
Manual FASIMU
Andreas Hoppe - hoppe@bioinfomatics.org

March 2, 2012

This manual documents version 2.3.1.

1



Contents

1 Introduction 4
1.1 Layer-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The logical structure of a FASIMU session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 General guidelines of FASIMU’s user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Installation 8
2.1 Required unix tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Further useful tools for FASIMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Optimization solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Install FASIMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Visualization packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 FABASE-models 14
3.1 Getting a model from CellNetAnalyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Getting a model from SBML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Getting a model from a reaction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Writing a FABASE model from the scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Refining the FABASE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 FASIMU-compatible Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Modify model files in a FASIMU session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The steps in a FASIMU session 21
4.1 Starting FASIMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The control file simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Controlling the computation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Perform simulations: simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 The evaluation file: evaluation.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 The comprenhensive solution file: allout.txt . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Prepare files for the visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Further functions in FASIMU 31
5.1 Prune to ad functionem networks: prune-network . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Flux-variability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Flux control analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Check the essentiality for a given set of simulations: check-essentiality . . . . . . . . . . . 32
5.5 Functions creating common simulations files . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Functions creating common exchange files referenced in a simulations file . . . . . . . . . . 34
5.7 Network printing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



6 Functions for sets of modes: modeset 36
6.1 Creating a modeset from allout.txt and vice versa . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Which mode fits a given profile best? modeset-score . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Zeros in the mode Mk sigscore (-S) vs. fullscore . . . . . . . . . . . . . . . . . . . . . . 37
6.2.2 Scaling factor: fixed (-f), dependent on mz (-L), or computed by linear regression . . 37
6.2.3 Relative (-R) vs. absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.4 Cumulative (-C) vs. fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.5 Setting the center of the score distribution manually (-c) . . . . . . . . . . . . . . . . 38
6.2.6 Setting the steepness of the distribution function (-s) . . . . . . . . . . . . . . . . . . 38
6.2.7 Should the score variance depend on the flux value (varsingle -V)? . . . . . . . . . . . 39
6.2.8 Mathematical description of the score distribution (-t) . . . . . . . . . . . . . . . . . 39

7 Using FABASE without FASIMU 42
7.1 Computation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Further functions in FABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 Modify model files in a FABASE session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Customization of the external solvers 49

9 Final remarks 51
9.1 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.2 Getting more help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3



Chapter 1

Introduction

FASIMU is an extremely flexible computation environment for different sorts of flux-balance analysis. The
flexibility is traded off with simplicity of use. However, people who are acquainted with command-line
interfaces will find it easy to use. On the pro side is that practically any algorithmic parameter can be
adjusted and it is therefore especially suited for the scientific workflow: difficult problems can be tackled
interactively and session protocols can be used to implement new flux-balance methods.

FASIMU is very open in two aspects: The source code is open and written in a high-level language which
makes it easy to adapt and implement new functions. The other aspect is that intermediate results are
stored in human-readable files which can easily be analyzed once the internal structure of the workflow is
understood.

The interactive language used for FASIMU is one that most LINUX and MacOS users along with many
other UNIX and Windows users are familiar with: the Bourne again shell (bash) [1]. Thus, anything working
in bash can easily combined with FASIMU. The typical FASIMU session is in every respect identical to the
interactive work in bash. In other words, FASIMU consists of available bash-functions. This concept is more
flexible than the interactive languages of Mathematica or MATLAB as the integration with other programs
is much more straightforward. For users of LINUX the learning curve is very steep for the syntax of the
available commands. Writing algorithmic ideas based on FASIMU is technically writing additional bash
functions. Programs in other languages can this way easily be combined with FASIMU; the only prerequisite
is an executable program and a defined file exchange.

In flux balance analysis by far the most computational expensive part is the work of the optimizer. Thus,
it is not much of an advantage to write the control of the algorithm in a low-level language. This is the reason
that the implementation of FASIMU is consequently divided into two parts: the computationally difficult
part is handled with an external solver (currently CPLEX, LINDO, lp solve, or GLPK), the computationally
easy but semantically complex part is written in a high-level language which is easiest to understand and
modify.

1.1 Layer-structure

FASIMU consists of a two-layer structure: the outer layer is FASIMU itself and the lower layer is called
FABASE. Where FABASE is focused on a single flux optimization, FASIMU supplies the iteration of flux
optimizations with FABASE. FABASE can be used on its own when only single flux computations are
required, FASIMU depends on FABASE. It is worth to keep in mind which function belongs to which level.
The crucial item of the interface between the two layers is the shell variable “$optimization_call”. It
contains a FABASE function with full parameters which is called for any of the FASIMU functions which
iterate flux calculations.

There is also another respect in which FASIMU sets a layer structure: on the metabolic model itself.

4



When initially called, FASIMU modifies the model by setting a new boundary around the system and the
addition of virtual exchange processes for any metabolite of the system across this boundary. The result is
another FABASE-compatible model but with a few special properties. Usually, this works unattended in the
background but it appears in the computed flux solutions. The duplicated metabolites can be recognized at
the “_ex” ending. The virtual exchange processes hold a “_tr” suffix.

1.2 The logical structure of a FASIMU session

A FASIMU session should be started in a single empty directory. This directory will later contain the various
input, output, and intermediate files of this particular session. For the analysis and proper reference it is
advisable not to mix files from different sessions or edit the files in this place. FASIMU will probably work
anyway but it is more difficult to assess if it is really doing what the scientist intended to do.

• The first step is to copy all files related to the metabolic network into that directory. It is advisable
to store the information to one model version in a separate directory. The metabolic model must be
supplied in FA-Format, this is a proprietary extended version of CellNetAnalyzer-Format. There are
transformation tools available for SBML and a simple Reaction-Scheme-Format. See chapter 3.

• The second step is the call of “source fasimu” which has several purposes. It transforms to model
into a form compatible with FASIMU and makes the FASIMU functions available. Then it starts
FABASE which supplies the FASIMU functions and writes some intermediate files which accelerate
the preparation time for a single flux optimization call: the main parts of the input into the optimizer
program is the prepared (in LPF-Files). See section 4.1.

• The third step (which also might be interchanged with the second) is the writing of the iteration
scheme, a file with the fixed name “simulations.txt”. One line defines a single flux computation.
See section 4.2.

• The fourth step is setting the variable “$optimization_call” which defines the algorithm of the flux
computation. See section 4.3.

• The fifth step is the start of the simulations with “simulate”. This function proceeds with all simu-
lations, there are also functions which select a simulation etc. See section 4.4.

• The sixth step is to review the file “evaluation.txt” whether the reported results have been sat-
isfactory. There is one line for each simulation holding a “+” if it obtained the desired result, “–”
otherwise. See section 4.5.

• The seventh step is to view the flux distributions stored for all solutions in a file “allout.txt”. Single
flux distributions are selected with “allout-select <name of the simulation>”. The I/O-fluxes
are at the beginning and should be reviewed first whether the system boundary fluxes are as desired.
See section 4.6.

• The eighth step is advisable if the flux distribution seems reasonable but too complex to check in text
form: the visualization in BiNA [15], Cytoscape [13], or CellNetAnalyzer [14]. Basically there is the
function “allout2bina” which creates directories of input files for the flux analysis plugin of BiNA,
or the function allout2valfiles. See section 4.7.

All these steps are described in greater detail below.

5



1.3 General guidelines of FASIMU’s user interface

Fixed file names

The model under investigation be FASIMU resides in fixed file names. This has the immediate consequence
that in one directory there can only be one model at a time.

Shell variables

Some information related to the present model are stored in local variable names. It is therefore not possible
to change the directory to another FASIMU model and continue there. It is necessary to call source fasimu

again in this new directory. This call regenerates the contents of the variables $rea, $met.
Some variables are set to default values by source fasimu if they are not defined but the are not overwrit-

ten if they are already defined: $optimzation_call, $default_compartment, $solver, $names_in_allout.
An important variable is called $fabase_zeroflux_threshold. Flux rates with a smaller absolute value

than this number are considered to be zero.

File contents

All input files are whitespace-separated text files except for the file simulations where a two level separation
is necessary: the primary separator is the tab and the secondary separator are space characters. FASIMU’s
structured main output files (allout.txt and evaluation.txt) are tab-separated. FABASE output files
are whitespace separated.

File extensions

All files to be supplied by the user are text files with a specific name such as reactions without an ex-
tension. Some of these files are modified during the course of computation, their original content is kept in
<file-name>.original. All files produced by FASIMU being of interest to the user have the extension txt

or out. Several files are produced during the workflow. They are recognized by their extension:
Extension Function
none input file
original backup of input files
txt produced by FASIMU being of interest to the user
fgf internally used by FASIMU
lpf parts of the problem formulation
lp CPLEX-LP format
ltx LINDO-LP format
par parameter files of LINDO and lp solve
in Input to external programs
out Output of external programs and extracts thereof

Function names

Function names carry dashes and not underline characters (except if it contains the identifier lp solve which
is dictated by the name of the solver)

File parameter

Functions do not accept file parameters, instead the files used have fixed names. If several files for the
same purpose are used throughout a session, the session script must rename them. Few exceptions are
compute-moma and compute-room which take a reference soution as a parameter.

6



Switch function upon file existence

Many functions are switched on if the respective file exists: e.g. fluxes are fixed if the file setfluxes just
exists. Some files are used only for certain algorithms, such as fluxmin-weights is used only for flux
minimization. Other files are only used if explicitely switched on such as expressions.

Switch functions upon file existence
used for all optimizations fluxbounds setfluxes fluxfix

used for flux minimization fluxmin-excluded fluxmin-weights

used for thermodynamic constraint TR-excluded concentration-class-ranges

concentration-ranges-classes

must be switched explicitely expressions enzymes

only in FABASE session fluxconstraints targetfluxes

File overwrite

As a consequence of fixed file names, the invocation of FASIMU with source fasimu changes the input
files for FABASE: reactions, metabolites, equilibriums, targetfluxes. The original files are kept
in respective files with the extension .original. This concept has historical reasons (FABASE was first,
FASIMU has been set on top of it). The parameter files (cplex-head.in and files with the extension par) are
only created by source fabase / fasimu if not present. Present files will only be overwritten if explicitly
requested by the restore-default-parameters function. Also, the function set-timeout modifies these
parameter files.

Effects of source fasimu
reactions modified, backup in reactions.original

metabolites modified, backup in metabolites.original

equilibriums modified, backup in equilibriums.original

fluxmin-excluded modified, backup in fluxmin-excluded.original

TR-excluded modified, backup in TR-excluded.original

concentration-ranges-classes modified, backup in concentration-ranges-classes.original

During the FASIMU functions simulate and simulate-single, the files targetfluxes and
fluxconstraints are overwritten and should not be modified by the user. In a FASIMU session, setfluxes
and fluxbounds should be used instead.

Choice FASIMU vs. FABASE session

By starting the session with

source fasimu

you have all features of FASIMU but you can also start the so-called FABASE session with

source fabase

which give more manual control options. See chapter 7 (Using FABASE without FASIMU).

7



Chapter 2

Installation

FASIMU requires some basic UNIX tools and an optimization solver. Also, a visualization package increases
its usefulness.

2.1 Required unix tools

Bash

On computer systems based on LINUX and MacOS, bash is installed as part of the operating system. On
UNIX systems, where another default shell is used and bash is not yet available on the installation medium,
it can be compiled from the freely available source code, see http://www.gnu.org/software/bash. The version
of bash should be at least 4.0 for the function prune-network to work, the rest of FASIMU also works for
older versions.

Gawk

On LINUX systems GNU AWK (gawk) is installed as part of the operating system but it is preinstalled
on many other UNIX and MacOS systems. If it is not preinstalled it can usually be installed from the
installation source. If that is not possible it can be compiled from the freely available source cade at
http://www.gnu.org/software/gawk. The version of gawk should be at least 3.0.

GNU AWK is an implementation of a more generally defined language AWK and has some extensions.
FASIMU uses some of the extensions, thus, other implementations of AWK might not work for FASIMU.
Therefore it is not a good practice to link or rename gawk to awk. FASIMU calls gawk explicitely. Call

gawk -W version

from the command line to check if that works.
The actual position of the gawk executable in the file system may vary in certain UNIX distributions.

FASIMU assumes /usr/bin as the position of gawk but it may also be /bin. If that is the case, the script
sbml2fa and reaction2fa may result in an Error message “/usr/bin/gawk not found”. The easiest way
then is to call it with:

gawk -f /usr/local/bin/sbml2fa <SBML-file>

if the install directory of FASIMU is /usr/local/bin.

8



Other UNIX commands

FASIMU uses other basic UNIX commands: cat, grep, egrep, fgrep, ls, echo, mv, cp, head, tail, wc, diff. In
very rare circumstances they are not preinstalled on certain systems. In that case, FASIMU reports an error
“command not found” for this command, and you should find a way to install this command.

Unix tools on Windows

On Microsoft Windows systems bash and gawk are usually not installed. They can be conveniently installed
by installing Cygwin. The recent version of Cygwin supports, Windows NT from version 4.0, Windows 2000,
Windows XP, Windows Server 2003, Windows Server 2008, Windows Vista, Windows 7. Install a cygwin
system by the calling the URL http://www.cygwin.com/setup.exe in a browser window and execute the setup
program. I the process of installing you are asked to enter a directory to install cygwin in and a mirror to
download software. Finally, you get a window to select the software to install. You can check whether gawk
and bash are on the list of the software to install but that should normally be the case. You should also
install glpk (in the Math directory), simply enter glpk in the search box and click to select for install.

On Windows 98, Windows ME, Windows CE an alternative version of cygwin can be installed, use the
URL http://www.cygwin.com/setup-legacy.exe to install.

After the installation a program Cygwin bash shell is added to the start menu. Start that and you are in
bash shell and can proceed to install FASIMU.

FASIMU on other architectures

The is no restriction for computer architectures as long as long the basic UNIX tools and a solver can be
installed. However, this has not been tested so far.

2.2 Further useful tools for FASIMU

The UNIX tools wget, unzip (GNU zip), less are normally also installed on any system where also bash

is installed. They are useful for the command-line work and are occasionally used in the examples in the
manual and the tutorial.

The http-program wget is used to download FASIMU files from the bionformatics.org server. If you are
protected by a firewall program which connects through the internet with a proxy, you have to set the
variable http_proxy.

2.3 Optimization solver

FASIMU requires the installation of an optimization solver. It was originally developed with the commercial
solver ILOG CPLEX, but also the free solvers LP SOLVE and GLPK can be used, additionally the LINDO
API solver. However, some FASIMU functionality (those involving quadractic objectives and constraints) is
not available with these alternative solvers.

CPLEX

CPLEX is a commercially available solver (see http://www.ibm.com/software/integration/optimization/
cplex-optimizer). FASIMU is tested with versions 9, 10, and 12.2 but other versions should also work.
IBM offers the recent version 12 free of charge for academic users, see http://www.ibm.com/developerworks/
university/academicinitiative/ for more information. There are CPLEX versions for LINUX, MacOS, Win-
dows, Solaris, AIX, HP-IA64.

FASIMU uses the interactive solver of CPLEX which is called “cplex” and must be in the search PATH.
Unfortunately, after the default installation this is normally not the case so you have to do that manually.

9



Locate the executable First you have to identify the location of the cplex executable which is called
cplex.exe on windows systems and cplex on other systems. It can be found in a subdirectory of the main
installation directory of cplex. In a LINUX installation you have set the directory manually, in the Windows
installation it may have been automatically selected in a directory such as C:\Program Files\ILOG\CPLEX.
In CPLEX 12 the subdirectory is called cplex/bin/ followed by the name of the architecture. Be careful
about correctly selecting 32 or 64 version.

Second you have to apply one of the following methods.

Setting a symbolic link You have to select a directory in the search path. The search path can be
displayed with:

echo $PATH

On LINUX I recommend using the directory /usr/local/bin as /usr/bin is tightly controlled by the
installation maintenance software. If this directory is not included in the search path you can add it by
including the line

export PATH=$PATH:/usr/local/bin

in ~/.bashrc.
Next set a symbolic link from the identified executable to the path directory. For CPLEX 12 on 64bit-

Linux this may look like:

ln -s /usr/local/cplex122/cplex/bin/x86-64_sles10_4.1/cplex /usr/local/bin/cplex

for CPLEX 10 it looks like:

ln -s /usr/ilog/cplex101/bin/x86-64_RHEL3.0_3.2/cplex /usr/local/bin/cplex

You can also install CPLEX without super user privileges, then I recommend the directory ~/bin. You may
have to add

export PATH=$PATH:~/bin

to ~/.bashrc and the symbolic link command is like:

ln -s /usr/local/cplex122/cplex/bin/x86-64_sles10_4.1/cplex ~/bin/cplex

Alterantively, extend the search path You can also add the cplex directory to the search path by
adding a line to ~/.bashrc, for example

export PATH=$PATH:/usr/local/cplex122/cplex/bin/x86-64_sles10_4.1/

License file After the previous step is completed you should be able to call the command cplex in any
directory. You might see the output:

Failed to initialize CPLEX environment.

CPLEX Error 32201: ILM Error 16: CPLEX: license file not found or unreadable.

Exiting

For running CPLEX a license file access.ilm is required, even in the free for academics version. On many
CPLEX versions also an license server demon (ilm) had to be installed but for the free version 12 this is not
necessary. However, it seems to be necessary that the file access.ilm resides in a fixed position:

/usr/ilog/ilm/access.ilm

10



for all systems except Windows

C:\ILOG\ILM\access.ilm

for Windows. There is also a variable ILOG_LICENSE_FILE, which should allow to select the file position but
it does not work! Do not use his variable! You might check out internet forums for this issue.

After the license file is in place (and the license demon process is running if necessary) you will see upon
calling cplex something similar to this:

...

Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.2.0.0

with Simplex, Mixed Integer & Barrier Optimizers

...

Copyright IBM Corp. 1988, 2010. All Rights Reserved.

Type ’help’ for a list of available commands.

Type ’help’ followed by a command name for more

information on commands.

CPLEX>

You should close this session with ^D or the quit command. If that is not the case, you will have to check
the correctness of the license and the installation.

LINDO API

FASIMU uses the interactive solver of LINDO API which is called “runlindo” and must be in the search
path. If this is not already the case, there are two options to do this. Either, the directory containing the
runlindo executable can be added to the PATH, e.g.:

export PATH=$PATH:/usr/local/lindoapi/bin/linux64/

added to .bashrc.
Second option is to add a symbolic link in a directory in the search path, e.g.

ln -s /usr/local/lindoapi/bin/linux64/runlindo /usr/local/bin/runlindo

You should check whether /usr/local/bin is in the search path:

echo $PATH

GLPK

GLPK is an open-source free solver (see http://www.gnu.org/software/glpk/) which is available for LINUX
and Windows. It is ported to LINUX gentoo and is probably part of other major LINUX distributions. It
is ported to cygwin and can therefore the easiest way to run FASIMU under Windows. FASIMU uses its
interactive solver which is called “glpsol” and must be in the search path which should already be the case
if it is installed as part of a LINUS distribution or cygwin.

lp solve

lp solve is another open-source free solver (see http://lpsolve.sourceforge.net/) which is available for LINUX
and Windows. It is ported to LINUX gentoo and is probably part of any major LINUX distribution. lp solve
is tested in the version 5.5.

11



FASIMU uses its interactive solver which is called “lp_solve” which must be in the search path. It
easiest to move the executable in /usr/local/bin which is the default installation. lp solve requires the
filter libxli CPLEX.so which is included in the lp solve distribution and should preferentially be placed in
/usr/local/lib.

2.4 Install FASIMU

The installation of FASIMU itself is dead simple compared with the above. You have to place the four files
fasimu, fabase, sbml2fa, and reaction2fa into a directory in the search path.

The starting point for the below commands is a running bash shell. If the current shell is not bash (see
the variable $SHELL) problems might occur. This can easily be solved by calling

bash

The easiest way is to install the files from the internet into /usr/local/bin as super user (root). You
should check whether /usr/local/bin exists with

ls -d /usr/local/bin

and if it does not exist you do

mkdir -p /usr/local/bin

Then you shoud check whether /usr/local/bin is in the search path with

echo $PATH

and if that is not the case you add

export PATH=$PATH:/usr/local/bin/

to ~/.bashrc. To take effect you have to start bash one more.
Then you call

cd /usr/local/bin

wget http://www.bioinformatics.org/fasimu/FASIMU.zip

unzip FASIMU.zip

rm FASIMU.zip

Alternatively, any directory such as ~/bin/ may be used to contain the FASIMU program files. This
directory must also be contained in this PATH variable.

2.5 Visualization packages

BiNA

Download the latest version from http://sourceforge.net/projects/binafluxmodel which includes BiNA and the
preinstalled flux analysis plugin. You need to install JAVA as a precondition. Installing BiNA is simply
uncompressing the archive to any appropriate place such as /usr/local/bina.

Set the shell variable BINA_HOME to the directory the file BiNA.jar is located in, e.g. if bina is installed
in /usr/local/bina add

export BINA_HOME=/usr/local/bina

to ~/.bashrc.

12



Cytoscape

Download the latest version from http://www.cytoscape.org and install as documented at the side. Install
the plugin FluxViz as documented in http://www.charite.de/sysbio/people/koenig/software/fluxviz/help/index.
html#Installation

CellNetAnalyzer

CellNetDesigner is a commercial network analysis tool free for academic use, see http://www.mpi-magdeburg.
mpg.de/projects/cna/cna.html. Although graphical output is not the specific purpose of this program, a
combined use with FASIMU has some advantages.

The internal data format (the files reactions and metabolites) is identical in FASIMU and CellNet-
Analyzer. Thus, it easy to transform a model developed with CellNetAnalyzer in FASIMU. The feedback of
computed flux modes is easy.

13



Chapter 3

FABASE-models

3.1 Getting a model from CellNetAnalyzer

The format of the files reactions and metabolites equals the internal format of CellNetAnalyzer, formerly
FluxAnalyzer. Some parameters in these files have no meaning inside FABASE and are retained for compat-
ibility only. Thus, a model developed with CellNetAnalyzer is a good starting point for a FABASE model.
Computed flux modes can easily be transferred to CellNetAnalyzer since the format of the .val files is also
compatible.

3.2 Getting a model from SBML

The easiest way to produce a FABASE model is to get or produce an SBML file and use the program
sbml2fa which comes along FASIMU. It is capable to read SBML2.1 to SBML2.4 as it only reads the
reaction network which did not change in the subversions. For the metabolites it uses the tags: id, name,
compartment, boundaryCondition. The latter three may be missing, after a warning a default is set. For
the reactions the tags id, name, and reversible are being used, the latter two might be missing. Additionally,
a non-standard way to encode the equilibrium constant will be read:

<listOfParameters>

<parameter id="equilibrium_constant" value="...">

</listOfParameters>.

There are some issues where the SBML definition is not compatible with the definition of a FASIMU model.
The first issue is that FASIMU encodes the compartment in a suffix to the metabolite identifier and name
headed by the underscore character. Therefore underscore characters are not allowed in the compartment
identifier (there are no problem in the metabolite names however). sbml2fa removes the underscore characters
and also the space characters from the compartment names. If different compartments carry identifiers which
differ only by some underscore or space characters (definitely not a sensible practice!) sbml2fa merges them
to one. The second issue is closely related. If the metabolite identifier does not end with a _<compartment>

already it is added. The same is done independently with metabolite names.
The second issue is that SBML allows space characters in metabolite names, but FASIMU does not (in

fact, metabolite name serve as alternative identifiers in the simulation file). Therefore, sbml2fam replaces
space characters by underscore characters in metabolite names.

Both issues result in the fact that SBMLs generated with FASIMU may have not the same identifiers
as the input SBML. But if the following conditions are met, the SBML is FASIMU-proof, meaning SBMLs
generated from FASIMU are compatible with the original SBML given to sbml2fa:

• Compartment identifiers do not contain underscore characters

14



• Metabolite identifiers do not contain space characters

• Metabolite identifiers end with _ and the compartment identifier

• Metabolite names end with _ and the compartment identifier

3.3 Getting a model from a reaction scheme

Another simple way to get a basic FABASE model is to use the program reaction2fa which also comes along
FASIMU. It is fairly robust to read any text format reaction scheme which is available in the literature,
e.g. the reaction schemes the earlier Palsson group publications uses. The basic format is a whitespace
separated file where each line describes a single reaction. It starts with the reaction identifier, than the
reaction using numbers (for the stoichiometric coefficients, 1 can be omitted), the identifiers of metabolites,
the + sign and reaction arrows as “<=>” and “-->” resp. “<--” for irreversible reactions. To set the names of
metabolites the option -m <met-file> is used. The <met-file> is a whitespace delimited file, the first token
is the metabolite identifier (without compartment), the second token is the name whcih must not contain
any whitespace. If reactions of the form XXX x <=> are found, this reaction is not transferred, instead the
metabolite is marked as “open boundary”.

If there are problems with particular format, free feel to contact the author.

3.4 Writing a FABASE model from the scratch

This is easier than it might seem. For a basic FABASE model only two files are necessary, “reactions” and
“metabolites” which are plain, white space separated text files. The elements surrounded by the white
space (arbitrary sequences of space and tabulator characters) are called token.

Metabolites: metabolites

The first token is the metabolite identifier which must be unique. The next token is the name which must not
contain white space. Typically, space characters are replaced with underscore characters. The next token
is arbitrary for the use within FABASE. The next token is the boundary condition, 1 for metabolites which
may freely enter or leave the system and 0 for all other metabolites. At this point it must be noted that the
boundary condition at this point is only used for direct FABASE calculations (which are not described in this
manual) and is ignored for the use in FASIMU: the boundary condition is controlled in the simulations.txt
file.

For the use in FASIMU it is necessary to mark the compartment (consisting of letters only) as a suffix
separated with a “_” character. Only for working with FABASE without FASIMU model they are not
considered.

It is recommended to mark the names of the metabolites with the same compartment suffix. This allows
to use metabolite names in the simulations file. If the names do not have correct suffixes the FASIMU
function simulations-work-assure (called by simulate) will warn about them.

Reactions: reactions

The first token is the reaction identifier which must be unique. The next tokens describe the reaction, where
stoichiometric coefficients are obligatory and the reaction arrow is strictly =. After the reaction two fixed
tokens follow: “|” and “#”. The next two tokens refer to the flux bounds, the first one for the lower, the
second one to the higher. “-Inf” is legal for the lower, “Inf” for the upper bound. To set the reversibility
of a reaction, it must be set in the flux bound, there is no indicative reaction arrow.

15



3.5 Refining the FABASE Model

The following files are whitespace separated.

Equilibrium constants: equilibriums

In FASIMU equilibrium constants are used as weights for the backward fluxes in the flux minimization [8]
and to implement the thermodyamic feasiblity constraint [?]. The Gibb’s free energies can not be given
directly, compute the equilibrium constants with the formula:

Keq = e−
∆G0

r
RT

where R is the universal gas constant and T is the absolute temperature. As you can see from the formula,
a FASIMU model has a fixed temperature.

Note that the equilibrium constants for FASIMU are the most frequently used dimensionless constants
related to standard concentrations of 1M (not of 1mM as sometimes used).

The first item in every line of the file equilibriums is the reaction identifier, the second is the equilibrium
constant. If the equilibrium constant of a reaction is not explicitely given it is assumed to be 1. Therfore,
to exclude a reaction from thermodynamic consideration it is not sufficent not to give the equilibrium
constant, it mus explicitely mentioned in TR-exclude, likewise in fluxmin-exclude to exclude it from the
flux minimization scoring function.

Set fluxes to specific values: setfluxes

This (white-space separated) file sets fluxes to specified values. The first token of each line is the reaction
identifier. If it is the only token of this line the respective flux is fixed to zero. If one token follows the fluxed
is fixed to this value. This feature is used if the file with the name exists. Take care to delete or rename the
file if it no longer needed.

There are two differences to the file targetfluxes described below: (i) it is not modified by functions
of FASIMU and (ii) the fluxes are always fixed to the respective values whereas there are not strictly set to
the targetfluxes when the fitness maximization feature is used.

There is no difference to fluxfix when it is only used to fix it to values and not to other fluxes. The
setfluxes overwrites the value given by fluxfix.

Set boundaries for fluxes: fluxbounds

This (white-space separated) file sets flux boundaries in conjunction to the values set in reactions. The
first token of each line is the reaction identifier. If it is the only token of this line the respective flux is fixed
to zero. If one token follows the absolute value of the flux must be lower than the value of this token. I
two tokens follow they represent the lower and upper bound. “Inf” and “-Inf” are allowed, representing
unrestricted fluxes.

In conjunction with other bounds is interpreted in the normal way: the maximum of all applicable lower
bounds is the lower bound and the minimum of all upper bounds is the upper bound.

This feature is used if the file with the name exists. Take care to delete or rename the file if it no longer
needed.

Fix fluxes to a linear combination of others: fluxfix

It is possible to set that a particular reaction flux is fixed to a linear combination of other fluxes. Such
reactions can also be reformulated but for clarity of the network it might be useful to retain them as
separate reactions and fix them separately. An example is that 3

16



fluxfix is a white-space separated file. The first token is the flux to fix. The rest of the line represents
the linear combination, similar to the “enzyme” file: First the coefficient, then the reaction identifier. The
coefficient can be omitted in which case it is assumed to be one. The reaction identifier can be omitted for
the last token, which means that this value is added as a direct value. Thus, the function can also be used
to fix reactions to a preset value.

This feature is used if the file with the name exists. Take care to delete or rename the file if it no longer
needed.

Exclude reactions from the cost function: fluxmin-excluded

In the different computations based on flux minimization every reaction is used for the objective function.
Including reactions in “fluxmin-excluded” is an easy way to exclude certain reactions (e. g. those which
do not describe a cellular effort).

Set relative weights for the cost function: fluxmin-weights

By default, every flus has the same relative weight in the scoring functions in the flux minimization principle.
The file fluxmin-weights however, changes the relative impact of individual functions. Not all reactions
have to mentioned in this file, in this case 1 is assumed. Also the weight 0 can be given, it has the same
effect as including the reaction in fluxmin-excluded. The function fluxmin-excluded takes precedence
over fluxmin-weights, that means if a nonzero weight is given in fluxmin-weights but is also mentioned
in fluxmin-excluded then the reaction is excluded from the score calculation.

Concentration ranges

Concentration ranges must be supplied if TR-modes should be computed. To simplify specification of
concentration ranges, concentrations may be given for classes of metabolites rather than for metabolites
directly. The file concentration-ranges-classes assigns a metabolite to a class.

The file concentration-class-ranges then assigns concentration ranges to classes. Each line usually
contains 6 tokens: The class identifier, the lower hard bound, the lower soft bound, the set point, the upper
soft bound, and the upper hard bound. The hard bounds must never be exceeded. The soft bounds may be
violated at the expense of an additional penalty. If a concentration value differs from its set point, a (usually
low) penalty is given in the objective function (if this function in switched on). Depending on the number
of tokens the following rules apply:

Number Ranges Applied
of values definition assignments

5 <low hard> <low soft> <setpoint> <high soft> <high hard>

4 <low hard> <low soft> <high soft> <high hard> <setpoint>=
√
< lowsoft >< highsoft >

3 <low hard> <setpoint> <high hard> <low soft>=<low hard>,

<high soft>=<high hard>

2 <low hard> <high hard> <setpoint>=
√
< lowsoft >< highsoft >,

<low soft>=<low hard>,

<high soft>=<high hard>

1 <fixed concentration>

For most applications (when no concentration prediction is required) only the hard bounds are required. For
the soft bounds and the set points there is also allowed to write a minus sign instead of a value. This is
interpreted as there is no boundary for this particular metabolite class. Also it is possible to assign a higher
importance to particular set points or soft bounds:

<value>(<weight>)

where the default weight is 1.

17



Exclude reactions from TR-computations: TR-exclude

Thermodynamic feasibility can only be assessed if the standard Gibb’s free energies of a reaction is known.
Therefore FASIMU/FABASE allows to selectively exclude reactions from the TR constraint: put the identi-
fier of the reaction in the file TR-exclude. Often, Gibb’s energies of reactions are computed as the difference
of formation energies of products and reactants. If a formation energy is not known, the Gibb’s energy
of all reactions involving this metabolite is presumably also not known. Thus, another option is to enter
a metabolite identifier in TR-exclude: this means that any reaction involving this metabolite is excluded
from the TR criterion. Note that the identifier must include the compartment suffix. This is a consequence
that TR resides at the FABASE-level which (as opposed to FASIMU) does not know about compartments.
TR-excluded is a white-space separated file, the tokens are accepted no matter if they appear in the same
line or in different lines.

Additional names of reactions: reaction-names

This is a white-space separated file: the first token on each line must be a reaction identifier, the rest of the
line is regarded as the name of the reaction. The name of the reaction is for instance added at the end of
each reaction flux line in allout.txt.

Enzymes and specific weights: enzymes

FASIMU implements enzyme cost minimization. The information how the reaction fluxes are related to
enzymes are defined in the file “enzymes”. The syntax is as follows. It is a white-space separated file. The
first token on each line is the identifier of the enzyme. It is allowed that identifier also appears as a reaction
identifier, enzymes and reactions have different name spaces. Then, a coefficient follows, then a reaction
identifier. The meaning of the combination E . . . cR is that the enzyme E requires the cost c to catalyze a
unit flux through the reaction R. The coefficient can also be omitted, in which case it is considered to be 1.
The coefficient zero is also allowed, it means that the respective reaction is assigned no cost with respect to
this enzyme. For the enzyme cost minimization this has no effect but it records the relation of the reaction
to the enzyme.

Several important notes for this function:

• As opposed to other files in the FA-model it is not automatically used, the respective optimization
function must require this: compute-FBA -e.

• A reaction which is not referred to in “enzymes” is considered to have no cost.

• The information is only used for the enzyme minimization algorithm.

• The use of this file requires that the reaction identifiers may must not consist only of digits, it is clear
that they can be confused with the coefficients.

FABASE files used to implement FASIMU: targetfluxes and fluxconstraints

The file ”targetfluxes” provides a way to fix the flux rate of a reaction (first token) to a value (sec-
ond token). The file ”fluxconstraints” borders the flux value. An upper limit is given as one token,
whereas a range requires two tokens. The simulation objective (see simulations below) is implemented
with targetfluxes, the simulation constraints are implemented with fluxconstraints. Since FASIMU
automatically generates these files prior invocation of a FABASE function, these options are only available
when FABASE is used without FASIMU (see below).

18



3.6 FASIMU-compatible Models

For compatibility, conventions of CellNetAnalyzer have been adopted for FABASE and FASIMU:

• Space characters are not allowed in identifiers.

• Reaction identifiers may be not by number number.

• Every metabolite must have an assigned compartment where the compartment is attached as suffix to
the metabolite identifier preceded by underscore.

• Compartment identifiers must consist only of letters.

• The compartment “ex” is not allowed.

3.7 Modify model files in a FASIMU session

The recommended way to handle your models

Generally, I do not recommend to modify the files in the directory in which you are working with FASIMU.
The program may be capable to regenerate intermediate files and for advanced users it makes sense to do so
(see below). But to start with I strongly recommend that you keep the original models in separate directories
and start fasimu in a fresh directory. Say, you keep and modify your model in a directory ~/model then
proceed like that:

cd ~

cp -R model model-compute

cd model-compute

source fasimu

<do the computations>

<copy the result files to a designated directory>

cd ..

rm -r model-compute

If you are acquainted with FASIMU you will certainly design your own work flow.

Modification functions

If you choose to modify the model files you must not change the files reactions, metabolites,
equilibriums, TR-excluded, fluxmin-excluded, concentration-ranges-classes but the files with the
extension .original instead. After the modification you call source fasimu. You may change the file
simulations any time you wish. The changes come into effect the next time you call simulate or
simulate-single. For other files you have to call update functions as follows:

19



Modified file possible Function for the safe integration of the modification
reactions no change reactions.original instead
reactions.original yes fasimu-main

metabolites no change metabolites.original instead
metabolites.original yes fasimu-main

equilibriums no change equilibriums.original instead
equilibriums.original yes fasimu-main

TR-excluded no change TR-excluded.original instead
TR-excluded.original yes fasimu-main

fluxmin-excluded no change fluxmin-excluded.original instead
fluxmin-excluded.original yes fasimu-main

concentration-ranges-classes no change concentration-ranges-classes.original

instead
concentration-ranges-classes.original yes fasimu-main

enzymes yes update-enzymes

fluxmin-weights yes not necessary
fluxfix yes update-fluxfix

fluxbounds yes update-fluxbounds

setfluxes yes update-fluxbounds

concentration-class-ranges yes update-concentration-ranges

simulations yes not necessary
constraint file referenced within yes touch simulations

expressions yes not necessary
cplex-tail.in yes not necessary
lp_solve.par yes not necessary
lindo.par yes not necessary
$glpk_opts yes not necessary
targetfluxes no not to be used in a FASIMU session
fluxconstraints no not to be used in a FASIMU session

20



Chapter 4

The steps in a FASIMU session

4.1 Starting FASIMU

As mentioned fasimu is invoked by

source fasimu

There are some options to this call which are indicated by the following identifiers which follow the word
fasimu in the command line.

cplex, cplex9, cplex10, lp_solve, glpk selects the specific solver. This is necessary if the automatic
selection of the solver fails or selects not the desired solver. The automatic recognition of the version of
cplex calls cplex but that might fail if this is a single license installation and another user is using it at the
moment. In this case cplex9 is used for versions up to 9 and cplex10 for version from 10 on.

names_in_allout. Normally the identifiers of the metabolites are written in the file allout.txt which
also. If you prefer the names instead, select this option.

nomodelprepare Here, only the FASIMU functions are defined but any action on the model is omitted.
This is useful if only a file allout.txt or evaluation.txt from a previous run shall be analyzed or used with
the FASIMU functions, for instance for the visualization.

debug Some debug messages in the course of the fasimu invocation.

4.2 The control file simulations

The general structure is as follows:

• Each line describes a single simulation

• Each line contains four tab-separated fields: name, objective, constraint, evaluator, comment. Each of
the fields may contain several tokens, separated by the space character.

First column: Name

That is the primary key and must be a uniqu. Simulations are identified by its name. It may contain space
characters but the character / is removed.

Second field: Objective(s), Targetflux(es)

space separated tokens. A token is either a reaction-ID, a metabolite-ID, or a decompartimen-
talized metabolite-ID (in this case it is defaulted to the compartment indicated by the variable

21



default_compartment (which is ext by default), the default for outside the system). Each token can be
preceded by a real valued coefficient (”1” is omitted, this makes sense only if multiple tokens are used to
relatively quantify the target fluxes).Tokens in this field are used without qualifiers (see third column), i.e.
targets are always defined as reactions working in forward direction or metabolite export across the system
boundary.

The following keywords can also be used:
Keyword Description

max The following tokens represent fluxes/metablites to be maximized
min The following tokens represent fluxes/metablites to be minimized

moma To be used if $optimization_call is compute-moma or compute-room . . .

Third column: System boundary tokens

Simplified syntax

Each token is headed by -, +, =, or %, followed by an identifier as above.
Reaction Comment Metabolite Comment

+ forward
direction

definition of forward/ backward
direction: see below

product export of this metabolite across the sys-
tem boundary is allowed

- backward
direction

definition of forward/ backward
direction: see below

substrate import of this metabolite across the sys-
tem boundary is allowed

= not appli-
cable

allowing non-zero flux through
reactions is the default

product or
substrate

import or export across the system
boundary are allowed

% forbidden flux through reactions must be
zero

not appli-
cable

zero flux through exchange reaction
across the system boundary is the default

The rules dictated by the above constraints are combined with flux bounds given in the file reactions.

Explicit boundary syntax

Another syntax is possible in the constraints section:
Syntax Comment
<identifier> = <number> Fixed flux for the respective reaction or system exchange
<identifier> <= <number> Upper bound for the respective reaction or system exchange
<number> <= <identifier> Lower bound for the respective reaction or system exchange
<identifier> >= <number> Lower bound for the respective reaction or system exchange
<number> >= <identifier> Upper bound for the respective reaction or system exchange
<number> <= <identifier> <= <number> Range for the respective reaction or system exchange

There must a space characters surrounding the <= or = character(s). Instead of <= also < can be written
but the result is identical because in the optimization software (and in fact for the underlying theory of
optimization) strictly “less than” is not implemented.

File content syntax

In this column file-content-replacement may avoid repeating long lists several times: When the name of a
text file appears in this column, its name is replaced by the file content.

.. stddef ...

where the file stddef.txt contains the lines

Glc_ext

0 <= PFK <= 2

+CO2_ext

22



is equivalent to the constraint definition

.. -Glc_ext 0 <= PFK <= 2 +CO2_ext ...

Precendence/Overwrite

If there is more than one token constraining the same reaction, only the rightmost constraint is valid, the
constraints further to the left are ignored. In other words, the list of constraints is evaluated from left to
right and the constraints regarding the same reaction are overwritten. Note that they are not combined: the
constraints

-Glc_ext ... -8 <= Glc_ext <= 8

are interpreted as the glucose exchange flux between (-8,8), not (-8,0).
This may be confusing if one of the constraints is contained in a file. Say, oxygene uptake is allowed in

the file stddef.txt with a line -O2_ext and you want to model an anoxic state. You must write

stddef ... %O2_ext

If you write

%O2_ext ... stddef

you the token %O2 will have no effect as it is overwritten by the setting in the file stddef.txt.

Fourth column: evaluator

This is used to ensure a quick overview whether a simulation is successful (indicated by a + sign in the
second column of evaluation.txt). It can be either zero (this means this simulation is intended to fail),
one (the existence of a solution suffices), or one (or several) token(s) as above in which case it is checked
whether the reaction associated with this token carries a nonzero flux in the flux solution. A metabolite ID
can be

• its model identifier with or without compartment

• metabolite name with or without compartment

If more than one evaluator is given the simulation is considered to be satisfied if all evaluators are satisfied.
However, the comment in column 3 of evaluation.txt indicates which of the tokens are tested successfully.

Fifth column: comment

This is technically not used in FASIMU but it is a good idea to describe the simulation semantically here.

4.3 Controlling the computation function

There is one function for all sorts of flux optimization called compute-FBA. The variable
$optimization_call should be set to one of the functions below together with parameters, e.g.
optimization_call=compute-FBA -T A -F e -s 1 -w 0.0001’’.

Computing an arbitrary solution: compute-FBA

Without any arguments, a solution is computed which satisfies the given constraints (including the flux-
balance condition). Which solution is returned is basically left to solver as no scoring function is assumed.
Typically, the solver returns a solution with as few as possible non-zero fluxes but you can not rely on that
indeed the flux solution with the absolute minimum is given (you have to set -F m) to do this. The advantage
is that the computation is the fastest. It is the recommended way to compute an FBA solution just to check
the feasibility of the constraints.

23



The flux minimization: compute-FBA -F

A flux distribution obeying the flux-balance condition is computed. It minimizes the fluxes as a general rule,
but there are some variants, controlled by the single parameter. The default is an implementation of [8]
where the forward fluxes have the weight 1 and the backward fluxes have the weight equal to the equilibrium
constant (given in the file equilibriums). If the parameter -F s is given the weights of the forward and

backwards flux are divided by
√

1 + Keq
2, according to [10]. The parameter setting -F 1 follows the same

idea, both weights are divided by 1 + Keq. For the parameter setting -F 2, the forward flux has the weight
1/1 + Keq

2, the backward flux the weight Keq
2/1 + Keq

2. For the parameter -F 0, the backward flux has the
same weight as the forward flux, regardless of the value in equilibriums. This is equivalent to the case where
no equilibrium data is given at all. For the two options -F e and -F E the file enzymes must be available.
Here, weights are not given for the fluxes themselves but for the enzyme with respect to a reaction. The
general principle is also given in [9]. The difference between e and E is that for e both directions of the
reaction receive the same weight where for E the backward flux is multiplied with equilibrium constant,
similar to the default.

The call compute -F m minimizes the number of nonzero fluxes. If there are no other constraints than
system boundary exchanges then the computed flux distribution is an Elementary flux mode [18].

Allowing restricted fitness: compute-FBA -f

This implements the generalized flux minimization principle [9]. Fluxes must not strictly obey the given ob-
jective (in FASIMU, the objective tokens in simulations) but are allowed to deviate. Thus, the optimization
maximizes the fitness as the first priority.

The fitness function ranges from zero to one, where one represents maximal fitness. This figure is printed
in the output files.

The option -f takes 2 parameters. The first one is the type of the fitness function, ranging from 0 to 7.
Default is 0. For solvers LINDO, lp solve and GLPK quadratic scoring functions are not implemented, so the
type may only range from 3 to 7, and the default is 5. The types are distinguished by the way the aberration
to the target flux is combined: by the Euklidian norm (0,1,2), by the 1-norm (3,4,5), by the maximum norm
(6,7). The are also distinguished whether the distances are normalized or not, i.e. if absolute or relative
distances are considered. Type 1 is special as it involves a partial normalization. Type 3 is a very easy and
fast implementation but for this it is necessary that the flux values have the same sign as the target value
for the target fluxes (it is guaranteed in the computation). Type 8 is similar to type 2, just the square root
is omitted in the scoring function. The computed flux solutions are identical.

Type Norm Adjustment Fitness score Restriction

0 Euklidian none 1−
√∑

∆vi2∑
Li2

1 Euklidian partly (linear) 1−

√∑ ∆vi
2

|Li|∑
|Li|

2 Euklidian full 1−
√

1
n

∑ ∆vi2

Li2

3 linear full 1− 1
n

∑ |∆vi|
|Li| sgn(vi) = sgn(Li)

4 linear none 1−
∑
|∆vi|∑
|Li|

5 linear full 1− 1
n

∑ |∆vi|
|Li|

6 maximum none 1− max{|∆vi|}
max{|Li|}

7 maximum full 1−max
{
|∆vi|
|Li|

}
8 quadratic full 1− 1

n

∑ ∆vi
2

Li2

Li is the target flux value. ∆vi = vi − Li is the distance of the actual flux value to the target flux value.
The sums and sets are over the target reactions i.

24



The second parameter is the weight with respect to the weight of the fluxes. Technically, the optimizer
does not supply a hierarchic optimization, thus, a large weight has to be given to the fitness score. The
default is 106.

Fitness maximization is closely related to MOMA (minimal metabolic adjustment) and can in fact im-
plemented by defining the targetfluxes according to a reference solution. However there is also a special
FABASE function compute-moma for this purpose.

Minimizing a selected target: compute-FBA -m

This function allows to minimize one or more reaction fluxes, usually applied to the inward transport process
of substrates. The parameter to this option is one or more reaction identifiers.

There are two ways to use this option in FASIMU. In the first one -m is included in $optimization_call.
In the simulations file the objective (second column) is left blank (or used to fix some other fluxes). The
disadvantage of this way is that for all simulations the minimization of the same reaction/metabolite is
performed.

The second, strongly recommended, way does not have this restriction. The variable
$optimization_call contains a compute-FBA call without the -m option but possibly with other pa-
rameters. In the simulations file the objective (second column) is min <rea/met> ... with one or more
tokens (reaction identifer, metabolite identifier or names). The subroutine of simulate executing this sim-
ulation automatically adds -m <reaction-ID> to $optimization_call. Obviously, this only works if the
$optimization_call is compute-FBA with possible further parameters.

Maximizing a selected target: compute-FBA -b

This option allows to maximize one or more reaction fluxes, usually applied to the biomass synthesis process
or an important product [4]. The parameters to this function are the reaction identifiers.

Here the same mechanisms can be used as in the previous section. The respective keyword is max instead
of min.

Thermodynamic feasibility computations: compute-FBA -T

This option switches on the criterion that a positive flux through a reaction must be accompanied by a
negative Gibb’s free energy the latter being dependent on standard Gibb’s energies and ranges of allowable
concentrations. The so-called criterion of thermodynamic realizability (TR) is described in detail in [?]. This
option requires equilibrium and concentration ranges to be set (see above).

TR is only a constraint, the flux objective is set by the above options -F, -m, and -b, with the default of
-F 0 if just called with compute-FBA -T.

The TR computation not only predicts fluxes but also metabolite concentrations, stored in the file
concentrations.txt. With the option -d given to compute-FBA a more comprehensive report on
concentrations is stored in the file TR-FBA-concentration-doc.txt comprising also the applied ranges.
-d gives also further information files: TR-FBA-potential-doc.txt, TR-FBA-potential-doc2.txt, and
TR-FBA-summary.txt. Potentials (see below) are the sums of logharithms of the reactants plus the
logharithm of the equilibrium constant. The documentaries on potentials show it for individual reactions.
The summary shows the whole model togehter with the flux distribution and the concentrations.

For good concentration predictions reasonable soft bounds (switched on with the -s [<weight>] option)
and set points (switched on with -w [<weight>]) should be supplied for the concentrations. Typical call
is “compute-FBA -T -s 1 -w 0000.1”. The default weight for the soft bounds is 1, the default weight for
the setpoints is 10−5, so this call is equivalent to compute-FBA -T -s -w. Note that it is not enough that
the soft bounds and the setpoints are defined in concetration-class-ranges, they are only used if -s or
-w, respectively, are given.

25



For the TR criterion a type identifier can be given which controls the way, zero fluxes and thermody-
namic potentials are treated. Basically, a non-zero flux and a non-zero potential must have the same sign.
(Thermodynamic potential here is the negative Gibb’s energy change divided by RT.) But it is not clearly
defined if one of the values is zero. There are two ways: in the relaxed form (a or A) a zero potential is
compatible with any flux value, and a zero flux value is compatible with any potential. In the strict form
(b or B) a zero potential is only compatible with a zero potential and vice-versa. The differences in the
biochemical interpretation will not be covered here. But from the computational side: types b and B are
much harder to compute (on more binary variable for each reaction) and the system is much more likely
to be infeasible. The uppercase letters refer to an implementation of TR with conditional clauses which is
more robust, numerically stable, and accurate in the computation but is only available in the solver CPLEX
version 10 and higher. The lowercase letters refer to the so-called bigM implementation which is the standard
for other solvers.

A trailing “r” in the type identifier changes the way reaction marked as irreversible are dealt with. By
default, there is still the binary variable. For a zero flux, the potential can have either sign. By the setting
“r” there is no conditional variable but the sign of the potential is fixed to the sign of the irreversibility
constraint. If the flux is non-zero, that is not a difference. However, for a zero flux, the constraint on the
potential is still active, where in the default way, there is also a potential with the opposite sign possible.
Again, the biochemical implication will not be discussed here. From the computational side, the setting “r”
accelerates the computation but also increases the likelihood that the system is unfeasible.

Type Zero flux Zero potential Irreversible reaction comment
A q arbitrary any flux Conditional clause implementation
B q = 0 v = 0 Conditional clause implementation
a q arbitrary any flux bigM implementation
b −ε < q < ε −ε < v < ε bigM implementation
Ar q arbitrary any flux potential sign fixed Conditional clause implementation
Br q = 0 v = 0 potential sign fixed Conditional clause implementation
ar q arbitrary any flux potential sign fixed bigM implementation
br −ε < q < ε −ε < v < ε potential sign fixed bigM implementation

See the section about concentration ranges above as they are necessary for the TR computation.

Calculating relative fluxes with compute-FBA

The flux bounds (and more specifically the irreversibility of reactions) in the stoichiometric network model
(represented by the file reactions) have the purpose to restric the absolute reaction flux rates in the system.
To calculate flux changes (relative fluxes) they are not valid. For example, the reaction i may be considered
irreversible, i.e. vi ≥ 0, but the flux may change in negative direction: δvi = vi − v̂i may be negative if vi is
smaller than v̂i.

FASIMU offers two mechanisms to compute relative flux distributions without modifying the model, one
for the situation where a reference flux distribution is given and the other one if the reference flux distribution
is not given.

With reference flux distribution

optimization_call="compute-FBA -r solution.txt ... "

Technically, the values of the reference flux distribution are subtracted from the bounds given in reactions.
Note, that the values in the file fluxbounds are not affected because they are not considered to be part of the
network — their purpose is to affect a single calculalation. The same is valid for the boundary expressions
in the file simulations.

Without reference flux distribution

26



optimization_call="compute-FBA -delta ... "

Without a reference there is no basis to have specific upper and lower bounds, so the effect of this parameter
is simply to allow negative values for irreversible reactions. The implementation generalizes this to be also
applicable for bounds which are not -Inf, 0, or Inf. Technically, the maximum mi of the upper bound and
the negative of the lower bound is computed and the flux is bounded by −mi ≤ vi ≤ mi.

Further options of compute-FBA

There is another parameter worth to mention: -t <seconds> which restricts the computation time of a
single optimization.

MOMA: compute-moma

This function implements MOMA [19] using the fitness function (see above). The original paper uses
unnormalized Euklidian distance but that can be changed by setting the -f option. In fact, all options of
compute-FBA can also be given to compute-moma. The Euklidian distance can only be used if the solver is
CPLEX, otherwise it is switched to the non-normalized linear type (-f 5). compute-moma has its own help
text available with compute-moma -h.

ROOM: compute-room

This function implements Regulatory on/off minimization [20]. As opposed to compute-moma it is a separate
implementation and has only a few parameters to be displayed with compute-room -h. It is possible to
change the relative and absolute threshold (δ and ε in the original paper are set by -d and -e respectively).

Expression-based flux prediction

Binary use of expression profiles: compute-FBA -xs

The option -xs of compute-FBA implements the algorithm to predict the active subnetwork depending on
a expression profile (which can be a protein or transcript profile) [21]. The profile is given in the file
expressions, which is white-space separated. The first token is the reaction identifier, the second is an
expression value, which can be a float number, a binary or a three valued measure. The option can have up
to four parameters:

Parameter Description Default
1st lower threshold of expression 0.5
2nd upper threshold of expression equal to lower threshold
3rd threshold on significant flux 1
4th relative weight compared to other scoring components 1000

The interpretation of the expression profiles is controlled by the lower and upper threshold. Transcript values
below the lower threshold are considered off, a flux through the respective reaction is penalized (with 1).
Transcript values above the upper threshold are considered on, a significant flux (3rd parameter) through
the respective reaction recieves a bonus. Expression values between the thresholds neither are penalized nor
recieve a bonus (of 1). Reactions not referred to in the file expressions are also excluded from the scoring.

The function compute-shlomi is a standalone version of this function. See also the help available with
compute-shlomi -h.

Gradual penalty to off expression: GIMME compute-FBA -xg

The option -xg of compute-FBA implements another algorithm to predict the active subnetwork depending
on a expression profile (which can be a protein or transcript profile) [2]. Again the file expressions is used
in the format as above. The option can have up to two parameters:

27



Parameter Description Default
1st threshold of expression 0.5
2nd relative weight compared to other scoring components 1000

Expression values xi below the given threshold t recieve a penalty of |vi|(t − xi) where vi is the respective
flux rate belonging to the expression value. There is neigher a bonus nor a penalty for expression values
above the threshold. Obviously, the penalty is zero if the respective flux rate is zero.

Combined scoring function

In compute-FBA any expression-based flux prediction score can be combined with other factors. One example
is the combination with flux minimization [8] and fixing metabolic target functions (enforce the production
of biomass):

optimzation_call="compute-FBA -xs -F"

See [11] for details on the method, see tutorial for an example. The scoring function can also be combined with
fitness minimization (-f), intake minimization (-m), biomass maximization (-b). Even the binary expression
scoring can be combined with GIMME scoring, the respective weights and threshold act independently.

4.4 Perform simulations: simulate

The function call simulate performs all simulations described in simulations and stores the complete result
in allout.txt and a short overview in evaluation.txt. To just compute a single simulation identified by
its name call simulate-single "<name>" where the quotes can be omitted if the name contains no space
characters. To store the solutions requires considerably disk space for large networks, simulate-noallout
performs the computations but suppresses to write the solutions.

The call of simulate deletes the files allout.txt and evaluation.txt as the first step, thus, it is
guaranteed that after a simulate call those files contain the information on one complete set of simulations.
The call simulate-single however appends the result to allout.txt and evaluation.txt. This way they
may contain several solutions of the same simulation.

The call compute-FBA stores information which is overwritten by the next call which is the case if
simulate is called and there is more than one simulation. If you are interested in this information, call
simulate-single instead and save the information in separate files. See the following table for the infor-
mation:

Overwritten information
problem.lp complete optimization problem description
solver.out solver output
variables.out values of all variables

Appended information
evaluation.txt summaries
allout.txt solutions
cplex-times Running times (CPLEX only)

The function simulate allows one or two parameters which are numbers of simulations (not names! The
numbers are not written in the simulations file.) simulate i executes the simulation with the number
i. simulate i j executes all simulations starting with number i until number j. If j is smaller than i no
simulation is performed.

4.5 The evaluation file: evaluation.txt

This file is tab separated:

28



1. Name of the simulation

2. + or − depending if the computed result is in accord with the expectation

3. A comment on the evalution

There are several bash functions which provide convenient views on the result:

negeval gives only lines in evaluation.txt which have not the desired result.

inacceval scans the file for warnings on the inaccuracy of results (switched on by the -c option of
compute-FBA).

4.6 The comprenhensive solution file: allout.txt

The file contains all information on the solutions: flux values, concentration values if applicable in a human
readable form. Each solution begins with a line with many \# characters and the name of the simulation.
Then a message on computation and possible warnings follow. After that the reaction fluxes follow in a
tab separated format, the first item is the reaction identifier, the second item is the flux rate, the third is
the equilibrium constant used, the fourth is the reaction equation, the fifth are possible annotations of the
reactions (given in reaction-names). The reactions are normally written with the identifier of the metabolites.
However, it can also be written using the names of the identifier by invoking fasimu with:

source fasimu names_in_allout

Zero fluxes are omitted throughout, although occasionally fluxes with flux rates close to zero may appear
in large networks which are numerically difficult. The first fluxes denoted in the solution are the fluxes
across the systems boundary (which are not fluxes in the metabolic reaction systems), identifiable by the
trailing “_tr” in the reaction identifier and the trailing “_ex” in the metabolite identifier in the reaction
equation. Then the regular fluxes follow. If applicable, i.e. if compute-FBA -T was used, concentrations of
the metabolites involved in the solution follow, in a tab-separated format: the first item is the metabolite
identifier, the second is the concentration value, and the third are the concentration ranges used in the
computations which might include soft bounds and set points if they have been used.

4.7 Prepare files for the visualization

FASIMU itself has no visualization capabilities on its own, however it includes plugins for the easy integration
of computed flux modes in other packages.

Visualization in Cytoscape

For the visualization in [13] in combination with the flux analysis plugin, the call of allout2valfiles

transforms the solutions recorded in allout.txt in separate files in a directory val.

Visualization in BiNA

For the visualization in BiNA [15] in combination with the flux analysis plugin
(http:/binafluxmodel.sourceforge.net/), the call of allout2bina transforms the solutions recorded in
allout.txt in separate files in a directory BiNA. The names of the files are the respective simulation names.
There are two parameters to this function. The metabolites (without a compartment identifier) following
“-a” are defined to be alias metabolites (see BiNA documentation), metabolites which are not drawn as
one node in the graph but as many nodes possible distributed throughout the graph. E.g.

29



allout2bina -a ATP ADP NADH NAD

defines these metabolites to be aliased in all occurrences. BiNA is capable to define alias function for each
reaction separately but this has to be modified manually, see the description of the BiNA-flux analysis file
format. The parameter -c defines RGB color values for the color of metabolite nodes depending on the
compartment. The syntax is as follows: ¡compartment¿[¡numR¿,¡numG¿,¡numB¿]. This sequence must be
written without space characters. The respective values range from 0 to 255. In the -c option an arbitrary
number of such items may be given. Example:

allout2bina -c cyto[245,45,226] mito[66,2.3.144]

Note that if all three numbers are low the color is very dark and the black letters of the metabolite name
may not be readable.

A previous directory BiNA will be removed by this function. If the file allout.txt contains more
than one flux distribution with the same name (this happens if the same simulation is run over again with
simulate-single), a underscore character and a number (starting from 0) is appended to the name of the
simulation to avoid overwriting.

Visualization in CellNetDesigner

For the visualization in [14] , the files stored in the val directory by allout2valfiles can also be directly
be used for the visualization in CellNetDesigner by the ReadMode function. Of course, CellNetDesigner
requires a ready-made image of the network.

30



Chapter 5

Further functions in FASIMU

5.1 Prune to ad functionem networks: prune-network

The function checks for each reaction whether a positive or negative flux is possible. This depends on the se-
lection of the optimization protocol (variable $optimization_call) and the contents of the file stdexch.txt
which defines the system boundary. See [7] for details on the method. Both, the exchange metabolites and
the functional metabolites mentioned in the article must be included in the same file stdexch.txt.

The result of the function is a new network in the subdirectory sub. The blocked reactions are removed
from the network. If pnly one direction is blocked it is marked as irreversible in the newly created file
sub/reactions. The resulting files are a valid FABASE model, i.e. it does not contain the FASIMU pseudo
reactions controlling the systems boundary.

If an error message “bash: declare: -A: invalid option” is shown, you should update your bash to
a version higher than 4.

If that is not possible you can use the function prune-network-simple which should obtain the same
result but is much slower as doesn’t use already computed flux solutions to reduce the number of required
optimization objectives.

5.2 Flux-variability analysis

The function make-FVA-simulationsfile prints a simulations file applicable to perform a flux-variability
analysis [16,17] which should be directed to simulations. There are two other elements to be taken care for
a meaningful FVA. The first is the file with the predefined name stdexch.txt which defines the constraints
valid in all defined simulations and it should be used to allow input of substrates and output of waste
products and metabolic objectives. The second is the definition of flux boundaries. If there would be no
flux restrictions probably many of the fluxes were unbounded in which case the FVA would be meaningless.
It is recommended to either restrict all input fluxes or all output fluxes.

The function FVA-valfiles-chart interprets the result files of a FVA to produce a chart, list of reactions
with their respective minimum and maximum. It uses the files in the directory val thus, it is necessary to
call allout2valfiles beforehand. See tutorial for the normal work flow:

make-FVA-simulationsfile > simulations

simulate

allout2valfiles

FVA-valfiles-chart

This version of FVA directly maximizes and minimizes the problem. If there are problems that the
optimization problem is not bounded, you can use another form of FVA which only checks whether it is

31



possible to find a flux solution with a unit flux in both directions for each reaction:

make-unity-FVA-simulationsfile > simulations

simulate

allout2valfiles

FVA-valfiles-chart

5.3 Flux control analysis

The function make-FCA-simulationsfile prints a simulations file applicable to perform a flux coupling
analysis [3] which should be directed to simulations. The file with the predefined name stdexch.txt must
define the constraints valid in all defined simulations and it should be used to allow input of substrates and
output of waste products and metabolic objectives.

Before you start make sure that there are no blocked reactions (perform pruning first) as these reactions
yield misleading results.

The function FCA-chart interprets the result files of a FCA to produce a chart. It is a tab-separated file
with four columns:

1. analyzed reaction

2. statement on coupling, on of

• fully coupled to

• uncoupled with

• directionally coupled to

• partially coupled to

3. reference reaction

4. addtional comment (such as forbidden condition)

The protocol to perform the analysis (after pruning) is:

make-FCA-simulationsfile > simulations

simulate

FCA-chart

Note that in FASIMU reactions in both directions are allowed while in the original manuscript [3] a framework
is assumed which treats the directions as separate reaction entries. Thus, the respective simulations are
marked with forward and backwards.

5.4 Check the essentiality for a given set of simulations:
check-essentiality

This functions checks the essentiality of reactions with respect to the defined simulations. First, the actual
simulations (defined by the simulations file and the variable optimization_call) are performed. Based
on the results a new set of simulations is defined implementing a single knock-out for each reaction contained
in the solution of the respective. Note that this is much more efficient than to check every reaction — a
reaction can only be essential if it appears in a reference solution.

The result is written concisely in essentiality-report.txt. Each line refers to a simulation in the original
set. The lines are tab-separated, the first token is the identifier of the simulation and the second is either

32



• the comment failed if the original simulation failed

• the comment no essentials if they are no essential reactions, or

• essentials: followed by a space separated list of reaction identifiers referring to the essential reactions.

Other intermediate files can also be inspected:

• evaluation.txt contains the result of the reference run,

• simulations_essentiality contains the newly defined simulations,

• evaluation_essentiality.txt contains their results.

5.5 Functions creating common simulations files

The following functions produce simple simulations files for common applications.

Check the producability of all metabolites

make-fullproducibility-simulationsfile > simulations

This simulations file requires that the system boundaries are stored in the file stdexch.txt.

Check the degradibility of all metabolites

make-fulldegradibility-simulationsfile > simulations

This simulations file requires that the system boundaries are stored in the file stdexch.txt.

Check the network on leaks

The following simulations file makes two checks:

• Can any metabolite be produced without any inward transport while any outward transport is allowed?

• Can any metabolite be degraded without any outward transport while any inward transport is allowed?

This check is very similar to the check proposed by [5].

make-leakcheck-simulationsfile > simulations

The function also writes two additional files, any_outwards.txt and any_inwards.txt, from all metabolites.

Exclude that metabolites can be created without substrates

make-futileproducibility-simulationsfile > simulations

This simulations file requires that the excretable products stored in the file stdwaste.txt.
This is a weaker test as the leak test in the previous section since only some given waste products are

allowed as excretion products and not any metabolite. It might still be a worthwhile check if the results of
the former are difficult to interpret.

33



Exclude that metabolites can be degraded without excretion products

make-wastability-simulationsfile > simulations

This simulations file requires that all possible substrates are stored in the file stdsubstr.txt.

5.6 Functions creating common exchange files referenced in a
simulations file

Access the system boundaries in the original FABASE model

make-standard-exchangables > stdexch.txt

This functions writes the metabolite marked as “open boundary” in the orignal FABASE model with the
qualifier “=”, meaning it can be exchanged in both directions. If this model was created with sbml2fa it is
exactly the boundary condition of the original SBML file.

make-standard-wastables > stdwaste.txt

does the same but adds the qualifier “+” meaning that these substances can be excreted to be used by a
simulations file created by make-futileproducibility-simulationsfile.

make-standard-substrates > stdsubstr.txt

does the same but adds the qualifier “-” meaning that these substances can be imported to be used by a
simulations file created by make-wastability-simulationsfile.

5.7 Network printing functions

The present FASIMU or FASBASE network can be converted in other formats. Some of these functions
have already been executed and their results are stored in the current directory:
File format generating function
reactions.txt plain text format reactions-printout equilibriums

reactionsa.txt dito, stoichiometrix factor 1
omitted

reactions-printout equilibriums condensed

reanames

reaclear.txt text format, metabolite
names instead of identifiers

reactions-printout equilibriums cleartext

reacleara.txt dito, stoichiometrix factor 1
omitted

reactions-printout equilibriums condensed

cleartext reanames

network.sbml SBML version 2 level 4 print-sbml

All functions print their output to the screen. They can be used both in a FASIMU or FABASE session.
The do not print the pseudo reactions which FASIMU adds.

Plain text format: reactions-printout

This functions writes plain text format of the recent network. It is a tab-separated file. The first column
contains the reaction identifer, the second column the reaction equation, separated by spaces. It is written
to standard output, to save it to a file, call

reactions-printout > network.txt

More columns are possible added by the options as follows.

34



cleartext Write metabolite name instead of identifers.

condensed Suppress the stoichiometric coefficient.

equilibriums Write the equilibrium constant in the second column.

reanames Add a last column with the respective content of reaction-names.

SBML format: print-sbml

This functions writes a SBML version 2, level 4 to the standard output, to save it to a file use:

print-sbml > network.sbml

Options:

noconcentrations Normally the concentrations stored in concentation-class-ranges in conjunction
with concentration-ranges-classes are stored in a <listOfConstraints> section. The soft bounds
result in a warning if exceeded, whereas the hard bound cause an error message. The set points val-
ues are written as the inital concentration variable in the species tag. This options suppresses this
altogether.

nospeciestype Normally species are assigned a speciesType, the metabolite identifier and name without
the compartment identifier. This options suppresses this.

noequilibriums Normally the equilibrium constants are stored in a tag:
<parameter id="equilibrium_constant" value=".."/> inside a <listOfParameters> in a
<kineticLaw> section for every reaction. This options suppresses this.

METATOOL format: print-metatool-network

Simple function to transform the current network into METATOOL format, simlar to the above functions.
It has no parameters.

expa format: print-expa-network

Simple function to transform the current network into expa format, simlar to the above functions. It has no
parameters.

35



Chapter 6

Functions for sets of modes: modeset

This chapter describes functions which operate on a set of flux distributions (modes). They have a special
data format called modeset:

• tab separated

• line with no tab sign is the identifier of a mode

• line with a tab sign assigns a flux rate (second column) to a reaction identifier (first column)

• must start with a line of a mode identifier

• zero fluxes may be omitted (and should be)

Functions operating with this data type contain the word modeset.

6.1 Creating a modeset from allout.txt and vice versa

Normally you don’t have to create this modeset by hand, the function allout2modeset creates one from
the flux solutions in a FASIMU simulations run. The identifier of the mode is the name of the simulation.
Beware of simulation runs where the same simulation identifier appears multiple times. The are different
ways to call this function:

allout2modeset

uses the file allout.txt and creates the file modeset.txt. You can also set the file names manually, in the
following ways — each call has the same effect:

allout2modeset allout.txt -o modeset.txt

allout2modeset allout.txt -f > modeset.txt

allout2modeset

allout2modeset allout.txt

allout2modeset -o modeset.txt

allout2modeset -f > modeset.txt

The opposite direction is also possible, to create an allout.txt from a modeset. This is useful if you
want to visualize the modes using the function allout2bina. Some information of the allout.txt coming
from a simulation run is obviously not included: the description of the optimization call, the affirmation
of the solver success, possible warnings of the solver. But for the functions that use allout that does not
matter. Again there are different ways to call the function, the defalt file names are again modeset.txt and
allout.txt.

36



modeset2allout

uses the file allout.txt and creates the file modeset.txt. You can also set the file names manually, in the
following ways — each call has the same effect:

modeset2allout modeset.txt -o allout.txt

modeset2allout modeset.txt -f > allout.txt

modeset2allout -o allout.txt

modeset2allout -f > allout.txt

modeset2allout modeset.txt

modeset2allout

6.2 Which mode fits a given profile best? modeset-score

This function returns a score (from 0 to 1) for each mode Mk in a given modeset how well it matches a given
profile V = (vi)i. The profile V can be a reference flux distribution but also an expression pattern of protein
or RNA abundance. The key for its biological usefulness is the correct combination of parameters. While
some parameters must be set according to the type of reference profile, others have to be adjusted based on
heuristics or trial and error. The parameters are described in the sequel.

6.2.1 Zeros in the mode Mk sigscore (-S) vs. fullscore

By default, the scoring includes all reactions. The total score for the pair Mk and V is by the arithmetic
mean of single scores scorei(mi, vi):

Score(Mk, V ) =
1

n

n∑
i=1

scorei(mi, vi)

where n is the number of reactions in the systems. This is called fullscore. However, modeset-score can
also be configures to ignore the mi = 0, where mi are the components of Mk = (mi)i. It is called sigscore,
the respective option is -s. It changes the score to

Score(Mk, V ) =
1

#In

∑
i∈In

scorei(mi, vi), where In = {i | mi 6= 0},

in other words, zero flux rates are ignored in this case.
The sigscore setting should be applied if the modes in the modeset are sparse, e.g. elementary flux

modes [18] or minimal flux modes [6]. If the modes in the modeset are reference flux distributions representing
the full metabolism at a given time point, fullscore should be preferred.

6.2.2 Scaling factor: fixed (-f), dependent on mz (-L), or computed by linear
regression

The score of Mk with respect to V is not applied directly but with a scaling factor λ. This is particularly
relevant for the fitting setting (see below). So in fact, Mk is compared to λV . This factor can be set directly
with -f in which case it is equal for all modes in the modeset. It is up to the user to ensure that this makes
sense.

It can also be set with the formula
λ = lmz

where l is a positive number set by the option -L (default is 1) and the formula for mz (the average absolute
value of the mi) is given below.

37



Otherwise it is automatically computed with the formula:

λ =

n∑
i=1

vimi

n∑
i=1

v2
i

and for sigscore λ =

∑
i∈In

vimi∑
i∈In

v2
i

The summation is affected by the parameter sigscore in which case the i with mi = 0 are ignored.
It is the explicit solution of the linear regression of Mk with V minimizing the Euklidian distance from

Mk to λV . In case λ is zero, Score(Mk, V ) is set to zero. For the absolute setting (see below) and λ < 0,
Score(Mk, V ) is also set to zero.

6.2.3 Relative (-R) vs. absolute

If the probe profile V is derived from the difference of two experiments it has to be considered relative
(choose option -r in this case), otherwise it is considered absolute. This setting also affects how the modeset
(Mk) is interpreted. In the relative case a reference mode of the modeset can be considered with a negative
coefficient λ. In this case its interpretation is: “less of this mode”. In the absolute case this is not allowed.

Furthermore, in the absolute setting the values are considered by their absolute values. For the sake of
brevitiy, only mi will be written, but in the absolute setting |mi| is used. Think of it as the assignment:

Mk := |Mk|

6.2.4 Cumulative (-C) vs. fitting

For cumulative setting and for nonzero mi the higher the expression value, the higher the score. Otherwise
in the fitting setting it is maximal (and has value 1) at the reference point mi/λ and descreses for both lower
and higher values. The score distribution for the cumulative setting has its turning point and the 0.5 value
at mi/λ if it is not set by the -c option.

As a general rule, the cumulative setting is applicable to absolute protein of RNA expression profiles,
while the fitting will usually be applied if the probe is a reference flux distribution (measured or inferred)
or for relative probes. But there may be exceptions to this rule. The critical question is whether the score
should monotonuously increase for high expression values.

6.2.5 Setting the center of the score distribution manually (-c)

Normally, the center of the score distribution is mi/λ set up for each Mk and each mi individually. With
this option you can set it up to a predefined value.

This apparently makes only sense in the cumulative and absolute setting for expression profiles which are
normalized and the best splitting value for “on” and “off” genes is already known. This threshold value can
be entered here.

6.2.6 Setting the steepness of the distribution function (-s)

This parameter sets the steepness of the distribution function, the higher the value the smaller the score
variance. The smaller the variance the smaller the range of the significant score amplitude changes. The
exact mathematical definition depends on the type parameter, for the binary type it is not used. A setting
of one gives a good default steepness. The steepness value will be denoted s below.

38



6.2.7 Should the score variance depend on the flux value (varsingle -V)?

In the default case the score variance does not depend on the absolute value of |mi|, it is equal for each
reaction and is computed from the average absolute value of Mk:

mz =
1

n

n∑
i=1

|mi| and for sigscore mz =
1

#In

∑
i∈In

|mi|.

With the setting -V the variance of nonzero mi depends linearly from |mi| instead of mz. Only for mi = 0
it is mz.

This setting -V is recommended if the absolute values if the flux rates in Mk is very unevenly distributed.
If an average variance is then used, the values with smaller absolute values will have a score distribution
which goes in the opposite direction.

The exact mathematical definition depends on the type parameter, for the binary type it is not used.

6.2.8 Mathematical description of the score distribution (-t)

Possible values are (where gauss is the default):

-t gauss

The score is in the fitting case the Gaussian bell curve of the normal distribution with the mean mi/λ and
the standard deviation of smz/λ scaled to equal 1 at the maximum, where s is the steepness parameter:

scorei(mi, vi) = e
− 1

2

(
s
λvi−mi
mz

)2

except for the varsingle setting and mi 6= 0 where it is:

scorei(mi, vi) = e
− 1

2

(
s
λvi−mi
|mi|

)2

In the cumulative it is for mi 6= 0

scorei(mi, vi) = Φ

(
s
λvi −mi

mz

)
and for mi = 0

scorei(mi, vi) = 1− Φ

(
s
λvi −mi

mz

)
For the varsingle setting and mi 6= 0 it is:

scorei(mi, vi) = Φ

(
s
λvi −mi

|mi|

)
-t cosine

The score is in the fitting case a half period of the cosine function

scorei(mi, vi) =
1

2

(
1 + cos

(
s
λvi −mi

mz

π

2

))
if vi is in the range (miλ ±

2mz
sλ ) and zero otherwise.

For the varsingle setting and mi 6= 0 it is:

scorei(mi, vi) =
1

2

(
1 + cos

(
s
λvi −mi

|mi|
π

2

))

39



if vi is in the range (miλ ±
2|mi|
sλ ) and zero otherwise.

In the cumulative case it is for mi 6= 0

scorei(mi, vi) =
1

2

(
1 + sin

(
s
λvi −mi

mz

π

4

))
if vi is in the range (miλ ±

2mz
sλ ), 1 if it is above, and 0 if it is below the range, and for mi = 0 it is

scorei(mi, vi) =
1

2

(
1− sin

(
s
λvi −mi

mz

π

4

))
if vi is in the range (miλ ±

2mz
sλ ), 0 if it is above, and 1 if it is below the range.

For the varsingle setting and mi 6= 0 it is:

scorei(mi, vi) =
1

2

(
1 + sin

(
s
λvi −mi

|mi|
π

4

))
if vi is in the range (miλ ±

2|mi|
sλ ), 1 if it is above, and 0 if it is below the range.

-t parabel

The score is in the fitting case the top of an inverted parabel:

scorei(mi, vi) = 1−min

{
1,

(
s
λvi −mi

2mz

)2
}

For the varsingle setting and mi 6= 0 it is:

scorei(mi, vi) = 1−min

{
1,

(
s
λvi −mi

2|mi|

)2
}

In the cumulative case it is for mi 6= 0

scorei(mi, vi) = 1−max

{
0,min

{
1,

1

2

(
s
λvi −mi

2mz

)3
}}

and for mi = 0 it is

scorei(mi, vi) = max

{
0,min

{
1,

1

2

(
s
λvi −mi

2mz

)3
}}

For the varsingle setting and mi 6= 0 it is:

scorei(mi, vi) = 1−max

{
0,min

{
1,

1

2

(
s
λvi −mi

2|mi|

)3
}}

-t binary

The binary function is much simpler, the steepness parameter s has no effect, λ is neither computed or set.
The score is in the fitting case is

scorei(mi, vi) =
1

2
(sgnvi + sgnmi)

and in the cumulative case t is

scorei(mi, vi) = min

{
1,

1

2
(2 + sgnvi − sgnmi)

}
.

In the relative case scorei(mi,−vi) is also computed and used if is larger than scorei(mi, vi).

40



Exclude reactions from scoring: -x

This option removes the respective reactions from the computation of Score(Mk, V ) and also the computation
of λ and mz. The option must be called with a filename containing one reaction identifier per line. The
option can appear multiple time with different file names: in this case the reaction identifier of all files are
regarded. The computation of Score(Mk, V ) with the set X of excluded indeces changes to:

Score(Mk, V ) =

∑
i/∈X

wiscorei(mi, vi)∑
i/∈X

wi
and for sigscore Score(Mk, V ) =

∑
i∈In X

wiscorei(mi, vi)∑
i∈In X

wi

Assigning a weight to reactions: -w

By default, every reaction carries the same weight in the computation of Score(Mk, V ), λ and mz. This
option reads a file with weights in the following format:

• whitespace separated

• first token: reaction identifier of reaction i

• second token: non-negative number wi.

The computation of Score(Mk, V ) changes to:

Score(Mk, V ) =

n∑
i=1

wiscorei(mi, vi)

n∑
i=1

wi

and for sigscore Score(Mk, V ) =

∑
i∈In

wiscorei(mi, vi)∑
i∈In

wi

Reaction identifiers not appearing the the weight files are assumed to have weight 1. A weight of zero is also
allowed, it has the same effect as including the respective reaction in the excluded file (-x).

Displaying the scores for single reactions: -D

The output (showing the total score) is preveded by a tab-separated table showing

• the reaction identifier,

• the expression value,

• the scaled expression value,

• the flux value in the reference flux mode,

• the computed score,

• the weighted computed score, and

• the weight.

There is also the option -d showing additional information which are not documented in detail here.

41



Chapter 7

Using FABASE without FASIMU

The question arises why the two layer structure FABASE vs. FASIMU which resulted from historical reasons
is still retained. The answer is that it may still be worthwhile to use FABASE on its own so this possibility
is still supported.

To use FABASE without FASIMU is a reasonable alternative if FASIMU’s simulations concept is not
needed, i.e. if the focus is on a single optimization problem (biomass maximization for instance). Reasons
might also be related to computation times: FASIMU increases the number of reactions and metabolites
considerably (one extra reaction and metabolite for each metabolite) to control the systems boundaries. The
intrinsic problem complexity is not changed by this modification, however, the files get larger, and some
scripts may be affected by this.

The main reason however to use FABASE alone is for experimentation. In a typical FASIMU session,
the basic information files (the LPF-files) are overwritten frequently and some flow of information is not
visible. It may even be sensible to modify certain LPF-files in a text editor to obtained algorithmic features
not yet (or never be) implemented in FASIMU. Also a combined approach is possible: start with FASIMU
(including the added system boundary control) and continue with FABASE functions.

Technically, the main difference between a FASIMU and FABASE session is that in a FABASE session you
call compute-FBA (or other compute- functions) directly from the command line where in a FASIMU session
you put the respective compute- functions into the variable $optimization_call and enter simulate or
simulate_single in the command line — the compute- functions are called indirectly. The other important
difference is that in a FABASE session you have to put the objectives in the file targetfluxes and the
constraints in the file fluxconstraints where in a FASIMU session the objectives and constraints are
condensed in a single line of simulations and targetfluxes and fluxconstraints are written upon this
information. Simply put: FABASE: more control but also more manual work. The startup of a FABASE
section is:

source fasbase

One example of a small FABASE session is given in the tutorial about E. coli : the modifica-
tion of the equilibrium constants into a set obeying the Wegscheider condition. Here, the function
well-formed-equilibriums is called directly on the model.

7.1 Computation functions

The principal optimization function: compute-FBA

The more comprehensive description can be found in section 4.3. Here, a more technical description can be
found. The basic usage is:

42



compute-FBA [options]

compute-FBA on its own is translated to compute-FBA -F. Description of the options follow.

Options for flux minimization: -F [<fluxmin-type>]

Type weight of forward flux weight of backward flux
h 1 Keq

0 1 1

1 1
1+Keq

Keq

1+Keq

2 1
1+K2

eq

Keq

1+K2
eq

s 1√
1+K2

eq

Keq√
1+K2

eq

e <enzyme cost> <enzyme cost>
E <enzyme cost> <enzyme cost> Keq

m 1 if v = 0, 0 otherwise
The type can be omitted in which case it is 0 if -T is also set, and h otherwise.

Specific minimization: --m [<rea-ID>] ...

The flux of the given reaction(s) is minimized. For this to be useful it is necessary that at least one flux is
set to a nonzero value (e.g. with the setfluxes file), otherwise the zero solution will be computed.

Specific maximization: --b [<rea-ID>] ...

The flux of the given reaction(s) is maximized. For this to be useful it is necessary that wither the intake or
the output fluxes are restricted (e.g. with the fluxbounds file), otherwise the problem becomes unbounded.

Fitness maximization: --f [<type> [<weight>]]

Type Norm Adjustment Fitness score Restriction

0 Euklidian none 1−
√∑

∆vi2∑
Li2

1 Euklidian partly (linear) 1−

√∑ ∆vi
2

|Li|∑
|Li|

2 Euklidian full 1−
√

1
n

∑ ∆vi2

Li2

3 linear full 1− 1
n

∑ |∆vi|
|Li| sgn(vi) = sgn(Li)

4 linear none 1−
∑
|∆vi|∑
|Li|

5 linear full 1− 1
n

∑ |∆vi|
|Li|

6 maximum none 1− max{|∆vi|}
max{|Li|}

7 maximum full 1−max
{
|∆vi|
|Li|

}
8 quadratic full 1− 1

n

∑ ∆vi
2

Li2

The weight is multiplied with the above coefficient. Fitness maximization can be combined with flux
minimzation and specific minimization but not with maximization.

Using expression profiles

This function requires the file expressions to be present, giving the expression values. The call is:

compute-FBA -x [<weight>] [-xu <upper>] [-xl <lower>] [-xs <significant>]

43



The option -x switches the function on, meaning that specific terms are added to the scoring function. Thus,
this feature can be combined with other optimizations. Defaults are
Parameter meaning default value
<weight> relative weight with respect to scoring function 1000
<upper> upper threshold on positive expression 0.5
<lower> lower threshold on negative expression 0.49
<significant> threshold on the significance of the absolute value of a flux 1

Thermodynamic realizability

Options for TR:
Option purpose default value
-T use TR criterion, default type
-T [[A-Ea-e]r?] use TR with type identifier A
-s [<weight>] use soft bounds 1
-w [<weight>] use set points 10−5

-k <number> potential tolerance maximum
-K <number> penalty multiplicator for potential tolerance
<num>..<num> alternative way to enter concentration values

TR types are summarized in this table:
Type Zero flux Zero potential Irreversible reaction comment
A q arbitrary any flux Conditional clause implementation
B q = 0 v = 0 Conditional clause implementation
a q arbitrary any flux bigM implementation
b −ε < q < ε −ε < v < ε bigM implementation
Ar q arbitrary any flux potential sign fixed Conditional clause implementation
Br q = 0 v = 0 potential sign fixed Conditional clause implementation
ar q arbitrary any flux potential sign fixed bigM implementation
br −ε < q < ε −ε < v < ε potential sign fixed bigM implementation

Program control options

Option purpose
-p prepare only ’problem.lp’, do not compute
-t <seconds> timeout in seconds, finish (single flux computation), default 300, 0 means un-

limited time
-c check the results with another cplex run
-d print documentation files for thermodynamic feasibility
-CPLEXnodes <nodes> abolish computation number of nodes, default 5000, 0 means unlimited number

of nodes (CPLEX only)
-CPLEXemph <1..4> MIP emphasis setting to be tried out in critcal size models (CPLEX only)
-CPLEXline "<param-line>" Give this line to CPLEX

7.2 Further functions in FABASE

Ensure standard directions

The function ensure-standard-directions ensures the convention that the reactions are written such that
the standard Gibb’s free energy is negative, i.e. the equilibrium constant is larger or equal to 1. In other
words, if all metabolites have a concentration of 1M each reaction proceeds in forward direction. This
condition is assumed in the formulation of the flux minimization algorithm [8], which is implemented as

44



compute-FBA -F h in FASIMU. The function simply exchanges products and substrates in the reaction
equation for the respective reactions, also modifies the boundaries stored in the file reactions accordingly,
and replaces the equilibrium constant by its inverse. It does currently not change the contents of setfluxes,
fluxconstraints, fluxbounds, fluxfix etc. . The user has to take of that.

The function modifies the files reactions and equilibriums. However, it does not regenerate all infor-
mation depending on these files. Therefore, it does not work just to continue with the FASIMU/FABASE
session. The recommended way to use the function is to create a new model with the modified files reactions
and equilibriums:, as follows, assuming the original model is in $modeldir/model1:

mkdir newdir

cd newdir

cp -R $modeldir/model1/*

source fabase

ensure-standard-directions

cp -R $modeldir/model1 $modeldir/model2

cp reactions equilibriums $modeldir/model2

rm *

cd ..

rmdir newdir

Still, it is possible to restart a FABASE session with modified reactions file, just call fabase-main. Gener-
ally, it is not a good idea to modify the file reactions in a FASIMU session, since fasimu modifies the model,
but it is possible with:

ensure-standard-directions

rm reactions.original equilibriums.original

fasimu-main

Well-formed equilibriums

For thermodynamic computations it is favorable if the standard reaction free energies are compatible to
each other, in other words, they obey the Wegscheider condition. Experimental values from differ-
ent sources obviously do not exactly comply with this rule. Values derived from formation energies by
prediction methods [12] should do so but this is not always the case due to computational errors. The
function well-formed-equilibriums attempts to force this condition with changes to the data given in
equilibriums. It is done with an error minimization which is either linear (-l option) or quadratic (-
q only available for solver CPLEX). The latter usually spreads the modification values on more reac-
tions. This algorithm is described in [?]. There are two files modifying the algorithm: If a reaction is
included in the file trusted-equilibriums it will not be modified. If a reaction is included in the file
untrusted-equilibriums it will primarily be changed. The corrected set of equilibrium constants will be
written to corrected-equilibriums and a modification report is written to eq-corr-report.txt. It is rec-
ommended not continue the FABASE or FASIMU session with a modified equilibriums file but to generate
a separate model instead as described in the previous section (Ensure standard directions). However, in a
FABASE session, fabase-main can be called, or in FASIMU session fasimu-main can be called to regenerate
dependent information.

Another recommended way to modify the model prior to a FASIMU session is to start a small fabase
session just for the modification of the model, and then start FASIMU in the normal way:

source fabase

well-formed-equilibriums

source fasimu

This also works with restrict-equilibriums and ensure-standard-directions.

45



Remove duplicates

During network reconstruction work, occasionally the same reaction is recorded twice. It might be easily
overlooked if the order of reactants is different and substrates/products are reversed. Duplicated reactions
can also be the result if two compartments are automatically merged.

Normally, duplicates do not present problems in the computation — just one of the reaction carries the
flux. But it might lead to confusion in the interpretation of the result. Troublesome can be the situation
when differing extra annotation is assigned to the reactions. Thus, it is advisable to check for duplicates
frequently in the curation process.

The function remove-duplicates performs the following steps:

• for each reaction, the substrates and the products are ordered lexicographically (you can inspect the
result in the text file reactions_ref.fgf).

• Each reaction is compared with each other reaction, directly and with products and substrates reversed.
(In fact, a more efficient method is used using gawks hashlist array.) If it is found it is recorded in the
file reactions_redundant.fgf (except for a situation described below).

That is a tab-separated file: the first two columns hold the respective reaction identifiers. The first
identifier is the one whose reaction is prepared to be retained in the network the second one belongs to
the reaction to be deleted. In a more than two-way equality also reactions belonging to the first identifer
in a row might be deleted. The third column holds the keyword forward or backward (indicating if the
product/substrate sides had to be reversed), and the fourth holds a comment (see the following point).

The flux bounds of both reactions are checked. If they do not overlap the reaction pair is not recorded.
For instance if forward and backwards reactions are split they will not be removed by remove duplicates.
If one flux interval is a subset of the other the more specified reaction is recorded in the first column
(comment “by stricter bounds”). If the flux intervals overlap but are not subsets, the reactions with
the higher value of the lower bound chosen for the first column (comment “by stricter lower bound”).
If the flux intervals are equal the lexicographically first entry is chosen for the first column (comment
“lexicographic for identical reactions”).

• The identifers of the second column are collected into a single file: removables.fgf.

The function remove-duplicates does not remove the reactions right away for obvious reasons: it is
worthwhile to check the reactions to be removed. The function apply_removables finally removes the
reactions from the file reactions and restarts FABASE. It uses the file removables.fgf for that pur-
pose. If the user want to delete other reactions, the file removables.fgf should be modified before calling
apply_removables.

Adjust metabolites file according to reactions file

Normally, FASIMU requires that all metabolites referenced in reactions are defined in the file metabolites
and each entry in metabolites appears as a reactant in reactions. If that is not the case from the start
the file metabolites is automatically modified with the function correct-metabolites. Each missing
metabolite is added to metabolites (the name is the identifier, and it is considered “closed boundary”), and
extra metabolites are removed. For each modifcation, a warning is printed to the screen. You can also call
this function manually to check and to see the warnings. However, the function is also called automatically
by source fasimu, source fabase, fabase-main etc. .

Filter reactions

In the computation with large networks, often a subnetwork is sufficient to model certain metabolic functions.
It is possible to duplicate the large network and remove the unnecessary reactions from the network. But

46



if errors become apparent in the large network and it is modified later the submodels are still contain these
errors. To repair them, the modifications can either be applied to every submodel created or the duplication
process can be repeated. Both methods are quite combuersome.

FASIMU offers a more elegant way to deal with this kind of model reduction. Unnecessary parts of the
network can usually easily be defined by set of reactions or metabolites.

The function reactions-filterout takes one argument, a file with a list of reaction identifiers, and
removes them from the file reactions. If there are metabolites which are not occurring in any reac-
tion they are removed automatically from the file metabolites. This is done by calling the function
metabolites-correct. Finally, fabase-main is called which restarts the FABASE session.

The function metabolites-filterout also takes one argument, a file with a list of metabolite identifiers,
and removes every reaction from the file reactions in which one of these metabolites occur. Consequently,
these metabolites are also removed from the file metabolites.

These functions should not be called in a FASIMU session as they modify only reactions and
metabolites but not reactions.original and metabolites.original. The purpose of the functions
is to adjust the model in a FABASE session before the FASIMU session is started. The recommended way
to reduce the model before computation is:

source fabase

reactions-filterout noreas.txt

metabolites-filterout nomets.txt

source fasimu

...

7.3 Modify model files in a FABASE session

The recommended way to handle your models

Generally, I do not recommend to modify the files in the directory in which you are working with FABASE.
You should keep the original models in separate directories and call source fabase in a fresh directory. Say,
you keep and modify your model in a directory ~/model then proceed like that:

cd ~

cp -R model model-compute

cd model-compute

source fabase

<do the computations>

<copy the result files to a designated directory>

cd ..

rm -r model-compute

Hoever, for experimentation you can change all input files during the session. The program is capable to
regenerate intermediate files but that requires to call functions.

Modification functions

See the following table for the modification functions. If you change one of items below the function on the
right hand side must be called. fabase-main regenerates every intermediate file, so it can be used if several
files are changed.

47



Modified file possible Function for the safe integration of the modification
reactions yes fabase-main

metabolites yes fabase-main

equilibriums yes fabase-main

TR-excluded yes update-TR-excludes

fluxmin-excluded yes update-enzymes (only if enzymes are used)
fluxmin-weights yes update-enzymes (only if enzymes are used)
concentration-ranges-classes yes update-concentration-ranges

concentration-class-ranges yes update-concentration-ranges

fluxbounds yes update-fluxbounds

setfluxes yes update-fluxbounds

fluxconstraints yes update-fluxbounds

targetfluxes yes make-vset-lpf

enzymes yes update-enzymes

fluxfix yes update-fluxfix

expressions yes not necessary
cplex-tail.in yes not necessary
lp_solve.par yes not necessary
lindo.par yes not necessary
$glpk_opts yes not necessary

48



Chapter 8

Customization of the external solvers

Large networks in combination with computational expensive constraints such as

• Thermodynamic realizability (requires Boolean variables, thus, computing a flux distribution is now
at least a mixed-boolean linear problem, and the number of variables increases: for each metabolite
one Boolean and one real-valued variable)

• Set points for concentration values (-w option) turn the problem into a quadratic objective problem

• Use of the fitness maximization, types 0...2 also turns the problem into a quadratic constraint problem

• stoichiometric coefficients are real numbers or have a large value (increase the numerical difficulty of
the problem, which might cause apparently wrong solutions)

may push the optimization on the brink of their capability. However, all solvers can be customized. Choosing
the right parameter switch may put a previously unsolvable problem into reach. You should inspect the file
“solver.out” which is the output of the solver program stored after each computation call by FASIMU and
the instruction manual of the respective solver.

By default, FASIMU instructs the solver to finish a single optimization after 5 minutes. The functions

set-timeout <seconds>

modifies the configuration of the active solver to change this time span. The value 0 disables the timeout
feature.

CPLEX

As FASIMU has been developed with CPLEX, a few default settings have been found to ideally harmonize
with difficult FBA optimizations. The parameters are stored in the file cplex-tail.in which you can modify
to change the values of parameters. You can display them with

cat cplex-tail.in

The file will not be overwritten by a call of “source fasimu”; the changes will be in effect for all further
computations in this directory. The defaults can be restored with:

restore-defaults-cplex

49



LINDO

Lindo parameters are stored in “lindo.par”. You can display them with

cat lindo.par

Again, this file will not be overwritten by a subsequent call of “source fasimu”; the defaults can be restored
with:

restore-defaults-lindo

lp solve

Parameters for lp solve are stored in lp_solve.par. You can display them with

cat lp_solve.par

For more information on parameters see http://lpsolve.sourceforge.net/5.5. The file lp_solve.par will not
be overwritten by a subsequent call of “source fasimu”; the defaults can be restored with:

restore-defaults-lp_solve

GLPK

GLPK parameters are stored in the bash variable “$glpk_opts”. The variable contains command line
options given to GLPK. Call

glpsol -h

to see a list of options. To apply different parameters you have to adjust this variable. You can display them
with

echo $glpk_opts

To see a list of possible parameters, call

glpsol --help

in the command line. The variable is not changed by a subsequent call of “source fasimu”; the default can
be restored with:

restore-defaults-glpk

50



Chapter 9

Final remarks

9.1 Publication

If you found FASIMU useful for your scientific work you are asked to cite the publication:
Andreas Hoppe, Sabrina Hoffmann, Andreas Gerasch, Christoph Gille and Hermann-Georg Holzhütter.

FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinfor-
matics 2011, 12:28. doi:10.1186/1471-2105-12-28, PMID:21255455.

9.2 Getting more help

There is also a FASIMU tutorial which may by helpful to you.

Functions help page

Some functions have their own help pages available with the “-h” option: compute-FBA, compute-shlomi,
well-formed-equilibriums, compute-moma, compute-room. FASIMU has an online help page:
fasimu-help.

Source code

FASIMU is written in the high-level languages bash and gawk so if you are fairly familiar with the syntax
of these languages it may be worthwhile to look in the source code. For some functions additional infor-
mation is available in the comments of the source code. The functions related to FABASE are defined in
/usr/local/bin/fabase, related to FASIMU in /usr/local/bin/fasimu (for the recommended installation
places).

FASIMU project website

You might wish inspect the project’s website at

http://www.bioinformatics.org/fasimu

for the latest updates and other information. It is highly recommended that you subscribe to the news list
at

http://www.bioinformatics.org/mailman/listinfo/fasimu-news

to get informed on updates. Please report bugs to the bug tracking

51



http://www.bioinformatics.org/bugs/?group id=1004

There is also a public forum at

http://www.bioinformatics.org/forum/?group id=1004

9.3 License

FASIMU is published under the GNU public license (GPL) which can be viewed in a FASIMU session with

fasimu-license

There is also a license statement at the beginning of each of the source files. This document is likewise under
the GPL.

52



Bibliography

[1] Bash, the GNU Project’s Bourne Again SHell, a complete implementation of the IEEE POSIX and
Open Group shell specification.

[2] Scott A Becker and Bernhard O Palsson. Context-specific metabolic networks are consistent with
experiments. PLoS Comput Biol, 4(5):e1000082, May 2008.

[3] Anthony P Burgard, Evgeni V Nikolaev, Christophe H Schilling, and Costas D Maranas. Flux coupling
analysis of genome-scale metabolic network reconstructions. Genome Res, 14(2):301–312, Feb 2004.

[4] J. S. Edwards, R. U. Ibarra, and B. O. Palsson. In silico predictions of escherichia coli metabolic
capabilities are consistent with experimental data. Nat Biotechnol, 19(2):125–130, Feb 2001.

[5] Albert Gevorgyan, Mark G Poolman, and David A Fell. Detection of stoichiometric inconsistencies in
biomolecular models. Bioinformatics, 24(19):2245–2251, Oct 2008.

[6] Sabrina Hoffmann, Andreas Hoppe, and Hermann-Georg Holzhütter. Composition of metabolic flux
distributions by functionally interpretable minimal flux modes (minmodes). Genome Inform, 17(1):195–
207, 2006.

[7] Sabrina Hoffmann, Andreas Hoppe, and Hermann-Georg Holzhütter. Pruning genome-scale metabolic
models to consistent ad functionem networks. Genome Inform, 18:308–319, 2007.

[8] Hermann-Georg Holzhütter. The principle of flux minimization and its application to estimate stationary
fluxes in metabolic networks. Eur J Biochem, 271(14):2905–2922, Jul 2004.

[9] Hermann-Georg Holzhütter. The generalized flux-minimization method and its application to metabolic
networks affected by enzyme deficiencies. Biosystems, 83(2-3):98–107, 2006.

[10] Scott Holzhütter and Hermann-Georg Holzhütter. Computational design of reduced metabolic networks.
Chembiochem, 5(10):1401–1422, Oct 2004.

[11] Carola Huthmacher, Andreas Hoppe, Sascha Bulik, and Hermann-Georg Holzhütter. Antimalarial drug
targets in plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst
Biol, 4(120), August 2010. accepted.

[12] Matthew D Jankowski, Christopher S Henry, Linda J Broadbelt, and Vassily Hatzimanikatis. Group
contribution method for thermodynamic analysis of complex metabolic networks. Biophys J, 95(3):1487–
1499, Aug 2008.

[13] Sarah Killcoyne, Gregory W Carter, Jennifer Smith, and John Boyle. Cytoscape: a community-based
framework for network modeling. Methods Mol Biol, 563:219–239, 2009.

[14] Steffen Klamt, Julio Saez-Rodriguez, and Ernst D Gilles. Structural and functional analysis of cellular
networks with CellNetAnalyzer. BMC Syst Biol, 1:2, 2007.

53



[15] J Küntzer, T Blum, A Gerasch, C Backes, A Hildebrandt, M Kaufmann, O Kohlbacher, and HP Lenhof.
BN++ - a biological information system. J Integr Bioinformatics, 3(2):34, 2006.

[16] Francisco Llaneras and Jesús Picó. A procedure for the estimation over time of metabolic fluxes in
scenarios where measurements are uncertain and/or insufficient. BMC Bioinformatics, 8:421, 2007.

[17] Jennifer L Reed and Bernhard Ø Palsson. Genome-scale in silico models of e. coli have multiple equiva-
lent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome
Res, 14(9):1797–1805, Sep 2004.

[18] Stefan Schuster and Claus Hilgetag. On elementary flux modes in biochemical reaction systems at
steady state. Journal of Biological Systems, 2(2):165–182, 1994.

[19] Daniel Segrè, Dennis Vitkup, and George M Church. Analysis of optimality in natural and perturbed
metabolic networks. Proc Natl Acad Sci U S A, 99(23):15112–15117, Nov 2002.

[20] Tomer Shlomi, Omer Berkman, and Eytan Ruppin. Regulatory on/off minimization of metabolic flux
changes after genetic perturbations. Proc Natl Acad Sci U S A, 102(21):7695–7700, May 2005.

[21] Tomer Shlomi, Moran N Cabili, Markus J Herrg̊ard, Bernhard Ø Palsson, and Eytan Ruppin. Network-
based prediction of human tissue-specific metabolism. Nat Biotechnol, 26(9):1003–1010, Sep 2008.

54


