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Outline

This computer program, the ‘“alignment neighborhood explorer” (ANEX), will take an
input multiple sequence alignment (MSA), which is typically reconstructed by an aligner, and
will explore the MSA’s neighborhoods in the MSA space.

The program will explore the neighborhoods via a combination of “elementary moves,”
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namely, “shifts” and “splits” of individual gaps, “merges,” “purges” and “ex-nihilo”s of pairs
of gaps, (and potential reverse moves of “(incomplete-)collapse of independent insertions
(iCII)”, “(incomplete-)creation of spurious independent insertions (iCSII),”...
POSTPONED!!) etc.

Then, the program will assign predicted relative probabilities to the MSAs in the explored
neighborhoods. The probabilities will be calculated based on a genuine stochastic
evolutionary model of an entire sequence via substitutions and insertions/deletions (indels)
with realistic indel length distributions.

As a “pre-processing” step, the program will also identify MSA portions with “potentially
complex errors,” where restoring the true MSA is very likely formidable. This will be done

based on some properties of MSA regions, like the indel density and the possible involvement

of long indels.
[This program was motivated by some preliminary analyses (Ezawa 2016a).]
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1. Overall workflow

The flowchart of the program is shown in Figure 1. After being fed with an input MSA and a
tree [ (0) |, it will first scan the MSA for the gap configuration of the entire MSA and,
optionally, also for the portions likely containing ‘“‘purge”’-type errors [ (i) ]. During the
course of this scan, it will also identify the portions with “likely complex errors” [ (ii) ].

Then, it will explore the neighborhoods of the MSA via a sort of window analysis, while

calculating the increments/decrements in the (log-) probability of the alignment compared
to that of the input MSA [ (iii) ]. Finally, the results will be displayed [ (iv) ]. In the following

sections, I will elaborate on how these steps will be performed.

2. Scanning the input MSA

Given an input MSA, the program will first scan it horizontally, from left to right, and
(conceptually) chop the MSA into an alternating series of gapped and gapless segments (on
the left of step (i) in Figure 1). This operation is based purely on the gap configuration of the
MSA. More precisely, a gapped segment is defined as a run of contiguous gapped columns
delimited by gapless columns (or a gapless column and a MSA end), and a gapless segment is
defined as a run of contiguous gapless columns (Ezawa, Graur and Landan, Part III).
Optionally, the program will also search for portions where ““purge”-type errors are likely
(on the right of step (i) in Figure 1). (For “purge”-type errors, see, e.g., Landan and Graur
2009; Ezawa 2016a.) This will be performed via a sliding-window analysis (Figure 2). In
each window (of a specified width), the residue configuration will be examined. And, for each
branch of the tree, the “observed” number of substitutions will be compared to the expected
(or “predicted”) number of substitutions within the window. The former will be estimated
from the residue pattern within the window (using a likelihood analysis), and the latter will be
estimated from the branch lengths (and optionally from the “observed” numbers of
substitutions along other branches, see Appendix A1 for more details). If the “observation”
significantly exceeds the “prediction” (according to a specified condition), the window will be
marked as “purge-like error suspected.” And overlapping windows will be merged to form a
portion where a “purge”-like error is likely. [For this purpose, it is necessary to examine
the “purge”-like errors identified in the simulation analyses in more detail. See sections

SR-1 and SM-1 in Supplementary Materiala, Part 2 for some preliminary analyses.]

3. Identifying the MSA portions with “likely complex errors”
Quite frequently, MSAs reconstructed by an aligner (even if it is state-of-the-art) contain

“complex” errors, each of which cannot easily be classified into a definite type or expressed
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as a combination of definite types (Ezawa 2016a). It will also be very difficult to rectify such
“complex” errors and to recover the true MSA from the reconstructed one in such a MSA

portion. Therefore, it would be wise to exclude such portions from further analyses. and it
would also be honest to tell the users which portions of the input MSA likely contain complex

errors. The program will identify such portions by examining the gap patterns and the
predicted indel events in each gapped segment. [For this purpose, it is necessary to

characterize the ‘‘complex” errors identified in the simulation analyses in more detail.

See sections SR-3 and SM-3 of Supplementary Materials, Part 2, for some preliminary

analyses.]

4. Exploring the neighborhoods of an input MSA

After scanning the input MSA, the program will explore its neighborhoods via a sort of
window analysis. Each window will be defined with a gapped segment, or (optionally) a
region where a “purge”-type error is suspected, accompanied by its flanking regions of a user-
specified width. Each flanking region may contain a gap or gaps. In that case, the region will
be extended to fully include such (a) neighboring gapped segment(s).

In each window, the program will examine the MSAs obtained from the reconstructed MSA
via an “elementary move” (Landan and Graur 2009; Ezawa 2016a), or a combination of a
few elementary moves. (Users will be able to set the upper bound to the number of
elementary moves to be examined.) Basically, the elementary moves are defined as the move
of a “gap-block,” which is a block of gaps delimited by two inter-column positions and a
branch in the phylogenetic tree (Figure 3A). The program will attempt the following
elementary moves (illustrated in Figure 4).

(i) A “shift” of a gap-block. This move just re-positions a gap-block without affecting others
nearby (if at all) (Figure 4A). This can be done as long as the gap-block is ‘“isolated” from
others. A gap-block is called “isolated” either if it does not overlap others in horizontal
positions, or if it is separated from each horizontally overlapping one by at least three
branches in the phylogenetic tree (see panels B, C and D of Figure 3).

(ii) A “purge” of two equal-sized gap-blocks that affect_ the complementary sets of sequences

(, which are separated by a single branch) (Figure 4B). (This move is the reverse of the “ex-
nihilo” of a pair of (spurious) blocks.) This move is defined utterly uniquely, and therefore
should be processed very quickly.

(iii-a) A “merge” of two gap-blocks that affect the same set of sequences and that are

separated by a number of columns (Figure 4C). (This move is the reverse of a (erroneous)

“split” of a gap-block.) This move is defined uniquely, modulo a shift of the resulting single

4



gap-block. Thus, it should be processed as quickly as shifts.

(iii-b) A “merge” of two non-equal-sized gap-blocks that affect the complementary sets of
sequences (Figure 4D). This move, too, is defined uniquely, modulo a shift of the resulting
single gap-block. Thus, it also should be processed as quickly as shifts.

(iv-a) A “split” of a single gap-block into two gap-blocks both of which affect the same set of
sequences (the reverse of Figure 4C). There are {the block-length minus one} ways of
splitting the gap-block, resulting in pairs of gap-blocks of different length-combinations. And
each gap-block in each resulting pair may shift by some sites. Thus, it may take some time to
process this move. If possible, it would be better to devise a measure to process this case
quickly.

(iv-b) A “split” of a single gap-block into two gap-blocks, each of which affects each of the

complementary sets of sequences (the reverse of Figure 4D). Although there are

(theoretically) infinite ways of such moves, which result in different combinations of block-

lengths, we will restrict the moves to consider by setting an upper bound on the shorter block-

length. As in the previous case, each gap-block in each resulting pair may shift by some sites,
which may consume quite an amount of time. If possible, it would be better to devise a
measure to process this case quickly.

(v) An “ex-nihilo” of a pair of gap-blocks, each of which affects each of the complementary
sets of sequences (the reverse of Figure 4B). There are many ways of performing this move,
with different sets of original columns affected, and with different sizes of created gap-blocks.
If possible, it would be better to devise a measure to process this case quickly.

(vi-a) A “vertical-merge” of a pair of equal-sized gap-blocks that affect two sequence sets
separated by two branches (Figure 4E). (This is the reverse of a (erroneous) vertical-split of a
gap-block.) This move is defined uniquely, modulo a shift of the resulting gap-block. Thus, it
should be processed as quickly as a shift.

(vi-b) A “vertical-merge” of a pair of equal-sized sequence-blocks that involve two sequence

sets separated by two branches (Figure 4F). (This is the reverse of a (erroneous) vertical-split
of a sequence-block.) A “sequence-block” is defined as a complement of a gap-block (within
the relevant MSA segment) (Figure 3E). This move, too, is defined uniquely, modulo a shift
of the resulting gap-block (complementary to the resulting sequence block). Thus, it should be
processed as quickly as a shift.

(vii-a) A “vertical-split” of a single_gap-block into two (complementary) gap-blocks that
affect two sequence sets separated by two branches (the reverse of Figure 4E). As long as the
original gap-block affects a single clade (or the complement of a single clade), we can define

a unique vertical-split (at the top node of the clade). (Other “vertical splits” actually increase
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the number of indels by two or more each, as if they were CllIs (Figure S1A). ... Such true
MSAs seem very unlikely, though the probability is not zero... the actual frequency of errors

rectified by these moves needs be examined in the future...) In such a vertical-split, each gap-

block in the resulting pair may shift by some sites. Thus, the time-consumption should be on

the same order as that for double-shifts.

(vii-b) A “vertical-split” of a single sequence-block into two (complementary) sequence-

blocks that involve two sequence sets separated by two branches (the reverse of Figure 4F). In
this case, too, as long as the original sequence-block involves a single clade (or the
complement of a single clade), we can define a unique vertical-split (at the top node of the
clade). (Other “vertical-split”s are actually “ex-nihilo”s aligned with a gap (Figure S1B). ...
The true MSAs with such patterns seem very unlikely, because the number of indels increases
by two or more each...the actual frequency of errors rectified by these moves needs be

examined in the future...) In such a vertical split, each resulting block may shift. Thus, the

time-consumption should be on the same order as that for double-shifts.

(viii) “Shift + Shift” (Figure 4G) ... what’s this??? ... needs be examined further.
[NOTE ADDED on Aug 4 (Thu), 2016: our preliminary analyses (SM-2 and SR-2 of
Supplementary Materials, Part 2) indicated that most of the *“Shift + Shift” errors are
just simple one or two shift(s), which the current prototype script failed to annotate
correctly because of the erroneous block partitioning. Thus, these cases should be

handled similarly to the usual shift or two shifts.]

5. Calculating (logarithmic) probabilities of explored MSAs

Under most of the probabilistic models currently used for sequence evolutionary analyses, as
well as under the (genuine stochastic) evolutionary models we are going to use, the
occurrence probability of a MSA can be expressed as a product of its substitution component
and indel component. (The proofs under the evolutionary models are given, e.g., in Ezawa,
Graur and Landan, Part IV and Ezawa 2016a.) Thus, we will discuss the calculations of these

probability components separately.

5-1. Calculation of indel components of MSA probabilities
If the indel evolutionary model satisfies the “sufficient and nearly necessary set of
conditions,” the probability is factorable into a product of the overall contribution (determined

by the root sequence state(s)) and multiplication factors contributed by gapped segments
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(Ezawa, unpublished A; draft: Ezawa, Graur and Landan. Part I). Therefore, we can focus on
the change in the multiplication factors from the gapped segments affected by the move in
question (and possibly also the change in the overall factor). Especially, let’s consider that we

use an indel model whose indel rates are space-homogeneous (i.e., homogeneous along the

sequence) at least within the MSA portion in question. Then, (1) as long as the affected gap-

block is isolated from all others (like in panels B and C of Figure 3). the multiplication factor

will remain virtually unchanged under its shift. (See Appendix A2 for a proof.) Besides, (2)

under a parameter setting where the first-approximation (by parsimonious indel histories

alone) is quite good. the detailed (fine-grained) positional relationships between the non-

isolated gap-blocks do not substantially influence the multiplication factor, as long as their

topologies (and the sizes of the parsimonious indels) remain unchanged. (See Appendix A3
for a demonstration using some typical examples.) These two good properties will help
substantially reduce the computational burden when calculating the indel component.
Let us now consider what we should do when trying different types of moves. (Recall
that the moves are illustrated in Figure 4.)
(i) When trying a “shift,” we don’t have to do anything (as long as the gap-block is isolated).
When the gap-block starts to interfere with others, we need to deal with the move accordingly.
(i) When trying a “purge” of two gap-blocks, subtract the multiplication factors from the
gapped segments that the gap-blocks belonged to, and add the contributions from newly
created gapless columns. (We may also want to examine “intermediate states,” where only
portions of the blocks were purged (Figure S2A).)
(iii-a) When trying a “merge” of two gap-blocks affecting the same sequence set, subtract the
multiplication factor(s) from the gapped segment(s) accommodating the gap-blocks to be
merged, and add the multiplication factor from the new gapped segment accommodating the
resulting gap-block. (We may also want to examine “intermediate states,” where the bridging
gapless segment moves... This corresponds to a “merge + split” (Figure S2B).)
(i1i-b) When trying a “merge” of two gap-blocks affecting two complementary sequence sets,
follow the rule similar to that in (iii-a), and also add contributions from newly created gapless
columns. (We may also want to examine “intermediate states,” where the two gap-blocks
reduce by the same size... This corresponds to a “merge + split,” or an “incomplete merge”
(Figure S2C).)
(iv-a) When trying a “split” into two gap-blocks affecting the same sequence set, we try a

number of combinations. For each combination, subtract the factor from the block to be split,

and add the factors from the blocks newly created.

(iv-b) When trying a “split” into two gap-blocks affecting the complementary sequence sets,
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too, we try a number of combinations. For each combination, follow the rule similar to that in

(iv-a), and subtract contributions from “decomposed” gapless columns.

(v) When trying an “ex-nihilo,” we try a number of combinations. For the group of

combinations creating two gap-blocks of a particular size, add the factors from the gap-blocks
newly created, and subtract contributions from “decomposed” gapless columns.

(vi-a) When trying a “vertical-merge” of a pair of (equal-sized) gap-blocks, subtract the
factors from the gap-blocks to be merged, and add the factor from the newly created gap-
block, and also add contributions from the newly created gapless columns.

(vi-b) When trying a “vertical-merge” of a pair of (equal-sized) sequence-blocks, subtract the
factors from the segments containing the sequence-blocks to be merged, and add the factor
from the segment containing newly created sequence-block.

(vii-a) When trying a “vertical-split” of a single gap-block into two gap-blocks, subtract the
factor from the block to be split, and add the factors from the resulting two blocks, and also
subtract the contributions from the gapless columns that were “split.”

(vii-b) When trying a “vertical-split” of a single sequence-block into two sequence-blocks,
subtract the factor from the segment containing the sequence-block to be split, and add the

factors from the two segments containing the resulting sequence-blocks.

NOTE: Basically, when trying each of the moves (ii)-(v), it would suffice to change the
factors contributed from the branch phylogenetically separating the gap-block(s). When trying
each of (vi-a), (vi-b), (vii-a) and (vii-b), it would basically suffice to change the factors
contributed from the three branches involved in the move. But there may be some exceptional

cases. So, due caution should be exercised.

5-2. Calculation of substitution components of MSA probabilities

Basically, the calculations will be performed via Felsenstein’s pruning (aka peeling) algorithm
(Felsenstein 1981, 2004). (But the pulley principle will not be used if we need to keep the root
position.) Either when scanning the entire MSA, or when beginning to explore the MSA

neighborhood in each window, it would be convenient to store 2 sets of probabilities,

{ PL ( w; b’ C)} wER
(denoted as b) and a MSA column (denoted as ~) (Figure 5A). Here, @ denotes the

and { B, (w; b, c)} , assigned to each combination of a branch
u weER

“alphabet” of residues (bases or amino acids) used for the sequences. p, (a); b, c) is the
conditional probability that, given residue , (= Q) at the lower-end of branch f, , we

observe the residues of all its descendant extant sequences present in column . Probabilities

of this type can be calculated via the standard pruning algorithm in a bottom-up manner (i.e.,
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from leaves to the root) (described incidentally in Appendix A4). p (ews b, c) is the joint
probability that, in column ¢, we observe ¢, (& ) at the upper-end of branch £, and the
residues of all extant sequences on the upper-end-side of 4, , which is the complement of the
set of descendant sequences of ¢, . Probabilities of this type can be calculated via a top-down

recursion (Appendix A4). It should be noted that these two sets of probabilities satisfy the
following equation (for each branch p, and each column ):

P(C) - E(UEQ E(u'EQPU ( ; b’ C) P( @ = CU’; b) PL ( Cl),; b’ C) . T Eq(l)
Here P(w— w'’; b) is the conditional probability that, given ,, (eQ)at the upper-end of
b . Wwehave o' (€ Q) atits lower-end. And p(¢) is the probability that we observe the

residues of all extant sequences present in column ~. If there is enough memory space, it

may be more convenient to store also the sets of “extended” probabilities, { P, (w; b, c)} ol
and { P, (w; b, c)} __.They are defined as follows:

P, (w; b, c) = EwEQP( ww— w';b) P (w;b,c), -—-Eq.(2)

P, (w;b, c) = EwEQ P,(w’sb,c) P(w' v+ w;b) . ---Eq.(3)
(For each of these probabilities, the sub-tree under consideration extends by branch b- See
Figure 5, panels B and C.) These probabilities, P, , B, , 15L and p ,can be quickly
calculated via a recursion algorithm on a round-trip traversal of the tree (Appendix A4). Using
the “extended” probabilities, Eq.(1) can be simplified as:

P(c) = EwEQISU (w; b, c) P, (w; b, c) = EwEQPU(a); b, c) p, (ew; b, c) . --- Egs.

(1’a,1’b)
Moreover, they also satisfy a “three-way equation” at each bifurcated internal node p (other

than the root):

P()= _ B, (w;by(n),c) P, (w; b, (n), ¢) P, (w; be,(n), ¢) . —-Eq.(4)
Here b, (n) is the “parent” branch that is immediately above p, , and b.,(n) and b, (n)

are the “child” branches that are immediately below p, . (It is easy to generalize the equation

to a multi-furcated node.) Its counterpart at the root ( , =) is simply the final equation of the

recursion for the pruning algorithm:

i . ——Eq.(5
P(c)=2w€Q[P(w;nR)]_[bECh(nR)PL(w; b, C)] =

Here p (w; n®) is the probability (or the frequency) of residue , (€Q)at the root ( nR ),
and ch(n®) denotes the set of child branches of & . The equations 1’a, 1’b, 4 and 5 will

play important roles when calculating the changes in the MSA probability due to an
elementary move (and to the shifts accompanying each move).
Let us now consider what we should do when trying different types of moves.

(Recall that the moves are illustrated in Figure 4.)
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(i) When a gap-block “shift”’s by a single site, the change in the logarithmic probability of the
residue pattern (Re s) of the MSA within a window (c(W)), Alog( By, [ (W)]) , is
calculated easily. For this purpose, let ~ be the “semi-column” flanking the gap-block (and

only involving sequences affected by the gap-block). Suppose that this 7 moves when the

gap-block shifts. Let c;, and ¢, be the “semi-columns” (involving complementary

sequences) that were aligned with 7 before and after the shift, respectively (Figure 6). And
let (c’, ¢, ) be the column formed by aligning the semi-columns ¢’ and cj, . Similarly, let
(=, ¢, ) be the column formed by aligning the semi-column c,, with a gap-only semi-

column. Using these notations, the change in the logarithmic probability is calculated as:

Alog( Py, [a(W))) --- Eq.(6)
= log(P((c’, c;’f))) + log(P( (- c,;’f))) - log(P((c’, cl’,’f))) - log( P((- C;’f))) )

Each term on the right hand side can be easily calculated via Eq.(1’a) (or Eq.(1°b)). The shift

of a gap-block by a number of sites results from a succession of its shifts by a single site each.

Therefore, changes in the logarithmic probability via various shifts of a gap-block.by up to a
specified number of sites, can be calculated quite quickly. nearly with the same time

complexity as the calculation of the logarithmic probability of a MSA in a single window.

Even if an isolated gap-block horizontally overlaps another non-intefering gap-block, the
effects of their simultaneous shifts may still be calculated fairly quickly. (See Appendix A5
for a theoretical contemplation.)

(ii) When “purge”ing a pair of gap-blocks, the easiest way to calculate Alog( Py, [ (W)

would be to directly calculate p () for all affected columns, before and after the purge,

using Eq.(1’a) (or Eq.(1’b)).

(iii-a) As far as the substitution probabilities are concerned, “merge”ing a pair of gap-blocks

affecting the same sequence set is equivalent to “shift”ing one of the blocks by a particular

number of sites. Thus, basically, A log( P,..[ @(W)]) can be calculated as in (i).

(i1i-b) When “merge”ing a pair of gap-blocks affecting the complementary sequence sets,

A log( 2| a(W)]) could be calculated directly, by calculating P (c¢) for all affected
columns, before and after the merge, as in (ii).

(iv-a) When “split”ing a gap-block into two gap-blocks affecting the same sequence set,
calculate as in (iii-a), noting that the MSAs ‘before’ and ‘after’ the move were swapped.
(iv-b) When “split”ing a gap-block into two gap-blocks affecting the complementary
sequence sets, calculate as in (iii-b), noting that the MSAs ‘before’ and ‘after’ the move were
swapped.

(v) When examining an “ex-nihilo,” calculate as in (ii), noting that MSAs ‘before’ and ‘after’
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the move were swapped.

(vi-a) When examining a “vertical-merge” of a pair of gap-blocks, the easiest way to

calculate A log( Py a(W)]) would be to directly calculate P (c¢)_for all affected columns,

before and after the move, using the three-way equation (Eqg.(4)). NOTE that the contributions

from a pure gap-block should be 15L ( w; b, c) =1 if it is a descendant of the “pivotal” node (
N, ), which separates the clades of the two gap-blocks, and 15U (s b, c) = P(w; nyy ) ifit

is on the ancestral side of n,,,, . (Incidentally, we assume that P( w; npv) is given by:

Plasnn| =3, Plofin®] Ploma: piriatn,)

where peh(n®, n,,) is the shortest path connecting & and n, .)

(vi-b) When examining a “vertical-merge” of a pair of sequence-blocks, calculate similarly
to (vi-a). The same note applies when dealing with a gap-block aligned with either sequence-
block.

(vii-a) When examining a “vertical-split” of a gap-block, calculate in the same way as in (vi-
a), noting that MSAs ‘before’ and ‘after’ the move were swapped.

(vii-b) When examining a “vertical-split” of a sequence-block, calculate in the same way as

in (vi-b), noting that MSAs ‘before’ and ‘after’ the move were swapped.

(viii) When examining a “shift + shift” ...??? (... Examine the concrete cases that were
observed in the simulation analyses.) (NOTE ADDED on Aug 4 (Thu), 2016: Our
preliminary analyses (sections SM-2 and SR-2 in Supplementary Materials, Part 2)
indicated that this case should be dealt with in a similar way as a normal shift or a

superposition of two normal shifts are.)

NOTE: For all cases (ii) through (vii-b) (except (i)), changes in the logarithmic
probability, log( Py a(W)]) , via additional “shift”’s can be calculated in the same way

as in (i), as long as the shifted gap-block does not overlap any other horizontally.

6. How to output/display the results

Hmm... this is the problem...

One possible way would be to show a line graph for the “shift”’s of each gap-block, where the
abscissa is the position of the gap-block (more precisely, the relative position from the
original one) and the ordinate is the (relative) MSA probability.

The question is what we should do for other moves, such as “merge”’s, “purge”s, “split”s,
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etc... (One possibility would be to give the increment in the probability for each of the
candidate moves, and accompany a line graph (or a contour map, etc.) showing the increments

by shifts from each such candidate.)

7. Possible applications of the results/outputs

The results obtained will be applied to a wide variety of analyses on molecular evolution,
such as the predictions of functions, positive selection, 2ndary and tertiary structures, etc. [
(We could also perform the analyses on de novo gene creation. .. because we will be able to
take almost full account of uncertainties accompanying the inferences or estimations, the
results will be somewhat reliable and meaningful.) ... Considering the results of my (ongoing)
preliminary analyses on fast-evolving mammals, however, it might be better not to use the
yeast data for this purpose... they may be too divergent...needs to be examined further...]
The output of the program is the approximate probability distribution of possible MSAs.
Therefore, we can estimate the expected value (weighted average), variance, confidence
intervals, distribution itself, etc., for each property/event (or combination of

properties/events) we want to analyze. Of course, I expect that the expected value thus

obtained will be more accurate than the “point estimation” of the property obtained from a

single optimum MSA (output by a commonly used aligner). (... Needs be confirmed by
extensive analyses, of course.) In my view, however, its most important feature is that the
program will indicate possible fluctuations on the results, and thus will honestly tell how
accurately we can learn about the subject of our interest from the input data at hand,
which will greatly help us avoid overconfidence on our predictions. The program will also

indicate regions that likely contain “complex” errors. This function itself may also be useful,

because such regions are expected to be the hotbeds of erroneous predictions, especially on

some peculiar evolutionary behaviors of sequences, such as positive selection, etc.

8. Conceivable problems
As with any brand-new method, there could be many problems that this program will suffer
from. Here we discuss three major problems, namely, those of (i) how to provide the program

with accurate model parameters (including the tree), (ii) autocorrelation, and (iii) overfitting.

(i) Model parameters (including phylogenetic tree)
The methods explained in this “blueprint” require a fixed set of model parameters, including
the phylogenetic tree. Usually, however, we do not know the correct parameters before

conducting an analysis, and thus we have to estimate the parameters from the input data at
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hand. Theoretically, an ideal way would be to estimate the joint probability distribution of the

MSAs and the model parameters including the phylogenetic trees (e.g., Holmes and Bruno
2001; Lunter et al. 2005; Suchard and Redelings 2006; Novak et al. 2008). At present,
however, this is very time-consuming and impractical even if we use an unrealistically
simplistic probabilistic model of indels (, which are not even evolutionary models, rigorously
speaking). (Especially, the ML inference of the phylogenetic tree(s) is one of the most time-

consuming problems in the study of molecular evolution.) Therefore, at least for the moment,

it would be inevitable to first obtain a point estimation of the set of model parameters
(including the tree). maybe using the input MSA. and to obtain the approximate MSA

distribution under such a point-estimation. Or, we may develop a more sophisticated method

that alternatingly (and iteratively) estimates (1) the set of model parameters (or their

approximate distributions, maybe via bootstrapping) and (2) the approximate MSA

distribution, where the estimation of one uses (the previous estimate of) the other as input.
This may improve the accuracy of the parameter estimation. Similar method was actually
developed for the reconstruction of a single-optimum MSA, and was indeed shown to

improve the accuracy (Gotoh 1996).

(ii) Autocorrelations

It would be virtually impractical, in terms of both computational time and memory space, to
perform an analysis by using the (approximate) probability distribution of MSAs of entire
sequences, because the number of alternative MSAs would be super-astronomical. Therefore,
it would be inevitable to perform a window analysis, using the approximate probability
distribution of MSAs obtained for each window as defined in Section 4, and to integrate the

results of all windows to obtain the “summary” result for the MSAs of entire sequences. Here

comes the potential problem of autocorrelations, because each window is fairly likely to
overlap the neighboring ones. Solving this problem would be very important for obtaining

accurate results of the analyses.

(iii) Overfitting
At least in principle, our theoretical formulation of sequence evolution via indels (Ezawa,

Graur and Landan, Parts I and II) can incorporate regional variation of indel rates to some

extent. When actually incorporating this feature, however, we will need to be careful about
the problem of overfitting, because, in general, sequences in a MSA experienced much fewer

indels than substitutions during the evolution that created the MSA. Thus, it is very likely that

simply employing a single optimum set of indel parameters for each MSA region will lead to
13



misinterpreting the stochastic fluctuation of an indel process as an indel rate variation. A

possible way to mitigate this problem would be to give an approximate distribution of the
sets of indel parameters, giving a discrete number of typical sets (or classes) and their
relative probabilities in the entire MSA. The relative probabilities would be based on some
well-known (continuous) distribution, such as a gamma-distribution and a beta-distribution.
Such a method was developed for substitution models (Yang 2006, 2007), and it is commonly
used for molecular evolution analyses these days. And I expect that the method, possibly with

some modifications, will also be applicable to the problem of sequence evolution via indels.

14



Appendix

Al. Sliding-window analysis to identify MSA portions where ‘“purge’’-like errors are
likely

A “purge” is a phenomenon where an aligner tries to optimize the MSA score by erroneously
annihilating a pair of complementary gap-blocks that are usually quite close to each other

(Figure 4B). In consequence, a “‘purge” tends to create a small-scale “shear,” where mutually

aligned sequence blocks exhibit a nearly random residue match/mismatch pattern against each

other. Taking advantage of this tendency, we may be able to identify MSA portions that likely

harbor “purge”-like errors. Here we will describe a possible method.
Along a particular branch ( 3, ), we calculate the “observed” number and the

expected (or “predicted”) number of substitutions in each MSA column ( ~). Here, the

“number of substitutions” does not literally mean the number that the site experienced along
the branch. Rather, it means the number of differences in the residue between both ends of the
branch. Thus, the “number of substitutions” is O if both ends have the same residue, and 1
otherwise.

The “observed” number is the number of substitutions estimated from the

observed residue configuration in . For this purpose, we use the key probabilities

{PL(a);b,c)}

wEQ

and { B, (w; b, ¢} __ introduced in subsection 5-2. (See Appendix A4

for how to calculate them.) More precisely, from these probabilities, we calculate the “semi-
posterior probabilities” at both ends of p, (and in column ):

P,,[@]| n (b), c]=P(w;n, (b)) P, (w;b, C)/[waegp(w,; n, (b)) P, (w'’; b, c)] >

— Eq.(Al-1)

.—--Eq.(A1-2
RU)[w| n, (b), C]EPU(CU; b, C)/[E(U'EQPU(CU,; b, C)] a( )

Here, n (b) and n, (b) denote the upper- and lower-ends, respectively. P( w;n, (b))
denotes the probability (or relative frequency) of ¢ (€ ) at node n, (b) which can be

obtained by evolving { P(w; n®)} _according to P(@' + @"; b') along the branches (p’)

(1S9

from the root to n (b). The “observed” number of substitutions along p in a single

column ( ~) may then be estimated as:
Dy, (b, c) =1- zweg{ P, [a) | n, (b), c] Py, [a) | n, (b), C]} .- Eq.(A1-3)
[NOTE: It will be better to use the joint probability:
b, C]EPU(CU; b,c) P(ww w';b) P,(w;b,c) / P(c),
and define: Doy, (b, c) =1- _ Py, [w, @ =w|b,c] —Eq(Al-3).]

!
Fy. 1 [a), w
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Then, the total “observed” number in a window (47 ) is simply given by a summation:
Doy (b, W) = Do, (b, c). —Eq.(Al-4)
A simplest way to estimate the expected number of substitutions along b ina
column ( C) would be to use { P(w + «’; b)} e and { By, [@] ny (b)), c]} L
Dyya(brc) =1=> [P, [w]n,(b),c]P(w w;b)} . — Eq.(Al-5a)
Another simplest way would be to use { P(w;n, (b)) } s { P(aw; nU(b))}
{ Plww ) b)}

wea’

and { P, (w; b, c)} ., as follows:

Dyyiw(bc)=1-> [P, [oww|bc]. --Eq(Al-5b)

Here,

P(L)[a) — w'| b, C] =P(w’;n, (b)) P, (w;b,c) P"(w +— w; b)/[z P(w"; n, (b)) P, (w"; b, C)]

' e Q

, -—Eq.(Al-5¢)
where we used the “time-reversed transition” probabilities defined as:
P"(w' = w; b) = P[(w,n,(b))| (@', n, (b))] = P(w; n, (b)) P(w = w'; b) /P(w'; (b)) .
--- Eq.(A1-5d)
An unbiased way to estimate the expected values would be to use both of the above expected

numbers. Here, we will use an arithmetic mean:
Dy (b €) = [Disprear (B €) + Dy (b €) ]/ 2. — Eq(Al-5e)
and finally obtain:

Dyypory (b, W) = EcEWDEXP(I)( b,c) . ---Eq.(A1-6)
[NOTE: In general, Eq.(A1-5¢) should be almost equal to the more naively obtained value:
Dy (b, o) =1- Eweg{ P(w; n, (b)) P(w — w; b)} - Eq.(Al-5¢").]
A possible drawback of Dy ( b, W) is that it may be too simple to take account of

biological factors such as selection and mutation hot-spots. To incorporate such factors, a

useful way would be to take advantage of the “observations” along different branches (and in

the same window). There would be a variety of ways to implement this idea. Here, we will

propose to scale Eq.(A1-6) by the ratio of the total “observed” number across the branches

(except 1) to the total “expected” number:
Pt p p

D b, W) » —— Eq.(Al-7a)

Exp(2) (

b, W) =R, (b, W) D

EXp(l)(

with

Ry (b, W)= I:Eb’EET,b’#b Doy ( b, W)] / I:Eb’EET,b’;Ab Dy ( b, W)

Here g denotes the set of all branches (edges) in the tree ( T ). Regardless of whether we
T

] . - Eq.(A1-7b)

choose D b, W) or D

Exp(1) ( Exp(2) (
use it as a reference (denoted as Dy, ( b, W) ) to which the “observed” number, D_, ( b, W) ,

b, W) for the “expected” number of substitutions, we will
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will be compared. Probably a simplest way to do this would be to calculate the P-value of
such an “observation” under the binomial distribution with the “number of trials,” W and

the per-trial probability, p, = D, (b, W)/ [W|:
i \4]
XD, W) x!(|W|— x)!

We can set a threshold value ( P, ) and regard the window as a region potentially

obs

P[D,,, Do,.(b.W)]= (pp) (1= pp)"™ . —Eq(Al-8)

undergoing a “purge” (along the branch) when Eq.(A1-8) is less than p, .

A2. Proof that the multiplication factor(s) of the indel probability is independent of the
relative positions between isolated gap-blocks

In (Ezawa, unpublished A; draft: Ezawa, Graur and Landan (Part I)), we proved that the
alignment probabilities are factorable into the overall factor and the contributions from
gapped segments (i.e., local MSAs), provided that the evolutionary model satisfies certain
conditions. In this blueprint, our calculation is based on an evolutionary model satisfying such
conditions. Thus it is obvious that the indel probability is independent of the relative positions
as long as the isolated gap-blocks in question are mutually separated by at least a gapless

column (as in Figure 3B). We can therefore focus on the cases where the isolated gap-blocks

overlap horizontally (as in Figure 3C and Figure S3A). It should be recalled here that, by

definition, horizontally overlapped yet isolated gap-blocks (or, more precisely, the clades they
affect) must be separated from each other by at least three branches. This means that there are

at least two intervening nodes, each of which has at least one descendant sequence with

residues aligned with the gap-blocks (e.g., Figure S3A). Then, thanks to the phylogenetic
correctness condition that the ancestral sequence states must satisfy (Chindelevitch et al.
2006; Diallo et al. 2007), it follows that the two gap-blocks must always be separated
phylogenetically by at least two nodes whose gap-aligned positions are stuffed with residues
(e.g., Figure S3B). This in turn means that the indel history that resulted in one gap-block

must always be confined in a subtree separate from that for the other gap-block. and they must
never interact with each other to form a larger indel history (Figure S3C). (In fact, these facts

originally motivated the aforementioned definition of the isolated gap-blocks.) (More
precisely, there are some non-parsimonious indel histories that “‘connect” the isolated gap-
blocks (Figure S4). However, such indel histories always require at least two more indels that
are exquisitely coordinated in terms of both the positions and the indel sizes. Such histories
are quite similar to the non-parsimonious indel histories that can yield type (i) local PWAs

(Ezawa, unpublished B; draft: Ezawa, Graur and Landan, Part II), and thus in general their
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contributions are expected to be negligible as well.) The multiplication factor contributed
from each gapped segment (i.e., local MSA) is a summation of terms over the sets of ancestral
gap-configurations (Eq.(SA-1.2) in Supplementary appendix SA-1). And each term is a
contribution from indel histories with a fixed set of ancestral gap-configurations, which could
be expressed as a product of factors over the branches (Eq.(SA-1.3) in Supplementary

appendix SA-1). Now, because. in dominantly contributing ancestral state sets. each of the (at

least two) nodes separating the isolated gap-blocks has a fixed gap-configuration (with all

sites occupied by residues). the sets of ancestral gap-configurations could be approximately

expressed as a direct product of at least two partial state sets, one containing the clade for one

gap-block and another containing the clade for the other gap-block (Eq.(SA-1.7) in
Supplementary appendix SA-1; Figure S3C). Therefore, in this case, the multiplication
factor can be further factorized into the product of contributions: one from the portion
of the tree with ‘“fixed” ancestral states, and the others from the isolated gap-blocks
(Egs.(SA-1.9,10) in Supplementary appendix SA-1; Figure S3D). The independent horizontal
re-locations of these gap-blocks do not change these factors (as long as they interfere with no

neighboring gap-block). Thus, any change in the relative (horizontal) position between the

isolated gap-blocks has virtually no impact on the segment-wise multiplication factor for the

indel component of the MSA probability. See Supplementary appendix SA-1 for the

mathematical details.

A3. Demonstration that the indel multiplication factor depends only weakly on the
detailed (fine-grained) positional relationships between non-isolated (i.e., interfering)
gap-blocks

I think it too premature to prove it generally, because the related concepts are not adequately
developed yet. Instead, I will consider a few (several) example cases here and demonstrate
what the section title says.

We already proved in section A2 that the indel multiplication factor is independent of the
relative positional relationships between isolated gap-blocks. So, in this section, we will focus
only on the relative relationships between non-isolated (i.e., interfering) gap-blocks. For this
purpose, it is sufficient to consider the gap states of (ancestral) sequences connected with a 3-

OTU tree (as in Figure 7). We consider three typical patterns: (A) two nested runs of gaps

(Figure 7A); (B) two overlapping yet non-nested runs of gaps (Figure 7B); and (C) two non-
homologous sequence-blocks sitting contiguously (Figure 7C). As will be explained below,
the patterns A and B are topologically different; pattern A is topologically equivalent to the
pattern in Figure 7D, but pattern B is not. And pattern C is topologically different from the
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pattern in Figure 7E, where the sequence-blocks are separated via a gapless segment.

Pattern A can be created by two parsimonious indel histories (panels A and B of Figure 8),
as well as by numerous non-parsimonious ones including some next-to-parsimonious ones
(e.g., panels C and D of Figure 8). In contrast, pattern B can be created by only one
parsimonious indel history (panel A of Figure 9), as well as by numerous non-parsimonious
ones including some next-to-parsimonious ones (e.g., panels B-D of Figure 9). The indel
histories that can create the pattern in panel D are nearly the same as those in Figure 8. The
histories show the same trajectories of the sequence lengths and also the same series of

insertions and deletions with particular sizes: they differ only in the detailed horizontal
positions of indels. As can be seen from (Ezawa, unpublished A; drafts: Ezawa, Graur and

Landan, Part I), when the indel rates are space-homogeneous, the portion of the multiplication

factor contributed by each indel history is determined solely by the trajectory of the sequence
lengths and the series (actually the set) of insertions and deletions with particular sizes. but

it is independent of detailed horizontal positions of indels. (See, e.g., Eq.(SM-2.7) and Eq.

(R8-1.4) in Ezawa, unpublished A.) Therefore, as long as the parsimonious indel histories
contribute predominantly to the multiplication factor, the multiplication factor from pattern A
is nearly equal to that from the pattern in Figure 7D, but the contributions from patterns A and
B will differ considerably from each other.

Patten C can be created by three fypes of parsimonious histories (panels A, B and C of
Figure 10), as well as by some non-parsimonious histories (e.g., panel D of Figure 10). In
contrast, the pattern in Figure 7E can be created by two parsimonious histories (panels A and
B of Figure 11), as well as by some non-parsimonious histories (e.g., panel C of Figure 11).
Therefore, pattern C should be substantially more likely to occur than the pattern in Figure 7E
(provided that the number of intervening gapless columns is fixed). On the other hand, the
occurrence probability should remain unchanged even if a different (nonzero) number of
gapless columns separate the two gap-blocks in Figure 7E (provided that the entire region
encompassing the two gap-blocks has a fixed length).

These examples demonstrate that, at least as long as the contributions by
parsimonious indel histories predominate, the multiplication factor is determined mostly
by the coarse-grained topological relationships between gap-blocks, but depends only

weakly on the fine-grained positional relationships between them.

A4. Algorithm to quickly calculate key probabilities on residue configuration in each

column

In subsection 5-2, we defined 4 sets of important probabilities, { P, ( w; b, c)} o’
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{PU(a); b, c)}weg, {IBL(CU; b, C)}
combination of a MSA column ( ~) and a branch ( b ) (Figure 5). As we saw in the

__and { P, (w; b, c)} __,,»associated with each
subsection, these probabilities provide essential building blocks when we calculate changes in
the residue component of the MSA probability. Here, we give an algorithm that quickly
calculates these 4 sets of probabilities along all branches and in a single column. The
algorithm is organized in two stages: the first stage proceeds “bottom-up” along the tree, i.e.,
from the leaves to the root node; and the second proceeds “top-down,” i.e., from the root to
the leaves.

The first, “bottom-up” stage is actually a slightly modified version of Felsenstein’s
pruning algorithm (Felsenstein 1981, 2004), and efficiently calculates { P, (w; b, c)} o and
{ P, (w; b, c)} . - It starts with an “initialization” step, where each external branch (denoted

as p,x here) is associated with the following probabilities:

P, (a); b*, c) = (5( w, w(c, nX)) , -— Eq.(A4-1a)
I5L(a); b*, C) = P( w — w(c, n*); bX) . -—- Eq.(A4-1b)
Here w(c, n) denotes the residue that the sequence at the external node X has in column

C - (The external node ,,x is the lower-end of px.) The symbol &(w, w’) denotes
Kronecker’s delta: §(w, ') =1 if w = w’, = Q otherwise. [NOTE: When the sequence has
no site in the column C, P, ( w; b*, c) =P ( w; bX, c) =1 are assigned.] And, as already
explained in subsection 5-2, P(w + w'; b) is the probability that the lower-end of branch p,
has residue .’ conditioned on that its upper-end has ¢y . After the initialization, as the

algorithm climbs up the tree, each internal branch (denoted as g, ) is associated with the

probabilities via the following recursion relations:

~ , , --- Eq.(A4-2a)
P, (w; b, c) = nb’ECh(b)PL (w3 b, c)
P, (w; b, c) = EwEQP( w+— w';b) P, (w';b,c) . -—-Eq.(A4-2b)

Here ~p, (b) denotes the set of “child” branches of branch b- Eq.(A4-2a) follows easily

from what these probabilities mean (see Figure 5, panels A and B), and Eq.(A4-2b) is nothing

other than the definition of p, (3 b, ) (ie.,Eq.(2)).

The second, “top-down” stage calculates { P,(w; b, c)} _,, and

{ 15U (ew; b, c)} o efficiently. In its “initialization” step, it associates each child branch of the

100t (p &= Ch(n®)) With the probabilities:

P, (w; b, c) = P(w; n®) ]—[ P, (w; b, c) » —-Eq.(A4-3a)
b'ECh(n®), b'=b
P, (w; b, c) = Zw’eg P,(w’;s b, c) P(w' > w;b) . --- Eq.(A4-3b)

Here p (cw; n®) is the probability (or the relative frequency) of residue ) at the root node (
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n®)- Eq.(A4-3a) easily follows from what P, (w; b, c) and P, (w3 b, c) mean (Figure 5,
panels A and B), and Eq.(A4-3b) is nothing other than the definition of B, (e b, c) (ie.,
Eq.(3)). After the initialization, as the algorithm goes down the tree, each internal branch

(again, denoted as p, ) is associated with the probabilities via the following recursion

relations:

P lw;b,c|=P,lw; p(b), c| 11 INDL(w;b',c) , -—- Eq.(Ad-4a)

becCh(p(b)|, b#b

Pylo;b,cl=Y, _, Pylo;b,c/Plo'mw;b| . —Eq.(A4-4b)

Here, p(b) denotes the “parent” branch of , , and Eq.(A4-4b) is, again, exactly Eq.(3).
The entire algorithm (on a single column) has the time complexity of

O(|ET|><|Q|><(|Q|+<|n|>T)) ,where |E;| is the number of branches (edges) in the tree, |Q| is
the number of letters in the alphabet ( ¢ ), and (|n|), is the average connectivity over the

internal nodes in the tree.

AS. Contemplating on fast computation of the effects of simultaneous shifts of non-
interfering (i.e., isolated) gap-blocks on the residue component of MSA probability

When the isolated gap-blocks are separated by at least two gapless columns (as in Figure 3B)
or, even if they horizontally overlap each other (as in Figure 3C), when their shifts only affect

different columns independently (as in Figure 12A), it is almost trivial to show that the

change in the log substitution probability ( Alog (PRes[é( W)]) ) by such two simultaneous

shifts is exactly the summation of two changes, each of which resulted from a single
individual shift (as given by Eq.(6)). (Actually, the gap-blocks need not necessarily be
separated by three or more branches in situations like in Figure 12A.) Thus, we can focus on
cases where a column (or a pair of columns) is affected simultaneously by the shifts of
two isolated gap-blocks (as in Figure 12, panels B and C). By carefully examining the cases
like in panels B and C of Figure 12, we find that the effects of the shifts of two isolated gap-

blocks can be regarded as nearly independent of each other if the following approximate
equation holds:

log(P((C', c, c))) + log(P((—, c, —))) l log(P((C', c’, —))) + log(P((—, c, c))) .
--- Eq.(A5-1)

(The proof is given in Supplementary appendix SA-2.) Here, c and ooare the portions of
MSA columns flanking the two gap-blocks in question, and ' is the remaining portion of
the column. (c,c",c") denotes the MSA column created by aligning these portions.

(c', c’, _) denotes the column made from (c', ¢, C”) by replacing the residues in "

21



with gaps. And other similar symbols can be interpreted accordingly. Unfortunately, our
further examination revealed that the approximate equation, Eq.(A5-1), should fail to hold
in general, especially unless at least one of the involved branches is so long that the transition
probabilities will saturate. (See Supplementary appendix SA-3 and Figure 13 for details.)
Nevertheless, we could still calculate the effects of double-shifts pretty fast,
though with some possible twists. This is because the shifts of each gap-block can provide at

most three possible residue configurations to (the relevant portion of) each affected column

(Figure 14). Thus, when calculating the effects of the shifts of two isolated gap-blocks that
possibly overlap horizontally, it would be sufficient to pre-calculate and store the probabilities

of 3%3=9 possible residue configurations for each column (Figure 15). and to deploy them

properly. This way, we may be able to calculate the effects of the shifts of up to 3 (or may be

4) isolated yet possibly overlapping gap-blocks fairly quickly. (In the former case, we need to
calculate the probabilities of 3y 3y 3—>~ configurations per column. A possible problem

would be on whether or not there is a quick way to deploy the proper column-wise residue

configurations to all possible cases.)
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