Tutorial FASIMU

Andreas Hoppe - hoppe@bioinfomatics.org
November 25, 2010

This tutorial documents version 2.2.1.

Throughout the tutorial we assume that FASIMU is properly installed and CPLEX is available as the
solver. If another solver is installed, CPLEX specific parts might differ. It is also assumed that the UNIX
tools wget, unzip (GNU zip), diff, wc grep, and less and BiNA are installed along with the visualization
program BiNA and the plugin faBiNA.

Chapter 1

Plethora of FASIMU functions
demonstrated on a small human
erythrocyte model

Introduction

In this tutorial we perform flux-balance computation on a model of the energy and redox metabolism of
human red blood cells [6] thereby learning the internal structure of a FASIMU session and applying several
of the implemented algorithms.

Preparation

Install FASIMU together with a solver and BiNA as described in the manual. Download the file
FASIMU Ery_Example.zip for example with the command-line tool wget:

cd ~

mkdir FASIMU-Test

cd FASIMU-Test

wget http://www.bioinformatics.org/fasimu/FASIMU_Ery_Example.zip
unzip FASIMU_Ery_Example.zip

sbml2fa ery.sbml

Of course, wget can be exchanged with links, lynx or some other http-capable prgram or you can
download the file with an internet browser.

Getting acquainted

As you may have learned in the manual all FASIMU files are human-readable text files. Several files have
been generated from the SBML file which will be used for the simulations. The SBML file will not be
regarded any more. So to start with it is a good idea to have a look at the information in the files:

less reactions
less metabolites
less equilibriums

less enzymes
less simulations

Getting started

Start FASIMU with
source fasimu

A status message appears at the screen including the number of reactions and metabolites. Note that
some files have changed now:

less reactions
less metabolites

Pseudo metabolites ending with _ex and pseudo reactions whose identifier ends with _tr have been added.
This is necessary to have full control: the simulations environment can allow the excretion and uptake of
any metabolite in the model even if it is not defined to be an exchange metabolite in the original model.
Usually you can ignore this but it is important to have this in mind if you analyze intermediate information
files. The repeated call of source fasimu does not add these pseudo reactions again: the files ending with
.original, for instance

less reactions.original

keep the original files. So it is safe to call source fasimu in the same directory again.

The solver has been chosen automatically. If an error message about the solver is displayed the installation
of the solver on your system might not be correct. The solver can be manually selected with source fasimu
<solver>, where <solver> can be cplex10, cplex9, glpk, 1p_solver, or lindo.

Before any simulation is started the FBA function call together with options can be chosen by setting
the variable optimization_call. Otherwise the default is chosen:

Info: variable ’optimization_call’ set to the default of "compute-FBA".

referring to the flux minimization [4].

Perform the simulations
The simulation tasks are predefined in the file simulations:
cat simulations

You will see the definition of the simulations: e.g. in the second column (the objective) and the third column
(the constraints). The identifier stdef among the constraints refers to additional constraints in a separate
file (the file extension .txt may be omitted).

cat stdef.txt

This is a convenient way to define substrates and waste products. The result of the substitution can be
checked in a another file:

cat simulations_work.fgf

You may notice that here all the substrates and waste products are mentioned again which have already
been marked as exchange metabolites in the original SBML file. In SBML, inward and outward fluxes are
not differentiated by the boundaryCondition variable in the reaction tag. Therefore, they are ignored
in FASIMU. However, it is possible to use the original boundaryCondition information in a file with the
function call

make-standard-exchangables > autostdef.txt
cat autostdef.txt

In contrast to the above file stdef.txt, here the exchange is allowed in both directions (marked with a =
character).
Start the simulations with:

simulate

Note the progress information, each simulation computed is acknowledged by giving the number of simula-
tions computed already and the total number of simulations. This is an especially useful feature for larger
models, computationally harder algorithms, and a long series of simulations. The rest of the line gives an
overview of the computed result which is also written to the file evaluation.txt.

View the results in text form

The overview of all computed results can be displayed with
cat evaluation.txt

You may notice the + characters in the second column indicating that the simulation is successful, e.g.
in some cases the production of a certain metabolite, in other cases the non-existence of a solution. The
fourth column in the file simulations is devoted to this question: a metabolite identifier means that this
metabolite must be exchanged over the system boundary. It is also possible to give a reaction identifier there
(in which case this reaction must carry a nonzero flux) or a zero indicating that the simulation is considered
to be successful if no solution exists.

cut -f1,4 simulations

For long lists of simulations simplified function is supplied which only shows the failed simulations:
negeval

In the given example nothing is shown; all simulations show the desired result. The actual flux distributions
predicted are contained in allout.txt:

less allout.txt

This file shows all flux distributions of a computation series. The flux distributions are separated by lines
with many # characters followed by the name of the simulation. In the next line there is a description of the
system boundaries of this particular simulation. The next line gives a short comment whether a solution is
computed with optional comments from the solver. Additionally warnings are shown here.

Then the solution is given in a tab-separated format. The first column gives the name of the reaction.
The second column gives the flux value. Note that zero fluxes are not recorded in the solution. Next column
gives the equilibrium constant just for information, then the reaction written with metabolite identifiers
follows. FASIMU can also be ordered to write them with metabolite names given in the file metabolites:
most conviniently this can be done in the initial sartup of FASIMU:

source fasimu names_in_allout

The fourth column hold possible reaction names given in the file reaction-names.
For computations where the thermodynamic feasibility [5] is checked a section follows given hypothetical
concentrations which are compatible with the flux distribution.

View the results in the visualization packages

Using BiNA

The flux analysis plugin of BiNA requires a special input file which can be generated from allout.txt with
the function allout2bina. The call bina is defined in FASIMU and is not the normal way to start BiNA.
The main advantage using the function bina in FASIMU is that the flux analysis plugin is automatically
invoked and the flux mode file is loaded.

allout2bina
bina BiNA/All.csv

See BiNA manual (http://bina.sourceforge.net/documentation) how to work with BiNA and the faBiNA
manual (http://www.bioinformatics.org/fasimu/faBiNA_Manual.pdf) how to work with the flux analysis
plugin!

You may notice two things. The node ATP is highly connected and so are the nodes of ADP, NAD, and
NADH. You can set the alias function for such metabolites one by one in BiNA. However fasimu offers an
easy way to define some metabolites as aliases right from the start:

allout2bina -a ATP ADP NAD NADH

Loading the result file in bina as above the nodes of these metabolites are hidden. The BiNA function
View—Open children makes them visible but with instances.

You may also notice that the exchange metabolites are colored (reddish for input and orange for output)
and the internal metabolites have no color. But it is possible to assign colors to metabolites depending on
the compartment:

allout2bina -c cell[49,234,222] ext[244,44,238]

The syntax is straightforward: first the compartment name and then the RGB code in brackets with values
ranging from 0 to 255. No space characters are allowed inside the compartment/RGB item.

Using Cytoscape + FluxViz

First, prepare the flux distribution files:

allout2valfiles

Call Cytoscape, read the file ery.sbml with the plugin SBMLReader2 and read in the val-files. See the
manual of FluxViz (http://www.charite.de/sysbio/people/koenig/software/fluxviz/help/index.html# Usage)
for more details.

Using CellNet Analyzer
The flux distribution files are again prepared with:
allout2valfiles

Copy the files reactions and metabolites into a separate order and create a CellNet Analyzer model (see Cell-
NetAnalyzer manual for details). Start MatLab and CellNetAnalyzer in the MatLab command window, then
load the model just created. Load the val-files with the Option called “CellNetAnalyzer—Read scenario”.

Further algorithms

Thermodynamic feasibility

This constraint [5] requires equilibrium constants in the file equilibriums and concentration ranges.
The latter are defined for metabolite classes for the benefit of easy management. The classes are de-
fined with concentration-ranges-classes and each class has common concentration ranges given in
concentration-class-ranges. Each line holds the strict lower bound, the relaxable lower bound, the
envsioned set point, the relaxable upper bound, and the strict upper bound. First, you might to review this
information

cat equilibriums
cat concentration-class-ranges
cat concentration-ranges-classes

Then, start the computation series

optimization_call="compute-FBA -T"
simulate
less allout.txt

The option -T selects the TR-criterion to be used with default parameters. In allout.txt you will see not
only the reaction but also concentration values compatible with this flux distribution. For more realistic
concentration values you may want to switch on the soft bounds (-s option) and the set points (-w) option,
the latter only available for CPLEX (quadratic objective).

optimization_call="compute-FBA -T -w 1 -s 100"
simulate
less allout.txt

By default, only the hard bounds are used.
Now we might be interested in the concentration prediction, say for intracellular NAD. We see the
concentration values of all computed solutions in the file allout.txt:

grep "NAD_cell allout.txt

We see that the predicted concentration differs from the given set point. This time we want to put more
emphasis on the set point and we can do this by attaching a weight to the concentration value (see manual
for all the possibilities and details):

mv concentration-class-ranges c

gawk ’$1=="NAD"{$4="0.0654e-3(20) "}H{print}’ c > concentration-class-ranges
update-concentration-ranges

optimization_call="compute-FBA -T -w 1 -s 100"

simulate

grep "NAD_cell allout.txt

To restore it to the old concentration file the folling command do that:

cp c concentration-class-ranges
update-concentration-ranges

Intake minimization

As opposed to the previous simulations here only the usage of glucose is minimized, thus, calculating the
maximal yield with respect to substrate utilization:

echo -e "ATPase 2.38\nDPGase 0.494\n\

GSHox 0.093\nPPrPT 0.0258" > setfluxes
optimization_call="compute-FBA"

echo -e "GlcT-min\tmin GlcT\tstdef\tGlcT" >> simulations
simulate-single GlcT-min

rm setfluxes

You can visualize the results of the simulation as above.

Pruning

To remove reactions which can not carry a non-zero flux and to fix the directions of fluxes which can not
proceed in the other direction [3] you do the following. The system boundaries must be written in the file
with the fixed name stdexch.txt.

cp stdef.txt stdexch.txt
optimization_call="compute-FBA -F 0"
prune-network

Here the most simple flux minimization protocol is used to test whether a reaction can carry a nonzero
flux in one of the directions. However it is also possible to combine pruning with any other computational
protocol. The result is stored in the directory sub:

(cd sub, cat reactions)

You can review the flux distributions computed to infer the pruned network — they are stored in allout.txt
as usual. Note that the first flux distribution already yielded the result for most of the reactions. Most
computation haven been done to verify that the backward direction of certain fluxes is not feasible.

The prune function writes its own simulations file, thus the previous contents is lost. To continue
withthe tutorial, its previous contents is reloaded from the archive:

unzip FASIMU_Ery_Example.zip simulations

Expression-based activity prediction

This algorithm maximizes the number of common occurrence of flux and expression. First, we generate a
random profile:

gawk ’{print $1,rand()}’ reactions.original > expressions

Constraints and objectives are not used by this algorithm thus, we add a “dummy” simulation and then run
with:

optimization_call="compute-shlomi"
echo -e "Shlomi\tShlomi\t\tGlcT" >> simulations
simulate-single Shlomi

In FASIMU it also possible to combine the expression based-matching with any other flux optimization:

optimization_call="compute-FBA -x"
simulate-single All

See the manual for more parameters which control this feature.
Note that simulate-single appends to allout.txt and evaluation.txt whereas simulate deletes
them before it starts to record results in.

Biomass maximization

As opposed to flux minimization where the input of substrates may not be bounded, in biomass maximization
this is necessary for the problem to be feasible. We define this with this mechanism:

echo GlcT O 1 > fluxbounds
update-fluxbounds

Again, we have to define a dummy simulation task because there is no fixed objective here.

optimization_call="compute-FBA"
echo -e "Biomass-max\tmax ATPase GSHox\tstdef\tGlcT" >> simulations
simulate-single Biomass-max

To reset the model we remove the fluxbounds and call a update function

rm fluxbounds
update-fluxbounds

See manual for a complete description of the update functions.

FVA

As for biomass maximization, for flux-variability analysis it is important to restrict the exchange fluxes
otherwise each flux can grow infinitely. Here, the output is fixed:

echo -e "ATPase 0 2.38\nDPGase 0 0.494\nGSHox O 0.093\nPPrPT 0 0.0258" > fluxbounds
make-FVA-simulationsfile > simulations

cp stdef.txt stdexch.txt

optimization_call="compute-FBA"

simulate

allout2valfiles

FVA-valfiles-chart

rm -rf val fluxbounds

update-fluxbounds

MFA

In metabolic flux analysis some fluxes have been experimentally measured and the rest is predict via the flux-
balance condition. In FASIMU it can be realized with the setfluxes feature. We perform a FVA as above
to see whether the system has still degrees of freedom which should be reduced with further measurement.
Say, in the first measurement the import of Glucose and the excretion of lactate and carbon dioxid has been
measured:

echo -e "G1cT 1.13\nC02T 0.12\nLacT 1.34" > setfluxes
make-FVA-simulationsfile > simulations

cp stdef.txt stdexch.txt

simulate; allout2valfiles; FVA-valfiles-chart; rm -rf val

We see that many fluxes are still not determined. If additionally the export of pyruvate is measured:

echo "PyrT 0.34" >> setfluxes
simulate; allout2valfiles; FVA-valfiles-chart; rm -rf val

There is still a degree of freedom regarding the three fluxes DPGase, ATPase, and DPGM. Measuring
DPGM yields:

echo "DPGase 0.04" >> setfluxes
simulate; allout2valfiles; FVA-valfiles-chart; rm -rf val

Now the system is completely determined. Note that this procedure requires a quite few flux optimizations
and an analysis of the flux space with elementary flux modes or extremal pathways seems to be superior.
However, for large systems a linear program is still feasible and in fact fast computable whereas the topological
problems become practically infeasible.

Perturbation prediction by MOMA or ROOM

These predictions are based on a reference solution in an unperturbed state which is computed by:

unzip FASIMU_Ery_Example.zip simulations
simulate-single All
cp solution.txt refsolution.txt

Next we generate new simulations by the single knock out of a different reaction:
gawk -v OFS="\t" ’{print $1"-inhib","","stdef","1"}’ reactions.original > simulations
The function call for MOMA is compute-moma. See the manual for options and a detailed description.

optimization_call="compute-moma"
simulate

The function call for ROOM, the binary version of MOMA, is compute-room. See the manual for options
and a detailed description.

optimization_call="compute-room refsolution.txt"
simulate

For CPLEX Version>10 the implementation with conditionals is recommended:

optimization_call="compute-room refsolution.txt -c"
simulate

Here, we use the parameters given by Shlomi for lethality predictions.

optimization_call="compute-room refsolution.txt -c -d 0.1 -e 0.01"
simulate

Chapter 2

Tutorial: From a published
Genome-scale network to
computations

Introduction

This tutorial is dedicated to the process to make an abritrary network, published as SBML and a few
additional information tables ready for computation in FASIMU. In the previous tutorial everything was
prepared ready for FASIMU, but here we start directly from published files. So the first part of this tutorial
chapter as rather a tutorial on the work with bash and gawk to transform networks than on FASIMU.
However, since FASIMU is based on bash and gawk it might put you in the position to better understand
the source code of FASIMU.

Feist et al. [1] published a highly recognized large network of E. coli. We start from two SBML files
Ec_iAF1260_fluxl.xml and Ec_iAF1260_flux2.xml each giving the same network but a different flux solu-
tion and a spreadsheet text files saved from the excel document msb4100155-s3-reactions.tsv.

For convinience I put the files together with some scripts in the file FASIMU Ecoli_Example.zip down-
loadable from the FASIMU website. To start call

mkdir -p “/ecoli-test

cd “/ecoli-test

rm -f *

wget http://www.bioinformatics.org/fasimu/FASIMU_Ecoli_Example.zip
unzip FASIMU_Ecoli_Example.zip

To extract to network and the flux solution from the SBML we use the FASIMU script sbml2fa and a gawk
line:

Extract the information from sbml and suppl files

sbml2fa Ec_iAF1260_flux1.xml
for i in 1 2; do
gawk ’match($0,/<reaction id="([""]1+)"/,A){r=A[1];next}
match($0, /<parameter id="FLUX_VALUE" value="([""]+)"/,A){if (A[1]!=0)print r,A[1];next}
> Ec_iAF1260_flux$i.xml > flux$i.val
done

10

The supplementary text of the reaction have been downloaded just for the Gibb’s free energy values
which are used to compute the equilibrium constants, using room temperature. First you can review the
little script which does that, then you execute it.

cat calculate_equilibriums
source calculate_equilibriums

Now we got all the information together but there are some issues which would make the further work
of FASIMU unnecessarily inconvinient. To make this process more transparent we rename the affected files
and give them an extension to indicate the action number.

for f in reactions metabolites TR-excluded equilibriums fluxl.val flux2.val; do
mv $f $f.1
done

Action 1: Removing trailing R M

The first issue is that each metabolite identifier begins with a M_ and each reaction identifier with a R_. This
might be useful for other applications here it makes the identifier longer than necessary. To increase the
readablity of the text files we remove them:

gawk ’{
if ('match($1,/"R_(.+)$/,A)) {print "Error">"/dev/stderr";exit}
$1=A[1];
i=2;
while($il="|") {
if (match($i,/"M_(.+)$/,A)) $i=A[1];
i++;
}
print
}’ reactions.1 > reactions.?2

gawk ’{
for (i=1;i<=2;i++) if (match($i,/ "M_(.+)$/,A)) $i=A[1];
print

}’ metabolites.l > metabolites.2

for £ in TR-excluded equilibriums fluxl.val flux2.val; do
gawk ’{if (!match($1,/R_(.+)/,A)) {print "Error">"/dev/stderr";exit}
$1=A[1];
print
}o$f.1 > $f.2
done

Action 2: Rename compartments

Next we recognize bulky compartment identifiers attached to the metabolites suc has _c_Cytosol. They
come from the fact that the original identifiers as SBML-IDs have the _c attached, the compartment as the
SBML-tag was called Cytosol. The script sbml2fa did not recognize it to be identical and therfore added
_Cytosol to each cytosolic identifier. We remove them in all files containing metabolite identifiers.

for f in reactions metabolites; do
gawk ’{gsub(/_p_Periplasm/,"_p");

11

gsub(/_e_Extraorganism/,"_e");
gsub(/_c_Cytosol/,"_c");
print

}’ $£.2 > $£.3

done

The rest of the files are simply copied.

for f in TR-excluded equilibriums fluxl.val flux2.val; do cp $f.2 $f.3; done

Action 3: Remove systems boundary

gawk ’match($1,/” (EXIDM)_/){print "="$3}’ reactions.3 > stdexch.txt.4
for i in 1 2; do
gawk ’BEGIN{D="reactions.3";while((getline<D)>0)T[$1]1=$3;close(D)}

match($1,/7 (EXIDM) _/) {print ($2<07"-":"+") T[$1]1}’> flux$Pi.val.3 > flux"$i"exch.txt.4
done
gawk ’{

if (match($1,/_b_(Extraorganism|Cytosol)$/)) next;

print

}’ metabolites.3 > metabolites.4

for f in reactions TR-excluded equilibriums fluxl.val flux2.val; do
gawk ’{if (match($1,/”(EXIDM)_/)) next;
print
}’ $£.3 > $£.4
done

Action 4: Restore the names

The transformation work is finished, the original names are restored:

for f in reactions metabolites TR-excluded equilibriums fluxl.val flux2.val \
stdexch.txt fluxlexch.txt flux2exch.txt; do
mv $f.4 $f
done

Action 5: Correct the equilibrium constants

The obedience of the equilibrium constants to the WEGSCHEIDER condition is checked (is not stricly obeyed)
and be forced (with minimal modification):

source fabase

well-formed-equilibriums

cp corrected-equilibriums equilibriums

Wide default concentration ranges for TR

For a basic use of TR, wide concentration ranges suffice:

gawk ’{print $1,"default"}’ metabolites > concentration-ranges-classes
echo "default 10e-9 le-6 50e-6 le-3 100e-3" > concentration-class-ranges

12

Simlations file for biomass production

Based on comments in the data the availiabilty of glucose is set as follows to define the simulations:

echo -e "Biomass1\tEc_biomass_iAF1260_core_59p81M\tstdexch\t1\t\n\
Biomass-max1\tmax Ec_biomass_iAF1260_core_59p81M\tfluxlexch -8 <= glc_D <= O\t1i\t\n\
Biomass-max2\tmax Ec_biomass_iAF1260_core_59p81M\tflux2exch -11 <= glc_D <= O\t1\t\
" > simulations-ref;

Computations

Check the biomass flux predicitons

cp simulations-ref simulations
source fasimu
default_compartment=e
optimization_call="compute-FBA"
simulate

To do the same calculation with thermodynamic realizability [5]:

optimization_call="compute-FBA -T"

rm cplex-times.txt

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt

Here we compared the total FASIMU running time with the time internally measured in CPLEX to show
that the overhead time of FASIMU small compared with the solver time.

Full producibility test

Check the producibility for all internal metabolites using flux minimization with and without thermodynmic
realizability [5]:

make-fullproducibility-simulationsfile > simulations
optimization_call="compute-FBA"

rm cplex-times.txt

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt
negeval | wc -1

optimization_call="compute-FBA -T"

rm cplex-times.txt

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt
negeval | wc -1

Degradablity test
Likewise degradability:

13

make-fulldegradibility-simulationsfile > simulations
optimization_call="compute-FBA"

rm cplex-times.txt

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt
negeval | wc -1

optimization_call="compute-FBA -T"

rm cplex-times.txt

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt
negeval | wc -1

Leak analysis

Perform a leak analysis

make-leakcheck-simulationsfile > simulations
rm cplex-times.txt
optimization_call="compute-FBA -F 0"

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt
negeval

Pruning

Pruning with the defintion of the exchange fluxes as given above. One metabolite was missing from the
orignally defined systems boundary: the actual biomass which is added to stdexch.txt.

echo "+Ec_biomass_iAF1260_core_59p81M" >> stdexch.txt
rm cplex-times.txt

optimization_call="compute-FBA -F 0"

time prune-network

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt

wc -1 cplex-times.txt

wc -1 sub/reactions

diff reactions sub/ | grep "< | wc -1

14

Chapter 3

Using FASIMU for network curation

Introduction

Here, a recently published network of the human hepatocyte [2] is used, given with the simulations to verify
it:

wget http://www.bioinformatics.org/fasimu/FASIMU_Liver_Example.zip
unzip FASIMU_Liver_Example.zip

sbml2fa liver.sbml

default_compartment=ext

source fasimu names_in_allout

This network is considerably larger than the published network since it contains many reactions not feasible
under steady-state conditions. Think of it as an intermediate stage in a network reconstruction process where
the metabolic functions are described in simulations and the system boundaries (substrates, excretion
products, and biomass components) are contained in the file stdexch.txt.

Pruning to the functional network

Blocked reactions are removed with respect to the defined systems boundary. Additionally, if a single
direction of the reaction is blocked it is marked as irreversible in the appropriate direction.

prune-network
cd sub
unzip ../FASIMU_Liver_Example.zip simulations MIMES.txt MIPES.txt PIPES.txt

Performing the simulations with plain FBA

optimization_call="compute-FBA"
simulate
negeval

Some simulations fail which results from the fact that some evalutors check for conditions of thermodynmi-
cally infeasible states.

15

Performing the simulations with thermodynamic feasibility

optimization_call="compute-FBA -T -c"
simulate
negeval

Here also the post check on the returned flux solution is preformed (-c option). Where applicable, results
apear as warnings in evaluation.txt:

cat evaluation.txt

Leak analysis

Perform a leak analysis

make-leakcheck-simulationsfile > simulations
rm cplex-times.txt
optimization_call="compute-FBA -F 0"

time simulate

gawk ’{s+=$4}END{print s"s"}’ cplex-times.txt
negeval

16

Bibliography

[1]

Adam M Feist, Christopher S Henry, Jennifer L Reed, Markus Krummenacker, Andrew R Joyce, Peter D
Karp, Linda J Broadbelt, Vassily Hatzimanikatis, and Bernhard () Palsson. A genome-scale metabolic re-

construction for escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermodynamic information.
Mol Syst Biol, 3:121, 2007.

Christoph Gille, Christian Bélling, Andreas Hoppe, Sascha Bulik, Sabrina Hoffmann, Katrin Hiibner,
Anja Karlstddt, Ramanan Ganeshan, Matthias Konig, Kristian Rother, Michael Weidlich, Jérn Behre,
and Herrmann-Georg Holzhiitter. Hepatonetl: a comprehensive metabolic reconstruction of the human
hepatocyte for the analysis of liver physiology. Mol Syst Biol, 6:411, Sep 2010.

Sabrina Hoffmann, Andreas Hoppe, and Hermann-Georg Holzhiitter. Pruning genome-scale metabolic
models to consistent ad functionem networks. Genome Inform, 18:308-319, 2007.

Hermann-Georg Holzhiitter. The principle of flux minimization and its application to estimate stationary
fluxes in metabolic networks. Eur J Biochem, 271(14):2905-2922, Jul 2004.

Andreas Hoppe, Sabrina Hoffmann, and Hermann-Georg Holzhiitter. Including metabolite concentrations
into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic
networks. BMC Syst Biol, 1:23, 2007.

R. Schuster and H. G. Holzhiitter. Use of mathematical models for predicting the metabolic effect
of large-scale enzyme activity alterations. application to enzyme deficiencies of red blood cells. Fur J
Biochem, 229(2):403-418, Apr 1995.

17

