRegion(const char* q_seq, int q_alnstart, int q_max,
719     const char* s_seq, int s_alnstart, int s_max, CGreedyAlignData* gxmem,
720     CAlnTrim* trim=NULL, bool editscript=false);
721    
722 gpertea 93 GXAlnInfo* GreedyAlign(const char* q_seq, int q_alnstart, const char* s_seq, int s_alnstart,
723     bool editscript=false, int reward=2, int penalty=3, int xdrop=8);
724    
725 gpertea 96 GXAlnInfo* match_LeftEnd(const char* seqa, int seqa_len, const char* seqb, int seqb_len,
726 gpertea 101 CGreedyAlignData* gxmem=NULL, int min_pid=83);
727 gpertea 96 GXAlnInfo* match_RightEnd(const char* seqa, int seqa_len, const char* seqb, int seqb_len,
728 gpertea 101 CGreedyAlignData* gxmem=NULL, int min_pid=73);
729 gpertea 93 #endif