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Supplementary-Supplementary Results & Discussion

SSR-1. Revisiting the characterization of “purge”-like errors
In section SR-1 of “sppl2_blueprint]l ANEX.xxxx.doc”, we characterized the “purge”-like
errors in terms of the P-value of the substitutional difference (under a given base substitution
model), the size of blocks defining the “purge” (or the control), etc. (See tables SS3-SS5 of
“sppl2_blueprint] _ANEX .xxxx.doc”.)
These results indicated that the P-value will quite efficiently identify the candidate regions
that are likely to contain the “purge”-like errors. Thus, I created some Perl modules, e.g., an
old version of “detect_purge_cands” in “MyDetect_purge_cands.pm”, to detect such
candidate regions via a sliding-window analysis of the aforementioned P-value.
When applying the modules to some sample MSAs, however, I noticed that the set of
candidate windows consists mostly of “false positives”, each of which contains only one
substitutional difference (especially along a relatively short branch).
It would therefore be desirable if we have a method to filter a substantial fraction of such
“false positives” while keeping most of true positives.
One such way would be to filter the windows via another P-value (again regarding the
substitutional difference), which is defined under a random-matching model.
The rationale for this is as follows. First, the “purge” errors are expected to occur in general
by falsely eliminating a pair of neighboring complementary indels at the expense of
generating false substitutions. Thus, roughly speaking, the “false-homologous blocks™ caused
by a “purge” should be like an alignment of two random segments (or two non-homologous
sub-alignments). The original P-value attempts to identify “likely false-homologous pairs”
that show significantly more substitutional differnces than expected under a given substitution
model. Along a short branch, however, this measure is likely to pick even a window showing
only one (or two) substitution(s). In contrast, the new P-value attempts to identify “likely true-
homologous pairs” that show significantly less substitutional differences than expected under
the random matching model, like BLAST. Because the random-matching model is nearly
independent of the branch length, the new P-value is expected to give an effectively
“orthogonal” filtering to that via the original P-value, even though both of them are defined in
terms of the same measure, i.e., the substitutional difference.

I incorporated the filtering via this new P-value into the new version of
“detect_purge_cands” in ‘“MyDetect_purge_cands.pm”.
It would be prudent, however, to examine whether our expectation is indeed true or not.

Thus, I examined the 2-dimensional distributions of the old P-value vs the new P-value, one
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calculated on the true “purge”-errors (subjects) and the other on the correctly aligned regions
(controls).

Tables SSS1-SSS3(?) summarize the results.

First, as Table SSS1 shows, discarding those windows with significantly more matches than
random does indeed refine the screening via a base substitution model alone, by keeping most
of true-positives (in the 1st screening) and by shedding a substantial fraction, from a near
majority to an overwhelming majority, of false-positives (again in the 1st screening).

Tables SSS2 and SSS3 indicate that such an additional screening becomes more effective if
we exclude those windows with size 1 or 2 from the window analysis.

If we include such “small” windows into the window analysis, we are likely to end up
considering the potential “purge”-errors of nearly all those sites showing substitutional
differences, which could be very time-consuming. Therefore, until a very fast algorithm is
invented to examine potential “purge”s, excluding “small” windows from the analysis would
considerably save time. If such a practice is employed, the additional screening based on the

random-matching model would be more beneficial.



Supplementary-Supplementary Tables SSS1-SSS3

Table SSS1. Effects of additional filtering via the new P-value (on all subjects &

controls).

Subjects Controls
P(sbst) <0.05 | P(sbst) <0.20 | P(sbst) <0.05 | P(sbst) < 0.20
(No further condition) 0.495 0.780 0.0088 0.057
P(rand) = 0.05 0.478 0.747 0.0061 0.031
P(rand) = 0.20 0.433 0.664 0.0042 0.018

NOTE: Shown in each cell is the relative frequency of “purge”-involved blocks (in the

subjects) or windows (in the controls) satisfying the specified condiiton, in the set of

reconstructed MSAs of 15 simulated mammalian sequences. The “P(sbst)” and “P(rand)”

stand for, respectively, the (old) P-value defined with a given base substitution model and the

(new) P-value defined with the random matching model.

Table SSS2. Effects of additional filtering via the new P-value (on subjects & controls

with block size = 2).
Subjects Controls
P(sbst) <0.05 | P(sbst) <0.20 | P(sbst) <0.05 | P(sbst) < 0.20
(No further condition) 0.590 0.812 0.0092 0.060
P(rand) = 0.05 0.569 0.773 0.0059 0.028
P(rand) = 0.20 0.515 0.673 0.0035 0.013

NOTE: The same note applies as that for Table SSS1. The only difference with Table SSS1 is

that the statistics here exclude subjects and controls with block size 1.




Table SSS3. Effects of additional filtering via the new P-value (on subjects & controls

with block size = 3).
Subjects Controls
P(sbst) < 0.05 | P(sbst) <0.20 | P(sbst) <0.05 | P(sbst) <0.20
(No further condition) 0.649 0.895 0.0094 0.065
P(rand) = 0.05 0.623 0.844 0.0054 0.027
P(rand) = 0.20 0.552 0.713 0.0025 0.0076

NOTE: The same note applies as that for Table SSS1 (& Table SSS2). The only difference
with Table SSS1 (& Table SSS2) is that the statistics here concerns only those subjects and

controls with block size 3 or greater.




