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SUPPLEMENTARY INFORMATION
1. Supplementary Notes:

Background of HIV-1 Outbreak at Al-Fateh Hospital:

In May 1998, the Al-Fateh Children’s Hospital (AFH) in Benghazi, Libya' noted their
first case of HIV-1 infection. In September 1998, another 111 children who had been
admitted to the hospital were found to be HIV-1 positive'. The outbreak was reported
by local hospital authorities and representatives from the World Health Organization
(WHO) were sent to AFH in December 1998 to examine the cause of the infections’.
The resultant WHO report suggests that there were multiple nosocomial HIV-1
infections at AFH. The report also notes the lack of required medical equipment in the

hospital®.

Additional Information on the HIV-1 and HCV infected Children:

In total 418 children were infected with HIV-1 in the AFH outbreak. Following the
WHO report, 248 (59.3%) of these children were sent to hospitals in Geneva, Rome
and Milan for care, treatment and virological assessment'. Epidemiological data,
available for 37 of the children', indicated that all of these children had undergone
invasive procedures while in the hospital, or as outpatients. The mean number of
hospital visits between January 1998 to April 1999, was 2.14 (range. 1-4) for
outpatients; 1.56 (range, 1-6) for hospitalized patients'. The median age among the
entire group of 248 children, at the time of first diagnosis, was 3.9 + 4.1 years. The
median log;( viral load was 4.61 (range, 1.4-7.8) RNA copies/mL plasma, and median

CD4+ percentage was 28% (range, 7-54%). At the time of first observation, 216



(87.1%) of the children were asymptomatic, or mildly symptomatic; 29 (11.7%) had
moderately severe symptoms, and 3 (1.2%) had severe symptoms according the CDC
classification system. Serological testing of a subset of plasma specimens indicated
that 75 (43.1%) of 174 children were co-infected with HCV. Supplementary Table 1

gives more information on clinical aspects of infected children.

Accusation of Foreign Medics:

In March 1998 six foreign medics (five Bulgarian nurses and a doctor from Palestine)
joined the medical staff at AFH. One year later, these individuals were accused of
purposefully infecting more than 400 children with HIV-1°. They have been detained
in prison ever since. In April 2003, at the court’s request, two international HIV/AIDS
scientists, Luc Montagnier and Vittorio Colizzi conducted a scientific inquiry into the
Benghazi outbreak®. In their report, they conclude that given the high rate of Hepatitis
B and C infection amongst the children, the contamination was more likely to be
caused by pre-existing poor hygiene practices rather than a single introduction”.
Furthermore, their report suggests that the HIV-1 and HCV epidemics were present in
the hospital prior to the arrival of the Bulgarian medical staff”. However, the Libyan
court found this report to be imprecise and lacking in evidence and therefore decided
not to consider its findings in the trial*. In December 2003, a second scientific report
produced by Libyan researchers was written for the court’. This document has been

central to the prosecutor’s case against the six medics

In May 2004, the foreign medical staff were condemned to death. However, in
response to international appeal, the Libyan Supreme Court ordered a retrial on the
25™ of December 2005. The new trial began in Tripoli on the 11" of May 2006, and
on the 29th of August, the prosecution again called for the medics to be sentenced to
death®. The last session of the trial began on the 4™ of November 2006 and the final
verdict is due to be given on the 19™ of December. Attorneys from Lawyers without
Borders, who are representing the defendants, have appealed to international AIDS
experts to conduct an independent scientific inquiry into the history of the Benghazi

HIV-1 outbreak®. This paper is a response to their appeal.



2. Supplementary Methods:

Study Populations:

The demographic and clinical data for the subset of 44 children available for HIV-1
sequence analysis was comparable to that of the entire European cohort. The median
age, viral load and % CD4+ T-cell counts for this subset were 5.9 years (range, 2.2-
17.9), 4.49 log;o RNA copies/mL and 27.9% (range, 8-45%), respectively. Thirty-
three (75.0%) of these children were asymptomatic, or mildly asymptomatic (N/A),
11 (25%) had moderately severe symptoms, and 1 (2.3%) had severe symptoms.
Twenty one (47.7%) had serological evidence of HCV co-infection. Plasma
specimens for HIV-1 analyses were collected from 44 children visiting the Bambino
Gesu Children Hospital, Rome, Italy between 2000 and 2003. The median age of
children sampled in July-August of 2000 was 6.3 years, compared with a median age
of 6.0 for all children sampled over the entire three-year period. Supplementary Table
2 provides information on the sampling dates. A total of 66 plasma, collected from
children visiting University Hospital in Geneva between 1998 and 2001, were

available for HCV sequence analysis as previously described'.

RNA Extraction, PCR Amplification and Sequencing

For HIV-1 sequence analysis, RNA was extracted from plasma using the QIAamp
Viral RNA kit (Qiagen, Heiden, Germany), reverse transcribed and PCR amplified
with SuperScript One-Step RT-PCR for Long Templates (Invitrogen) in a 50 ul
reaction containing 25 pl of reaction mix, 8 pul of Mg2S04, 1.5 ul of RT-TAQ, 0.15
uM of sense and antisense primers, and 40 U of RNAse out (Invitrogen). Conditions
for the reaction were: one cycle of RT to 50° C for 30 min, one cycle at 94°C for 2
min., 40 cycles ( 95°C 30 sec., 53°C 30 sec., 72 °C 2 min) and a final cycle at 72°C
10 min. PCR primers used in the reaction were: sense (543, gag) [5’gcc tca ata aag ctt
gce tt 3°]; antisense (2400, pol) [5’cca att ccc cct ate att ttt 3° . Sequencing of the gag
region was performed using a BigDye terminator v. 3.1 cycle sequencing kit (Applied
Biosystems) and primer 1 [5’ gac tag cgg agg cta gaa 3], primer 2 [5’ggg gtg gct ccc
tct gat aa 3’], primer 3 [5’ cca gaa gta ata ccc atg tt 3°], and primer 4 [5’ cct gac atg
ctgtcatcat3’].



HCV RNA in plasma was quantified with the Cobas Amplicor Monitor Assay
(Roche). For sequence analysis, total RNA was extracted and the hypervariable region
1 of the envelop glycoprotein E2 (nt 952-1365) was amplified using primers specific
for genotypes 1 and 4. These primer sets were: sense (952, E2) [S[]-atg gen tgg gay
atg atg atg aay tgg-3], antisense (1365, E2) [5[1-ccg ytc ggr rca scc tga rgt tra ayt tgt-
317]; and sense (1048, E2) [577-ggn ngg bea ctg ggg hrt yct-3[1], antisense (1265, E2)
[5C-atr tge car cts cer ttg stg ttga-3[1]. Reaction conditions consisted of a 5-min hot
start step at 95°C, followed by 35 cycles with a denaturation step at 94°C for 30 s, an
annealing step at 55°C for 45 s, an elongation step at 72°C for 45 s, and a final
extension step at 72°C for 7 min. Direct sequencing was performed using: primer 1

[5-ggn ngg bea ctg ggg hrt yct-3] and primer 2 [5-atr tgc car cts ccr ttg stg ttga-3].

Reference Sequences and Alignment

A reterence dataset for HIV-1 CRF02 AG was obtained from the HIV Sequence
Database at Los Alamos® and from GenBank. In total, 56 reference strains with the
highest BLAST search similarity scores to the AFH strains were chosen (see

Supplementary Table 3). These include strains from Cameroon (24), Ivory Coast (4),

Ghana (7), Nigeria (3), Niger (2), Senegal (2), Gambia (1), Djibouti (1) and
Democratic Republic of Congo (1), USA (4), Sweden (1), France (2), Italy (1) and
Uzbekistan (3). All of the reference sequences and all of the AFH HIV-1 sequences
were subtyped using the REGA HIV-1 Subtyping Tool’, version 2.0. A reference
dataset for HCV was obtained from the HCV sequence database®. Preliminary
phylogenetic analysis was used to reduce an initial 12,000 E1/E2 HCV sequences to
210 closely related reference strains (113 genotype 4 sequences and 97 genotype 1
sequences; see Supplementary Table 4). The AFH HIV and HCV sequences were
then aligned with their respective reference datasets using ClustalW® and

subsequently edited by hand using Se-Al 2.0'°.

Phylogenetic Analysis

The best fitting nucleotide substitution model was evaluated using hierarchical
likelihood ratio tests — the methodology implemented in ModelTest''. The model

chosen for the HIV-1 alignment was GTR+G (general time reversible model with
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gamma distributed among-site rate heterogeneity). The best fitting model for the HCV
alignment was HKY+G+I (Hasegawa Kino Yano model with gamma rate
heterogeneity, plus invariant sites). Maximum likelihood (ML) phylogenies were
estimated for each dataset under the abovementioned models, starting with a NJ
starting tree and using the TBR (tree bisection and reconnection) and SPR (subtree
pruning and regrafting) heuristic search algorithms. The final ML phylogenies are

shown in Supplementary Figures 1, 2, and 3. Calculations were performed with

PAUP* 4.0b10"%| Statistical support for ML phylogeny structures was evaluated by

bootstrapping analysis of the original sequence alignments (1000 NJ replicates).
Phylogenetic branches were also investigated using the ML-based zero branch length
test implemented in PAUP* 4.0b10'*. Trees were rooted using mid-point rooting and

presented using the program FigTree". Bayesian estimates of phylogeny were

obtained using|MrBayes'*| under the GTR+G model for the HIV alignment and the

HKY+G+I model for the HCV alignment. For each dataset, two Markov Chain Monte
Carlo (MCMC) runs were calculated independently. Each MCMC run was
10,000,000 steps long and was sampled every 1000 steps, with a temperature
parameter of 0.2. The average standard deviation of split frequencies was calculated
for the two chains to check for convergence. Subsequently, the Effective Sampling
Size (ESS) was calculated by combining the output of the two runs using Tracer,
excluding an initial burn-in of 10% for each chain'’. The ESS values were >1000,
indicating a sufficient level of sampling. A final Bayesian majority-rule consensus

tree was obtained for the HIV (see Supplementary Figure 4).

Genome-region specific independent estimates of evolutionary rate

Evolutionary analyses were conducted in order to estimate a real timescale for the
AFH infection clusters. The first step in this analysis was to obtain estimates for the
evolutionary rate of the sequenced virus genome regions from appropriate datasets;
this information was then encoded as a prior probability distribution and combined
with the AFH sequence data using an established Bayesian MCMC approach'® that
has been tested in cases where epidemiological history is well known'’. This is an
important step as evolutionary rates vary widely among different HIV and HCV

. 18,19
genomic regions .
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The HIV evolutionary rate for the sequenced region was estimated using a set of
reference strains obtained from the HIV Sequence Database®. To be included in this
set, reference strains had to span the entire region of interest (positions 790-1722),
belong to the A1 sub-subtype of HIV-1, and have a recorded date of sampling. Based
on these criteria, a total of 48 reference sequences, 921 bp in length, with sampling
dates ranging from 1985 to 2004, were identified and used in the alignment (see
Supplementary Table 4). Evolutionary rates were estimated from this alignment

using both a strict and a relaxed molecular clock (uncorrelated lognormal model), as

implemented in| Beast 1.4'°.|A nucleotide substitution model that takes account of site

rate variation due to codon structure®® was used in both cases. Under the strict clock
model, the estimated HIV evolutionary rate was 1.47x10 substitutions per site per
year (95% HPD confidence limits: 1.02x107 to 1.96x10™). The relaxed clock model*’
evolutionary rates were similar to the strict clock results; the estimated average HIV
evolutionary rate was 1.59x10 substitutions per site per year (0.9x107 to 2.3x107).
The coefficient of variation was estimated at 0.28 (0.18 to 0.38), indicating relatively
little variation in evolutionary rate among branches.

To obtain a rate of HCV sequence evolution we utilized sequence data from a
previous case of iatrogenic HCV transmission, the Irish anti-D cohort. We used HCV
complete genome sequences obtained by direct PCR from 15 patients, 17 to 21 years
after the patients were infected with contaminated anti-D immunoglobulin® (see
Supplementary Table 6). The relevant sub-genomic regions (positions 1408-1580)
were extracted from the anti-D cohort HCV complete genomes, and compared with
the HCV sequence obtained from the anti-D outbreak source, which contained very
little HCV genetic diversity”. We followed a similar approach to that used by Pybus
and colleagues®. The anti-D cohort infection history was represented as a star
phylogeny and the HCV evolutionary rate was then estimated using a Bayesian
MCMC framework'® under a strict molecular clock (sequence length was insufficient
to support a reliable relaxed clock analysis of this data). The HCV evolutionary rate
was estimated at 6.0 10 substitutions per site per year (95% HPD confidence limits:
5.3x107 to 6.8x10) using the HKY evolutionary model and estimated at 16.7 x107
substitutions per site per year (11.9x10° to 22.0x107) using the HKY+G

evolutionary model.
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Evolutionary Analysis of the AFH Clusters.

To estimate the age of the individual HIV and HCV AFH clusters, we employed both
a constant rate molecular clock and a relaxed clock model®' under a range of plausible
models of epidemiological change and nucleotide substitution. This approach
accommodates uncertainty in the parameters of the model including phylogenetic
structure.

The estimated marginal posterior probability distributions for the rate from the HIV-1
and HCV calibration datasets were used as a calibration prior to calculate the age of
their respective AFH clusters”’. The estimated values for the AFH HIV-1 sequences
varied from 1.5x107 to 2.0x10~ depending on the combination of tree and molecular
clock model applied (Supplementary Tables 7 and 8). The estimated evolution rate of
the HIV-1 AFH sequences was similar to rates previously described for this genomic
region'”. The estimated values for the HCV clusters varied from 6.0x107 to 18.0x107
depending on which model was used. This is consistent with the estimated rate from
the anti-D cohort. The HCV rates were only estimated using strict molecular clock
models, since the short size of the clusters and the sequence length do not allow one
to use more parameter rich models, such as relax molecular clock model'’. The
marginal posterior estimated rates under the complete range of models applied in this
study is included in Supplementary Tables 7 and 8.

We summarized the results by looking at the distribution of ages of the most recent
common ancestor of each cluster and determining the posterior probability that this
included March 1998. We also calculated the proportion of lineages that existed prior
to this date averaged over the sampled phylogenies. Three population genetic models
were applied to analyze the data. The first model assesses that the population size is

26 The second assumes that the population is growing

constant over time
exponentially over time*>°. The third, the Bayesian Skyline plot’” (BSP), determined
the population growth model using the supplied data. No matter which model was
used, the estimated date of the MRCA of each HIV-1 and HCV cluster predated
March 1998 (Supplementary Tables 7 and 8). In most analyses the probability that
the AFH clusters originated after March 1998 was practically zero. However,
combining both relaxed clock and the Bayesian skyline models, we found a
probability of 0.10. But one must take in consideration that this was the most complex

model combination, hence the increased confidence intervals obtained probably

reflect model over-parameterization (see Supplementary Tables 8) and thus loss of



power. The analyses were performed using 100,000,000 chains with sampling each

10,000 chain using Beast v1.4'®. For each model, 4 independent chains were run. The

. . . 11 .. .
results were visualized in Tracer  and the convergence and mixing quality of the runs

determined. The ESS values were >1000, indicating a sufficient level of sampling.

The results reported are the combined estimates of the 4 independent runs.

Eric Delwart kindly provided previously unpublished HCV sequence data from Egypt
(Supplementary Table 9), Philippe Lemey and Peter Markov assisted with analysis,
and Paul Harvey commented on the manuscript.
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Supplementary Table 1: Demographic and clinical characteristics of the 248 HIV
infected children as determined at the time of their first visit to a European clinic

Patient characteristics at first observation

Male (%) Female (%)  Total (%)
Number of Patients 139 (56) 109 (44) 248
Median age at diagnosis (y) 3.47 +3.72 4.53 +4.55 3.9+4.1
CDC class: N or A 122 (87.8) 94 (86.2) 216 (87.1)
CDC class: B 16 (11.5) 13 (11.9) 29 (11.7)
CDC class: C 1(0.7) 2 (1.8) 3(1.2)
CD4+ >25% (CDC-1) 90 (64.7) 78 (71.5) 168 (67.7)
CD4+ 15-24% (CDC-2) 33 (23.7) 24 (22.0) 57 (22.9)
CD4+ <15% (CDC-3) 16 (11.5) 7 (6.4) 23(9.3)
Median CD4% (range) 27 (7-50) 29 (7-54) 28 (7-54)
VL: <400 copies/ml 15 (11.9) 12 (11.8) 27 (11.8)
VL: 400-9999 copies/ml 21 (16.7) 28 (27.5) 49 (21.5)
VL: 10000-100000 copies/ml 39 (31.0) 31(30.4) 70 (30.7)
VL: >100000 copies/ml 51 (40.5) 31(30.4) 82 (36.0)
median VL log;, (range) 4.73 (1.4-7.0) 449 (1.4-7.8) 4.61 (1.4-7.8)

CDC class = clinical and immunological status as defined by the Center for Disease

Control and Prevention (CDC) paediatric classification (CDC 1994, MMWR 1994:42
RR:12:1-10). The four categories are: N (asymptomatic), A (mildly symptomatic), B
(moderately severe symptoms) and C (severe symptoms)

CD4+ T-cells counts, expressed in percentages

VL = Number of copies of HIV-1 RNA per mL of plasma
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Supplementary Table 2: HIV-1 infected sequences generated from patients visiting

the Bambino Gesu Children Hospital, Rome, Italy.

Date of Birth Sample date Age in years

Patients | (year.month) Sample Date (years) when sampled

LB110 1997.2 27/6/2000 2000.49 3.3
LB113 1997.7 4/7/2000 2000.51 2.8
LB114 1996.8 4/7/2000 2000.51 3.7
LB117 1997.5 4/7/2000 2000.51 3.0
LB123 1987.7 6/7/2000 2000.51 15.8
LB126 1998.0 6/7/2000 2000.51 3.5
LB128 1997.9 6/7/2000 2000.51 2.6
LB129 1990.1 6/7/2000 2000.51 10.4
LB102 1996.8 11/7/2000 2000.52 3.7
LB135 1990.1 17/7/2000 2000.54 10.4
LB210 1996.6 20/7/2000 2000.55 4.0
LB214 1995.1 24/7/2000 2000.56 5.5
LB211 1996.7 25/7/2000 2000.56 3.9
LB212 1992.5 25/7/2000 2000.56 8.1
LB217 1996.5 25/7/2000 2000.56 4.1
LB219 1996.7 25/7/2000 2000.56 3.9
LB139 1989.9 26/7/2000 2000.57 10.7
LB221 1982.7 27/7/2000 2000.57 17.9
LB228 1991.6 27/7/2000 2000.57 9.1
LB233 1997.3 1/8/2000 2000.58 2.7
LB235 1997.7 1/8/2000 2000.58 2.9
LB240 1995.8 1/8/2000 2000.58 4.8
LB310 1997 .4 1/8/2000 2000.58 3.2
LB301 1998.0 3/8/2000 2000.59 2.6
LB304 1997.7 3/8/2000 2000.59 2.9
LB306 1992.2 3/8/2000 2000.59 7.7
LB308 1988.3 3/8/2000 2000.59 12.3
LB311 1994 .1 3/8/2000 2000.59 6.5
LB313 1994.8 8/8/2000 2000.6 5.8
LB315 1997.6 8/8/2000 2000.6 3.0
LB319 1989.4 8/8/2000 2000.6 11.2
LB321 1997.5 8/8/2000 2000.6 3.1
LB322 1987.8 8/8/2000 2000.6 12.8
LB330 1998.1 9/8/2000 2000.6 2.5
LB112 1998.1 9/1/2001 2001.02 2.9
LB218 1996.9 9/1/2001 2001.02 4.1
LB216 1997.8 18/1/2001 2001.05 3.3
LB229 1997.4 25/1/2001 2001.07 3.7
LB333 1997.2 30/1/2001 2001.08 3.9
LB332 1989.4 6/2/2001 2001.1 11.7
LBPL305 1998.3 8/2/2001 2001.11 2.8
LB214PL 1997.2 3/1/2003 2003.08 5.9
LB225PL N/A 3/1/2003 2003.08 N/A
LB126PL N/A 31/1/2003 2003.08 N/A
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Supplementary Table 3: HIV-1 reference dataset CRFO2 AG used in phylogenetic
tree constructions. Sequence naming includes country, year of isolation and the
sequence name as stored in the Los Alamos HIV Sequence Database”.

CM.01.01CM _0002BBY, CM.01.01CM_4410HAL, SN.98.MP1211,
CM.01.01CM_0005BBY, CM.02.02CM_1677LE, SN.98.MP1213,
CM.01.01CM_0008BBY, CM.97.CM52885, GA.x.LBV2310,
CM.01.01CM_0074NY, CM.97.CM53658, DJ.91.DJ258, CM.01.01CM_0131INY,
CL.x.CI20, CD.84.30620, CM.01.01CM_0158ND,CI.x.CI51,

US.98.98US _MSC5007, CM.01.01CM_0191IND, CIL.x.CI59, US.x.00US_MSC3083,
CM.01.01CM_0925MO, CI1.x.IC144, US.x.98US MSC404, CM.01.01CM_1237NG,
GH.x.GHNIJ176, US.x.99US MSC1134, CM.01.01CM_1475MV, GH.x.GHNJ185,
SE.94.SE7812, CM.02.02CM_0013BBY, GH.x.GHNJ188, FR.91.DJ2632,
CM.02.02CM _0014BBY, GH.x.GHNJ196, FR.91.DJ264, CM.02.02CM_0015BBY,
GH.97.97GHAGI, IT.x.IT067, CM.02.02CM_1669LE, UZ.02.02UZ710,
CM.02.02CM _1901LE, UZ.02.02UZ0683, CM.02.02CM_1970LE, NG.01.PL0710,
UZ.02.02UZ693, CM.02.02CM_2162SA, NG.01.PL0754, CM.02.02CM_2348SA,
NG.x.IBNG, CM.02.02CM_4082STN, NE0O gi37496497, CM.99.pBD6 15,
NE.97.2i137496481, GH.94.219886936, GH.97.g19886927

Supplementary Table 4: HIV-1 sequences used in the estimation of the evolutionary
rate. Sequence naming includes country, year of isolation and the sequence name as
stored in the Los Alamos HIV Sequence Database’.

GH.97.97GHAGI, FR.91.DJ263, FR.91.DJ264, SE.94.SE7812, SN.98.MP1211,
CM.99.pBD6 15, DJ.91.DJ258, CD.85.MAL, GH.97.AG2, MM.99.mCSW 105,
UG.92.UG029, KE.94.Q23 17, SE.94.SE7535, SE.95.SE8603, SE.95.UGSE8131,
BW.98.BW2117, BY.97.97BL006, TZ.X97.97TZ03, UA.00.98UAO0116,
KE.97.ML170, KE.86.ML170, KE.95.ML170, BE.94.VI1197, CM.97.CM53122,
KE.86.MLO013 106, KE.97.MLO013 2, KE.97.ML605 3, KE.97.ML752,
UG.92.UG035, UG.90.UG266, RU.03.03RU20 06, EE.01.EE0369,
UG.02.02_4879MH, UG.03.03 8003KN, UG.03.03 9256NI, UG.03.03_9270NM,
UG.03.03_9366WG, UG.03.03_9410NS, UG.03.03 9538NG, UG.04.04 0217BM,
UG.04.04_0535KH, UG.04.04 0566GT, UG.04.04_0567NR, UG.02.TC024604,
UG.02.TC025104, KE.00.CQ891776, UG.85.U455, U00000G.92.92UG037.
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Supplementary Table 5: Accession number for the HCV reference dataset used in
the phylogenetic tree constructions.

AF488371, AY743031, AY936013, AF488372, AY74303, AY936014, AY742960,
AY74303, AY936017, AY742962, AY74303, AY936018, AY742964, AY74303,
AY936021, AY 742966, AY74303, AY936025, AY742968, AY74304, AY936026,
AY742969, AY74304, AY936029, AY 742970, AY74304, AY936033, AY742971,
AY74304, AY936038, AY 742972, AY 74304, AY936039, AY742973, AY 74304,
AY936040, AY742974, AY74304, AY936044, AY742975, AY 74304, AY 936046,
AY742976, AY9359, AY936047, AY742977, AY9360, AY936049, AY 742978,
AY9360, AY936050, AY742979, AY93601, AY936051, AY742980, AY9360,
AY936053, AY742981, AY9360, AY936055, AY742982, AY9360, AY936056,
AY742983, AY9360, AY936067, AY742984, AY9360, AY936068, AY 742986,
AY9360, AY936071, AY742987, AY93604, AY936073, AY 742989, AY9360,
AY936079, AY742990, AY93606, AY936081, AY742992, AY93606, AY936083,
AY742994, AY936082 AY936087, AY742995, AY936095 AY936088, AY 742996,
AY93610, AY936089, AY742997, AY93611, AY936091, AY742998, AY93611,
AY936094, AY742999, AY93611, AY936099, AY743000, AY93611, AY936100,
AY743001, AY93611, AY936101, AY743002, AY93612, AY936102, AY 743003,
AY93612, AY936104, AY743004, AY93612, AY936105, AY743005, AY93613,
AY936106, AY743007, AY93613, AY936127, AY743008, D43678, AY236366,
AY743009, 43680, AY236389, AY743013, D45193, DQ504442, AY743014,
Y11604, AB079081, AY743015, AB079082, AY743016, AF118587, AY743017,
AF245810, AY 743018, AF268580, AY 743019, AF344981, AY 743020, AF426595,
AY743021, AJ510935, AY743022, AF488358, AJ560356, AY 743023, D16189,
AJ560418, AY743024, D16191, AY 190846, AY743026, AY051292, AY450720,
AY743027, X76414, DQ651144, AY 743028, AY936002, U14233, AY 743029,
AY936010, U14230, AY 743030, AY936012, U14235, U14238, AB107944, M74808,
M74811, AF163248, M74888, AF011753, AF422462, M86769, DQ505105,
AJ310591, M62321, AF040777, AJ866094, AY746685, AF054247, DQ508441,
AF547456, AF054250, DQ650930, DQ508448, DQ651166, U45476, DQ508457,
AY940619, M74804, DQ508458, AB008443, M74805, DQ508460, 4a_Egypt2,

4a Egypt3, 4a Egyptd, 4a_Egypt7, 4a Egypt9, 4a Egyptl0, 4a Egyptl2.

Supplementary Table 6: HCV sequences used in the estimation of the evolutionary
rate. The estimated rate was used as a prior to the calculation of the HCV sequences
from AFH.

AF313916, AF056733, AF056734, AF056735, AF056736, AF056737, AF056738,
AF056739, AF056740, AF056741, AF056742, AF056743, AF056744, AF056745,
AF056746, AF056747, AF056748, AF056749, AF056750, AF056751, AF056752,
AF056753, AF056754, AF056755, AF056756, AB154177, AB154179, AB154181,
AB154183, AB154185, AB154187, AB154189, AB154191, AB154193, AB154195,
AB154197, AB154199, AB154201, AB154203, AB154205.
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Supplementary Table 7: Evolutionary Sequence Analysis Results

Tree Sequence Clock Rate of evolution* Date of MRCA of Percentage of cluster  Probability that MRCA of
model evolution  model cluster lineages that predate  cluster postdates 1/3/98
model 1/3/98

HCV cluster I Const HKY+G  strict 0.013 (0.007,0.018) 1992.5 (1988.4,1995.6) 77.1 (68.2,86.4) <0.001

(n=22) Expo HKY+G  strict 0.012 (0.007,0.017) 1994.7 (1992.4,1996.5) 84.0(77.3,86.4) <0.001

HCV cluster 2 Const HKY+G  strict 0.017 (0.011,0.022) 1996.5 (1994.8,1997.7)  62.9 (44.4,77.8) <0.001

(n=9) Expo HKY+G  strict 0.018 (0.012,0.023) 1997.0 (1995.8,1998.0)  63.4 (44.4,77.8) <0.001

HCV cluster 3 Const HKY+G  strict 0.011 (0.005,0.017) 1989.2 (1980.2,1995.7)  66.3 (45.8,79.2) <0.001

(n=24) Expo HKY+G  strict 0.012 (0.007,0.017) 1994.3 (1990.7,1997.3)  70.1 (54.2,83.3) <0.001

HIV cluster Const SRD06 strict 0.0018 (0.0012,0.0024) 1994.4 (1991.0,1997.3) 34.7 (15.9,56.8) <0.001

(n=44) Expo SRD06 strict 0.0017 (0.0012,0.0023)  1996.5 (1994.8,1998.1) 42.6 (9.1, 81.8) <0.005

* Units are nucleotide substitutions per site per year
95% HPD confidence limits are shown in parenthesis
HKY = Hasegawa-Kishino-Yano model (1985); HKY+G = HKY model with gamma distributed among-site rate variation
SRD06 = One HKY+G model for codon positions 1 & 2, another HKY+G model for codon position 3
Const = constant size; Expo = exponential growth; BSP = Bayesian Skyline Plot

Two sequences with no sampling dates could not be included in the HCV cluster 2 analyses
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Supplementary Table 8: Extra Models Analysis Results

Tree Sequence Clock Rate of evolution* Date of MRCA of Percentage of cluster  Probability that MRCA of
model evolution  model cluster lineages that predate  cluster postdates 1/3/98
model 1/3/98
HCV cluster 1 const HKY strict 0.006 (0.005,0.007) 1989.5 (1986.0,1992.8) 82.9(77.3,86.4) <0.001
(n=22) expo HKY strict 0.006 (0.005,0.007) 1992.7 (1990.6,1994.7)  85.6 (81.8,86.4) <0.001
HCV cluster 2 const HKY strict 0.006 (0.005,0.007) 1990.3 (1986.5,1993.8)  83.6 (66.7,88.9) <0.001
(n=9) expo HKY strict 0.006 (0.005,0.007) 1991.8 (1988.2,1994.7) 85.4(77.8,88.9) <0.001
HCV cluster 3 const HKY strict 0.006 (0.005,0.007) 1990.3 (1986.7,1993.7)  71.3 (62.5,83.3) <0.001
(n=24) expo HKY strict 0.006 (0.005,0.007) 1992.9 (1990.1,1995.8) 77.9 (66.7,87.5) <0.001
HIV cluster const SRD06 relaxed  0.0015 (0.0005,0.0025) 1985.5(1963.2,1997.8) 37.0 (18.2,61.4) <0.001
(n=44) expo SRD06 relaxed  0.0019 (0.0010,0.0027) 1996.6 (1994.4,1998.4) 38.7 (4.5, 88.6) 0.02
BSP SRD06 strict 0.0018 (0.0012,0.0024) 1996.7 (1994.7,1998.4) 39.1 (4.5, 84.1) 0.02
BSP SRD06 relaxed  0.0020 (0.0011,0.0030) 1996.9 (1993.9,1998.9) 29.3 (2.3,86.4) 0.10

* Units are nucleotide substitutions per site per year
95% HPD confidence limits are shown in parenthesis
HKY = Hasegawa-Kishino-Yano model (1985); HKY+G = HKY model with gamma distributed among-site rate variation
SRD06 = One HKY+G model for codon positions 1 & 2, another HKY+G model for codon position 3 (ref)
Const = constant size; Expo = exponential growth; BSP = Bayesian Skyline Plot

Two sequences with no sampling dates could not be included in the HCV cluster 2 analys
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Supplementary Table 9: Unpublished Egyptian HCV sequences, which were kindly
provided by Eric Delwart, spanning a 177 bp fragment of the hypervariable E1/E2
region of the virus.

>4a Egypt2
CGTGGGAGTAGCTTATTTCAGCATGCAAGCTAATTGGGCCAAAGTCATCT
TAGTCCTATTCCTCTTTGCAGGGGTTGACGCTGAGACTCATGTGTCTGGGG
GTGCGGTTGGCCGAACCGCCCAAGGCCTGACCRGCCTCTTCAGCCCTGGA
GCCCAGCAAACCTTGCAGCTCG

>4a Egypt3
GGTGGGATTGGCCTACTTCAGCATGCAGGCTAATTGGGCCAAAGTCATCC
TGGTCCTATTCCTCTTTGCAGGGGTGGATGCCGAAACCTATGTGACTGGAG
CGGCAGTTGGTCGCCARGCCGCCAGCTTCACTGGCCTCTTCCAGCATGGGT
CTAGGCAAAACGTGCAGCTCA

>4a Egypt4
CGTGGGGGTGGCCTACTACTCCATGCAAGCCAATTGGGCCAAAGTCATCC
TAGTCTTATTCCTCTTTGCAGGGGTTGACGCTGAGACTTACACATCTGGGG
GTGCGGCCGCCCAAACTACCCGTGGCTTGGTTAGCCTATTTGGCCCTGGAC
CTCAACAAAAATTGCAGCTCA

>4a Egypt7
CGTGGGRGTGGCCTATTTCAGCATGCARGCTAATTGGGCAAARGTCATCTT
AGTCCTATTCCTCTTCGCWGGGGTTGACGCTGACACYCRCGTATCYGGGG
GTKYGGCTGGTYAYAMCCTCMRTGGGKYSRWWRGCMTCTTYTCCCSCGG
AKCYCRGCAAAAWKTGCAGCTCA

>4a Egypt9
CGTGGGAGTGGCCTATTACAGCATGCAAGCCAATTGGGCCAAAGTCATCT
TAGTCCTGTTCCTTTTTGCAGGGGTTGATGCCAGCACCTACACGACCGGGG
GGGTGGCTGGCAGAGGCGCCAGCCAACTCACTAGTCTCTTCACCGCTGGA
TCTGCGCAGAACTTGCAGCTCA

>4a Egyptl0
CGTRGGATTGGCCTACTTCATCATGCAAGCCAATTGGGCCAAAGYCATCT
TAGTCCTATTCCTCTTYGCAGGRGTTGACGCTGAGACTCACRTATCTGGGG
GTACGTATGGCCGRAACATCCAYGGCCTCACCAGCCTTTTCAGCCCTGGA
TCTCAGCAAAGGTTGCAGCTCR

>4a Egyptl2
CGTAGGAGTGGCCTACTTCTGCATGCAAGCTAATTGGGCCAAAGTCATCT
TAGTCCTATTCCTCTTTGCAGGGGTCGACGCTAACACCTATACGWCTGGG
GGTGCGGCTGGCAGAACCACCCAGGGCCTGACYAGCCTCTTYGCCCCCGG
ATCCCAGCAAAACGTGCAGCTCR
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HCYV genotype 4 ML phylogenetic tree. Bootstrap values are shown on internal branches.
Libyan sequences are coloured red, Egyptian strains are coloured green. The blue coloured strain is from
Cameroon. The grey vertical bars denote HCV subtype classifications.



