
Supplementary Materials, Part 3, for the Blueprint of
the “Alignment Neighborhood Explorer” (ANEX)

 (tentatively named),
by Kiyoshi Ezawa

(Finished on April 1st, 2019; TOC edited on August 14th, 2020)

© 2019 Kiyoshi Ezawa. Open Access This fle is distributed under the terss o the

 Creative Cossons Attribution 4.0 International License
(http://creativecossons.org/licenses/by/4.0/),

 which persits unrestricted use, distribution, and reproduction in any sedius,
 provided you give appropriate credit to the original author (K. Ezawa) and the source

(https://www.bioin orsatics.org/ tp/pub/anex/Docusents/Blueprints/
suppl3_blueprint1_ANEX.dra t9_CC4.pd),

 provide a link to the Creative Cossons license (above), and indicate i changes
were sade.

1

[NOTE ADDED (2019/01/26): The “$B” in this fle should be replaced ith
“$ub_bl” (a variable specifying the “upper-bound” of an index representing a
block), hich should usually (but not al ays) be “$B” (a user-selected
parameter).]

Table of Contents

Supplementary Methods (from SM-1 to SM-3) pp. 4-54

SM-1. Contemplating on fast computation of the effects of simultaneous shifts of interfering
(i.e., non-isolated) gap-blocks on the residue component of MSA probability pp.4-8

SM-2. Actually implementing algorithm to quickly compute the effects of simultaneous shifts
of non-interfering (i.e., isolated) gap-blocks on the residue component of MSA probability

pp.4-17
sub shift_bl_and_compt_prob_incr (@@@$$) { # The DEFINITION. # …} pp.12-13
{Removal of Recursion} pp.13-17

SM-3. Actually implementing algorithm to quickly compute the effects of simultaneous shifts
of interfering (i.e., non-isolated) gap-blocks on the residue component of MSA probability

pp.17-54
(1) Enuserate the sets o vertically equivalent blocks. pp.32-33
(3) Check the positional orders among s appable blocks, which should be per orsed a ter
counting null colusns (REVISED on Dec 10, 2018): pp.33-35

exasine whether any vertically equivalent blocks overlap or not: pp.35-36
check the number of equivalent alignments in the coordinate space as quickly as

possible. pp.36-41
NEXT, check hether the alignment topology changed or not, as quickly as possible.

pp.41-54
sub ct_necessary_shifts ($$$\@\@\%) { …} pp.54-55

Appendixes A-F H (sodifed on Jan 18, 2019) pp.55-100

APPENDIX A: An algorithm to cluster a set of sequences (or external nodes) into a minimum
number of monophyletic groups (and possibly the complement of a monophyletic group).

pp.55 -56

APPENDIX B: Computing column- ise probabilities taking advantage of the
(complementary) monophyletic groups constructed as in APPENDIX A pp. 56-59

APPENDIX C: Classifying sequences according to hat gap-blocks affect them
pp.59-60

APPENDIX C D: Exhaustively listing the sets of complementary blocks pp. 60-64

APPENDIX E: Dividing coordinate space according to alignment degeneracies
(EFFECTIVELY OBSOLETE as of Dec 10, 2018) pp.64-74

APPENDIX F: Constructing @inter_block_relations (added on Dec 11, 2018),
@interfering_blocks, @interfering_blocksets, and @cmpl_interfering_blocksets, hich ill
help identify change of of alignment topology. pp.74-91

APPENDIX F-sppl G: Computing sizes of blocks. # ADDED on Jan 15, 2019. # (Re-labelled on
Jan 18, 2019) pp.91-92

2

APPENDIX F-sppl2 H: CEncoding alignment topology. # (Re-labelled on Jan 18, 2019; Title
revised on Jan 22, 2019.) # pp.92-100
(1) The sain subroutine, “encode_alignment_topology (….)” pp.93-98
(2a) Satellite subroutine, “extend_left_end_to_left ($$$$\@\@\@) {...}” pp.98-99
(2b) Satellite subroutine, “extend_right_end_to_right ($$$$\@\@\@) {...}” pp.99-100

Supplementary Tables SSSS1-SSSSxx pp. xx-xx

[Supplementary Figures are in “fgures_sppl3_bp1_ANEX.draft8.odp”.]

Differences from “draft8”:
(1) Replaced @lb_sorted_set & @orders_lb with @blocks_w_spec_lb,
 and also replaced @rb_sorted_set & @orders_rb with @blocks_w_spec_rb. (DONE on
2019/01/15)

(2) Introduced TWO ADDITIONAL categories, ‘<(pa)’ and ‘>(ch)’, into the relations stored in
@inter_block_relations.

‘<(pa)’ seans that $bl2 includes $bl1, and that $bl2 is e ectively the “parent” o $bl1.
‘>(ch)’ seans that $bl2 is included in $bl1, and that $bl2 is e ectively a “child” o $bl1.

(DONE on 2019/01/16&17)

(3) Updated the Table o Contents. (DONE on 2019/01/26)

3

Supplementary Methods

SM-1. Contemplating on fast computation of the effects of simultaneous shifts of interfering
(i.e., non-isolated) gap-blocks on the residue component of MSA probability

In Appendix A5 o “blueprint1_ANEX.draft5+.pdf”, we contesplated on how to quickly
cospute the e ects o sisultaneous shi ts o non-interfering (i.e., isolated) gap-blocks on the
residue cosponent o MSA probability.
Here, let us attespt to extend the results derived there to sisultaneous shi ts (or shi t-like soves) o
gap-blocks that interfere with each other .

(1) First o all, when none o the gap-blocks vertically overlap any other,
the sethod outlined or non-inter ering gap-blocks could still apply.
However, care sust be taken i the gap-blocks under consideration involve all sequences in the
alignsent, because null (i.e., gap-only) colusns will eserge i all gap-blocks overlap horizontally.
In such cases, we sust apply the sethod or a pair o cosplesentary gap-blocks (see ites 2) every
tise when a sisilar situation arises, but due caution sust be exercised. (In Figure SSSSA1, we will
exasine the consistency o such “swapping”s or 3 blocks asong which any cosbination o the
two is cosplesentary to the resaining one.)
We decided NOT to swap the gap-pattern blocks EVEN WHEN seesingly cosplesentary blocks
becose issediately adjacent to each other (because swapping could cosplicate the issue at hand
as exesplifed in Figures SSSSA1-SSSSA3).
Instead, we will count the number of null columns , as well as the number of possible equivalent
alignments that will arise in the coordinate space under consideration.

(2) For a pair o vertically cosplesentary gap-blocks (as in Figure 4 b o
“fgures_sisultaneous_soves_o _sultiple_blocks_METH.odp”),
as long as we stick to “shi ts” (i.e., ignore “(incosplete) serges”, etc.),
the colusns we have to consider should be as illustrated in Figure SSSS1.

[Because the gap-blocks could swap their horizontal positions, it would be sore convenient to
consider what pairs o hal -colusns can result ros the “shi ts”, rather than sticking to the positions
in the (original) alignsent. … Superfluous?]
Then, it becoses clear that the set o colusns that sust be considered is essentially the sase as that
 or two non-interfering gap-blocks (as in Figure 15 o “fgures&legends1_ANEX.dra t3+.pd ”);
sore precisely, the set is actually sosewhat ssaller than that or non-inter ering cases, because
sose colusns can be ignored (as they are null (the siddle alignsent in Figure SSSS1), and
because sose colusns are equivalent to others via the horizontal swapping o the blocks (in these
cases, though, hal -colusns in question are always aligned with gaps) (the two alignsents sediated
by the double-headed arrow in Figure SSSS1).
This seans that the sase algoriths as non-inter ering cases could be used also in this case or
calculating the constituent colusn-wise probabilities necessary or the cosputation o (substitution
cosponents o) probabilities o alternative alignsents(, as long as the cosputational e fciency
does not satter signifcantly).
Thus, we should only sodi y the algoriths or calculating the alternative alignsent probabilities
 ros the colusn-wise probabilities (in SM-3).

NOTE added on Oct 28, 2018: as already sentioned in (1), we decided NOT to SWAP sutually
cosplesentary gap-blocks even when they becose issediately adjacent; instead, we will count
the nusber o null colusns and the nusber o equivalent alignsents that will arise in the
coordinate space under consideration.

(3) When one gap-block vertically includes another gap-block (as in Figure 4 c & d o
“fgures_sisultaneous_soves_o _sultiple_blocks_METH.odp”),
the colusns we have to consider should be as illustrated in Figure SSSS2.

4

Although the set o colusns that sust be considered is sosewhat di erent ros that or two non-
interfering gap-blocks (as in Figure 15 o “fgures&legends1_ANEX.dra t3+.pd ”), the set can be
constructed (or enuserated) in essentially the sase way as or two non-interfering gap-blocks, that
is, by considering the cases where each gap-block is on the le t o , encospassing, and on the right
o , the colusn in question, and by orsing their “direct product”. (When the vertically larger block
is encospassing the colusn, however, the position o the vertically ssaller block can be ignored.)

(4) When two gap-blocks are identical in vertical range to each other (as in Figure 4 e o
“fgures_sisultaneous_soves_o _sultiple_blocks_METH.odp”),
the colusns we have to consider should be as illustrated in Figure SSSS3.

Although the set o colusns that sust be considered is sosewhat di erent ros that or two non-
interfering gap-blocks (as in Figure 15 o “fgures&legends1_ANEX.dra t3+.pd ”), the set can be
constructed (or enuserated) in essentially the sase way as or two non-interfering gap-blocks, that
is, by considering the cases where each gap-block is on the le t o , encospassing, and on the right
o , the colusn in question, and by orsing their “direct product”. (When either o the two blocks is
encospassing the colusn, however, the position o the other block can be ignored.)

(5) When two gap-blocks vertically overlap each other but neither o thes includes the other (as in
Figure 4 & g o “fgures_sisultaneous_soves_o _sultiple_blocks_METH.odp”),
the colusns we have to consider should be as illustrated in Figure SSSS4.

NOTE Added on Oct 30, 2018: The swapping o vertically overlapping, non-nesting blocks seess
to resain consistent with the “shi t”s o other gap-blocks that are in various vertical relationships
with the orser two, as long as the sets o colusns are defned as spanning the respective sets o
colusns. (Figures SSSSA4-SSSSA7 provide sose exasple cases.) There ore, e ill perform
the s apping in this case, as already considered in
“sisultaneous_soves_o _sultiple_blocks_METH_xxxx.odp” (Ites 10 o section (ii) o Window
analysis [2]). Thus, a swapped confguration should NOT result ros di erent “double-shi ts”
represented as di erent pairs o coordinates.

This case is very sisilar to case (2) (in Figure SSSS1), and thus the set o colusns to be considered
could be enuserated in essentially the sase way, that is, by considering the cases where each gap-
block is on the le t o , encospassing, and on the right o , the colusn in question, and by orsing
their “direct product”, while ignoring the case where both blocks encospass the colusn.

[Summary] Having considered 5 di erent cases, I propose the follo ing algorithm
to calculate the colusn-wise probabilities (on residue confgurations) o the colusns that will
constitute the alternative alignsents created by shi ts (or by shi ting-like soves) o the gap-blocks
(in the input alignsent).
(NOTE: The alignsent colusns are supposed to be nusbered as 0, 1, …, ros the le tsost to the
right.)

1. Classi y the sequences according to what gap-blocks a ect thes.
For exasple, let us consider a local alignsent with three gap-blocks.
I a sequence is a ected by all gap-blocks, classi y it as “TTT”;
i a sequence is not a ected by any gap-block, classi y it as “FFF”;
i a sequence is a ected only by the 2nd gap-block, classi y it as “FTF”; etc.

2. Group together the sequences classifed identically. The sequences o each class will always
sove together as the gap-blocks sove.
(For exasple, sequences o class “TTT” will sove in response to the sove o any o the gap-
blocks, but sequences o class “FFF” will never sove no satter what gap-block soves.)

5

3. For each class, assign successive nusbers, 0, 1, …, to the “class-specifc columns”, that is, the
colusns restricted to (or projected onto) the class each o which contains at least one residue. (Let
us re er to the nusbers as “class-specifc column numbers”.)

4. Exasine whether each class is sonophyletic, the cosplesent o sonophyletic, or neither o
thes.
=> I sonophyletic or cosplesent-sonophyletic, identi y the separating branch & identi y a
colusn in which the class is occupied solely by gaps. (=> This will enable the use o pre-cosputed
partial probabilities.)

5. For each colusn (o the input alignsent), calculate the probabilities o the colusns
resulting ros positioning each o the gap-blocks on its le t (L), just on it (O), and on its right (R).
Graphically, the set o the considered colusns could be represented as a direct product:

{L, O, R}_block1 × {L, O, R}_block2 × {L, O, R}_block3 ….

(a) When a block is just on the colusn, the a ected class-specifc colusns will be occupied solely
by the gaps, as expected.

(b) When ALL blocks are on the right o the colusn, the colusn should consists o the class-
specifc colusns with: {class-specifc colusn nusber} = {colusn nusber}. (I any o such class-
specifc colusns are lacking, skip the calculation o their probabilities.)

(c) When no a ecting block is just on the colusn, but sose a ecting blocks are on the le t o the
colusn, the class-specifc colusn should have:
{class-specifc colusn nusber}
= {colusn nusber} - ∑_{a ecting gap-blocks on the le t} {horizontal block-size}. (I any o such class-specifc
colusns are lacking, skip the calculation o their probabilities.)

Putting together the rules (a), (b) and (c) above, an effcient algorithm to calculate colusn-wise
blocks should be, or exasple, as ollows.

$CT_CLMS; # #{colusns in the local alignsent}
$ct_blocks; # #{blocks in the local alignsent}
@set_blsizes; # $set_blsizes[$b] is the horizontal size o the $b th block.
@class_labels = (‘TTT’, ‘TTF’, ‘TFT’, ‘TFF’, …., ‘FFF’); # enuserate all non-espty classes. #
$ct_classes = @class_labels; #{classes}

%label2class = ($class_label => \@indices_seqs_in_class, ….); # For ALL conceivable all non-
espty (revised on Nov 24, 2018) classes. @indices_seqs_in_class = () i the class is espty.

#%label2sonophyl = ($class_label => $separating_branch, …); # For sonophyletic classes.
#%label2cospl_sonophyl = ($class_label => $separating_branch, …); # For cosplesentary-
sonophyletic classes. … OBSOLETE as of Nov 22, 2018.
@set_c _monophyl_roots, where @{$set_c _monophyl_roots[$cl]} lists the roots o the
sonophyletic groups belonging to the $cl th class (= espty i the $cl th class contains no
sonophyletic group).
$complement_lo er_bound, which is the “lower-bound” (or separating branch) o the
cosplesent sonophyletic group (= unde i there is no such cosplesent).
$cl_ _cmpl_mp, which is the ID o the class accossodating a cosplesent sonophyletic group
(= unde i there is no such cosplesent).
… These ill be used in APPENDIX B (… ADDED on Nov 22, 2018.)

%label2class_sp_clss = ($class_label => \@set_class_sp_clss, …), where
@set_class_sp_clss[$i] is the (overall) colusn-nusber o the $i th class-specifc colusn.
%label2ct_class_sp_clss = ($class_label => #class_sp_clss, …); # For non-espty classes.

6

@a ected_classes = (\@classes_a ected_by_block1, \@classes_a ected_by_block2, …); # Just
 or convenience. NOTE that \@classes_a ected_by_blocki contains the indices o the relevant
classes in @class_labels.

@list_considered_colusns = (); # elesent = \@set_o _class-specifc_colusn_nusbers (or ‘-’s or
gaps).
%already; # = ($colon_concatenated_set_o _class-specifc_colusn_nusbers => 1, ...)

for (my $c = 0; $c < $CT_CLMS; $c++) { # Outermost for. #

 sy @csd_cls = ();
 or (1 .. $ct_classes) { push @csd_cls, $c; } # initialize the colusn to be considered.

 sy @sinilist_csd_clss = (\@csd_cls); # Initialize the sinilist o the colusns to be considered.

 or (sy $b = 0; $b < $ct_blocks; $b++) { # Outer or. #

sy $blsize = $set_blsizes[$b];
sy $classes_a d = $a ected_classes[$b]; # Probably superfluous, but or convenience. #

sy @new_sinilist_csd_clss = (); # New sinilist. #
while (sy $csd_cls = shi t @sinilist_csd_clss) {# Middle while. #

When the block is on the right o the colusn (R).
push @new_sinilist_csd_clss, $csd_cls;

When the block is just on the colusn (O).
sy @cp1_csd_cls = @{$csd_cls}; # Copy the colusn to be considered.
 oreach sy $indx_cls (@{$classes_a d}) { # Inner or (1). #

$cp1_cds_cls[$indx_cls] = ‘-’; # Replace the class-specifc colusn nusber
with ‘-’ (a gap). #

} # End o the inner or (1). #
push @new_sinilist_csd_clss, \@cp1_csd_cls;

When the block is on the le t o the colusn (R).
sy @cp2_csd_cls = @{$csd_cls}; # Copy the colusn to be considered.
 oreach sy $indx_cls (@{$classes_a d}) { # Inner or (2). #

$cp2_csd_cls[$indx_cls] -= $blsize; # Subtract the block size. #
 } # End o the inner or (2). #

push @new_sinilist_csd_clss, \@cp2_csd_cls;

} # End o the siddle while.

@sinilist_csd_clss = @new_sinilist_csd_clss; # Update the sinilist. #

 } # End o the outer or. #

Exasine the integrity & redundancy o the colusns.

 while (sy $csd_cls = shi t @sinilist_csd_clss) { # Outer while (2). #

sy $fl_sa e = 1;
 or (sy $cl=0; $cl<$ct_classes; $cl++) {
 sy $indx_cl_sp_cls = $csd_cls [$cl];→

 ($indx_cl_sp_cls eq ‘-’) and next; # I it’s a gap, there is no probles. #

7

 sy $ct_cl_sp_clss = $label2ct_cl_sp_clss{$class_labels[$cl]};
 i (($indx_cl_sp_cls < 0) or ($ct_cl_sp_clss <= $indx_cl_sp_cls)) { # The index is

out o the range. #
$fl_sa e = 0;
last;

 }
}
$fl_sa e or next; # The colusn cannot be sade ros the ingredient at hand. #

sy $cnct_set_cls_sp_cls_nos = join (‘:’, @{$csd_cls});
i (defned $already{$cnct_set_cls_sp_cls_nos}) { next; } # The colusn is already in the

list. #

push @list_csd_clss, $csd_cls;
$already{$cnct_set_cls_sp_cls_nos} = 1;

 } # End o the outer while (2). #

} # End of the outermost for. #

=> Calculate the colusn-wise probability o each elesent o @list_csd_clss,
using a sodifed version o Felsenstein’s pruning (or peeling) algoriths. (See Appendix B.)
(
Or, i you pre er, the calculation could be per orsed be ore the cossand:
 $already{$cnct_set_cls_sp_cls_nos} = 1;,
and replace the cossand with:
$cls2prob{$cnct_set_cls_sp_cls_nos} = $prob_cls_to_be_exasined;
)

In any case, we sust construct a hash:
%cls2prob = ($cnct_set_cls_sp_cls_nos => $prob_cls_to_be_exasined, …),
as a fnal product o this algoriths.

SM-2. Actually implementing algorithm to quickly compute the effects of simultaneous shifts
of non-interfering (i.e., isolated) gap-blocks on the residue component of MSA probability

In Appendix A5 o “blueprint1_ANEX.draft5+.pdf”, we contesplated on how to quickly
cospute the e ects o sisultaneous shi ts o non-interfering (i.e., isolated) gap-blocks on the
residue cosponent o MSA probability.
Here, let us attespt to isplesent the resulting sethod as an actual algorithm.

1. Use sose variables used in the algoriths in ites 5 o [Sussary] o SM-1.

2. Prepare a B-dimensional array (where B = #{blocks} (= $ct_blocks)), @incr_probs, as a
“container” o the calculated probabilities (sore precisely, incresents o the probability cospared
to that or the input (or “re erence”) alignsent).
The array elesent, $incr_probs[$k1]->[$k2]...[$kB] (with $k1, $k2, …, $kB = 0, 1, 2, …, or 2WM

$bds_bl_coords[$bl] [1] → … MODIFIED on Dec 24, 2018), should represent the incresent o the
probability or the alignsent resulting ros the “shi t”s o
the 1st block by $k1 – W M $org_bl_coords[0] colusns, the 2nd block by $k 2 – W M $org_bl_coords[1]
colusns, …, and the B-th block by $kB – W M $org_bl_coords[B-1] colusns. (A negative integer
indicates the sove to the le t by its absolute value. A positive integer indicates the sove to the
right.)
By defnition, $incr_probs[$k1=WM $org_bl_coords[0]] [$k→ 2=WM $org_bl_coords[1]]...[$kB=WM

$org_bl_coords[B-1]] = 0. (NOTE ADDED on Dec 24, 2018: The origin as changed from
WM(independent of the block) to $org_bl_coords[$bl] for the $bl th block.)

8

3. Fros the input alignsent, create a set of columns each o which is represented as a set o class-
specifc colusns, and record the positions of the blocks in it (in terss o the (overall) colusn
nusbers at their le t- and right-boundaries).

@set_columns, where $set_columns[$c] [$cls] =→ {the ID nusber (or index) o the class-specifc
colusn that occupies the $cls th class at the $c th overall colusn}. It is initialized by using the
input alignsent.

@bds_blocks, where @{$bds_blocks [$bl]} = ($left_bd, $right_bd)→ is or the $bl th block, with
$le t_bd and $right_bd being the colusn nusbers at the le t- and right-boundaries o the block.

4. Cospute the probability incresents as an accusulation o the incresents by single-colusn-
soves o the blocks, while gradually sodi ying @set_colusns and @bds_blocks ros their initial
values.

{Recursive version}
Let us frst consider a recursive algoriths, which is generally sispler.
Then, we will attespt to resove the recursion.

our $B = $ct_blocks;
our $Ws = {the saxisus width o a block sove};
our @incr_probs = initialize_incr_probs ();

sy @ord_bl_coords = (The set o “origins” or the block coordinates);
$org_bl_coords[$bl] is the “origin” or the coordinate o the $bl th block. (ADDED on

Dec 24, 2018.)

sy @bds_bl_coords = (The set o boundaries or the block coordinates);
 # @{$bds_bl_coords[$bl]} = ($lb_coord, $rb_coord) in the ull-closed convention;

sy @init_bl_coords = ($k_1 = $Ws, $k_2 = $Ws, …, $k_B = $Ws);
sy @init_bl_coords = @org_bl_coords; # MODIFIED on Dec 24, 2018.
sy @init_set_colusns = (The set o colusns (each represented by a set o constituent class-
specifc colusns) that constitute the initial local alignsent);
sy @init_bds_blocks = (The set o block boundaries or the initial local alignsent);

sy $init_ct_null_clss = #{null colusns in the initial local alignsent}; … ADDED on Nov 13,
2018.

recur_comput_prob_incre_by_bl_mv (@init_set_colusns, @init_bds_blocks, @init_bl_coords,
$init_ct_null_clss, @bds_bl_coords, 0); # The call o the unction in the sain(?) progras. #

sub recur_compt_prob_incr_by_bl_mv (@@@$@$) { # The DEFINITION. #

sy ($prev_set_colusns, $prev_bds_blocks, $prev_bl_coords, $prev_ct_null_clss,
$bds_bl_coords, $bl) = @_;

$bl is the index o the block that will be “shi t”ed in this unction call.
@{$prev_bl_coords} = ($k_1, $k_2, …, $k_B) specifed in the previous call.

First, sel -call the unction be ore soving the $bl th block at all.
(This is necessary or exhaustively exploring the coordinate space.)

i ($bl < $B-1) { recur_compt_prob_incr_by_bl_mv (@{$prev_set_colusns},
@{$prev_bds_blocks}, @{$prev_bl_coords}, $prev_ct_null_clss, @{$bds_bl_coords}, $bl+1); }

Retrieve the boundaries o the block coordinates.
sy ($lbd_bl_coord, $rbd_bl_coord) = @{$bds_bl_coords [$bl]};→

9

Retrieve the base o the probability incresents,
which will be necessary or the ollowing cosputations.

sy ($k_10, $k_20, …, $k_B0) = @{$prev_bl_coords};
sy $base_prb_incr = $incr_probs[$k_10] [$k_20]....[$k_B0];→

Second, shi t the block to the right.
Initialize variables.

sy @curr_set_colusns = copy (@{$prev_set_colusns});
sy @curr_bds_blocks = copy (@{$prev_bds_blocks});
sy @curr_bl_coords = @{$prev_bl_coords};
sy $prb_incr = $base_prb_incr;
sy $curr_ct_null_clss = $prev_ct_null_clss; … ADDED on Nov 13, 2018.

 or (sy $i = $org_bl_coords[$bl] ; $i < $rbd_bl_coord; $i++) { # 1st outer or-loop.
(sodifed on Dec 24, 2018)

or (sy $i = $Ws ; $i < $rbd_bl_coord; $i++) { # 1st outer or-loop. # OBSOLETE as o
2018/12/24.

sy ($flag, $incr_incr, $incr_ct_null_clss) = shift_bl_and_compt_prob_incr
(@curr_set_colusns, @curr_bds_blocks, @curr_bl_coords, $bl, +1);

sy ($k_1, $k_2, …, $k_B) = @curr_bl_coords;

 i ((defned $prb_incr) and (defned $incr_incr)) {
$prb_incr += $incr_incr;
$incr_probs[$k_1] [$k_2]....[$k_B] = $prb_incr;→
i (defned $curr_ct_null_clss) { $curr_ct_null_clss += $incr_ct_null_clss; }

 } elsi ($flag <= 0) { # Herea ter, actually, we MUST prevent it ros exploring
theoretically inaccessible regions. (An IMPORTANT home ork)

$prb_incr = - $prb_laln0; # Minus the probability o the initial local alignsent. #
$curr_ct_null_clss = 0;
 oreach sy $cls (@curr_set_colusns) { # Inner oreach-loop.
 sy $cnct_cls = join (‘:’, @{$cls});
 sy $cw_prb = $cls2prob{$cnct_cls};
 i (defned $cw_prb) {

$prb_incr += $cw_prb;
i ($cnct_cls eq $cnct_null_cls) { $curr_ct_null_clss++; }

 } else {
$prb_incr = unde ;
$curr_ct_null_clss = unde ;
last;

 }
} # End o the inner oreach-loop. #

$incr_probs[$k_1] [$k_2]....[$k_B] = $prb_incr;→

 } else {
$incr_probs[$k_1] [$k_2]....[$k_B] = unde ;→
$curr_ct_null_clss = unde ;

 }

i ($bl < $B-1) { recur_compt_prob_incr_by_bl_mv (@curr_set_colusns,
@curr_bds_blocks, @curr_bl_coords, $curr_ct_null_clss, @{$bds_bl_coords}, $bl+1); }

10

} # End o the 1st outer or-loop.

Third, shi t the block to the le t.
RE-initialize the variables.

@curr_set_colusns = copy (@{$prev_set_colusns});
@curr_bds_blocks = copy (@{$prev_bds_blocks});
@curr_bl_coords = @{$prev_bl_coords};
$prb_incr = $base_prb_incr;
$curr_ct_null_clss = $prev_ct_null_clss; … ADDED on Nov 13, 2018.

 or (sy $i = $org_bl_coords[$bl] ; $i > $lbd_bl_coord; $i--) { # 2nd outer or-loop.
(sodifed on Dec 24, 2018)

or (sy $i = $Ws ; $i > $lbd_bl_coord; $i--) { # 2nd outer or-loop. # OBSOLETE as o
2018/12/24.

sy ($flag, $incr_incr, $incr_ ct_null_clss) = shift_bl_and_compt_prob_incr
(@curr_set_colusns, @curr_bds_blocks, @curr_bl_coords, $bl, -1);

sy ($k_1, $k_2, …, $k_B) = @curr_bl_coords;

 i ((defned $prb_incr) and (defned $incr_incr)) {
$prb_incr += $incr_incr;
$incr_probs[$k_1] [$k_2]....[$k_B] = $prb_incr;→
i (defned $curr_ct_null_clss) { $curr_ct_null_clss += $incr_ct_null_clss; }

 } elsi ($flag <= 0) { # Herea ter, actually, we MUST prevent it ros exploring
theoretically inaccessible regions. (An IMPORTANT home ork)

$prb_incr = - $prb_laln0; # Minus the probability o the initial local alignsent. #
$curr_ct_null_clss = 0;
 oreach sy $cls (@curr_set_colusns) { # Inner oreach-loop.
 sy $cnct_cls = join (‘:’, @{$cls});
 sy $cw_prb = $cls2prob{$cnct_cls};
 i (defned $cw_prb) {

$prb_incr += $cw_prb;
i ($cnct_cls eq $cnct_null_cls) { $curr_ct_null_clss++; }

 } else {
$prb_incr = unde ;
$curr_ct_null_clss = unde ;
last;

 }
} # End o the inner oreach-loop. #

$incr_probs[$k_1] [$k_2]....[$k_B] = $prb_incr;→

 } else {
$incr_probs[$k_1] [$k_2]....[$k_B] = unde ;→
$curr_ct_null_clss = unde ;

 }

i ($bl < $B-1) { recur_compt_prob_incr_by_bl_mv (@curr_set_colusns,
@curr_bds_blocks, @curr_bl_coords, $curr_ct_null_clss, @{$bds_bl_coords}, $bl+1); }

} # END o the 2nd outer or-loop.

return 1;

11

} # END o the DEFINITION o “sub recur_compt_prob_incr_by_bl_mv (@@@$@$) {...}”.

The ollowing satellite subroutine o “recur_compt_prob_incr_by_bl_mv (@@@$@$)”
actually shi ts the $bl th block by $sh colusns
(1 colusn to the right i $sh = +1, 1 colusn to the le t i $sh = -1). ($sh sust be either +1

or -1).
More precisely, it sodifes @curr_set_colusns , @curr_bds_blocks and

@curr_bl_coords accordingly, while extracting the changes in @curr_set_colusns.
Then, it cosputes the probability incresent ($incr_incr) according to the changes in

@curr_set_colusns.
It returns ($flag, $incr_incr, $incr_ct_null_clss), with
$flag = 0 i the cosputation succeeded,
= +1 i the probabilities o colusns a ter the sove cannot be done,
= -1 i the probabilities o colusns be ore the sove cannot be done.
$incr_ct_null_clss is the incresent o #{null colusns in the local alignsent}.

sub shift_bl_and_compt_prob_incr (@@@$$) { # The DEFINITION. #

sy ($curr_set_colusns, $curr_bds_blocks, $curr_bl_coords, $bl, $sh) = @_;

sy $prev_bl_coord = $curr_bl_coords->[$bl]; # Keep the previous coordinate.
sy $curr_bl_coord = ($curr_bl_coords->[$bl] += $sh); # Shi t the current coordinate.

sy $relv_bds_block = $curr_bds_blocks [$bl];→
sy ($prev_lbd, $prev_rbd) = @{$relv_bds_block}; # Keep the relevant block boundaries

be ore the sove.

 ## (1) Actually shi t the $bl th block one colusn to the right. ##
(In the current case, its very sisple, because the blocks do NOT inter ere with one

another.) => Will be Sophisticated later.

Modi y @curr_bds_blocks.
sy $curr_lbd = ($relv_bds_block [0] += $sh);→
sy $curr_rbd = ($relv_bds_block [1] += $sh);→

Keep the colusns be ore being sodifed.
(See Figure SSSS5 a.)

sy @rlv_cls_nos = ($sh>0) ? ($prev_lbd, $curr_rbd) : ($curr_lbd, $prev_rbd);
sy ($rlv_cls1, $rlv_cls2) = sy @tsp = @{$curr_set_colusns}[@rlv_cls_nos];

sy @cp_rlv_cls1 = @{$rlv_cls1};
sy @cp_rlv_cls2 = @{$rlv_cls2};
sy @colusns_b = (\@cp_rlv_cls1, \@cp_rlv_cls2);

Modi y @curr_set_colusns.
More precisely, swap the portions o the relevant colusns a ected by the relevant

block.

sy $indices_a _classes = $a ected_classes[$bl];

 oreach sy $indx_ac (@{$indices_a _classes}) { # 1st oreach-loop. #
sy $tsp = $rlv_cls1 [$indx_ac];→
$rlv_cls1 [$indx_ac] = $rlv_cls2 [$indx_ac];→ →
$rlv_cls2 [$indx_ac] = $tsp;→

} # End o the 1st oreach-loop. #

12

Extract the colusns a ter being sodifed.

#sy @colusns_a = @{$curr_set_colusns}[@rlv_cls_nos];
sy @colusns_a = ($rlv_cls1, $rlv_cls2);

(2) Cospute the probability incresent ($incr_incr) according to the changes in

@curr_set_colusns);

sy $incr_incr = 0;
sy $incr_ct_null_clss = 0; ... ADDED on Nov 13, 2018.
 oreach sy $cls (@colusns_a) { # 2nd oreach-loop.

sy $cnct_cls = join (‘:’, @{$cls});
sy $cw_prob = $cls2prob{$cnct_cls};
(defned $cw_prob) or (return (+1, unde , unde));
$incr_incr += $cw_prob;
i ($cnct_cls eq $cnct_null_cls) { $incr_ct_null_clss++; }

} # End o the 2nd oreach-loop.

 oreach sy $cls (@colusns_b) { # 3rd oreach-loop.
sy $cnct_cls = join (‘:’, @{$cls});
sy $cw_prob = $cls2prob{$cnct_cls};
(defned $cw_prob) or (return (-1, unde , unde));
$incr_incr -= $cw_prob;
i ($cnct_cls eq $cnct_null_cls) { $incr_ct_null_clss--; }

} # End o the 3rd oreach-loop.

return (0, $incr_incr, $incr_ct_null_clss);

} # END o The DEFINITION o “sub shift_bl_and_compt_prob_incr (@@@$$) {...}”

{Removal of Recursion}

The sel -recursion unction, “recur_compt_prob_incr_by_bl_mv (@@@@$) {...}”,
is recursive sisply in order to isplesent the sultiple shi ts systesatically.
Here,
utilizing a stack and systematic b ranching conditions ,
we will resove the recursion.

What sust be stacked is a triple quadruple (or 4-tuple): (… REVISED on Nov 13, 2018)
[\@set_columns, \@bds_blocks, \@bl_coords, $ct_null_clms].

However, its initial value:
[\@set_columns0, \@bds_blocks0, \@bl_coords0, $ct_null_clms0],
sust resain unchanged throughout the algoriths; so, it say not necessarily be in the stack.

The sisplest way to resove the recursion would be
to exhaust the block coordinate values in a serial sanner, like:
$k_1 = $k_1_lbd, …, $Ws $org_bl_coords[0] (sodifed on Dec 24, 2018), …, $k_1_rbd,
then $k_2 = $k_2_lbd, …, $Ws $org_bl_coords[1] (sodifed on Dec 24, 2018), …, $k_2_rbd,
…, and fnally, $k_B = $k_B_lbd, …, $Ws $org_bl_coords[B-1] (sodifed on Dec 24, 2018), …,
$k_B_rbd,
while stacking all resulting triples quadruples along the way.

However, such an algoriths is not practical, because it consuses extremely large sesory-space .

13

(Roughly speaking, the nusber o triples quadruples that sust be stored will be at sost: ($k_1_rbd
- $k_1_lbd +1) * ($k_2_rbd - $k_2_lbd +1) * … * ($k_B_rbd - $k_B_lbd +1).)

Here, we will devise an algoriths that needs to stack at sost (B+1) triples quadruples.

To do this, we sisic the recursive algorithm in terss o the order o the block shi ts.
More precisely, the block shi ts will ollow the ollowing rules:

(i) In addition to the initial triple quadruple, prepare one triple quadruple or each block;
(ii) Start at the “Origin”, @bl_coords0 = ($k_1 = $Wm, $k_2 = $Wm, …, $k_B = $Wm)
@org_bl_coords (MODIFIED on Dec 24, 2018);

(iii) First, or $bl = B-1, explore $k_B = $Ws+1 $org_bl_coords[B-1]+1, …, $rb_k_B, then, $k_B
= $Ws-1 $org_bl_coords[B-1]-1, …, $lb_k_B, while keeping ($k_1, .., $k_{B-1}) = ($Ws, …,
$Ws) @org_bl_coords[0..B-2] (MODIFIED on Dec 24, 2018);

(iv) Then, or $bl = B-2, sove $k_{B-1} ros $Ws+1 $org_bl_coords[B-2]+1 to $rb_k_{B-1},
one colusn at a tise, and (a ter evaluating the probability or $k_B = $Ws $org_bl_coords[B-1],)
explore $k_B as in (iii) or each value o $k_{B-1};
(v) Then, again or $bl = B-2, sove $k_{B-1} ros $Ws-1 $org_bl_coords[B-2]-1 to $lb_k_{B-
1}, one colusn at a tise, and, again, (a ter evaluating the probability or $k_B = $Ws
$org_bl_coords[B-2],) explore $k_B as in (iii) or each value o $k_{B-1};

(vi) Then, or $bl = $B-3, sove $k_{B-2} ros $Ws+1$org_bl_coords[B-3]+1 to $rb_k_{B-2},
one colusn at a tise, and (a ter evaluating the probability or $k_{B-1} =$k_B = $Ws ($k_{B-
1} , $k_B) = ($org_bl_coords[B-2], $org_bl_coords[B-1]),) explore ($k_{B-1}, $k_B) as in (iii)-(v)
 or each value o $k_{B-2};
(vii) Then, again or $bl = $B-3, sove $k_{B-2} ros $Ws-1 $org_bl_coords[B-3]-1 to $lb_k_{B-
2}, and do the rest sisilarly to (vi);

(viii) Repeat the procedures like (iii)-(vii) sisilarly or $bl = B-4, …, 1, 0.

(ix) When we fnish the sove to ($k_1, $k_2, …, $kB) = ($lb_k_1, $lb_k_2, …, $lb_k_B) and the
cosputation o the probability at that point, leave the loop.

When attespting to isplesent this systes o block-soves or exploring the coordinate space,
the key elesent is:

 How the “vertical move” (i.e, the change in $bl, i.e., the block to be shi ted) will be detersined.

On the other hand, the “horizontal sove” o each block should be alsost obvious ros the value o
its coordinate (i.e., $bl).
However, when the block is at the center (i.e., $bl_coords [$bl] = → $Ws $org_bl_coords[$bl]),
there could be asbiguity as to whether to sove the block to the le t or to the right.
So, prepare the ollowing ($B-disensional) array:
@horizontal_shi ts, with
$bl_shi ts[$bl] = +1 when the $bl th block sust sove to the right,
$bl_shi ts[$bl] = -1 when the $bl th block sust sove to the le t.
(The initial value is: @bl_shi ts = (+1, +1, …, +1).)

Then, the soves in the coordinate space will be detersined uniquely, as ollows:

(a) First o all, sove the $bl th block by one colusn (to the le t or right) i it resains within the
range, second, cospute the corresponding block boundaries and the set o colusns, as well as the
probability incresent and the incresent o the count o null colusns, then, raise the $bl all the

14

 ay to $B -1, while stu fng the stack with ($B – 1 - $bl) copies o the newly cosputed triple (and
updating $bl_shi ts[$bl+1] = … = $bl_shi ts[$B-1] = +1, and $bl_coords … Superfluous!!);

(b) I the $bl th block soves over the right-boundary , discard the working triple quadruple and
copy the top triple quadruple resaining in the stack (and sake it as the new working triple
quadruple), return to the center ($bl_coords->[$bl] = $Wm $org_bl_coords[$bl] (modifed on
Dec 24, 2018)) (… actually, automatically done by updating the triple quadruple) and update
$bl_shifts[$bl] = -1, and go next;

(c) I the $bl (>0) th block soves over the left-boundar y , discard the working triple quadruple and
update it to the top triple quadruple resaining in the stack, (update $bl_shifts[$bl] = +1, and
$bl_coords [$bl] = $Wm … actually, automatically done by updating the → triple quadruple),
go do n to the ($bl-1) th block, and go next;

(d) I the $bl = 0 th block soves over the le t-boundary, leave the loop (i.e., end the whole
cosputation).

The above soves are illustrated in Figure SSSS6 (in the sisplest non-trivial case o B=3).
The actual (pseudo-)cord is as ollows:

our $B = $ct_blocks;
our $Ws = {the saxisus width o a block sove}; # NOTE added on Dec 24, 2018: In sose
cases, the block say sove sore than this value.
our @incr_probs = initialize_incr_probs ();
our @org_bl_coords; # The “origins” o the block coordinates, with $org_bl_coords[$bl] gives the
“origin” o the coordinate o the $bl th block. (ADDED on Dec 24, 2018.)
our @bds_bl_coords; # The boundaries o the block coordinates, with @{$bds_bl_coords[$bl]} =
($lbd_bl_coord, $rbd_bl_coord) gives the boundaries (in the ull-closed convention) o the
coordinate o the $bl th block.

Assuse that @set_colusns0 and @bds_blocks0 are given.
#
sy @bl_coords0 = sy @bl_shi ts = ();
 or (1 .. $B) { push @bl_coords0, $Ws; push @bl_shi ts, +1; }
sy @bl_coords0 = @org_bl_coords; # MODIFIED on Dec 24, 2018.

sy $prb_laln0 = prob_laln (@set_colusns0) ; # Actually, prob_laln () just suss colusn-wise log-
probabilities or all colusns.
sy $ct_null_clss0 = #{null colusns in the initial local alignsent}; … ADDED on Nov 13, 2018.

my @triple0 = (\@set_columns0, \@bds_blocks0, \@bl_coords0, $ct_null_clms0); # Initial
value of the triple quadruple (i.e., 4-tuple).

my @stack = ();
for (0 .. $B) { my @triple = copy (@triple0) ; push @stack, \@triple; } # NOTE: No , the
@triple is actually a quadruple.

my $ rk_triple = pop @stack; # Working triple.
my $bl = $B-1; # Start ith the right-most lo est-ranked block. #
$incr_probs[$coord_b1 = $Wm $org_bl_coords[0]] [$coord_b2 = → $Wm
$org_bl_coords[1]] ... [$coord_bB = → → $Wm $org_bl_coords[B-1]] = 0; # Modifed on Dec
24, 2018.

 hile (1) { # Outer hile-loop. #

sy ($set_colusns, $bds_blocks, $bl_coords, $ct_null_clss) = @{$wrk_triple};

sy $sh = $bl_shi ts[$bl];

15

sy $bl_coord = $bl_coords->[$bl];
sy $new_bl_coord = $bl_coord + $sh;
sy ($lbd_bl_coord, $rbd_bl_coord) = @{$bds_bl_coords[$bl]};

i ($rbd_bl_coord < $new_bl_coord) {

Stepping over the right-boundary. => (b)

sy @copy = copy (@{$stack[$#stack]});
$wrk_triple = \@copy; # This autosatically includes $bl_coords [$bl] = … →

$bl_coords [$B-1] = $Ws → @bl_coords[$bl .. $B-1] = @org_bl_coords[$bl .. $B-1] (MODIFIED
on Dec 24, 2018).

$bl_shi ts[$bl] = -1;
next;

} elsi ($new_bl_coord < $lbd_bl_coord) {

Stepping over the le t-boundary.

 ($bl == 0) and last; # (d)

 # (c)
$wrk_triple = pop @stack; # This autosatically includes $bl_coords [$bl] = … →

$bl_ coords [$B-1] = $Ws → @bl_coords[$bl .. $B-1] = @org_bl_coords[$bl .. $B-1]
(MODIFIED on Dec 24, 2018).

$bl_shi ts[$bl] = +1; # Maybe superfluous. … currently, not. #
$bl--;
next;

}

Within the range. => (a)

sy ($set_colusns, $bds_blocks, $bl_coords, $ct_null_clss) = @{$wrk_triple};
sy ($k_10, $k_20, …, $k_B0) = @{$bl_coords};
sy $prb_incr = $incr_probs[$k_10] [$k_20] ...->[$k_B0];→ →

Execute the block shi t.
Cospute (or update) the block coordinates, the block boundaries,
the set o colusns, and the probability incresents.
#

sy ($flag, $incr_incr, $incr_ct_null_clss) = shift_bl_and_compt_prob_incr
(@{$set_colusns}, @{$bds_blocks}, @{$bl_coords}, $bl, $sh); # Shi t the $bl th block by $sh.

sy ($k_1, $k_2, …, $k_B) = @{$bl_coords};

i ((defned $prb_incr) and (defned $incr_incr)) {

$prb_incr += $incr_incr;
$incr_probs[$k_1] [$k_2]....[$k_B] = $prb_incr;→
i (defned $ct_null_clss) { $ct_null_clss += $incr_ct_null_clss; }

} elsi ($flag <= 0) { # Herea ter, actually, we MUST prevent it ros exploring theoretically
inaccessible regions. (An IMPORTANT home ork)

$prb_incr = - $prb_laln0; # Minus the probability o the initial local alignsent. #
$ct_null_clss = 0;
 oreach sy $cls (@{$set_colusns}) { # Inner oreach-loop.
 sy $cnct_cls = join (‘:’, @{$cls});

16

 sy $cw_prb = $cls2prob{$cnct_cls};
 i (defned $cw_prb) {

$prb_incr += $cw_prb;
i ($cnct_cls eq $cnct_null_cls) { $ct_null_clss++; }

 } else {
$prb_incr = unde ;
$ct_null_clss = unde ;
last;

 }
} # End o the inner oreach-loop. #

$incr_probs[$k_1] [$k_2]....[$k_B] = $prb_incr;→

} else {
$incr_probs[$k_1] [$k_2]....[$k_B] = unde ;→
$ct_null_clss = unde ;

}

$wrk_triple [3] = $ct_null_clss; → … ADDED on Nov 13, 2018.

Raise $bl all the way to $B -1.
Update @bl_shi ts and @{$bl_coords}. … Superfuous!!

sy $ct_cps = 0;
while ($bl < $B-1) { # 1st inner while-loop. #

$bl++;
$bl_shi ts[$bl] = +1; # Superfluous!
$bl_coords [$bl] = $Ws; → # Superfluous!
$bl_coords [$bl] = $org_bl_coords[$bl]; → # Superfluous! (MODIFIED on Dec 24,

2018.)
$ct_cps++;

} # End o the 1st inner while-loop. #

Stu the stack with copies o the newly cosputed triple.
while ($ct_cps>0) { # 2nd inner while-loop. #

$ct_cps--;
sy @copy = copy (@{$wrk_triple});
push @stack, \@copy;

} # End o the 2nd inner while-loop. #

} # End of the outer hile-loop. #

SM-3. Actually implementing algorithm to quickly compute the effects of simultaneous shifts
of interfering (i.e., non-isolated) gap-blocks on the residue component of MSA probability

Let us now extend the non-recurrent algorithm in SM-2 to sore general cases, where sose o the
gap-blocks inter ere each other (or one another) (as considered in SM-1).

Actually, the basic rasework constructed in SM-2 (i.e., the non-recurrent while-loop per orsing
the sain subroutine, “shift_bl_and_compt_prob_incr (@@@$$) {...}”, orderly at every point in
the specifed neighbor) is applicable also to the sore general cases.

All we have to change is the instructions to sodi y @curr_bds_blocks, i.e.:

17

sy $relv_bds_block = $curr_bds_blocks [$bl];→
...
sy $curr_lbd = ($relv_bds_block [0] += $sh);→
sy $curr_rbd = ($relv_bds_block [1] += $sh);→

in “shift_bl_and_compt_prob_incr (@@@$$) {...}”.

The basic rules are already discussed in SM-1.
To summarize:
1. When gap-blocks do NOT vertically overlap each other,
 we simply shift the blocks by one site each time, even i the blocks are vertically
cosplesentary.
2. When a gap-block vertically includes another gap-block,
 the latter ill straddle the former (while the orser will resain cospact) when they
horizontally overlap.

3. When t o gap-blocks are vertically identical,
 the “lo er-rank” block ill straddle the “higher-rank” one (while the latter will resain
cospact) when they horizontally overlap.

4. When t o gap-blocks vertically overlap but neither includes the other,
 and a ter they becose issediately adjacent to each other (via a shi t o one),
 the t o blocks must be s apped before a further shift (in the sase direction).

NOTE1: How the block boundary changes will accospany the “shift” o the block, according to
the surrounding blocks, are exesplifed in Figures SSSSA8 & SSSSA9.
Especially, when two gap-blocks get immediately adjacent to each other, they will be horizontally
as compact as possible, that is, neither o thes will straddle the other (and the past straddling sust
be undone), even i they are vertically nested or equivalent. … ADDED on Nov 6, 2018.

NOTE2: When per orsing the block shi ts, it should be better also to count null colusns and
equivalent alignsents that will arise in the coordinate space, and saybe also to sonitor topological
changes.

{ADDED on Nov 7, 2018:
According to the above rules 1-4, as well as the exasples in Figures SSSSA8 & SSSSA9,
the positions (i.e., boundaries) o the “subject block”, i.e, the gap-block that is being “shift”ed,
and o the blocks surrounding it, will sove as ollows:

(i) Be ore the “shift” , keep extending its “ ront-end” while it is issediately adjacent to another
block that is either vertically including or vertically equivalent to and higher-ranked than the
subject.
(ii) Again, be ore the “shift” , i the subject block is issediately adjacent to another block that is
vertically overlapping but non-nested with it, swap the block with the subject.
(iii) Repeat (i) and (ii) until the subject is no longer issediately adjacent to any such blocks.

(iv) Perform the “shift”, by soving the “sub-colusn”, which is one site ahead o the subject and
covers the sase sequences as the subject, to the “rear-end” o the subject-block be ore the shi t. I
the subject is issediately adjacent to a block vertically included in it (be ore the “shi t”), be sure to
sove the position o the latter block’s “rear-end” to where the “read-end” o the subject was be ore
the shi t.

(v) A ter the “shift” , i the “rear-end” o the subject reaches the “rear-end” o another block that is
either vertically including or vertically equivalent to and higher-ranked than the subject, sove the
position o the subject’s “rear-end” to issediately ahead o the “ ront-end” o the latter. (Repeat the
process until we no longer encounter any such situation.)

18

(vi) Again, a ter the “shift” , i the “ ront-end” o the subject reaches the “ ront-end” o another
block that is either vertically included in or vertically equivalent to and lower-ranked than the
subject, sove the position o the latter’s “ ront-end” to issediately behind the subject’s “rear-end”.

(While (i), (ii), (iv), (v) and (vi) are per orsed, the blocks will be re-ordered accordingly.)

} … END of “ADDED on Nov 7, 2018”.

Here, we will consider an algorithm that can realize all these rules.

First, it should be convenient to prepare an array o hashes:

@inter_block_relations, with

#%{$inter_block_relations[$bl]} = ($relation => \@set_of_relevant_block_sets, …)
or the $bl th block, with
#$relation specifes the category o their vertical relationship,
#and each elesent o @set_o _relevant_block_sets is the re erence to an array, which contains
#blocks that collectively have the $relation relationship with the $bl th block. … WITHHELD on
Nov 4, 2018.

$inter_block_relations[$bl1] [$bl2] = $relation→ ,
 or the relation between the $bl1 th and $bl2 th blocks.
($inter_block_relations[$bl] [$bl] say be unde .) → … REVISED on Nov 4, 2018.

Here, $relation can be:

‘NIF’ (or ‘non-inter ering’),
‘S’ # (or ‘sibling/parent/child’ o the $bl th block … OBSOLETE as o Jan 16, 2019)
 (or “e ective sibling” o the $bl th block) … MODIFIED on Jan 16, 2019,

‘P’ (or ‘parent’ o the $bl th block),
‘Ch’ (or ‘child’ o the $bl th block),

‘Cp’ (or ‘cosplesentary’),
‘ONN’ (or ‘overlapping yet non-nesting’ NOR ‘cosplesentary-sibling/parent/child’),
‘ONCS’ (or ‘overlapping yet non-nesting’ but ‘cosplesentary-sibling/parent/child’ o the

$bl th block),
‘ONCP’ (or ‘overlapping yet non-nesting’ but ‘cosplesentary-parent’ o the $bl th block),
‘ONCC’ (or ‘overlapping yet non-nesting’ but ‘cosplesentary-child’ o the $bl th block),

‘>’ (or the $bl2 th block being ‘vertically included’ in the $bl1 th block),
‘>(ch)’ (or the $bl2 th block being ‘vertically included’ in, and an “e ective child” o , the

$bl1 th block), # ADDED on Jan 16, 2019.
‘<’ (or the $bl2 th block ‘vertically including’ the $bl1 th block),
‘<(pa)’ (or the $bl2 th block ‘vertically including’, and being an “e ective parent” o , the

$bl1 th block), # ADDED on Jan 16, 2019.
‘=’ (or ‘vertically identical’).

… See Appendix F or how to construct this 2D-array. (Added on Dec 11, 2018.)

NOTE1: Actually, the ‘sibling’ and ‘cosplesentary-sibling’ here include the ‘parent-child’ and
‘cosplesentary-parent-child’ relationships, respectively.

NOTE2: Although the categories need not be so fnely classifed or the purpose o this algoriths
alone, they will be defned this way so that they will be adequately use ul or other purposes, such
as sonitoring topological changes.

Second, we also prepare:

19

@collectively_complementary_blocks, with
{elesent} = [a set o 3 2 or sore blocks that are collectively cosplesentary to one another,

where vertically equivalent blocks are bundled together (into an anonysous array)],

#each o whose elesents is a set o 3 or sore blocks that are collectively cosplesentary to one
another,
as well as:

@block2coll_comple, where
@{$block2coll_comple[$bl]} lists (the indices in @collectively_cosplesentary_blocks o) the
sets o collectively cosplesentary blocks that the $bl th block belongs to; it is espty i there is no
such set.

Third, we extend the triple quadruple: \@triple = [\@set_columns, \@bds_blocks, \@bl_coords,
$ct_null_clms],
into an septet octet (i.e., an seven eight-tuple): (… REVISED on Nov 13, 2018.)

REVISED on Jan 13, 2019.

\@octet = [@triple, \@blocks_ _spec_lb, \@blocks_ _spec_rb].
(NOTE on 2019/01/22: No , the “@octet” is actually a sextet (i.e., a six-tuple).)

Here,

@{$blocks_ _spec_lb[$lb]} lists the blocks whose le t-bound is $lb; and
@{$blocks_ _spec_rb[$rb]} lists the blocks whose right-bound is $rb.

[OBSOLETE as of Jan 13, 2019 (1):
\@sepoctet = [@triple, \@lb_sorted_set, \@orders_lb, \@rb_sorted_set, \@orders_rb].

Here,
#
$lb/rb_sorted_set[$k] is the index (e.g., in @bl_coords) (or “rank”) o the $k th block in
ascending order o their le t-bounds/right-bounds; and
$orders_lb/rb[$bl] is the order (ros 0 to $B -1) o the $bl th block in @lb/rb_sorted_set.
] END of “OBSOLETE as of Jan 13, 2019 (1)”

The actual generalization is implemented as ollows:

sy $relv_bds_block = $curr_bds_blocks [$bl];→
sy ($prev_lbd, $prev_rbd) = @{$relv_bds_block}; # Keep the relevant block boundaries

be ore the sove. … It say be updated in the processes (i) or (ii).

sy ($prev_lbd0, $prev_rbd0) = ($prev_lbd, $prev_rbd); # Keep the boundaries be ore any
soves, which will be necessary when checking topological changes. (ADDED on Jan 24, 2019.)

...

{ADDED from Nov 4, 2018:

sy @blk_rels_to_rlv = @{$inter_block_relations [$bl]};→
sy $order_lb_rlv = $orders_lb[$bl];
sy $order_rb_rlv = $orders_rb[$bl]; # OBSOLETE as o Jan 13, 2019.

{The COPY of “ADDED on Nov 7, 2018” (see above):
According to the above rules 1-4, as well as the exasples in Figures SSSSA8 &

SSSSA9,
the positions (i.e., boundaries) o the “subject block”,

20

i.e, the gap-block that is being “shift”ed, and o the blocks surrounding it,
will sove as ollows:

 if ($sh > 0) { # The “shift” is to the right.

REVISED on Jan 13, 2019.

 while ($prev_rb < $right_end_laln) { # Outer-outer hile-loop (until $bl has NO immediately
adjacent block on its right).

 sy $right_neighbors = $blocks_w_spec_lb[$prev_rb+1];
 unless (@{$right_neighbors}>0) { last; }

 my $if_relv = 0; # ADDED on Jan 14, 2019.
 oreach sy $bl2 (@{$right_neighbors}) { # Outer oreach-loop (over blocks ($bl2) that are
issediate right-neighbors o $bl).

sy $order_lb2 = $order_lb_rlv+1;
for (; $order_lb2 < $B; $order_lb2++) { # Examine the left-bounds of the blocks on the
right. #
sy $bl2 = $lb_sorted_set[$order_lb2]; # OBSOLETE as of Jan 13, 2019 (2)

sy $bds_bl2 = $bds_blocks[$bl2];
sy ($lbd2, $rbd2) = @{$bds_bl2};

(iii) Repeat (i) and (ii) until the subject is
no longer immediately adjacent to any such blocks.

i ($lb2 > $prev_rbd+1) { last; }
i ($lb2 < $prev_rbd+1) { next; } # Skip i the block already overlaps the subject
horizontally. # OBSOLETE as of Jan 13, 2019 (2)

sy $rel_to_rlv = $blk_rels_to_rlv[$bl2];

i (($rel_to_rlv eq ‘<’) or ($rel_to_rlv eq ‘<(pa)’) or (($rel_to_rlv eq ‘=’) and ($bl > $bl2)))
{ # Added ‘<(pa)’ on Jan 17, 2019.

(i) Before the “shift”, keep extending its “front-end”
hile it is immediately adjacent to another block
that is either vertically including or
vertically equivalent to and higher-ranked than the subject.

=> {Resove $bl ros @{$blocks_w_spec_rb[$prev_rbd]}.}; # ADDED on Jan 13, 2019. #

 $relv_bds_block [1] = $prev_rbd = $rbd2; → # Extend the right-boundary.

=> {Add $bl to @{$blocks_w_spec_rb[$prev_rbd]}.}; # ADDED on Jan 13, 2019. #

$if_relv = 1; # ADDED on Jan 14, 2019.

$last; # Leave the oreach-loop. # ADDED on Jan 14, 2019.

OBSOLETE as o Jan 13, 2019 (5).
Re-order the right-boundaries o the blocks.
(More precisely, sove the current block “to the right” o the issediately adjacent

one.)
#
sy $order_rb2 = $orders_rb[$bl2];

21

#
or (sy $k=$order_rb_rlv; $k < $order_rb2; $k++) {
sy $bl3 = $rb_sorted_set[$k+1];
$orders_rb[$bl3]--;
$rb_sorted_set[$k] = $bl3;
}
$rb_sorted_set[$order_rb2] = $bl;
$orders_rb[$bl] = $order_rb2;

END o “OBSOLETE as o Jan 13, 2019 (5).”

This is just a coordinate change (o the right-boundary) and NOT a topological
change. #

} elsi (($rel_to_rlv eq ‘ONN’) or ($rel_to_rlv eq ‘ONCS’)) {

(ii) Again, be ore the “shift” ,
i the subject block is issediately adjacent to another block
that is vertically overlapping but non-nested with it,
swap the block with the subject.

 sy $size_bl1 = $prev_rbd - $prev_lbd + 1;
 sy $size_bl2 = $rbd2 - $lbd2 + 1;

First, swap the colusns.

 sy @reservoir_clss = @set_colusns[$prev_lbd .. $prev_rbd];
 or (sy $c = $lbd2; $c <= $rbd2; $c++) { $set_colusns[$c-$size_bl1] =

$set_colusns[$c]; }
 or (sy $c=0; $c<$size_bl1; $c++) { $set_colusns[$rbd2-$c] =

$reservoir_clss[$size_bl1 -1- $c]; }

Second, swap the le t boundaries.
& Third, swap the right boundaries.

i ($ub_bl < $prev_rbd - $prev_lbd + $rbd2 - $lbd2 + 2) { # ADDED on Jan 17, 2019.

ADDED on Jan 17, 2019.
 or (sy $bl3 = 0; $bl3 < $ub_bl; $bl3++) {

sy $bds_bl3 = $bds_blocks[$bl3];
 oreach sy $indx (0, 1) {
 sy $bd = $bds_bl3 [$indx];→
 i (($prev_lbd <= $bd) and ($bd <= $prev_rbd)) {

$bds_bl3 [$indx] += $size_bl2;→
 } elsi (($lbd2 <= $bd) and ($bd <= $rbd2)) {

$bds_bl3 [$indx] -= $size_bl1;→
 }
} # End o the oreach-loop (over $indx).

 } # End o the or-loop (over $bl3).

} else { # ADDED on Jan 17, 2019.

ADDED on Jan 14, 2019. (1)

 or (sy $c = $prev_lbd; $c <= $prev_rbd; $c++) { # Process the boundaries in the 1st set.
#

sy $blocks_w_lb_on_c = $blocks_w_spec_lb[$c];
 oreach sy $bl3 (@{$blocks_w_lb_on_c}) { $bds_blocks[$bl3] [0] += →

$size_bl2; }

22

sy $blocks_w_rb_on_c = $blocks_w_spec_rb[$c];
 oreach sy $bl3 (@{$blocks_w_rb_on_c}) { $bds_blocks[$bl3] [1] += →

$size_bl2; }

 } # End o “Process the boundaries in the 1st set”. #

 or (sy $c = $lbd2; $c <= $rbd2; $c++) { # Process the boundaries in the 2nd set. #

sy $blocks_w_lb_on_c = $blocks_w_spec_lb[$c];
 oreach sy $bl3 (@{$blocks_w_lb_on_c}) { $bds_blocks[$bl3] [0] -= $size_bl1; }→

sy $blocks_w_rb_on_c = $blocks_w_spec_rb[$c];
 oreach sy $bl3 (@{$blocks_w_rb_on_c}) { $bds_blocks[$bl3] [1] -= →

$size_bl1; }

 } # End o “Process the boundaries in the 2nd set”. #

} # ADDED on Jan 17, 2019.

Penultisately, swap the 1st and 2nd sets in @blocks_ _spec_lb and
@blocks_ _spec_rb. #

 sy @reservoir_w_spec_lb = @blocks_w_spec_lb[$prev_lbd .. $prev_rbd];
 sy @reservoir_w_spec_rb = @blocks_w_spec_rb[$prev_lbd .. $prev_rbd];

 or (sy $c = $lbd2; $c <= $rbd2; $c++) {
 $blocks_w_spec_lb[$c-$size_bl1] = $blocks_w_spec_lb[$c];
 $blocks_w_spec_rb[$c-$size_bl1] = $blocks_w_spec_rb[$c];

 }
 or (sy $c=0; $c<$size_bl1; $c++) {

$blocks_w_spec_lb[$rbd2-$c] = $reservoir_w_spec_lb[$size_bl1 -1- $c];
$blocks_w_spec_rb[$rbd2-$c] = $reservoir_w_spec_rb[$size_bl1 -1- $c];

 }

END o “ADDED on Jan 14, 2019. (1)”

OBSOLETE as o Jan 13, 2019 (6).
sy ($lb1_order_lb, $rb1_order_lb) = ($order_lb_rlv, $order_lb2-1);
sy ($lb2_order_lb, $rb2_order_lb) = ($order_lb2, $order_lb2);
#
while ($lb1_order_lb > 0) { # Exasine the current $lb1_order_lb.
sy $bl3 = $lb_sorted_set[$lb1_order_lb-1];
i ($bds_blocks[$bl3] [0] < $prev_lbd) { last; }→
$lb1_order_lb--;
}
while ($rb1_order_lb > $lb1_order_lb) { # Exasine the current $rb1_order_lb.
sy $bl3 = $lb_sorted_set[$lb1_order_lb];
i ($bds_blocks[$bl3] [0] < $lbd2) { last; }→
$rb1_order_lb--;
$lb2_order_lb--;
}
while ($rb2_order_lb < $B-1) { # Exasine the current $rb2_order_lb.
sy $bl3 = $lb_sorted_set[$rb2_order_lb+1];
i ($bds_blocks[$bl3] [0] > $rbd2) { last; }→
$rb2_order_lb++;
}

23

sy $ct_in_bl1 = $rb1_order_lb - $lb1_order_lb +1;
sy $ct_in_bl2 = $rb2_order_lb - $lb2_order_lb +1;
#
sy @reservoir_lb_std = @lb_sorted_set[$lb1_order_lb .. $rb1_order_lb];
#
or (sy $k=$lb2_order_lb; $k <= $rb2_order_lb; $k++) { # Process the le t-boundaries in
the 2nd set.
sy $bl3 = $lb_sorted_set[$k];
$lb_sorted_set[$k-$ct_in_bl1] = $bl3;
$orders_lb[$bl3] -= $ct_in_bl1;
$bds_blocks[$bl3] [0] -= $size_bl1;→
}
#
or (sy $k=$lb1_order_lb; $k <= $rb1_order_lb; $k++) { # Process the le t-boundaries in
the 1st set.
sy $bl3 = $reservoir_lb_std[$k-$lb1_order_lb];
$lb_sorted_set[$k+$ct_in_bl2] = $bl3;
$orders_lb[$bl3] += $ct_in_bl2;
$bds_blocks[$bl3] [0] += $size_bl2;→
}

END o “OBSOLETE as o Jan 13, 2019 (6).”

OBSOLETE as o Jan 13, 2019 (7).

Third, swap the right boundaries.

sy $order_rb2 = $orders_rb[$bl2];

sy ($lb1_order_rb, $rb1_order_rb) = ($order_rb_rlv, $order_rb_rlv);
sy ($lb2_order_rb, $rb2_order_rb) = ($order_rb_rlv+1, $order_rb2);
#
while ($lb1_order_rb > 0) { # Exasine the current $lb1_order_rb.
sy $bl3 = $rb_sorted_set[$lb1_order_rb-1];
i ($bds_blocks[$bl3] [1] < $prev_lbd) { last; }→
$lb1_order_rb--;
}
while ($lb2_order_rb < $rb2_order_rb) { # Exasine the current $lb2_order_rb.
sy $bl3 = $rb_sorted_set[$lb2_order_rb];
i ($bds_blocks[$bl3] [1] > $prev_rbd) { last; }→
$rb1_order_rb++;
$lb2_order_rb++;
}
while ($rb2_order_rb < $B-1) { # Exasine the current $rb2_order_rb.
sy $bl3 = $rb_sorted_set[$rb2_order_rb+1];
i ($bds_blocks[$bl3] [1] > $rbd2) { last; }→
$rb2_order_rb++;
}
#
$ct_in_bl1 = $rb1_order_rb - $lb1_order_rb +1;
$ct_in_bl2 = $rb2_order_rb - $lb2_order_rb +1;
#
sy @reservoir_rb_std = @rb_sorted_set[$lb1_order_rb .. $rb1_order_rb];
#
or (sy $k=$lb2_order_rb; $k <= $rb2_order_rb; $k++) { # Process the right-boundaries
in the 2nd set.
sy $bl3 = $rb_sorted_set[$k];
$rb_sorted_set[$k-$ct_in_bl1] = $bl3;
$orders_rb[$bl3] -= $ct_in_bl1;

24

$bds_blocks[$bl3] [1] -= $size_bl1;→
}
#
or (sy $k=$lb1_order_rb; $k <= $rb1_order_rb; $k++) { # Process the right-boundaries
in the 1st set.
sy $bl3 = $reservoir_rb_std[$k-$lb1_order_rb];
$lb_sorted_set[$k+$ct_in_bl2] = $bl3;
$orders_rb[$bl3] += $ct_in_bl2;
$bds_blocks[$bl3] [1] += $size_bl2;→
}

END o “OBSOLETE as o Jan 13, 2019 (7).”

Finally, update sose isportant variables.

 ($prev_lbd, $prev_rbd) = @{$relv_bds_block};
$order_lb_rlv = $orders_lb[$bl];
$order_rb_rlv = $orders_rb[$bl]; # OBSOLETE as o Jan 13, 2019 (8).

This is just a swapping o blocks and NOT a topological change.

 $if_relv = 1; # ADDED on Jan 14, 2019.

 last; # Leave the oreach-loop. # ADDED on Jan 14, 2019.

} else {

 next; # Otherwise, do nothing.
Later, we say include sosething here to sark the issinent topological change.

}

} # END of the for-loop (over $order_lb2) to Examine the left-bounds of the blocks on the
right. # OBSOLETE as of Jan 13, 2019.

 } # End o the Outer oreach-loop (over blocks ($bl2) that are issediate right-neighbors o
$bl).

unless ($if_relv) { last; } # ADDED on Jan 14, 2019.

 } # END of the Outer-outer hile-loop (until $bl has NO immediately adjacent block on its
right).

i ($rbd_lcl_align <= $prev_rbd) { # This is crutial or preventing seaningless
cosputations. #

 return {Something to indicate that the $bl th block ill go beyond the right-
boundary of the local alignment under consideration};

(=> STOP “shift”ing the $bl th block further to the right (and start “shift”ing
it to the left (from the “origin”).)

}

Here, either ($order_lb2 = $B) or ($bl2 = $lb_sorted_set[$order_lb2];
$bds_blocks[$bl2] [0] > $prev_rbd + 1) MUST hold!!→

(iv) Perform the “shift”, by soving the “sub-colusn”,

25

which is one site ahead o the subject and covers the sase sequences as the subject,
to the “rear-end” o the subject-block be ore the shi t.

I the subject is issediately adjacent to a block vertically included in it (be ore the
“shi t”),

be sure to sove the position o the latter block’s “rear-end” to
where the “read-end” o the subject was be ore the shi t.

MODIFIED on Jan 14, 2019. (1)

 sy $right_neighbors = $blocks_w_spec_lb[$prev_rbd+1];
 i (@{$right_neighbors}>0) {

 oreach sy $bl3 (@{$right_neighbors}) { # Foreach-loop (over $bl3 that are the
immediate right-neighbors of $bl). #

OBSOLETE as o Jan 14, 2019. (1)
or (sy $order_lb3 = $order_lb2-1; $order_lb3 > $order_lb_rlv; $order_lb3--) {
#
sy $bl3 = $lb_sorted_set[$order_lb3];
sy $lbd3 = $bds_blocks[$bl3] [0];→
i ($lbd3 <= $prev_rbd) { last; }
i ($lbd3 > $prev_rbd+1) { next; }

END o “OBSOLETE as o Jan 14, 2019. (1)”

 sy $rel_to_rlv = $blk_rels_to_rlv[$bl3];

 i (($rel_to_rlv eq ‘>’) or ($rel_to_rlv eq ‘>(ch)’) or (($rel_to_rlv eq ‘=’) and ($bl3 >
$bl))) { # Added ‘>(ch)’ on Jan 17, 2019.

sy $lbd3 = $bds_blocks[$bl3] [0]; → # ADDED on Jan 14, 2019.

=> {Resove $bl3 ros @{$blocks_ _spec_lb[$lbd3]}. }; # ADDED on Jan 14,
2019.

$bds_blocks[$bl3] [0] = $prev_lbd; → # Update the le t-boundary o the issediately
adjacent block. #

=> {Add $bl3 to @{$blocks_ _spec_lb[$prev_lbd]}. }; # ADDED on Jan 14,
2019.

$last; # Leave the oreach-loop. # ADDED on Jan 14, 2019.

OBSOLETE as o Jan 14, 2019. (2)
RE-order the le t boundaries.

or (sy $k = $order_lb_rlv; $k < $order_lb3; $k++) {
sy $bl5 = $lb_sorted_set[$k];
$lb_sorted_set[$k+1] = $bl5;
$orders_lb[$bl5]++;
}
$orders_lb[$bl3] = $order_lb_rlv;
$lb_sorted_set[$order_lb_rlv] = $bl3;
$order_lb_rlv = $orders_lb[$bl];

END o “OBSOLETE as o Jan 14, 2019. (2)”

 }

26

} # END o the or-loop (over $order_lb3) to exasine blocks issediately adjacent to the
right-boundary o the subject. # Paired with “OBSOLETE as o Jan 14, 2019. (1)”

} # END of the foreach-loop (over $bl3 that are the immediate right-neighbors of $bl).
#
 } # END of the “if (@{$right_neighbors}>0) {...}”

END o “MODIFIED on Jan 14, 2019. (1)”

my $curr_lbd = ($relv_bds_block [0] += $sh);→
my $curr_rbd = ($relv_bds_block [1] += $sh);→
… The simplest implementation of the “shift” of the positions (in SM-2). … CAN be

used as it is!!
But, $sh = +1 here, so modify then slightly.

{Resove $bl ros @{$blocks_ _spec_lb[$prev_lbd]}. }; # ADDED on Jan 14, 2019.
{Resove $bl ros @{$blocks_ _spec_rb[$prev_rbd]}. }; # ADDED on Jan 14, 2019.

my $curr_lbd = ({$relv_bds_block [0]}++);→
my $curr_rbd = ({$relv_bds_block [1]} ++);→

=> {Add $bl to @{$blocks_ _spec_lb[$curr_lbd]}. }; # ADDED on Jan 14, 2019.
=> {Add $bl to @{$blocks_ _spec_rb[$curr_rbd]}. }; # ADDED on Jan 14, 2019.

OBSOLETE as o Jan 14, 2019. (3)

… And, BE SURE to RE-ORDER the le t boundaries and the right boundaries!!
#
or (sy $order_lb3 = $order_lb_rlv+1; $order_lb3 < $B; $order_lb3++) { # Exasine the
le t-boundaries. #
sy $bl3 = $lb_sorted_set[$order_lb3];
i ($curr_lbd <= $bds_blocks[$bl3] [0]) { last; }→
#
Swap the orders o $bl and $bl3.
$orders_lb[$bl3] = $order_lb_rlv;
$lb_sorted_set[$order_lb_rlv] = $bl3;
$order_lb_rlv = $orders_lb[$bl] = $order_lb3;
$lb_sorted_set[$order_lb3] = $bl;
}
#
or (sy $order_rb3 = $order_rb_rlv+1; $order_rv3 < $B; $order_rb3++) { # Exasine the
right-boundaries. #
sy $bl3 = $rb_sorted_set[$order_rb3];
i ($curr_rbd <= $bds_blocks[$bl3] [1]) { last; }→
#
Swap the orders o $bl and $bl3.
$orders_rb[$bl3] = $order_rb_rlv;
$rb_sorted_set[$order_rb_rlv] = $bl3;
$order_rb_rlv = $orders_rb[$bl] = $order_rb3;
$rb_sorted_set[$order_rb3] = $bl;
}
#

END o “OBSOLETE as o Jan 14, 2019. (3)”

Here, do the main computations or the subroutine.

27

(v) A ter the “shift” ,
i the “rear-end” o the subject reaches the “rear-end” o another block
that is either vertically including or vertically equivalent to and higher-ranked than the

subject,
sove the position o the subject’s “rear-end” to issediately ahead o the “ ront-end” o

the latter.
(Repeat the process until we no longer encounter any such situation.)

MODIFIED on Jan 14, 2019. (2)

 sy $blocks_w_curr_lbd = $blocks_w_spec_lb[$curr_lbd];
 whille (@{$blocks_w_curr_lbd}>0 1) { # Modifed the condition on Jan 17, 2019.

my $if_relv = 0; # ADDED on Jan 14, 2019.
 oreach sy $bl3 (@{$blocks_w_curr_lbd}) { # Foreach over $bl3 that share the le t-

boundary with $bl. #
 i ($bl3 == $bl) { next; } # ADDED on Jan 17, 2019.
 sy $rbd3 = $bds_blocks[$bl3] [1]; →

OBSOLETE as o Jan 14, 2019. (5)
sy $order_lb3 = $order_lb_rlv+1;
or (; $order_lb3 < $B; $order_lb3++) { # Here, “rear-end” = “le t boundary”.
sy $bl3 = $lb_sorted_set[$order_lb3];
sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]};
i ($curr_lbd < $lbd3) { last; }
i ($lbd3 < $curr_lbd) { next; }

END o “OBSOLETE as o Jan 14, 2019. (5)”

 sy $rel_to_rlv = $blk_rels_to_rlv[$bl3];
 i (($rel_to_rlv eq ‘<’) or ($rel_to_rlv eq ‘<(pa)’) or (($rel_to_rlv eq ‘=’) and ($bl3 <

$bl))) { # Added ‘<(pa)’ on Jan 17, 2019.

{Resove $bl ros @{$blocks_ _spec_lb[$curr_lbd]}. }; # ADDED on Jan 14,
2019.

$curr_lbd = $bds_blocks[$bl] [0] = $rbd3+1;→

=> {Add $bl to @{$blocks_ _spec_lb[$curr_lbd]}. }; # ADDED on Jan 14, 2019.

$if_relv = 1;# ADDED on Jan 14, 2019.

last; # Leave the oreach-loop. # ADDED on Jan 14, 2019.
 }

} # End o or over $bl3. # Paired with “OBSOLETE as o Jan 14, 2019. (5)”

} # End o oreach over $bl3 that share the le t-boundary with $bl. #

Update @{$blocks_w_curr_lbd}.
$blocks_w_curr_lbd = ($if_relv and ($curr_lbd +$size_bl -1 < $curr_rbd)) ?

$blocks_w_spec_lb[$curr_lbd] : []; # ADDED on Jan 14, 2019.

 } # End of “ hile (@{$blocks_ _curr_lbd}>0 1) {...}”

END o “MODIFIED on Jan 14, 2019. (2)”

OBSOLETE as o Jan 14, 2019. (6)

28

Re-order the le t boundaries accordingly.
#
or ($order_lb3--; $order_lb3 > $order_lb_rlv; $order_lb3--) { # Move the $order_lb3 back
to the rightsost block asong those whose le t-ends are on the le t o the current le t-end o the
subject.
sy $bl3 = $lb_sorted_set[$order_lb3];
sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]};
i ($bds_blocks[$bl3] [0] < $curr_lbd) { last; }→
}
#
i ($order_lb_rlv < $order_lb3) {
or (sy $k = $order_lb_rlv; $k < $order_lb3; $k++) {
sy $bl5 = $lb_sorted_set[$k+1];
$lb_sorted_set[$k] = $bl5;
$orders_lb[$bl5]--;
}
$lb_sorted_set[$order_lb3] = $bl;
$orders_lb[$bl] = $order_lb3;
}
#

END o “OBSOLETE as o Jan 14, 2019. (6)”

(vi) Again, a ter the “shift” ,
i the “ ront-end” o the subject reaches the “ ront-end” o another block
that is either vertically included in or vertically equivalent to and lower-ranked than the

subject,
sove the position o the latter’s “ ront-end” to issediately behind the subject’s “rear-

end”.

MODIFIED on Jan 14, 2019. (3)

 sy $blocks_w_curr_rbd = $blocks_w_spec_rb[$curr_rbd];
 i (@{$blocks_w_curr_rbd}> 1) { # Modifed the condition on Jan 17, 2019.
i (@{$blocks_w_curr_rbd}>0) {

 oreach sy $bl3 (@{$blocks_w_curr_rbd}) { # Outer foreach-loop (over $bl3 hose
right-bounds are $curr_rbd). #

 i ($bl3 == $bl) { next; }

OBSOLETE as o Jan 14, 2019. (7)
#
sy $order_rb3 = $order_rb_rlv+1;
or (; $order_rb3 < $B; $order_rb3++) { # Here, “ ront-end” = “right boundary”.
#
sy $bl3 = $rb_sorted_set[$order_rb3];
sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]};
i ($curr_rbd < $rbd3) { last; }
#

END o “OBSOLETE as o Jan 14, 2019. (7)”

 sy $rel_to_rlv = $blk_rels_to_rlv[$bl3];
 unless (($rel_to_rlv eq ‘>’) or ($rel_to_rlv eq ‘>(ch)’) or (($rel_to_rlv eq ‘=’) and ($bl <

$bl3))) { next; } # Added ‘>(ch)’ on Jan 17, 2019.

 sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]}; # ADDED on Jan 14, 2019.

29

 => {Resove $bl3 ros @{$blocks_ _spec_rb[$rbd3]}. }; # ADDED on Jan 14, 2019.

 $rbd3 = $bds_blocks[$bl3] [1] = $curr_lbd -1;→

 => {Add $bl3 to @{$blocks_ _spec_rb[$rbd3]}. }; # ADDED on Jan 14, 2019.

ADDED on Jan 14, 2019. (2)

Further exasine whether sose blocks share the right-bounds with $bl3, and,
i so, urther retract the right-bound, $rbd3, o $bl3.

 sy $rels_w_bl3 = $inter_block_relations[$bl3];

 while ($lbd3 + $size3 -1 < $rbd3) {

sy $blocks_w_rbd3 = $blocks_w_spec_rb[$rbd3];
i (@{$blocks_w_rbd3} < 2) { last; } # Modifed the condition on Jan 17, 2019.

i (@{$blocks_w_rbd3} == 0) { last; }

my $if_relv = 0;
 oreach sy $bl5 (@{$blocks_w_rbd3}) { # oreach-loop (over $bl5 with $rbd3). #

 i ($bl5 == $bl3) { next; }

 sy $rel = $rels_w_bl3 [$bl5];→
 unless (($rel eq ‘<’) or ($rel eq ‘<(pa)’) or (($rel eq ‘=’) and ($bl5 < $bl3)))

{ next; } # Added ‘<(pa)’ on Jan 17, 2019.

 sy $lbd5 = $bds_blocks[$bl5] [0];→

 => {Resove $bl3 ros @{$blocks_ _spec_rb[$rbd3]};

 $rbd3 = $bds_blocks[$bl3] [1] = $lbd5 -1;→

 => {Add $bl3 to @{$blocks_ _spec_rb[$rbd3]}. };

 $if_relv = 1;
 last; # Leave the oreach-loop.

} # End o oreach-loop (over $bl5 with $rbd3). #

unless ($if_relv) { last; }

 } # End o “while ($lbd3 + $size3 -1 < $rbd3) {...}”

END o “ADDED on Jan 14, 2019. (2)”

OBSOLETE as o Jan 14, 2019. (8)

Re-order the right-boundaries accordingly.
#
sy $order_rb5 = $order_rb3-1;
or (; $order_rb5>= 0; $order_rb5--) {
sy $bl5 = $rb_sorted_set[$order_rb5];
i ($bds_blocks[$bl5] [1] <= $rbd3) {→
last;

30

}
}
$order_rb5++;
i ($order_rb5 < $order_rb3) {
or (sy $k= $order_rb5; $k < $order_rb3; $k++) {
sy $bl6 = $rb_sorted_set[$k];
$rb_sorted_set[$k+1] = $bl6;
$orders_rb[$bl6]++;
}
$rb_sorted_set[$order_rb5] = $bl3;
$orders_rb[$bl3] = $order_rb5;
}
#

END o “OBSOLETE as o Jan 14, 2019. (8)”

} # End o “ or (; $order_rb3 < $B; $order_rb3++) {...}” # Paired with “OBSOLETE as o
Jan 14, 2019. (7)” #

} # End of outer foreach-loop (over $bl3 hose right-bounds are $curr_rbd). #

 } # END of “if (@{$blocks_ _curr_rbd}>0) {...}”

END o “MODIFIED on Jan 14, 2019. (3)”

(While (i), (ii), (iv), (v) and (vi) are per orsed, the blocks will be re-ordered accordingly.
… (probably) DONE already!!)

#
} … END of “The COPY of “ADDED on Nov 7, 2018” (see above)”.

 } else { # The “shift” is to the left.

Do almost exactly the same as hen the “shift” is to the right,
but in the opposite direction (i.e., from the right to the left).

 }

} … END o “ADDED from Nov 4, 2018”

Counting the null columns can be easily incorporated by
(i) initially counting the null colusns in the input local alignsent,
and then
(ii) counting the null colusns created and annihilated
in “shift_bl_and_compt_prob_incr (@@@$$) {...}”. … ADDED on Nov 10, 2018.
(=> MODIFIED the above algorithms accordingly!! … on Nov 13, 2018.)

RESTARTED on Jan 15, 2019. (1)

Be ore the sain processes, it would be better to exasine the degeneracy o each
alignsent due to the swapping o vertically equivalent blocks with the sase size.

=> REPLACE this process with

31

checking the positional arrangement of such s appable blocks, i.e., whether the
positional order o such blocks con orss to the order o their ranks, which will be performed
AFTER the counting o null colusns. (REVISED on Dec 10. 2018.)

For this purpose, we will construct:
%branch2up_do n2equiv_blocks = ($branch => {$up_or_do n => \@equiv_blocks,

…}, ..),
where $up_or_down = ‘U’/’L’ depending on whether the gap-block is on the

“upper”/”lower”-side o the branch,
and @equiv_blocks lists the indices o vertically equivalent blocks (in ascending order).
And @indices_blocks_ _equiv, which list the indices o blocks with vertically equivalent

ones,
as well as @degeneracies0, which is $BE = #{blocks w/ vertical equivalents}

disensional,
and $degeneracies0[$y_1] [$y_2] ... [$y_{$BE-1}] → → →
gives the baseline degeneracy o the alignsent in which
the 1st, 2nd, …, {$BE-1} th blocks w/ vertical equivalents (in @indices_blocks_w_equiv)
have the coordinates $y_1, $y_2, …, $y_{$BE-1}, respectively.

(1) Enuserate the sets o vertically equivalent blocks. (As be ore, this will be per orsed be ore the
sain process. … ADDED on Dec 10, 2018.)

sy @indices_blocks_w_equiv = (); # Initialize the list o indices. #
sy @sets_blocks_w_equiv = ();

 oreach sy $br (sort {$a <=> $b} keys %branch2up_or_down2equiv_blocks) { # Prelisinary outer
 oreach-loop.
 sy $up_or_down2equiv_blocks = $branch2up_or_down2equiv_blocks{$br};

 oreach sy $ud (sort keys %{$up_or_down2equiv_blocks}) { # Prelisinary siddle oreach-
loop.

sy $equiv_blocks = $up_or_down2equiv_blocks{$ud};

sy %size2equiv_blocks;
 oreach sy $bl (@{$equiv_blocks}) { # 1st prelisinary inner oreach-loop.

sy ($lbd, $rbd) = @{$bds_blocks[$bl]};

MODIFIED on Jan 15, 2019.

sy $size = $block_sizes[$bl]; # See Appendix F-sppl G.

OBSOLETE as o Jan 15, 2019. (1)
sy $size = $rbd - $lbd + 1;
#
Subtract the sizes o (vertically) ‘including’ or ‘equivalent’ blocks, i at all.
#
(ADDED on Nov 29, 2018.)
sy $relations_w_bl = $inter_block_relations[$bl];
or (sy $bl2 = 0; $bl2 < $B; $bl2++) {
i ($bl2 == $bl) { next; }
sy $rel = $relations_w_bl [$bl2];→
unless (($rel eq ‘<’) or (($rel eq ‘=’) and ($bl2 < $bl))) { next; } # $bl2 is
NEITHER vertically including NOR vertically equivalent to (and higher-ranked than) $bl.
sy ($lbd2, $rbd2) = @{$bds_blocks[$bl2]};
unless (($lbd <= $lbd2) and ($rbd2 <= $rbd)) { next; } # $bl2 is NOT
included in $bl.
$size2 = $rbd2 - $lbd2 + 1;
$size -= $size2;

32

}
(END of “ADDED on Nov 29, 2018”.)
#

OBSOLETE as o Jan 15, 2019. (2)

END o “MODIFIED on Jan 15, 2019.”

sy $ebs = $size2equiv_blocks{$size};
unless (defned $ebs) { $ebs = $size2equiv_blocks{$size} = []; }
push @{$ebs}, $bl;

} # END o the 1st prelisinary inner oreach-loop.

 oreach sy $size (sort {$a <=> $b} keys %size2equiv_blocks) { # 2nd prelisinary inner
 oreach-loop.

 sy $ebs = $size2equiv_blocks{$size};
 i (@{$ebs} < 2) { next; } # Skip i containing only one block.

 push @indices_blocks_ _equiv, @{$ebs};
 push @sets_blocks_ _equiv, $ebs;

} # END o the 2nd prelisinary inner oreach-loop.

 } # END o the prelisinary siddle oreach-loop.
} # END o the prelisinary outer oreach-loop.

END o “RESTARTED on Jan 15, 2019. (1)”

(2) Initialize @degeneracies0, so that every relevant elesent is 1 (unity). … OBSOLETE as of
Dec 10, 2018.

Use a single while-loop, which is in a sense sisilar to, but such sispler than, the while-
loop (guided by a stack and an index speci ying the block under consideration) or the sain
cosputational process. … OBSOLETE as of Dec 10, 2018.

(3) Cospute the degeneracies, Check the positional orders among s appable blocks, which
should be per orsed a ter counting null colusns (REVISED on Dec 10, 2018):

NOTE (added on Dec 10, 2018): This has the sase e ect as assigning the right
degeneracies to all degenerate alignsents.

Besides, it is such sispler than cosputing degeneracies, because it can avoid possible
cosplications due to unequal ranges o the swappable blocks, as well as cosplications due to
changeable ranges o sose blocks.

Resesber that what we actually need is to avoid double-counting o the sase alignsent,
but not to know exactly how sany tises each alignsent occur (in a given coordinate space).

sy $rank_init_coord = 0; # This should be the rank (, i.e., the position in
@indices_blocks_w_equiv) o the 1st coordinate in @{$ebs}. … Probably, unnecessary.
(Deliberated on Nov 28, 2018)

MODIFIED on Nov 28, 2018.
sy $ct_sets_ebs = scalar (@sets_blocks_w_equiv);

sy @sets_sub_degeneracies = (); # (the $i th elesent) = {the degeneracies assigned to the points o
the sub-coordinate space or the set, @{$sets_blocks_w_equiv[$i]}, resulting ros the relations
asong its constituent blocks. … OBSOLETE as of Dec 10, 2018.

sy $i _right_order = 1; # = 0 i the positional order o the swappable blocks disagree with the order
o their ranks. (ADDED on Dec 10, 2018.)

33

 or (sy $i = 0; $i < $ct_sets_ebs; $i++) {
sy $ebs = $sets_blocks_w_equiv[$i];

oreach sy $ebs (@sets_blocks_w_equiv) {

sy $ct_ebs = @{$ebs};

sy $bl1 = $ebs->[0];
sy $lbd_bl1 = $curr_bds_blocks [$bl1][0];→

 or (sy $i=1; $i <$ct_ebs; $i++) { # Inner or-loop (over swappable blocks). #
 sy $bl2 = $ebs->[$i];
 sy $lbd_bl2 = $curr_bds_blocks [$bl2][0];→

 i ($lbd_bl2 <= $lbd_bl1) {
The positional order clashes with the order o ranks.
$i _right_order = 0;
last;

 } else {
$lbd_bl1 = $lbd_bl2;

 }
} # END o the inner or-loop (over swappable blocks). #

i ($i _right_order == 0) { last; }

[[OBSOLETE as of Dec 10, 2018:

 # Using @bds_bl_coords and the initial positions o the blocks,
 # detersine the coordinate ranges in which only particular blocks can be swapped with one

another. (See Appendix E.)

=> For each coordinate range, detersine the degeneracy according to the groups o
swappable blocks.

… The point sust be to constrain the possibilities by considering the “isolated” blocks
frst, then, the blocks “isolated” as a result o the blocks “isolated” be ore…. (See Appendix E.)

=> Assign the detersined degeneracy to each range (via sultiplication).

ADDED on Nov 28, 2018.
my $sub_degeneracies = sub_degeneracies_in_sub_coordinate_space (@{$ebs},
@init_bds_blocks, @init_bl_coords, @bds_bl_coords, @inter_block_relations);

This subroutine esbodies the algoriths in Appendix E.
$sub_degeneracies [$x_0]...[$x_{$ct_ebs}] is the sub-degeneracy→
assigned to the coordinates ($x_0, …, $x_{$ct_ebs-1}) o the $ebs [0], …, →

$ebs [$ct_ebs-1] th blocks, respectively. →
(Actually, the “,…,” includes vertically equivalent but non-swappable blocks as

well, in order to consider ALL blocks whose ranks are between $ebs [0] and $ebs [$ct_ebs-1].)→ →

$sets_sub_degeneracies[$i] = $sub_degeneracies;

END of “ADDED on Nov 28, 2018.”

(NOTE1: The ranges with degeneracy = 1 (unity) can be skipped.)
(NOTE2: the coordinates o the other blocks can be anything.)

Use double hile-loops, the outer one or the coordinates o the blocks be ore @{$ebs},
and the inner one or the coordinates o the blocks a ter @{$ebs},

34

with each while-loop driven by a stack o coordinate vectors and an index speci ying the
coordinate to be soved.

(In a way, each while-loop is sisilar to, but such sispler than, the while-loop or the
sain cosputational process.)
… Probably, this double hile-loops can be omitted, and an enormous memory
space can be saved, by storing only the degeneracies assigned to the sub-coordinate spaces of
relevant sets of blocks. (Deliberated on Nov 28, 2018.)

sy @bds_bl_coords = (The set o boundaries or the block coordinates);
@{$bds_bl_coords[$bl]} = ($lb_coord, $rb_coord) in the ull-closed convention;

$rank_init_coord += $ct_ebs; … Probably unnecessary.
]] # END of “OBSOLETE as of Dec 10, 2018”

}

if ($if_right_order == 0) { # ADDED on Dec 10, 2018. #

{Set the degeneracy of the alignment to be 0 (zero)}; # IN this algoriths, degeneracy = 0
seans that the alignsent should NOT contribute the probability (at least within this coordinate
space).

{and SKIP the subsequent processes};
}

If (#{null columns} > 0),
set the degeneracy of the alignment to be 0 (zero), # IN this algoriths, degeneracy = 0

seans that the alignsent should NOT contribute the probability (at least within this coordinate
space).

and SKIP the follo ing three processes (+ checking the positional order of the
s appable blocks … ADDED on Dec 10, 2018)!!

BEFORE DOING the next t o processes,
exasine whether any vertically equivalent blocks overlap or not:

my $if_overlap = 0;

 oreach sy $br (sort {$a <=> $b} keys %branch2up_or_down2equiv_blocks) { # Outer oreach-
loop.
 sy $up_or_down2equiv_blocks = $branch2up_or_down2equiv_blocks{$br};

 oreach sy $ud (sort keys %{$up_or_down2equiv_blocks}) { # Middle oreach-loop.

sy @std_equiv_blocks = sort {$bds_blocks[$a] [0] <=> $bds_blocks[$b] [0]} → →
@{$up_or_down2equiv_blocks{$ud}};

sy $ct_ebs = @std_equiv_blocks;
 or (sy $k = 1; $k < $ct_ebs; $k++) { # Inner oreach-loop.

 sy ($bl1, $bl2) = @std_equiv_blocks[$k-1, $k];

 i ($bds_blocks[$bl1] [1] + 1 >= $bds_blocks[$bl2] [0]) { # The right-boundary o → →
the block on the le t touches or goes beyond the le t-boundary o the block on the right.

$if_overlap = 1;
last;

 }

35

} # END o the inner oreach-loop.

i ($i _overlap) { last; }

 } # END o the siddle oreach-loop.

 i ($i _overlap) { last; }

} # END o the outer oreach-loop.

if ($if_overlap) { # This seans that the alignsent changed its topology in an unacceptable way.

{Make the degeneracy of this alignment zero.} # IN this algoriths, degeneracy = 0
seans that the alignsent should NOT contribute the probability (at least within this coordinate
space).

&
{Skip the follo ing t o processes.}

}

It’s probably the best to do issediately be ore process (iv) (i.e., the actual “shi t”)
issediately a ter process (iv) (i.e., a ter all position/order changes associated with the “shi t”),

check the number of equivalent alignments in the coordinate space as quickly as
possible.

#
For this purpose, we will use:

@collectively_complementary_blocks, with
{elesent} =
[a set o 3 2 or sore blocks that are collectively cosplesentary to one another,
where vertically equivalent blocks are bundled together (into an anonysous array …

OBSOLETE as of Nov 12, 2018)],
as well as:

@block2coll_comple, where
@{$block2coll_comple[$bl]} lists
(the indices in @collectively_cosplesentary_blocks o)
the sets o collectively cosplesentary blocks that
the $bl th block belongs to; it is espty i there is no such set. … This array say actually

be superfluous...

(NOTE: We also need to devise an algoriths to construct these two arrays. => See Appendix C D.)

Here is an algorithm:

sy @degenerate_sets_ccbs = (); # elesent = [$lbd_le t, $rbd_le t, $lbd_right, $rbd_right, \
@le t, \@right, \@including], where @le t/right is the set o blocks on the le t/right, @including is
the set o blocks (horizontally) including both.
sy $if_degenerate = 0; … OBSOLETE as of Nov 12, 2018.
sy ($lbd_rlv, $rbd_rlv) = @{$bds_blocks[$bl]};
#
oreach sy $indx_cc (@{$block2coll_cosple[$bl]}) { # Outer oreach-loop (over the sets o
collectively cosplesentary blocks that $bl belongs to). #
#
sy $set_cc_blks = $collectively_cosplesentary_blocks[$indx_cc];

36

 oreach sy $set_cc_blks (@collectively_cosplesentary_blocks) {# Outer oreach-loop (over
the sets o collectively cosplesentary blocks. #
oreach sy $src_set_cc_blks (@collectively_cosplesentary_blocks) {# Outer oreach-loop
(over the sets o collectively cosplesentary blocks. #

sy @sets_cc_blks = ([]); # elesent = [\@indices_connected_equiv_blks, $lbd, $rbd]
#
oreach sy $equiv_blks (@{$src_set_cc_blks}) { # 1st siddle oreach-loop (over the sets o
vertically equivalent blocks). #
#
sy $sets_conn_blks = bundle_connected_blocks (@{$equiv_blks}, @bds_blocks); #
Will be defned later...
sy @new_sets_cc_blks = ();
while (sy $set_ccbs = shi t @sets_cc_blks) {
oreach sy $set_cbs (@{$sets_conn_blks}) {
sy $cp_set_ccbs = copy (@{$set_ccbs});
push @{$cp_set_ccbs}, $set_cbs;
push @new_sets_cc_blks, $cp_set_ccbs;
}
}
#
@sets_cc_blks = @new_sets_cc_blks;
} # END o the “1st siddle oreach-loop (over the sets o vertically equivalent blocks)”.
#
oreach sy $set_cc_blks (@sets_cc_blks) { # 2nd siddle oreach-loop (over the sets o
collectively cosplesentary blocks). … OBSOLETE as of Nov 12, 2018.

Sort the blocks in ascending order o their sizes.
 sy @std_set_cc_blks = sort {$bds_blocks[$a] [1] - $bds_blocks[$a] [0] <=> → →

$bds_blocks[$b] [1] - $bds_blocks[$b] [0]} @{$set_cc_blks};→ →

sy $bl1 = $set_cc_blks [0];→
 sy $bl1 = $std_set_cc_blks[0];
 sy ($lbd1, $rbd1) = @{$bds_blocks[$bl1]}; # … RESURRECTED as of Nov 12,

2018.

sy ($indices1_ceb, $lbd1, $rbd1) = @{$set_cc_blks [0]}; → # The 1st bundle o
connected equivalent blocks. #

 sy $ct_ccbs = @{$set_cc_blks};

 sy @identical = sy @including = #sy @included
 = sy @le t_flanking = sy @right_flanking = sy @overlapping = sy @separated = ();

oreach sy $bl2 (@{$set_cc_blks}) { # 1st inner oreach-loop (over constituent blocks).#
i ($bl2 == $bl1) { next; } # Skip the subject itsel .
sy ($lbd2, $rbd2) = @{$bds_blocks[$bl2]};

 or (sy $k=1; $k <$ct_ccbs; $k++) { # 1st inner oreach-loop (over bundles o connected
equivalent blocks). #

sy $ceb2 = $set_cc_blks [$k];→
sy ($indices2_ceb, $lbd2, $rbd2) = @{$ceb2};

sy $bl2 = $std_set_cc_blks[$k];
sy ($lbd2, $rbd2) = @{$bds_blocks[$bl2]};

i (($rbd2 < $lbd_rlv-1) or ($rbd_rlv+1 < $lbd2)) {

37

i (($rbd2 +1 < $lbd1) or ($rbd1 + 1 < $lbd2)) {

 push @separated, $bl2;
push @separated, $ceb2;

 last;

} elsi ($rbd1 +1 == $lbd2) { push @right_flanking, $bl2;
} elsi ($rbd2 + 1 == $lbd1) { push @le t_flanking, $bl2;

} elsi ($lbd1 == $lbd2) {
 i ($rbd1 < $rbd2) {

push @including, $bl2;

 } else { # $rbd1 == $rbd2
push @identical, $bl2;

 }

} elsi ($lbd1 < $lbd2) {
 push @overlapping, $bl2;
 last;

} else { # $lbd2 < $lbd1

 i ($rbd2 < $rbd1) {
push @overlapping, $bl2;
last;

 } else { # $rbd1 <= $rbd2
push @including, $bl2;

 }
}

 } # END o the “1st inner oreach-loop (over bundles o connected equivalent blocks)”. #
} # End o the 1st inner oreach-loop (over constituent blocks).

 i (@separated > 0) { next; # I one or sore blocks are separated ros the ssallest block,
this set should NOT be degenerated.

 } elsi (@overlapping > 0) { next; # I one or sore blocks overlap the ssallest block (in
a non-nested sanner), this set should NOT be degenerated.

 } elsi ((@le t_flanking == 0) and (@right_flanking == 0)) { next; # I no blocks flank
the ssallest block, this set should NOT be degenerated.

 } elsi ((@le t_flanking > 0) and (@right_flanking >0)) { next; # I the ssallest block is
flanked on both sides, this set should NOT be degenerated.

 }

 sy @flanking = (@le t_flanking > 0) ? @le t_flanking : @right_flanking;
 sy ($lbd_fl, $rbd_fl) = @{$bds_blocks[$flanking[0]]};
 sy $ct_flanking = @flanking;
 sy $i _staggered = 0;
 or (sy $i=1; $i< $ct_flanking; $i++) { # 2nd inner or-loop.

sy ($lbd3, $rbd3) = @{$bds_blocks[$flanking[$i]]};
i (($lbd3 != $lbd_fl) or ($rbd3 != $rbd_fl)) {
 $i _staggered = 1;
 last;
}

 } # END o the 2nd inner or-loop.

38

 i ($i _staggered) { next; } # For the set to be degenerated, the flanking blocks MUST
have identical boundaries.

 sy $lbd_joint = ($lbd1 < $lbd_fl) ? $lbd1 : $lbd_fl;
 sy $rbd_joint = ($rbd1 < $rbd_fl) ? $rbd_fl : $rbd1;

 i (@including>0) {
sy $i _non_accossodating = 0;
 oreach sy $bl3 (@including) { # The 3rd inner oreach-loop.
 sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]};
 i (($lbd_joint < $lbd3) or ($rbd3 < $rbd_joint)) {

$i _non_accossodating = 1;
last;

 }
} # End o the 3rd inner oreach-loop.

i ($i _non_accossodating) { next; } # For the set to be degenerated, all blocks
including the subject MUST accossodate the flanking blocks as well.

 }

 sy @std_identical = sort {$a <=> $b} ($bl1, @identical);
 sy @std_flanking = sort {$a <=> $b} @flanking;
 sy @std_including = sort {$a <=> $b} @including;

 sy ($lbd_le t, $rbd_le t, $lbd_right, $rbd_right, $std_le t, $std_right, $std_including) =
ADDED on Nov 28, 2018.

 sy @degenerate_set = (@le t_flanking>0) ?
($lbd_fl, $rbd_fl, $lbd1, $rbd1, \@std_flanking, \@std_identical, \@std_including] :
($lbd1, $rbd1, $lbd_fl, $rbd_fl, \@std_identical, \@std_flanking, \@std_including] ;

 # Finally check whether the collective blocks are really swappable or not. #
ADDED on Nov 28, 2018.

 sy $i _sovable = 1;
 oreach sy $bl5 (@{$std_le t}) {

 # Check whether the block is sovable to the position o the right collective block.
sy $bl_coord5 = $(curr_)bl_coords[$bl5];
sy ($lbd_coord5, $rbd_coord5) = @{$bds_bl_coord[$bl5]};
i ($rbd_coord5 - $bl_coord5 < $rbd_right - $rbd_le t) {
 $i _sovable = 0;
 last;
}

 }
 i ($i _sovable) {

 oreach sy $bl5 (@{$std_right}) {
 # Check whether the block is sovable to the position o the le t collective block.
 sy $bl_coord5 = $(curr_)bl_coords[$bl5];
 sy ($lbd_coord5, $rbd_coord5) = @{$bds_bl_coord[$bl5]};
 i ($lbd_coord5 - $bl_coord5 < $lbd_right - $lbd_le t) {

$i _sovable = 0;
last;

 }
}

 }
 i ($i _sovable == 0) { next; }

END o “ADDED on Nov 28, 2018.”

39

 push @degenerate_sets_ccbs, \@degenerate_set;

} # End o the “2nd siddle oreach-loop (over the sets o collectively cosplesentary
blocks)”. … OBSOLETE as of Nov 12, 2018.

 } # END o “Outer oreach-loop (over the sets o collectively cosplesentary blocks #that $bl
belongs to#)”. #

NOTE ADDED on Nov 13, 2018: Cose to think o it,
e could further restrict the sets of collectively complementary blocks
by isposing additional conditions on the horizontal sizes ,
that is, a set o ccbs MUST consist o
one or two sets, each o (horizontally) identically sized blocks, and the resainder (i at

all),
which consists o blocks whose horizontal sizes are equal to or longer than the sus o

those or the orser two sets,
(or twice the horizontal size or the only one orser set).

Then, exasine whether sose degenerate sets can be chained or not.

sy @std_deg_sets = sort {$a [0] <=> $b [0]} @degenerate_sets_ccbs;→ →
@degenerate_sets_ccbs = @std_deg_sets;
#sy @degenerate_sets_ccbs = @std_deg_sets;
sy @chains_deg_sets = ();
sy $ct_csplx_chains = 0; # The nusber o “cosplex” chains, each o which consists o two or
sore degenerate sets.

while (@degenerate_sets_ccbs>0) { # Outer while-loop. #

sy $chain_tail = shi t @std_deg_sets;
sy @chain = ($chain_tail);
sy @resainder = ();
while (sy $subject = shi t @degenerate_sets_ccbs) { # Inner while-loop. #

i ($chain_tail [2] < $subject [0]) { → →
 @resainder = (@resainder, $subject, @degenerate_sets_ccbs);
 last;
} elsi ($subject [0] < $chain_tail [2]) {→ →
 push @resainder, $subject;
 next;
}

 i ($subject [1] == $chain_tail [3]) {→ → # Now, the le t blockset o the subject is
positioned identically with the right blockset o the tail o the chain.

i (0 == cospare_arrays (@{$chain_tail [5]}, @{$subject [4]}) { → → # The two
blocksets are identical.

 i (0 == cospare_arrays (@{$chain_tail [6]}, @{$subject [6]}) { → → # The
“including” blocksets in the two sets are also identical.

push @chain, $subject;
$chain_tail = $subject;
next;
last;

 }
}

 }

push @resainder, $subject;

40

sy @degenerate_sets_ccbs = (); # elesent = [$lbd_le t, $rbd_le t, $lbd_right,
$rbd_right, \@le t, \@right, \@including], where @le t/right is the set o blocks on the le t/right,
@including is the set o blocks (horizontally) including both.

} # END o the Inner while-loop. #

push @chains_deg_sets, \@chain;

i (@chain>1) {
 $ct_csplx_chains++;
 last;
}

@degenerate_sets_ccbs = @resainder;

} # END o the outer while-loop. #

sy $degeneracy;
if ($ct_cmplx_chains>0) { # This case should actually be considered in a di erent coordinate
space(, in which the @le t in the le t ccb and the @right in the right ccb are serged).

Set the degeneracy of this local alignment to be 0 (zero),
& SKIP the next process!!

} else {
$degeneracy = {the basic degeneracy at the point in the relevant coordinate subspace};
 or (1 .. scalar (@chains_deg_sets)) { $degeneracy *= 2; } # Each degenerate set doubles

the degeneracy.
}

NEXT, check hether the alignment topology changed or not, as quickly as possible.

Because the topological change MUST result ros the “shi t” o the current ($bl th)
block,

we should be able to ocus on this block and its surroundings.

NOTE: Be ore checking the topological change,
you should check whether the indel probability is already recorded or either
@bl_coords + (1, 1,…, 1) or @bl_coords – (1, 1, .., 1).
I either probability is already recorded, just use it.
(But care sust be exercised i the local alignsent reaches either end o the whole

alignsent.)
Otherwise, check the topological change, as ollows.
#
(NOTE: Merger and re-split between vertically identical blocks need not be checked here,
because they should already have been exasined in a preceding process.)

For this purpose, it would be convenient to construct:

@interfering_blocks, where

@{$interfering_blocks[$bl]} = (\@blocks, \@relations) stores in orsation on blocks that can
inter ere with the $bl th block (or espty i it has no such blocks), where
$blocks[$k] is the index (or rank) o the $k th inter ering block,
$relations[$k] is the relation o the $k th inter ering block with the $bl th block.

41

Here, we will only consider the ollowing relations:
‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘Cp’ (or ‘cosplesentary’),

MODIFIED on Jan 17, 2019. (In this case, though, we are concerned only with
parsisonious indel histories) #

‘>(ch)’ (or the $bl2 th block being ‘vertically included’ in, and an “e ective child” o , the
$bl1 th block),

‘<(pa)’ (or the $bl2 th block ‘vertically including’, and being the “e ective parent” o , the
$bl1 th block),
‘>’ (or the $bl2 th block being ‘vertically included’ in the $bl1 th block),
‘<’ (or the $bl2 th block ‘vertically including’ the $bl1 th block),

‘=’ (or ‘vertically identical’).

NOTES:
(1) Blocks with ‘ONN’ relations cause NO topological changes, as ar as we esploy the

current coordinate systes;
(2) Also, blocks with ‘ONCS’ relations cause NO topological changes, as far as we

restrict ourselves to parsisonious indel histories (sore precisely, parsisonious ancestral gap
states);

(3) Also, as far as we restrict ourselves to parsisonious indel histories (sore precisely,
parsisonious ancestral gap states), the separating branches o blocks with the ‘>’ or ‘<’ relations
with the $bl th block must be either the child or parent (or a sibling
#i they are children o a trivalent root
) o the separating branch o the $bl th block. # (As o Jan 17, 2019, this condition is trivially
satisfed.)

In addition, it would also be convenient to have @interfering_blocksets, where
@{$interfering_blocksets[$bl]} = (\@blocksets, \@relations) are nearly the sase as above,
except that @{$blocksets[$k]} is now a set o indices (or ranks) o the $k th inter ering block set.
(NOTE: Each @{$blockset[$k]} contains only blocks with the sase horizontal size (this condition
say be loosened … examine later!! … DONE until (and including) 2019/01/25!!) that ors a
(cosplesentary) sonophyletic group.)

For the sosent, we will only consider the ollowing relations:

‘S’ (or ‘sibling/parent/child’ o the $bl th block),
MODIFIED on Jan 17, 2019.

‘>(ch)’ (or the blockset being ‘vertically included’ in, and an “e ective child” o , the $bl1
th block).
‘>’ (or the blockset being ‘vertically included’ in the $bl1 th block).

NOTES:
(5) As in note (3), the separating branch o the blockset with the ‘>’ relation sust be either

the child or parent or sibling o the separating branch o the $bl th block; # As o Jan 17, 2019,
this condition is autosatically satisfed.

(6) Each blockset with the ‘Cp’ relation likely involves a single block with the ‘S’ relation;
(7) Likewise, ‘=’ likely involves a single block with the ‘S’ relation;
(8) And ‘<’ likely involves a single block with the ‘=’, ‘>’, and/or the ‘S’ relations.

[ADDED on Nov 20, 2018, after re-considering Figures SSSSSA10&11 in
“fgures_sppl3_bp1_ANEX.draft8.odp”]
Furthersore, we will also prepare the “complement” o @inter ering_blocksets,
denoted as @cmpl_interfering_blocksets, or which the subject is each constituent o each block-
set recorded in @inter ering_blocksets.
More precisely,
@{$cmpl_interfering_blocksets[$bl]} = (\@cmpl_blocksets, \@relations)

42

records block-blockset pairs in @inter ering_blocksets in which the $bl th block is a constituent o
@blockset = @{$inter ering_blocksets[$bl2]->[0][$k2]} or sose $bl2 and $k2.
(It is espty i the $bl th block is not a constituent o any block-sets.)
We will use the convention:
@{$cmpl_blocksets[$k]} = ($bl2, @blockset ith $bl removed)
and
$relations[$k] = the “complement” o $interfering_blocksets[$bl2] [1][$k2]→ .

Thus, the relations should be:

‘S’ i the corresponding relation in @inter ering_blocksets is ‘S’,
MODIFIED on Jan 17, 2019.

‘<(pa)’ i the corresponding relation in @inter ering_blocksets is ‘>(ch)’.
‘<’ i the corresponding relation in @inter ering_blocksets is ‘>’.

The ollowing are the algorithms to quickly check a topological change.

Let’s assuse that we have at hand:

($curr_lbd, $curr_rbd) = @{$relv_bds_block}; # $relv_bds_block = $bds_blocks[$bl];
($curr_lbd0, $curr_rbd0); # The boundaries o $bl BEFORE the “shi t”-like sove. # Added

on 2019/01/25.
sy $relv_inter ering_blks = $inter ering_blocks[$bl];
sy $relv_inter ering_blksets = $inter ering_blocksets[$bl];
sy $relv_cspl_inter ering_blksets = $cspl_inter ering_blocksets[$bl]; … ADDED on Nov

20, 2018.

my $if_topological_change = 0; # Initialize the output variable (fag).

(1) Using @inter ering_blocks,

i (@{$relv_inter ering_blks}==0) { return; }

sy ($in _blks, $relations) = @{$relv_inter ering_blks};
sy $ct_in _blks = @{$in _blks};

 or (sy $k=0; $k<$ct_in _blks; $k++) { # Outer or-loop (1).
sy $bl2 = $in _blks [$k];→
sy ($lbd2, $rbd2) = @{$bds_blocks[$bl2]};
sy $rel = $relations [$k];→

i ($rel eq ‘S’) { # ‘sibling/parent/child’ o the $bl th block

 i ($sh > 0) { # The block soved to the right.

ADDED on Jan 24, 2019. (1)
i (($lbd2 < $curr_lbd) and ($rbd2 < $curr_rbd)) { # The current block is now non-

nested with the 2nd block.

 i (($lbd2 <= $curr_lbd0) and ($curr_rbd0 <= $rbd2)) { # The current block was
horizontally included in the 2nd one.

$if_topological_change = 1;
 } elsi (($curr_lbd0 <= $lbd2) and ($rbd2 <= $curr_rbd0)) { # The current block

horizontally included the 2nd one.
$if_topological_change = 1;

 }
END o “ADDED on Jan 24, 2019. (1)”

43

[[OBSOLETE as of 2019/01/24. (1)
#
i (($lbd2 + $sh == $curr_lbd) and ($rbd2 < $curr_rbd)) { # The current block, which
horizontally included the 2nd block, now overlaps but is non-nested with the latter.
$i _topological_change = 1;
#
} elsi (($lbd2 < $curr_lbd) and ($rbd2 + $sh == $curr_rbd)) { # The current block,
which was horizontally included in the 2nd block, now overlaps but is non-nested with the latter.
$i _topological_change = 1;
]] END of “OBSOLETE as of 2019/01/24. (1)”

} elsi (($curr_lbd == $lbd2) and ($curr_rbd <= $rbd2)) { # The current block, which
overlapped but was non-nested with the 2nd block, now is horizontally included in the latter.

 $if_topological_change = 1;

} elsi (($curr_lbd < $lbd2) and ($curr_rbd == $rbd2)) {# The current block, which
overlapped but was non-nested with the 2nd block, now horizontally includes the latter.

 $if_topological_change = 1;

[[OBSOLETE as of 2019/01/24. (2a)
#
Added on 2019/01/23.
#
} elsi (($lbd2 + $sh < $curr_lbd) and ($rbd2 < $curr_rbd)) { # The current block,
which say have horizontally included the 2nd block, now overlaps but is non-nested with the latter.
#
sy %skipped = ($bl => 1, $bl2 => 1);
sy $ct_shifts = ct_necessary_shifts ($curr_lbd, $lbd2, $bl, @bds_blocks,
@inter_block_relations, %skipped);
#
i ($ct_shifts == 1) { $i _topological_change = 1; }
#
]] END of “OBSOLETE as of 2019/01/24. (2a)“

sub ct_necessary_shifts ($$$\@\@\%) {
Counts the nusber o “shi t”s o $bl_sbj necessary
or soving the boundary, $bd_curr, to $bd_goal.
%{$skipped} = ($block_to_be_skipped => 1, ...)

sy ($bd_curr, $bd_goal, $bl_sbj, $bds_blocks, $inter_block_relations, $skipped) = @_;

i ($bd_curr == $bd_goal) { return 0; }

sy $rels_w_sbj = $inter_block_relations [$bl_sbj];→
sy $ct_blks = @{$rels_w_sbj};
sy ($lb_sv, $rb_sv) = ($bd_curr < $bd_goal) ? ($bd_curr+1, $bd_goal) : ($bd_goal,

$bd_curr-1);

sy %cls2set_rlv;
 or (sy $bl3 = 0; $bl3 < $ct_blks; $bl3++) { # Outer or-loop (over $bl3).
 i (defned $skipped{$bl3}) { next; }
 sy $rel = $rels_w_sbj [$bl3];→
 unless (($rel eq ‘<’) or ($rel eq ‘<(pa)’) or ($rel eq ‘ONN’) or ($rel eq ‘ONCS’) or (($rel

eq ‘=’) and ($bl3 < $bl_sbj)) … Added on 2019/03/20.) { next; }
 sy ($lb3, $rb3) = @{$bds_blocks [$bl3]};→
 i (($rb_sv < $lb3) or ($rb3 < $lb_sv)) { next; }

 sy $lb_intrsct = ($lb3 > $lb_sv) ? $lb3 : $lb_sv; # Added on 2019/01/24.

44

 sy $rb_intrsct = ($rb3 < $rb_sv) ? $rb3 : $rb_sv; # Added on 2019/01/24.

 or (sy $c = $lb_intrsct; $c <= $rb_intrsct; $c++) { # Inner or-loop (over colusns, $c).
MODIFIED on 2019/01/24.
or (sy $c = $lb3; $c <= $rb3; $c++) { # Inner or-loop (over colusns, $c).

sy $set_rlv = $cls2set_rlv{$c};
unless (defned $set_rlv) { $set_rlv = $cls2set_rlv{$c} = []; }
push @{$set_rlv}, $bl3;

 } # End o the inner or-loop (over colusns, $c).
} # End o the outer or-loop (over $bl3).

sy $ct_shifts = 0;
 or (sy $c = $lb_sv; $c <= $rb_sv; $c++) { # Outer or-loop (over colusns, $c).
 unless (defned $cls2set_rlv{$c}) { $ct_shi ts++; }
} # End o the outer or-loop (over colusns, $c).

return $ct_shifts;

} # End of “sub ct_necessary_shifts ($$\@\@\%) {...}”

[[OBSOLETE as of 2019/01/24. (2b)
#
} elsi (($lbd2 < $curr_lbd) and ($rbd2 + $sh < $curr_rbd)) { # The current block,
which say have been horizontally included in the 2nd block, now overlaps but is non-nested with
the latter.
#
sy %skipped = ($bl => 1, $bl2 => 1);
sy $ct_shifts = ct_necessary_shifts ($curr_rbd, $rbd2, $bl, @bds_blocks,
@inter_block_relations, %skipped);
#
i ($ct_shifts == 1) { $i _topological_change = 1; }
#
#
Also consider the possibility that
a block (or a set o blocks) vertically including $bl has either the le t-bound
at $lbd2 + $sh + 1
or the right-bound at $rbd2 + $sh -1,
and “sediates” between $bl and the relevant boundary o $bl2. … Maybe
Later!! (POSED on Jan 17, 2019) … DONE!!
#
End o “Added on 2019/01/23.”
]] END of “OBSOLETE as of 2019/01/24. (2b)“

}

 } else { # The block shi ted to the le t.
The sase as above, but with the le t- and right-ends swapped.

 }

} elsi (($rel eq ‘Cp’) # ‘cosplesentary’
 or ($rel eq ‘>(ch)’) # ‘vertically included’ in the $bl th block # Added ‘(ch)’ on Jan

17, 2019.
 or ($rel eq ‘<(pa)’) # ‘vertically including’ the $bl th block # Added ‘(pa)’ on Jan 17,

2019.
or ($rel eq ‘=’) # ‘vertically identical’ --- Actually, it may be superfuous…
(OBSOLETE as of 2019/01/22)

) {

45

 i ($sh > 0) {# The block shi ted to the right.

i ($curr_rbd + 1 == $lbd2) { # The current block, which was separated ros the 2nd
block by one colusn, is now issediately adjacent to the latter.

 $if_topological_change = 1;

} elsi ($rbd2 + 1 == $curr_lbd0) { # The current block, which was issediately
adjacent to the 2nd block, is now separated ros the latter by one colusn. # MODIFIED on
2019/01/24.
} elsi ($rbd2 + 2 == $curr_lbd) { # The current block, which was issediately
adjacent to the 2nd block, is now separated ros the latter by one colusn.

 $if_topological_change = 1;

ADDED on Jan 24, 2019. (2)
} elsi ($curr_rbd + 1 < $lbd2) { # The current block now appears separated ros the

2nd one, which is on the right.

 sy %skipped = ($bl => 1, $bl2 => 1);
 sy ($bl_sbj, $start, $goal) = ($rel eq ‘>(ch)’) ? ($bl2, $lbd2, $curr_rbd+1) : ($bl,

$curr_rbd, $lbd2-1);
 sy $ct_shifts = ct_necessary_shifts ($start, $goal, $bl_sbj, @bds_blocks,

@inter_block_relations, %skipped);

 i ($ct_shifts == 0) { $if_topological_change = 1; } # The blocks are actually
NOT separated!!

} elsi ($rbd2 + 1 < $curr_lbd0) { # The current block appeared separated ros the
2nd one, which is on the le t.

 sy %skipped = ($bl => 1, $bl2 => 1);
 sy ($bl_sbj, $start, $goal) = ($rel eq ‘>(ch)’) ? ($bl2, $rbd2, $curr_lbd0 -1) :

($bl, $curr_lbd0, $rbd2+1);
 sy $ct_shifts = ct_necessary_shifts ($start, $goal, $bl_sbj, @bds_blocks,

@inter_block_relations, %skipped);

 i ($ct_shifts == 0) { $if_topological_change = 1; } # The blocks were actually
NOT separated!!

 # Also consider the possibility that
a block (or a set o blocks) either vertically including or overlapping yet

non-nested with $bl (or $bl2) flanks $bl2.
. … Maybe Later!! (POSED on Jan 17, 2019) … DONE on 2019/01/24!!

END o “ADDED on Jan 24, 2019. (2)”
}

 } else {# The block shi ted to the le t.
The sase as above, but with the le t- and right-ends swapped.

 }

}

i ($if_topological_change) { last; }

 } # END o the outer or-loop (1).

 i ($if_topological_change) { return $if_topological_change; }

46

$inter_block_relations[$bl1] [$bl2] = $relation→ ,
or the relation between the $bl1 th and $bl2 th blocks.
#
Here, $relation can be:
#
‘NIF’ (or ‘non-inter ering’),
‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘Cp’ (or ‘cosplesentary’),
‘ONN’ (or ‘overlapping yet non-nesting’ NOR ‘cosplesentary-sibling/parent/child’),
‘ONCS’ (or ‘overlapping yet non-nesting’ but ‘cosplesentary-sibling/parent/child’ o the
$bl th block),
‘>’ (or the $bl2 th block being ‘vertically included’ in the $bl1 th block),
‘<’ (or the $bl2 th block ‘vertically including’ the $bl1 th block),
‘=’ (or ‘vertically identical’).

(2) Using @inter ering_blocksets,

i (@{$relv_inter ering_blksets} == 0) { return; }

sy ($in _blksets, $relations2) = @{$relv_inter ering_blocksets};
sy $ct_in _bss = @{$in _blksets};

 or (sy $k=0; $k < $ct_in _bss; $k++) { # Outer or-loop (2).
sy $blset = $in _blksets [$k];→

sy ($lbd2, $rbd2) = @{$bds_blocks[$blset->[0]]}; # The ($lbd2, $rbd2) will be the
boundaries o the “horizontal” intersection o the blocks in the set. (See Figures SSSSSA10&11 in
“fgures_sppl3_bp1_ANEX.dra t8.odp”.)

sy $rel = $relations2 [$k];→

sy $size_blset = @{$blset};

i ($rel eq ‘S’) {# MOVED ros below the inner or-loop (2), (MODIFIED as of
2019/01/24. (1a)) #

 or (sy $k=1; $k<$size_blset; $k++) { # Inner or-loop (2).
 sy ($lbd3, $rbd3) = @{$bds_blocks[$blset [$k]]}; →

It say be better to ‘extend’ the boundaries i the block ,$blset [$k] , is →
flanked by sose blocks vertically including it. .. Maybe later!! (POSED on Jan 17, 2019). …
Actually, taken into account belo (in “MODIFIED as o 2019/01/24. (1b)”).

 i ($lbd2 < $lbd3) { $lbd2 = $lbd3; }
 i ($rbd3 < $rbd2) { $rbd2 = $rbd3; }
 } # END o the inner or-loop (2). … ADDED on Nov 20, 2018.

MODIFIED as of 2019/01/24. (1b)

 unless ($lbd2 <= $rbd2) { next; }

 i ((($lbd2 <= $curr_lbd) and ($curr_rbd <= $rbd2))
or (($lbd2 <= $curr_lbd0) and ($curr_rbd0 <= $rbd2))) {

Identical to the above or ($rel eq ‘S’) in (1).

 } else {

47

sy $i _sin_blks = 0;
 or (sy $k=1; $k<$size_blset; $k++) { # Inner or-loop (3).
 sy $bl3 = $blset [$k];→
 sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]};
 i (($lbd2 == $lbd3) and (($rbd2 == $rbd3)) {

$i _sin_blks = 1;
last;

 }
} # END o the inner or-loop (3).

i ($i _sin_blks) {
 # Identical to the above or ($rel eq ‘S’) in (1). #
}

 }

} elsi ($rel eq ‘>(ch)’) {

 sy $ct_topo_changes = sy $ct_including = 0;
 i ($sh > 0) {

 or (sy $k=0; $k <$size_blset; $k++) { # Inner or-loop (5) (over blocks in the set).
 sy $bl3 = $blset [$k];→
 sy ($lb3, $rb3) = @{$bds_blocks[$bl3]};
 i (($lb3 <= $curr_rbd0 +1) and ($curr_lbd <= $rbd3 + 1)) {

$ct_including++;

 } elsi ($curr_rbd +1 == $lb3) { # The current block, which was separated ros
the 3rd block by one colusn, is now issediately adjacent to the latter.

$ct_topo_changes++;

 } elsi ($rb3 +1 == $curr_lbd0) { # The current block, which was issediately
adjacent to the 3rd block, is now separated ros the latter by one colusn.

$ct_topo_changes++;

 } elsi ($curr_rbd +1 < $lb3) { # The current block now appears separated ros
the 3rd one, which is on the right.

sy %skipped = ($bl => 1, $bl3 => 1);
sy $ct_shifts = ct_necessary_shifts ($lb3, $curr_rbd+1, $bl3, @bds_blocks,

@inter_block_relations, %skipped);

i ($ct_shi ts > 0) {
 last; # The blocks are indeed separated.
} else {
 $ct_topo_changes++; # The blocks are actually NOT separated!!
}

 } elsi ($rb3 +1 < $curr_lbd0) { # The current block appeared separated ros the
3rd one, which is on the le t.

sy %skipped = ($bl => 1, $bl3 => 1);
sy $ct_shifts = ct_necessary_shifts ($rb3, $curr_lbd0-1, $bl3,

@bds_blocks, @inter_block_relations, %skipped);

i ($ct_shi ts > 0) {
 last; # The blocks were indeed separated.
} else {
 $ct_topo_changes++; # The blocks were actually NOT separated!!
}

48

 } else {
last; # Because we are sure that there should be NO topological change

between this block-set and $bl, leave the loop here.
 }
} # END o the inner or-loop (5) (over blocks in the set).

 } else { # i ($sh <0)
Identical to the “i ($sh>0) {...}” block above, with the le t and right

swapped. #
 }

 i (($ct_including + $ct_topo_changes == $size_blset) and ($ct_topo_changes>0)) {
$if_topological_change = 1;
last;

 }

} END of “if ($rel eq ‘S’) {…} elsif ($rel eq ‘>(ch)’) {...}”.

[[OBSOLETE as of 2019/01/24. (3)
i ($lbd2 <= $rbd2) { … Condition ADDED on Nov 20, 2018.
#
I the “horizontal” intersection is not espty.
#
i ($rel eq ‘S’) { # ‘sibling/parent/child’ o the $bl th block
#
Identical to the above or ($rel eq ‘S’) in (1).
#
} elsi ($rel eq ‘>(ch)’) { # ‘vertically included’ in the $bl th block # Added ‘(ch)’ on Jan
17, 2019.
#
Identical to the above or ($rel eq ‘>(ch)’) in (1). # # Added ‘(ch)’ on Jan 17, 2019.
}
#
} … END of the “Condition ADDED on Nov 20, 2018.”
]] END of “OBSOLETE as of 2019/01/24. (3)”

END of “MODIFIED as of 2019/01/24. (1a,b)”

i ($i _topological_change) { # Exasine whether the constituent blocks align per ectly.
sy $size_blset = @{$blset};
or (sy $k=1; $k<$size_blset; $k++) { # Inner or-loop (2).
sy ($lbd3, $rbd3) = @{$bds_blocks[$blset [$k]]};→
i (($lbd2 == $lbd3) and ($rbd2 == $rbd3)) { next; }
$i _topological_change = 0;
last;
} # END o the inner or-loop (2).
} # END o “i ($i _topological_change) {...}” … OBSOLETE as of Nov 20, 2018.

i ($if_topological_change) { last; }

 } # END o the outer or-loop (2).

 i ($if_topological_change) { return $if_topological_change; }

[BEGINNING of “ADDED on Nov 20, 2018, after re-considering Figures SSSSSA10&11 in
“fgures_sppl3_bp1_ANEX.draft8.odp””]

49

(3) Using @cspl_inter ering_blocksets, # Also consider the cases where vertically ‘large’ blocks
inter ere. .. Maybe later!! (POSED on Jan 17, 2018). … DONE in the case ($rel eq ‘<(pa)’) (on
2019/01/25)!!

(In the case ($rel eq ‘S’), however, it is di fcult to incorporate such ‘large’ blocks. So, we
leave it as a uture task to actually consider this case. (My hunch is that the results will not change
signifcantly even i we incorporate the e ects o such ‘large’ blocks.))

i (@{$relv_cspl_inter ering_blksets} == 0) { return; }

sy ($in _cblksets, $relations3) = @{$relv_cspl_inter ering_blocksets};
sy $ct_in _cbss = @{$in _cblksets};

 or (sy $k=0; $k < $ct_in _cbss; $k++) { # Outer or-loop (3).
sy $cblset = $in _cblksets [$k];→
sy $size_cblset = @{$cblset};

sy ($lbd2, $rbd2) = @{$bds_blocks[$cblset [0]]}; → # The block paired with the block-set.
($bl2 = $cblset [0]).→

sy $rel = $relations3 [$k];→

i ($rel eq ‘S’) { # ‘sibling/parent/child’ o the block-set containing the $bl th block

MODIFIED on 2019/01/25. (1)

 sy ($lbd3, $rbd3) = @{$bds_blocks[$cblset [1]]};→
 or (sy $k=2; $k <$size_cblset; $k++) { # Inner or-loop (3) (over the resaining blocks

in the c-block-set).
sy ($lbd5, $rbd5) = @{$bds_blocks[$cblset [$k]]};→
i ($lbd3 < $lbd5) { $lbd3 = $lbd5; }
i ($rbd5 < $rbd3) { $rbd3 = $rbd5; }
i ($rbd3 < $lbd3) { last; }

 } # End o the inner or-loop (3) (over the resaining blocks in the c-block-set).

 i ($rbd3 < $lbd3) { next; } # Topology should NOT change!!

 sy ($sax_curr_lbd, $sin_curr_lbd) = ($curr_lbd < $curr_lbd0) ?
($curr_lbd, $curr_lbd0) : ($curr_lbd0, $curr_lbd) ;

 sy ($sax_curr_rbd, $sin_curr_rbd) = ($curr_rbd > $curr_rbd0) ?
($curr_rbd, $curr_rbd0) : ($curr_rbd0, $curr_rbd) ;

 i (($lbd3 <= $lbd2) and ($rbd2 <= $rbd3)) { # $bl2 is horizontally included in the c-
block-set (excluding $bl). => Focus on the relationship bet een $bl2 and $bl. (We do NOT know
yet, which o $bl and $bl2 horizontally includes the other.)

Identical to the above or ($rel eq ‘S’) in (1).

 } elsi (($lbd3 <= $sax_curr_lbd) and ($sax_curr_rbd <= $rbd3)) { # Both be ore and
a ter the change, $bl is horizontally included in the c-block-set (excluding $bl). => Focus on the
relationship bet een $bl2 and $bl. (In this case, $bl ill NOT include $bl2 horizontally.)

i ($sh >0) { # The block shi ted to the right.
 i (($lbd2 < $curr_lbd) and ($rbd2 < $curr_rbd)) { # $bl is now non-nested with

$bl2.

i (($lbd2 <= $curr_lbd0) and ($curr_rbd0 <= $rbd2)) { # The $bl was
horizontally included in $bl2.

50

 $if_topological_change = 1;
}

 } elsi (($curr_lbd == $lbd2) and ($curr_rbd <= $rbd2)) { # $bl, which
overlapped but was non-nested with $bl2, now is horizontally included in the latter.

$if_topological_change = 1;

 }

} else { # i ($sh <0), that is, The block shi ted to the le t.
The sase as above, but with the le t- and right-ends swapped.

}

 } elsi (($lbd3 <= $curr_lbd) and ($curr_rbd <= $rbd3)) { # A ter the change, $bl is
horizontally included in the c-block-set (excluding $bl), but it was not be ore the change. => Check
if $bl2 also horizontally includes $bl (after the change).

i (($lbd2 <= $curr_lbd) and ($curr_rbd <= $rbd2)) { $if_topological_change = 1; }

 } elsi (($lbd3 <= $curr_lbd0) and ($curr_rbd0 <= $rbd3)) { # Be ore the change, $bl was
horizontally included in the c-block-set (excluding $bl), but it is not a ter the change. => Examine
 hether $bl2 also horizontally included $bl (before the change).

i (($lbd2 <= $curr_lbd0) and ($curr_rbd0 <= $rbd2)) { $if_topological_change = 1;
}

 } elsi (($sin_curr_lbd <= $lbd3) and ($rbd3 <= $sin_curr_rbd)) { # Both be ore and
a ter the change, $bl horizontally includes the c-block-set (excluding $bl). => Topology ill
NEVER change, no matter hat.

next;

 } elsi ((($curr_lbd <= $lbd3) and ($rbd3 <= $curr_rbd)) # A ter the change, $bl does
horizontally includes the c-block-set (excluding $bl), but it did not be ore the change.

or
 (($curr_lbd0 <= $lbd3) and ($rbd3 <= $curr_rbd0)) # Be ore the change, $bl did

horizontally include the c-block-set (excluding $bl), but it does not a ter the change.
) {

unless (($lbd2 <= $lbd3) and ($rbd3 <= $lbd2)) { next; } # $bl2 does NOT include
the c-block-set. => Topology ill NOT change!!

Exasine whether sose blocks in the c-block-set have the “sinisus”
boundaries, [$lbd3, $rbd3]. #

sy $i _sin_blks = 0;
 or (sy $k=1; $k <$size_cblset; $k++) { # Inner or-loop (5) (over the blocks in the

c-block-set).
 sy ($lbd5, $rbd5) = @{$bds_blocks[$cblset [$k]]};→
 i (($lbd3 == $lbd5) and ($rbd3 == $rbd5)) {

$i _sin_blks = 1;
last;

 }
} # End o the inner or-loop (5) (over the blocks in the c-block-set).

i ($in_sin_blks) { $if_topological_change = 1; }

 } # END of “if (($lbd3 <= $lbd2) and ($rbd2 <= $rbd3)) {…} elsif …. {}”.

51

OBSOLETE as o 2019/01/25. (1)
Identical to the above or ($rel eq ‘S’) in (1).
#
i ($i _topological_change) {
#
Check i all the resaining blocks “horizontally” include the 2nd block.
#
or (sy $k=1; $k<$size_cblset; $k++) { # Inner or-loop (3) (over the resaining
blocks in the block-set).
sy ($lbd3, $rbd3) = @{$bds_blocks[$cblset [$k]]};→
i (($lbd2 < $lbd3) or ($rbd3 < $rbd2)) { # Unless the 3rd block “horizontally”
includes the 2nd block. #
$i _topological_change = 0;
last;
}

} # END o the “Inner or-loop (3) (over the resaining blocks in the block-set)”.
}

END o “OBSOLETE as o 2019/01/25. (1)”

END o “MODIFIED on 2019/01/25. (1)”

} elsi ($rel eq ‘<(pa)’) { # ‘vertically including’ the block-set containing the $bl th block #
Added ‘(pa)’ on Jan 17, 2019.

Identical to the above or ($rel eq ‘<(pa)’) in (1).

 i ($if_topological_change) {

Check i all the resaining blocks are “horizontally” connected with the 2nd block.

 or (sy $k=1; $k<$size_cblset; $k++) { # Inner or-loop (6) (over the resaining
blocks in the block-set).

MODIFIED on 2019/01/25. (2)

 sy $bl3 = $cblset [$k];→
 sy ($lbd3, $rbd3) = @{$bds_blocks[$bl3]};
 # sy ($lbd3, $rbd3) = @{$bds_blocks[$cblset [$k]]}; → # OBSOLETE as o

2019/01/25.

 i ($rbd3 < $lbd2 -1) { # $bl3 is separated ros, and on the le t o , $bl2.

sy %skipped = ($bl => 1, $bl3 => 1);
sy $ct_shifts = ct_necessary_shifts ($rbd3, $lbd2 -1, $bl3, @bds_blocks,

@inter_block_relations, %skipped);
i ($ct_shifts >0) {
 $if_topological_change = 0;
 last;
}

 } elsi ($rbd2 + 1 < $lbd3) { # $bl3 is separated ros, and on the right o , $bl2.

sy %skipped = ($bl => 1, $bl3 => 1);
sy $ct_shifts = ct_necessary_shifts ($lbd3, $rbd2 +1, $bl3, @bds_blocks,

@inter_block_relations, %skipped);
i ($ct_shifts >0) {

52

 $if_topological_change = 0;
 last;
}

 }

OBSOLETE as o 2019/01/25. (2)
i (($rbd3 +1 < $lbd2) or ($rbd2 +1 < $lbd3)) { # I the 3rd block is “horizontally
separated” ros the 2nd block. #
$i _topological_change = 0;
last;
}

END o “OBSOLETE as o 2019/01/25. (2)”

END o “MODIFIED on 2019/01/25. (2)”

} # END o the “Inner or-loop (6) (over the resaining blocks in the block-set)”.
 }
}

i ($if_topological_change) { last; }

 } # END o the outer or-loop (3).

return $if_topological_change;

@{$cmpl_interfering_blocksets[$bl]} = (\@cmpl_blocksets, \@relations)
records block-blockset pairs in @inter ering_blocksets
in which the $bl th block is a constituent o
@blockset = @{$inter ering_blocksets[$bl2]->[0][$k2]} or sose $bl2 and $k2.
(It is espty i the $bl th block is not a constituent o any block-sets.)
We will use the convention:
@{$cmpl_blocksets[$k]} = ($bl2, @blockset ith $bl removed)
and
$relations[$k] = the “complement” o $interfering_blocksets[$bl2] [1][$k2]→ .

Thus, the relations should be:
‘S’ i the corresponding relation in @inter ering_blocksets is ‘S’,
‘<’ i the corresponding relation in @inter ering_blocksets is ‘>’.

[END of “ADDED on Nov 20, 2018, after re-considering Figures SSSSSA10&11 in
“fgures_sppl3_bp1_ANEX.draft8.odp””]

Extend the quadruple, \@triple = [\@set_columns, \@bds_blocks, \@bl_coords,
$ct_null_columns],
into an septet octet (i.e., an seven eight-tuple):
#
\@sepoctet = [@triple, \@lb_sorted_set, \@orders_lb, \@rb_sorted_set, \@orders_rb].

ADDED on Jan 17, 2019. (1)

i ($if_topological_change) {

 {Exasine whether either the alignsent with all coordinates less than the current ones by one, or
that with all coordinates sore than the current ones by one, has the boundary status identical to the

53

current one and is already assigned the indel component of its log-probability.}; # ADDED on
Jan 18, 2019. (1)

 i (already assigned, and identical boundary status) { # ADDED on Jan 18, 2019. (1)

{ Use the assigned value };
 } else {

sy $code_topology = encode_alignment_topology (@bds_blocks,
@inter_block_relations, {other necessary things}); # See Appendix F-sppl2 H. (Create it later!!)

sy $ln_prob_indels = $ctopo2ln_prob_indels{$code_topology};

i (defned $ln_prob_indels) {
{Store $ln_prob_indels into $set_ln_probs_indels[$coord_bl0] [$coord_bl1]...→

[$coord_bl{B-1}]. };
} else {

{Cospute $ln_prob_indels. };
$ctopo2ln_prob_indels{$code_topology} = $ln_prob_indels;
=> {Store $ln_prob_indels into $set_ln_probs_indels[$coord_bl0] [$coord_bl1]...→

[$coord_bl{B-1}]. };
}

 } # END o “ADDED on Jan 18, 2019. (1)”
}

END o “ADDED on Jan 17, 2019. (1)”

#{ WITHHELD on Nov 4, 2018:
sy %rlv_bl_rels = %{$inter_block_relations[$bl]}
#
sy $onn = $rlv_bl_rels{‘ONN’};
sy $oncs = $rlv_bl_rels{‘ONCS’};
#
i ((defned $onn) or (defned $oncs)) {
#
I necessary, swap the relevant block with the overlapping block(s),
be ore shi ting the coordinate(s).
}
#
sy $vincluded = $rlv_bl_rels{‘>’}; # Included in the relevant block.
sy $vincluding = $rlv_bl_rels{‘<’}; # Including the relevant block.
sy $vequiv = $rlv_bl_relv{‘=’};
#
i (defned $vincluding) {
I necessary, adjust the coordinate o the relevant block.
}
i (defned $vequiv) {
I necessary, adjust the coordinate o the relevant block.
In addition, i necessary, also adjust the coordinate o the overlapping block.
}
#
i (defned $vincluded) {
I necessary, adjust the coordinate o the relevant block
and also the coordinate o the overlapping block.
}
#} … END o “WITHHELD on Nov 4, 2018”

54

APPENDIX A: An algorithm to cluster a set of sequences (or external nodes) into a minimum
number of monophyletic groups (and possibly the complement of a monophyletic group).

This should be isplesented via a round-trip traversal o the tree.
In short,
(1) Via a bottos-up traversal, cluster neighboring external nodes into each sonophyletic group they
belong to; and
(2) I possible, via a top-down traversal, serge neighboring sonophyletic groups into the
cosplesent o yet another sonophyletic group.

The actual implementation is as ollows.

(0) Prelisinary:

sy %sonophyl_roots; # = ($node => 1 or the root o a current sonophyletic group,
 # 0 otherwise.)

 oreach sy $node (set o external nodes) { $sonophyl_roots{$node} = 0: }
 oreach sy $node (set o subject external nodes) { $sonophyl_roots{$node} = 1; }

It say be better to skip (1) and (2)
i (a) all external nodes are the subjects (=> $top_node is the sonophyletic root),
i (b) all external nodes but one are the subjects (=> the non-subject node is the lower-bound o the
cosplesentary sonophyletic group),
or i (c) only one external node is the subject (=> the subject node is the root o the only one
sonophyletic group).

(1) The bottos-up part:

 oreach sy $node (all internal nodes in descending order o the depth) {

sy $children = $node2ch {$node};→
((defned $children) and (@{$children}>0)) or next; # Skip external nodes.
sy $counter = 0;
 oreach sy $ch (@{$children}) { ($sonophyl_roots{$ch} == 1) and ($counter++); }
i ($counter == @{$children}) {

$sonophyl_roots{$node} = 1;
 oreach sy $ch (@{$children}) { $sonphyl_roots{$ch} == 0; } # It say be better

to delete the hash elesent.
} else {

$sonophyl_roots{$node} = 0; # Unnecessary i the above deletion is done.
}

}

(2) The top-down part:

sy $cosplesent_lower_bound;
sy $curr_node = $top_node; # Start with the root o the entire phylogenetic tree.

while (1) { # This while-loop will be per orsed ONLY IF the top node has two or sore children,
and UNLESS $sonophyl_roots{$top_node} == 1. #

sy $children = $node2ch {$curr_node};→
((defned $children) and (@{$children}>0)) or last; # End the loop i the current node is

external.

55

sy @non_sp_roots = ();
sy @sp_roots = ();
 oreach sy $ch (@{$children}) {

i ($sonophyl_roots{$ch} == 1) {
 push @sp_roots, $ch;
} else {
 push @non_sp_roots, $ch;
}

}

i (1 == @non_sp_roots) { # All except one o the children are the roots o sonophyletic
groups.

$cosplesent_lower_bound = $curr_node = $non_sp_roots[0]; # Update the lower-
bound o the cosplesent sonophyletic group (and the current node).

 oreach sy $ch (@sp_roots) { $sonophyl_roots{$ch} = 0; } # It say be better to
delete the hash elesent.

} else {
last;

}
}

(3) Finish:

sy @sonophyl_roots = ();
 oreach sy $node (all nodes) { ($sonophyl_roots{$node} == 1) and (push @sonophyl_roots,
$node); }

=> @sonophyl_roots contains the roots o sonophyletic groups (that are not included in the
cosplesent sonophyletic group), and $cosplesent_lower_bound (i defned) is the lower-bound
(i.e., the separating branch) o the largest possible cosplesent sonophyletic group.

APPENDIX B: Computing column- ise probabilities taking advantage of the
(complementary) monophyletic groups constructed as in APPENDIX A

This can be done by applying Felsenstein’s pruning algoriths (in a bottos-up sanner)
along a truncated (or “pruned”) tree,
whose root is the cosplesentary sonophyletic group (or the original root i there is no such
group),
and whose external nodes (i.e., leaves) are the roots o the sonophyletic groups.

(We assuse that the conditional probabilities concerning each sonophyletic groups, and the joint
probabilities concerning the cosplesentary sonophyletic group, i at all, are already available.)

Probably, the easiest solution would be to explicitly construct the “pruned” tree frst (this has to be
done only once given a set o gap-blocks (in an input alignsent)) ,
and to cospute the colusn-wise probabilities along the truncated tree.

(1) Construct the “pruned” tree:

Speci y the root o the “pruned” tree.
sy $root_pruned = (defned $cosplesent_lower_bound) ? $cosplesent_lower_bound :
$topnode_id ; # I there is no cosplesent sonophyletic group, use the top-node (i.e., root) o the
original tree.

sy %leaves_pruned;
 oreach sy $cw_sp_roots (@set_cw_sonophyl_roots) {

56

 oreach sy $sp_root (@{$cw_sp_roots}) { $leaves_pruned{$sp_root} = 1; }
}

sy %node2ch_prnd;
sy %node2pa_prnd;
sy %node2depth_prnd;

sy @subjcts = ($root_pruned);
sy $depth = 0;
while (@subjects > 0) {

sy $depth++;
sy @new_sbjcts = ();
 oreach sy $node (@subjects) {
 $node2depth_prnd{$node} = $depth;
 i (defned $leaves_pruned{$node}) { next; }
 sy $children = $node2ch{$node};
 unless ((defned $children) and (@{$children}>0)) { next; }
 push @new_sbjcts, @{$children};

 $node2ch_prnd{$node} = $children;
 oreach sy $ch (@{$children}) { $node2pa{$ch} = $node; }
}
@subjects = @new_sbjcts; # Update the set o the subject nodes.

}

sy %br2attr_prnd;
 oreach sy $br (keys %node2pa_prnd) { $br2attr_prnd{$br} = $br2attr; }

(2) Cospute the colusn-wise probability:

Speci y the nucleotide requencies at the root o the “pruned” tree.
sy @nt reqs_root_pruned = (defned $cosplesent_lower_bound) ?
 (($ss eq ‘-’) ? @{$node2nt reqs{$cosplesent_lower_bound}} :
@{$br2set_sw_extjnt_probs{{$cosplesent_lower_bound} [$s]})→

: @nt reqs_root ; # Here, $s is the index o the relevant site (or class-specifc colusn).
Actually, $s = $label2class_sp_clms{$labels[$cl_ _cmpl_mp]} {$ss}, →
with $ss = $csd_clms[$cl_ _cmpl_mp].

i (0 == scalar keys %node2ch_prnd) { # In this case, there should be either a single class
($root_pruned = $topnode_id) or two cosplesentary classes ($root_pruned != $topnode_id).

sy $cl_w_sp;
sy $root_sp;
 or (sy $cl=0; $cl < $CT_CLS; $cl++) {
 sy $cw_sp_roots = $set_cw_sonophyl_roots[$cl];
 i (@{$cw_sp_roots}== 0) { next; }
 i (@{$cw_sp_roots} > 1) {

return {signal indicating a falure};
 }
 i (defned $root_sp) {

return {signal indicating a falure};
 }
 $cl_w_sp = $cl;
 $root_sp = $cw_sp_roots->[0];
}
i ($cosplesent_lower_bound != $root_sp) {

return {signal indicating a falure};
}

57

sy $ss2 = $csd_clss[$cl_w_sp];
sy $s2 = ($ss2 eq ‘-’) ? ‘-’ : $label2class_sp_clss{$labels[$cl_w_sp]}->{$ss2};
sy @sw_cond_probs = ($ss2 eq ‘-’) ? (1, 1, 1, 1) :

@{$node2set_sw_cond_probs{$root_sp} [$s2]};→
sy $cw_prob = 0;
 or (sy $i=0; $i< $CT_NTS; $i++) { $cw_prob += $nt reqs_root_pruned[$i] *

$sw_cond_probs }

return $c _prob;
}

INITIALIZE the ingredients.

sy %node2sw_extcond_probs_prnd;

 or (sy $cl=0; $cl <$CT_CLS; $cl++) {
sy $ss3 = $csd_clss[$cl];
sy $s3 = ($ss3 eq ‘-’) ? ‘-’ : $label2class_sp_clss{$labels[$cl_w_sp]}->{$ss3};
sy $cw_sonophyl_roots = $set_cw_sonophyl_roots[$cl];
 oreach sy $root_sp (@{$cw_sonophyl_roots}) {
 sy @sw_xcond_probs = ($ss3 eq ‘-’) ? (1, 1, 1, 1) :

@{$node2set_sw_extcond_probs{$root_sp} [$s3]};→
 $node2sw_extcond_probs_prnd{$root_sp} = \@sw_xcond_probs;
}

}

Cospute the extended conditional probabilities in a bottos-up sanner.

 oreach sy $node (sort {$node2depth_prnd{$b} <=> $node2depth_prnd{$a}} keys
%node2depth_prnd) {

i ($node != $root_pruned) { next; }
sy $children = $node2ch_prnd{$node};
unless (defned $children) { next; }

Cospute the conditional probabilities.
sy @cond_probs = (1, 1, 1, 1);
 oreach sy $ch (@{$children}) {
 sy $sw_xcond_probs_ch = $node2sw_extcond_probs_prnd{$ch};
 or (sy $i=0; $i < $CT_NTS; $i++) { $cond_probs[$i] *=

$sw_xcond_probs_ch [$i]; }→
}

Cospute the extended conditional probabilities.
sy $tr_strx = $br2tr_strx {$node};→
sy @xcond_probs = ();
 or (sy $i=0; $i <$CT_NTS; $i++) {
 sy $row_tr_probs = $tr_strx [$i];→
 sy $xcond_prob = 0;
 or (sy $j=0; $j < $CT_NTS; $j++) { $xcond_prob += $row_tr_probs [$j] * →

$cond_probs[$j]; }
 $xcond_probs[$i] = $xcond_prob;
}
$node2sw_extcond_probs_prnd{$node} = \@xcond_probs;

}

Cospute the conditional probabilities o the colusn.
sy @cw_cond_probs = @nt reqs_root_pruned;

58

 oreach sy $ch (@{$node2ch{$root_pruned}}) {
sy $sw_xcond_probs = $node2sw_extcond_probs_prnd{$ch};
 or (sy $i=0; $i <$CT_NTS; $i++) { $cw_cond_probs *= $sw_xcond_probs [$i]; }→

}
Cospute the total probability o the colusn.

my $c _prob = 0;
 or (sy $i=0; $i <$CT_NTS; $i++) { $cw_prob += $cw_cond_probs[$i]; }

return $c _prob;

%label2class_sp_clss
@set_c _monophyl_roots, where @{$set_c _monophyl_roots[$cl]} lists the roots o
the sonophyletic groups belonging to the $cl th class (= espty i the $cl th class contains
no sonophyletic group).
$complement_lo er_bound, which is the “lower-bound” (or separating branch) o the
cosplesent sonophyletic group (= unde i there is no such cosplesent).
$cl_ _cmpl_mp, which is the ID o the class accossodating a cosplesent sonophyletic group
(= unde i there is no such cosplesent).

APPENDIX C: Classifying sequences according to hat gap-blocks affect them

Here, we will construct @class_labels (& %label2class) & @a ected_classes.
The orser is necessary or defning classes o sequences according to the gap-blocks a ecting
thes.
The latter is necessary or clari ying the e ects o each gap-block in a cospact sanner.

(1) Constructing @class_labels (& %label2class):

Input: @in o_blocks, with
%{$in o_blocks[$bl]} = (

‘branch’ => $branch_ID, # (or separating branch)
‘side’ => ‘U’ or ‘L’, # when the gap-blocks is on the ‘upper’/’lower’-side o the

branch.
),

or sosething sisilar.
& %id2nase = ($node_ID => $seq_nase, …) or external nodes, i necessary,
& @seqnases, which stores the nases (IDs) o all sequences.
& %node_id2seq_indx = ($node_ID => $indx_seq (in @seqnases), …) or external nodes.

sy @csplx_block_e ects = (); # An auxiliary output. #
 or (sy $i=0; $i < $CT_SEQS; $i++) { push @csplx_block_e ects, ‘’; } # Initialize
@csplx_block_e ects. #

 or (sy $bl = 0l $bl < $B; $bl++) {

sy $in o_block = $in o_blocks[$bl];
The ollowing two cossands will change according to the structure o

@in o_block.
sy $br = $in o_block {‘branch’};→
sy $side = $in o_block {‘side’};→

sy $ext_o springs = etch_ext_o springs_nr ($br, %node2ch);

sy ($stat_o springs, $stat_others) = ($side eq ‘U’) ? (‘F’, ‘T’) : (‘T’, ‘F’);
I ($side eq ‘U’), the gap-block is on the ‘upper-side’, that is, the o springs are

NOT a ected.
Otherwise, the gap-block is on the ‘lower-side’, that is, the o springs ARE

a ected.

59

sy @block_e ects = ();
 oreach sy $nodeid (@{$ext_o springs}) {

sy $seq_indx = $node_id2seq_indx{$nodeid};
$block_e ects[$seq_indx] = $stat_o springs;

}
 or (sy $i=0; $i< $CT_SEQS; $i++) {

sy $e ect = $block_e ects[$i];
$csplx_block_e ects[$i] .= (defned $e ect) ? $e ect : $stat_others;

}

}

my %label2class;
 or (sy $i=0; $i < $CT_SEQS; $i++) {

sy $label = $csplx_block_e ects[$i];
sy $indices_seqs_in_class = $label2class{$label};
unless (defned $indices_seqs_in_class) {
 $indices_seqs_in_class = $label2class{$label} = [];
}
push @{$indices_seqs_in_class}, $i;

}

my @class_labels = sort keys %label2class;
my $CT_CLS = scalar (@class_labels);

(2) Constructing @affected classes:

#sy @decosp_labels = (); # An auxiliary array. #
oreach sy $label (@class_labels) { sy @dc_label = split //, $label; push @decosp_labels, \
@dc_label; } … Turned out to be UNNECESSARY...

my @affected_classes = ();
 or (sy $bl = 0; $bl< $B; $bl++) { push @a ected_classes, []; } # Initialize @a ected_classes. #

 or (sy $cl=0; $cl < $CT_CLS; $cl++) {
sy @dc_label = split //, $class_labels[$cl];
 or (sy $bl=0; $bl< $B; $bl++) {
 i ($dc_label[$bl] eq ‘T’) { push @{$a ected_classes[$bl]}, $cl; }
}

}

@class_labels = (‘TTT’, ‘TTF’, ‘TFT’, ‘TFF’, …., ‘FFF’); # enuserate all non-espty classes.
$ct_classes = @class_labels; #{classes}
%label2class = ($class_label => \@indices_seqs_in_class, ….); # For all non-espty classes.
@indices_seqs_in_class = () i the class is espty.
#
@a ected_classes = (\@classes_a ected_by_block1, \@classes_a ected_by_block2, …);
Just or convenience.
NOTE that \@classes_a ected_by_blocki contains the indices o the relevant classes in
@class_labels.

APPENDIX C D: Exhaustively listing the sets of complementary blocks

Here we will invent an algorithm to construct the ollowing two arrays:

60

@collectively_complementary_blocks, each o whose elesents is
a set o 2 or sore blocks that are collectively cosplesentary to one another;

@block2coll_comple, where
@{$block2coll_comple[$bl]} lists (the indices in @collectively_cosplesentary_blocks o)
the sets o collectively cosplesentary blocks that the $bl th block belongs to;
it is espty i there is no such set.

(1) Constructing @collectively_complementary_blocks:

This can be done via a bottos-up traversal, plus an exasination at the root.

Assuse that the ollowing input hash is available:

sy %br2U_or_L2blocks = ($branch_ID => {‘U’ => \@blocks_upper_side, .’L’ => \
@blocks_lower_side}, ….); # @blocks_upper/lower_side stores the IDs (ranks) o gap-blocks
that are separated by $branch_ID and on the ‘upper’/’lower’-side o the branch.

my @collectively_complementary_blocks = (); # Initialization. #

(i) Bottos-up traversal:
my %br2cmp_blocks_lo er; #An auxiliary hash, = ($branch_ID => \@csp_blocks_lower, …)
where @csp_blocks_lower stores the cosposite gap-blocks that are on the ‘lower’-side o
$branch_ID.

 oreach sy $br (sort { $br2depth{$b} <=> $br2depth{$a} } keys %br2depth) {

sy @csp_blocks_lower = ();
sy $U_or_L2blocks = $br2U_or_L2blocks{$br};
i ((defned $U_or_L2blocks) and (defned $U_or_L2blocks->{‘L’})){
 oreach sy $bl (@{$U_or_L2blocks->{‘L’}}) { push @csp_blocks_lower, [$bl]; }
}

sy $children = $node2ch{$br};
unless ((defned $children) and (@{$children}>0)) { # The branch is external.
 i (@csp_blocks_lower>0) {

$br2csp_blocks_lower{$br} = \@csp_blocks_lower;
 }
 next;
}

sy @new_cblocks = ([]);
sy $i _absent = 0;
 oreach sy $ch (@{$children}) {
 sy $cblocks_lower_ch = $br2csp_blocks_lower{$ch};
 unless ((defned $cblocks_lower_ch) and (@{$cblocks_lower_ch}>0)) {

$i _absent = 1;
last;

 }
 sy @newnew_cblocks = ();
 oreach sy $new_cblock (@new_cblocks) {

 oreach sy $cblock_lch (@{$cblocks_lower_ch}) {
 sy @cp_new_cblock = @{$new_cblock};
 push @cp_new_cblock, @{$cblock_lch};
 push @newnew_cblocks, \@cp_new_cblock;
}

 }
 @new_cblocks = @newnew_cblocks; # Update @new_cblocks. #

61

}

i ($i _absent == 0) { # Every child branch possesses cosposite blocks on its “lower-side”.
 push @csp_blocks_lower, @new_cblocks;
}

i (@csp_blocks_lower == 0) { next; } # No cosposite blocks are on the “lower-side” o
$br. #

$br2csp_blocks_lower{$br} = \@csp_blocks_lower;

unless ((defned $U_or_L2blocks) and (defned $U_or_L2blocks->{‘U’})){ next; } # No
gap-blocks are on the “upper-side” o $br. #

sy $blocks_upper = $U_or_L2blocks->{‘U’};

Construct collectively cosplesentary blocks containing blocks on the “upper-
side” o $br. #

 oreach sy $cblocks_lower (@csp_blocks_lower) {
 oreach sy $block_upper (@{$blocks_upper}) {

sy @ccblock = @{$cblocks_lower};
push @ccblock, $block_upper;

Filter the @ccblock according to the block sizes.
(Assuse the existence o @block_sizes, where $block_sizes[$bl] gives the

horizontal size o the $bl th block.)
(ADDED on Dec 16, 2018).

sy @std_ccblock = sort {$block_sizes[$a] <=> $block_sizes[$b] } @ccblock;
sy $size1st = $block_sizes[$std_ccblock[0]];
sy ($size2nd, $size3rd);
 oreach sy $bl (@std_ccblock) {

sy $size = $block_sizes[$bl] ;
($size == $size1st) and next;
unless (defned $size2nd) {
 $size2nd = $size;
 next;
}
($size == $size2nd) and next;
$size3rd = $size;
last;

}
i ((defned $size3rd) and ($size3rd < $size1st + $size2nd)) { next; } # This set o

“cosplex-cosplesentary blocks” can NEVER yield degenerate confgurations.
(END o “ADDED on Dec 16, 2018”).

push @collectively_complementary_blocks, \@ccblock;
 }
}

}

(ii) Final exasination at the root:

sy $children_root = $node2ch{$topnode_id};

sy $i _absent_r = 0;
sy @ccblocks_r = ([]);
 oreach sy $ch (@{$children_root}) {

62

sy $cblocks_lch = $br2csp_blocks_lower{$br};
unless ((defned $cblocks_lch) and (@{$cblocks_lch}>0)) {
 $i _absent_r = 1;
 last;
}
sy @new_ccblocks_r = ();
 oreach sy $ccb_r (@ccblocks_r) {
 oreach sy $cblk_lch (@{$cblocks_lch}) {

sy @new_ccb_r = @{$ccb_r};
push @new_ccb_r, @{$cblk_lch};
push @new_ccblocks_r, \@new_ccb_r;

 }
}
@ccblocks_r = @new_ccblocks_r; # Update @ccblocks_r. #

}

i (($i _absent_r == 0) and (@ccblocks_r>0)) { # Every child branch o the root has cosposite
blocks on its “lower”-side. #

(REPLACED on Dec 16, 2018).

push @collectively_complementary_blocks, @ccblocks_r ;

Filter the ccblocks in @ccblocks_r according to the block sizes.
(Assuse the existence o @block_sizes, where $block_sizes[$bl] gives the

horizontal size o the $bl th block.)
 oreach sy $ccblock (@ccblocks_r) { # Outer oreach-loop (over ccblocks on

@ccblocks_r).
sy @std_ccblock = sort {$block_sizes[$a] <=> $block_sizes[$b] } @{$ccblock};
sy $size1st = $block_sizes[$std_ccblock[0]];
sy ($size2nd, $size3rd);
 oreach sy $bl (@std_ccblock) {

sy $size = $block_sizes[$bl] ;
($size == $size1st) and next;
unless (defned $size2nd) {
 $size2nd = $size;
 next;
}
($size == $size2nd) and next;
$size3rd = $size;
last;

}
i ((defned $size3rd) and ($size3rd < $size1st + $size2nd)) { next; } # This set o

“cosplex-cosplesentary blocks” can NEVER yield degenerate confgurations.

push @collectively_complementary_blocks, $ccblock ;

} # END o the outer oreach-loop (over ccblocks on @ccblocks_r).

(END o “REPLACED on Dec 16, 2018”).

}

(2) Constructing @block2coll_comple:

sy $CT_CCBS = scalar (@collectively_cosplesentary_blocks);

my @block2coll_comple = ();

63

 or (sy $bl=0; $bl<$B; $bl++) { $block2coll_cosple[$bl] = []; } # Initialization. #

 or (sy $i = 0; $i < $CT_CCBS; $i++) {

sy $ccb = $collectively_cosplesentary_blocks[$i];
 oreach sy $bl (@{$ccb}) { push @{$block2coll_cosple[$bl]}, $i; }

}

@{$block2coll_comple[$bl]} lists (the indices in @collectively_cosplesentary_blocks o)
the sets o collectively cosplesentary blocks that the $bl th block belongs to;
it is espty i there is no such set.

APPENDIX E: Dividing coordinate space according to alignment degeneracies

NOTE!!! (added on Dec 10, 2018): The algorithms belo ill be REPLACED ith
a simpler and faster measure, hich as devised around Dec 5, 2018 (and recorded

on Dec 10, 2018).

ADDED on Nov 28, 2018.
Here, (1) we detersine the coordinate ranges in which only particular blocks can be swapped with
one another.

Using @bds_bl_coords and the initial positions o the blocks,
given by @init_bds_blocks =
(The set o block boundaries or the initial local alignsent).

Then, (2) or each coordinate range, detersine the degeneracy according to the groups o swappable
blocks.

… The point in (2) sust be to constrain the possibilities by considering the “isolated”
blocks frst, then, the blocks that becose “isolated” a ter the “isolation” o the frst group o blocks,

These algorithss will be incorporated in the subroutine:

my $sub_degeneracies = sub_degeneracies_in_sub_coordinate_space (@{$ebs},
@init_bds_blocks, @init_bl_coords, @bds_bl_coords,
@inter_block_relations);

$sub_degeneracies [$x_0]...[$x_{$ct_ebs}] → is the sub-degeneracy
assigned to the coordinates ($x_0, …, $x_{$ct_ebs-1}) o the $ebs [0], …, →

$ebs [$ct_ebs-1] th blocks, respectively. →
(Actually, the “,…,” includes vertically equivalent but non-swappable blocks as

well, in order to consider ALL blocks whose ranks are between $ebs [0] and $ebs [$ct_ebs-1]→ → .)

(1) Dividing the coordinate sub-space according to the accessibility of the s appable blocks.

(a) Because the subject blocks behave in the sase sanner
when “interacting” with blocks that are
vertically including, or overlapping but non-nested with, the subjects,
it is convenient to “virtually sove” all such non-subject blocks to the right-end o the alignsent
(even i their coordinate boundaries do NOT actually allow it).
(And ignore other blocks, such as those which are vertically included in, cosplesentary to,
siblings o , or non-inter ering with, the subject, because they do NOT a ect the positions o the
subjects.)

(b) BEWARE o the “asyssetric” e ects o non-swappable blocks in between swappable ones!!

64

(In short, such blocks will NOT a ect the positional ranges o swappable blocks (initially) on the
le t, but WILL a ect those on the right, i they interact each other.)

END o “ADDED on Nov 28, 2018.”

ADDED on Nov 29, 2018.
(c) On the other hand,
i a non-swappable, vertically equivalent block is on the le t or on the right o
ALL swappable blocks, it a ects ALL swappable ones in the sase sanner.
Thus, we can ignore the existence o such blocks in this algoriths.

(o) Initialize the ‘working boundaries’ o the blocks.

my @ orking_bds_blocks = copy (@init_bds_blocks);

our $R_VEND = 1000000; # The unnecessary blocks will be virtually soved to this value. #
ADDED on Nov 30, 2018. #

(i) Virtually sove all blocks vertically including or overlapping but non-nested with the subject
blocks to the right-end.

sy @including_or_overlapping = ();
sy %already;
 oreach sy $bl (@{$ebs}) {

sy $relation_w_bl = $inter_block_relations[$bl];
 or (sy $bl2=0; $bl2<$B; $bl2++) {
 i ($bl2 == $bl) { next; }
 i (defned $already{$bl2}) { next; }
 sy $rel = $relation_w_bl [$bl2];→
 i (($rel eq ‘<’) or ($rel eq ‘ONN’) or ($rel eq ‘ONCS’)) {
‘ONN’ (or ‘overlapping yet non-nesting’ NOR ‘cosplesentary-sibling/parent/child’),
‘ONCS’ (or ‘overlapping yet non-nesting’ but ‘cosplesentary-sibling/parent/child’

push @including_or_overlapping, $bl2;
$already{$bl2} = 1;

 }
}

}

REPLACED on Nov 30, 2018.
sy @std_including_or_overlapping = sort {$a <=> $b } @including_or_overlapping ; # Sort thes
in order o their ranks, so that ‘larger’ gap-blocks will cose earlier. #
#sy @std_including_or_overlapping = sort {$init_bds_blocks[$b]->[0] <=>
$init_bds_blocks[$a] [0] } @including_or_overlapping ; → # Sort thes in descending order o the
le t-boundary. #

sy %soved_to_right; # ADDED on Nov 30, 2018. #
 oreach sy $bl (@std_including_or_overlapping) {

REPLACED on Nov 30, 2018.
sy $working_bds_bl = $working_bds_blocks[$bl];
sy ($lbd, $rbd) = @{$working_bds_bl};
sy ($lbd, $rbd) = @{$working_bds_blocks[$bl]};

sy $size_bl = $rbd - $lbd + 1; # ADDED on Nov 30, 2018.

sy $relation_w_bl = $inter_block_relations[$bl];

 or (sy $bl2=0; $bl2 < $B; $bl2++) {

65

 i ($bl2 == $bl) { next; }
 i (defned $soved_to_right{$bl2}) { next; } #ADDED on Nov 30, 2018. #
 sy $rel = $relation_w_bl [$bl2];→

 unless (($rel eq ‘>’) or (($rel eq ‘=’) and ($bl2 > $bl))) { next; } # $bl2 is vertically
NEITHER included in NOR equivalent to (and lower-ranked than) $bl.# REPLACED and
MOVED DOWNWARD on Nov 30, 2018. #

REPLACED on Nov 30, 2018.
 sy $working_bds_bl2 = $working_bds_blocks[$bl2]
 sy ($lbd2, $rbd2) = @{$working_bds_bl2};
 # sy ($lbd2, $rbd2) = @{$working_bds_blocks[$bl2]};

 i ($rbd2 < $rbd) { next; } # $bl2 is on the le t o $bl.

END o “ADDED on Nov 29, 2018”.

ADDED on Nov 30, 2018.

REPLACED and MOVED DOWNWARD on Nov 30, 2018.
 unless (($rel eq ‘>’) or (($rel eq ‘=’) and ($bl2 > $bl)) or ($rel eq ‘ONN’) or ($rel eq

‘ONCS’)) { next; } # $bl2 is vertically NEITHER included in, equivalent to (and lower-ranked
than), NOR $bl.

Move the right-end, and also the le t-end i applicable, o $bl2
to the le t by the size o $bl.

 $working_bds_bl2 [1] -= $size_bl;→
 i ($rbd < $lbd2) { $working_bds_bl2 [0] -= $size_bl; }→
}

$working_bds_bl [0] = $working_bds_bl [1] = $R_VEND;→ →
$soved_to_right{$bl} = 1;

}

(ii) Detersine the accessible regions o swappable blocks and vertically equivalent blocks in
between thes.

 (a) First, assuse that no non-swappable vertically equivalent blocks are in between swappable
blocks. # ADDED on Dec 7, 2018. #

sy @block_sizes = ({given}); # $block_sizes[$bl] is the size o the $bl th block. # ADDED on
Dec 6, 2018. #
sy $eb_ls = $ebs [0]; → # The le tsost swappable block.
sy $eb_rs = $ebs [$#{$ebs}]; → # The rightsost swappable block.

REVISED on Dec 2, 2018. => urther on Dec 6, 2018.
sy @sets_raw_regions_lbds = ();

@{$sets_raw_regions_lbds[$k] [$b]} → = ($bd_lbd, $coord_bd, $ct_r_blks), where gives
$bd_lbd is athe boundaryies o the le t-bound o the raw regions (the last elesent is the

right boundary, the rest are the le t boundaries) o the $ebs [$k] th block → (in terss o the colusn
nusber, i.e., the coordinate assigned to the local alignsent),

$coord_bd is the corresponding coordinate (assigned to the $ebs [$k] th block),→
and $ct_r_blks is the nusber o swappable blocks that were initially on the right but that is

on the le t when swapped. # ADDED on Dec 6, 2018, REVISED on Dec 7, 2018. #

 or (sy $eb = $eb_ls; $eb <= $eb_rs; $eb++) {
 or (sy $k=0; $k < @{$ebs}; $k++) {

66

sy ($lbd0, $rbd0) = @{$working_bds_blocks[$ebs->[$k]]};
sy ($lbd0, $rbd0) = @{$working_bds_blocks[$eb]};

sy $init_bl_coord = $init_bl_coords->[$ebs->[$k]];
sy ($lbd_bl_coord, $rbd_bl_coord) = @{$bds_bl_coords [→ $ebs->[$k]]};
sy $init_bl_coord = $init_bl_coords->[$eb];
sy ($lbd_bl_coord, $rbd_bl_coord) = @{$bds_bl_coords [$eb};→

ADDED on Dec 6 & 7, 2018.
sy $lbd_lbd = $lbd0 + ($lbd_bl_coord - $init_bl_coord);
sy $ct_r_blks = 0; # The nusber o swappable blocks on the le t initially but on the right

when swapped.
i ($k > 0) {
 $lbd_lbd -= $block_sizes[$ebs [$k-1]];→
 $ct_r_blks++;
}
sy $rbd_lbd = $lbd0 + ($rbd_bl_coord - $init_bl_coord);
sy @raw_regions_lbd = ($lbd_lbd, $rbd_lbd);
sy @raw_regions_lbd = ([$lbd_lbd, $lbd_bl_coord, $ct_r_blks], [$rbd_lbd, $rbd_bl_coord,

0]);
 or (sy $k2 = $k-2; $k2 >= 0; $k--) {
 $lbd_lbd -= $block_sizes[$ebs [$k2]];→
 $ct_r_blks++;
 # unshi t @raw_regions_lbd, $lbd_lbd;
 unshi t @raw_regions_lbd, [$lbd_lbd, $lbd_bl_coord, $ct_r_blks];
}

$sets_raw_regions_lbds = \@raw_regions_lbd;

}

sy @sets_regions_lbds = ([0, $CT_CLMS-1, []]);
The array stores regions defned by the le t-bounds o the gap-blocks.
elesents = [$le tsost_cls, $rightsost_cls, \@set_regions_lbds], where
$le t/rightsost_cls is the nusber (i.e., index in the local alignsent)
o the le t/right-sost colusn in the region in question;
@{$set_regions_lbds[$i]} = ($le t_bound, $right_bound, $ct_r_blks)
or the le t-boundary o the #($eb_ls + $i)
$ebs [$i]→ th block
(= espty i the block in question is not accossodated).

(Probably, @sets_regions_rbds, which stores regions defned by the right-bounds, will NOT be
necessary, because the right-bounds should be uniquely detersined ros the corresponding le t-
bounds UNLESS the gap-blocks overlap, and because confgurations with overlapping (vertically-
equivalent) gap-blocks WILL be ignored ros the fnal probability cosputation in the coordinate
space at hand.)
sy @sets_regions_lbds = ([]); # elesent at the fnal stage = @set_regions_lbds, with

 # @{$set_regions_lbds[$i]} = ($le t_bound, $right_bound)
 # or the le t-boundary o the ($eb_ls + $i) th block
 # (= espty i the block in question is not accossodated).

sy @sets_regions_rbds = ([]); # elesent at the fnal stage = @set_regions_rbds, with
 # @{$set_regions_rbds[$i]} = ($le t_bound, $right_bound)
 # or the right-boundary o the ($eb_ls + $i) th block
 # (= espty i the block in question is not accossodated).

… Still, Needs be re-considered!!
END o “REVISED on Dec 2, 2018”.

67

or (sy $eb = $eb_ls; $eb <= $eb_rs; $eb++) {
 or (sy $k=0; $k < @{$ebs}; $k++) { # MODIFIED on Dec 7, 2018. #

sy ($lbd0, $rbd0) = @{$working_bds_blocks[$eb]};
sy $raw_regions_lbd = $sets_raw_regions_lbds[$k];
sy $ct_raw_rgs = @{$raw_regions_lbd};
sy $ct_curr_regions = @sets_regions_lbds;

ADDED on Dec 7, 2018.
sy @new_sets_regions_lbds = ();
sy $rr=0;
while (($rr < $ct_raw_rgs) and (@sets_regions_lbds>0)) {

 sy $raw_region = $raw_regions_lbd [$rr];→
 sy ($bd_lbd, $coord_bd, $ct_r_blks) = @{$raw_region};
 sy $in o_set_regions = shi t @sets_regions_lbds;
 sy ($le tsost_cls, $rightsost_cls, $set_regions_lbds) = @{$in o_set_regions};

 i (($bd_lbd < $le tsost_cls) or
(($bd_lbd == $le tsost_cls) and ($rr < $ct_raw_rgs-1))) {
The raw boundary is on the le t o the current region.
$rr++;
next;

 } elsi (($rightsost_cls < $bd_lbd) or
 (($rightsost_cls == $bd_lbd) and ($rr == $ct_raw_rgs-1))) {
i ($rr ==0) {

The $k th swappable block is still on the right o the current region.
 $set_regions_lbds [$k] = [];→
} else {

The current boundary o the $k th block passed over the current region.
 sy ($bd_lbd_prev, $coord_bd_prev, $ct_r_blks_prev1)

= @{$raw_regions_lbd [$rr-1]};→

RESTARTED on Dec 8, 2018.

 sy ($le tsost_cls_prev, $rightsost_cls_prev, $prev_set_regions_lbds)
= @{$new_sets_regions_lbds[$#new_sets_regions_lbds]};

 sy ($le t_bound_prev, $right_bound_prev, $ct_r_blks_prev2)
= @{$prev_set_regions_lbds [$k]};→

 sy ($le t_bound, $right_bound, $ct_r_blks_prev) =
(defned $set_regions_lbds [$k]) ? @{$set_regions_lbds [$k]} : ();→ →

 unless (defned $le t_bound) {
i ($coord_bd == $coord_bd_prev) { $le t_bound = $right_bound_prev; # +1

?
} else { $le t_bound = $right_bound_prev + 1;
}

 }
 unless (defned $right_bound) {

i ($coord_bd == $coord_bd_prev) { $right_bound = $right_bound_prev;
} else {
 $right_bound = $bd_lbd_prev + ($rightsost_cls - $bd_lbd_prev) *

($coord_bd - $coord_bd_prev) / ($bd_lbd - $bd_lbd_prev);
}

 }
 unless (defned $ct_r_blks_prev) { $ct_r_blks_prev = $ct_r_blks_prev1; }

68

 $set_regions_lbds [$k] = [$le t_bound, $right_bound, $ct_r_blks_prev];→

}
push @new_sets_regions_lbds, $in o_set_regions;
next;

 }

The current boundary o the $k th block splits the current region.

 # ($le tsost_cls, $rightsost_cls, $set_regions_lbds) = @{$in o_set_regions};

 sy $ls_cls1 = $le tsost_cls;
 sy $rs_cls2 = $rightsost_cls;
 sy ($rs_cls1, $ls_cls2);
 sy @set_regions1_lbds = sy @set_regions2_lbds = ();

 i ($rr == 0) { # The le t-sost boundary. #

($rs_cls1, $ls_cls2) = ($bd_lbd-1, $bd_lbd);

 or (sy $k2=0; $k2<$k; $k2++) {
 sy $region_lbd = $set_regions_lbds [$k2];→
 i (@{$region_lbd}>0) {

sy ($le t_bound1, $right_bound2, $ct_r_blks12) = @{$region_lbd};
sy $bound12 = ((defned $right_bound2) and ($right_bound2 <

$le t_bound1)) ? $le t_bound1 : $le t_bound1 + ($bd_lbd - $le tsost_cls);
$set_regions1_lbds[$k2] = [$le t_bound1, $bound12-1, $ct_r_blks12];
$set_regions2_lbds[$k2] = [$bound12, $right_bound2, $ct_r_blks12];

 } else {
$set_regions1_lbds[$k2] = [];
$set_regions2_lbds[$k2] = [];

 }
}
sy ($le t_bound, $right_bound, $ct_r_blks0) = @{$set_regions_lbds [$k]};→
unless (defned $ct_r_blks0) { $ct_r_blks0 = $ct_r_blks; }
$set_regions1_lbds[$k] = [];
$set_regions2_lbds[$k] = [$coord_bd, $right_bound, $ct_r_blks0];

 } elsi ($rr == $ct_raw_rgs -1) { # The right-boundary. #

($rs_cls1, $ls_cls2) = ($bd_lbd, $bd_lbd+1);

 or (sy $k2=0; $k2<$k; $k2++) {
 sy $region_lbd = $set_regions_lbds [$k2];→
 i (@{$region_lbd}>0) {

sy ($le t_bound1, $right_bound2, $ct_r_blks12) = @{$region_lbd};
sy $bound12 = ((defned $right_bound2) and ($right_bound2 <

$le t_bound1)) ? $le t_bound1 : $le t_bound1 + ($bd_lbd - $le tsost_cls);
$set_regions1_lbds[$k2] = [$le t_bound1, $bound12, $ct_r_blks12];
$set_regions2_lbds[$k2] = [$bound12+1, $right_bound2, $ct_r_blks12];

 } else {
$set_regions1_lbds[$k2] = [];
$set_regions2_lbds[$k2] = [];

 }
}
sy ($le t_bound, $right_bound, $ct_r_blks0) = @{$set_regions_lbds [$k]};→
unless (defned $ct_r_blks0) { $ct_r_blks0 = $ct_r_blks; }
$set_regions1_lbds[$k] = [$le t_bound , $coord_bd, $ct_r_blks0];

69

$set_regions2_lbds[$k] = [];

 } else { # The le t-boundaries other than the le t-sost one. #

($rs_cls1, $ls_cls2) = ($bd_lbd-1, $bd_lbd);

 or (sy $k2=0; $k2<$k; $k2++) {
 sy $region_lbd = $set_regions_lbds [$k2];→
 i (@{$region_lbd}>0) {

sy ($le t_bound1, $right_bound2, $ct_r_blks12) = @{$region_lbd};
sy $bound12 = ((defned $right_bound2) and ($right_bound2 <

$le t_bound1)) ? $le t_bound1 : $le t_bound1 + ($bd_lbd - $le tsost_cls);
$set_regions1_lbds[$k2] = [$le t_bound1, $bound12-1, $ct_r_blks12];
$set_regions2_lbds[$k2] = [$bound12, $right_bound2, $ct_r_blks12];

 } else {
$set_regions1_lbds[$k2] = [];
$set_regions2_lbds[$k2] = [];

 }
}
sy ($le t_bound, $right_bound, $ct_r_blks0) = @{$set_regions_lbds [$k]};→
$set_regions1_lbds[$k] = [$le t_bound, $coord_bd-1, $ct_r_blks0];
$set_regions2_lbds[$k] = [$coord_bd, $right_bound, $ct_r_blks];

 }
 # ($bd_lbd, $coord_bd, $ct_r_blks) = @{$raw_region};

 push @new_sets_regions_lbds, [$ls_cls1, $rs_cls1, \@set_regions_lbds1];
 unshi t @sets_regions_lbds, [$ls_cls2, $rs_cls2, \@set_regions_lbds2];
 $rr++; # ADDED on Dec 9, 2018.

@{$sets_raw_regions_lbds[$k] [$b]} = ($bd_lbd, $coord_bd, $ct_r_blks), where →
$bd_lbd is a boundary o the le t-bound o the raw region (the last elesent is the right

boundary, the rest are the le t boundaries) o the $ebs [$k] th block (in terss o the colusn →
nusber, i.e., the coordinate assigned to the local alignsent),

$coord_bd is the corresponding coordinate (assigned to the $ebs [$k] th block),→
and $ct_r_blks is the nusber o swappable blocks that were initially on the right but that is

on the le t when swapped.
 }

Process the le t-over regions. (ADDED on Dec 9, 2018.)

while (@sets_regions_lbds>0) {
sy $in o_set_regions = shi t @sets_regions_lbds;
sy $set_regions_lbds = $in o_set_regions [2];→
$set_regions_lbds [$k] = [];→
push @new_sets_regions_lbds, $in o_set_regions;

}

Update the set o the regions o the le t-bounds. (ADDED on Dec 8, 2018.)
@sets_regions_lbds = @new_sets_regions_lbds;

}
 (b) When sose non-swappable vertically equivalent blocks are in between swappable blocks... #
ADDED on Dec 7, 2018. #

NOTE that the positions o the ranges o swappable blocks will depend on the positions o
the non-swappable blocks (as in Fig SSSSA13 o “fgure_sppl_3_bp1_ANEX.xxxx.odp”).

==> WILL be seriously considered later, i.e., when it becoses necessary...

70

(2) Assigning the degeneracy to each point (actually, each region) in the coordinate sub-space.

 (a) First, assuse that no non-swappable vertically equivalent blocks are in between swappable
blocks. # ADDED on Dec 7, 2018. #

RESTARTED on Dec 9, 2018.

(i) Using @sets_regions_lbds, divide the range o each swappable block into sub-regions again.

sy $ct_ebs = @{$ebs};
sy $ct_regions_lbds = @sets_regions_lbds;

sy @sets_divided_ranges_lbds = ();
 oreach (1 .. $ct_ebs) { push @sets_divided_ranges_lbds, []; }
sy @sets_cts_r_blks = ();
 oreach (@{$ebs}) { push @sets_cts_r_blks, []; }

 or (sy $i=0 ; $i < $ct_regions_lbds; $i++) {

sy $set_regions_lbds = $sets_regions_lbds[$i] [2];→

 or (sy $k=0; $k < $ct_ebs; $k++) {
 sy $in o_region_lbd = $set_regions_lbds [$k];→
 i (@{$in o_region_lbd}>0) {

push @{$sets_divided_ranges_lbds[$k]}, $i;
push @{$sets_cts_r_blks[$k]}, $in o_region_lbd->[2];

 }
}

}

sy @set_cts_div_rngs = ();
 or (sy $k=0; $k < $ct_ebs; $k++) {

$set_cts_div_rngs[$k] = scalar (@{$sets_divided_ranges_lbds[$k]});
}

(ii) Using the “ingredients” prepared in (i), as well as @sets_regions_lbds,
assign the degrees o degeneracy to ALL sub-regions in the direct-product space o the ranges o the
swappable blocks (defned by their le t-bounds).

sy @indices_div_rgs = (); # $indices_div_rgs[$k] specifes the divided range o the $k th
swappable block. #
 or (sy $k=0; $k < $ct_ebs; $k++) { $indices_div_rgs[$k] = 0; }
sy $indx_relv_blk = $ct_ebs-1;

sy @stack = ();
 or (0 .. $ct_ebs) { sy @copy = @indices_div_rgs; push @stack, \@copy; }
sy $wrk_indices_div_rgs = pop @stack;

sy @degeneracies = initialize_set_degeneracies ();
$degeneracies[$k_0] [$k_1]...[$k_{$ct_ebs-1}] = \{degeneracy in the sub-range defned →

by the indices, ($k_0, $k_1, …, $k_{$ct_ebs-1})}.

while (1) {

71

i ($wrk_indices_div_rgs->[$indx_relv_blk] == $set_cts_div_rngs[$indx_relv_blk]) {
Speci y the “next” sub-region within the direct product,
when the relevant range reached the rightsost sub-range.

 i ($indx_relv_blk == 0) { last; } # END the exploration. #

 $indx_relv_blk--;
 $wrk_indices_div_rgs = pop @stack;

 $wrk_indices_div_rgs->[$indx_relv_blk]++;
 next;
}
i ($indx_relv_blk < $ct_ebs-1) { # Restore the stack. #
 or (sy $k = $indx_relv_blk+1; $k < $ct_ebs; $k++) {

sy @copy = @{$wrk_indices_div_rgs};
push @stack, \@copy;

 }
 $indx_relv_blk = $ct_ebs -1;
}

Compute the degeneracy.

Prelisinary.

sy @set_div_rngs = sy @set_cts_r_blks = ();
sy @set_blk2ct_r_blks = (); # elesent = {{index in @{$ebs}} => #{blocks on the right},

…} or the blocks that can occupy the relevant divided range.
 or (sy $k=0; $k<$ct_ebs; $k++) {
 sy $indx = $wrk_indices_div_rgs [$k];→
 sy $div_rng = $sets_divided_ranges_lbds[$k] [$indx];→

 $set_div_rngs[$k] = $div_rng;
 $set_cts_r_blks[$k] = $sets_cts_r_blks[$k] [$indx];→

 sy $set_regions_lbds = $sets_regions_lbds[$div_rng] [2];→
 sy %blk2ct_r_blks;
 or (sy $k2=0; $k2<$ct_ebs; $k2++) {

sy $in o_region_lbd = $set_regions_lbds [$k2];→
i (@{$in o_region_lbd}==0) { next; }
$blk2ct_r_blks{$k2} = $in o_region_lbd->[2];

 }
 $set_blk2ct_r_blks[$k] = \%blk2ct_r_blks;
}

Sort the indices o @set_div_rngs so that the divided ranges will be arranged ros
right to le t. #

sy @std_indices = sort {$set_div_rngs[$b] <=> $set_div_rngs[$a] } (0 .. $ct_ebs-1) ;

sy %already; # = ({index o block (in @{$ebs})} => {index o divided range in
@sets_regions_lbds}, …) or the blocks already incorporated. #

Enumerate the possible combinations of {block}s vs {divided range}s.

sy @set_possible_cosbinations = (\%already);
 oreach sy $indx_blk0 (@std_indices) {

 sy $div_rng = $set_div_rngs[$indx_blk0];
 sy $ct_r_blks = $set_cts_r_blks[$indx_blk0];
 sy $blk2ct_r_blks = $set_blk2ct_r_blks[$indx_blk0];

72

 sy @new_set_poss_cosbs = ();
 while (sy $already = shi t @set_possible_cosbinations) {

RESTARTED on Dec 10, 2018.

 oreach sy $blk (keys %{$blk2ct_r_blks}) {
 i (defned $already {$blk}) { next; } → # I the block is already incorporated, the

cosbination canNOT be cospleted. #
 sy $ct_r_blks2 = $blk2ct_r_blks {$blk};→

 i ($ct_r_blks2 > 1) { # Actually, this block needs be refned (and soved to a ter
the while-loop), because this version canNOT handle situations where two or sore blocks are in the
sase divided range (see sose cases in Figure SSSSA12). #

sy $ct=0;
 oreach sy $blk2 (keys %{$already}) { i ($blk2 < $blk) { $ct++; } }
i ($ct_r_blks2 > $ct) { next; }

 }
 sy %copy = %{$already};
 $copy{$blk} = $div_rng;
 push @new_set_poss_cosbs, \%copy;
}

 }

Update the set o possible cosbinations o {block}s vs {divided range}s.
 @set_possible_cosbinations = @new_set_poss_cosbs;
}

Actually, the refned condition (within the oreach-loop above) should be placed
here. #

END o “RESTARTED on Dec 10, 2018.”

sy $degeneracy = scalar (@set_possible_cosbinations);

push @{$sets_divided_ranges_lbds[$k]}, $i;
push @{$sets_cts_r_blks[$k]}, $in o_region_lbd->[2];

Store the computed degeneracy.

sy $r _degeneracy = \@degeneracies;
 or (sy $k=0; $k <$ct_ebs; $k++) { $r _degeneracy =

$r _degeneracy [$wrk_indices_div_rgs [$k]]; }→ →
${$r _degeneracy} = $degeneracy;

Move to the “next” relevant sub-divided range.
$wrk_indices_div_rgs [$indx_relv_blk]++; →

}

@sets_regions_lbds = ([0, $CT_CLMS-1, []]);
The array stores regions defned by the le t-bounds o the gap-blocks.
elesents = [$le tsost_cls, $rightsost_cls, \@set_regions_lbds], where
$le t/rightsost_cls is the nusber (i.e., index in the local alignsent)
o the le t/right-sost colusn in the region in question;
@{$set_regions_lbds[$i]} = ($le t_bound, $right_bound, $ct_r_blks)
or the le t-boundary o the #($eb_ls + $i)
$ebs [$i]→ th block

73

(= espty i the block in question is not accossodated).

 (b) When sose non-swappable vertically equivalent blocks are in between swappable blocks... #
ADDED on Dec 7, 2018. #

As in (1)-(ii), NOTE that the positions o the ranges o swappable blocks will depend on the
positions o the non-swappable blocks

(as in Fig SSSSA13 o “fgure_sppl_3_bp1_ANEX.xxxx.odp”).

==> WILL be seriously considered later, i.e., when it becoses necessary...

APPENDIX F: Constructing @inter_block_relations (added on Dec 11, 2018),
@interfering_blocks, @interfering_blocksets, and @cmpl_interfering_blocksets, hich ill
help identify change of of alignment topology.

RESTARTED on Dec 11, 2018.

Assuse that we have the ollowing list:
@info_gblocks, where
($branch, $up_or_do n) = @{$info_gblocks[$bl]}[$indx_br, $indx_u_or_d], where
$branch is the ID o the branch separating the gap-block, and
$u_or_d = ‘U’/’L’ i the gap-block is on the ‘upper/’lower’-side o $branch.
#
Also assuse that we already have:
%branch2up_do n2equiv_blocks = ($branch => {$up_or_do n => \@equiv_blocks, …}, ..),
where $up_or_down = ‘U’/’L’ depending on whether the gap-block is on the “upper”/”lower”-side
o the branch,
and @equiv_blocks lists the indices o vertically equivalent blocks (in ascending order).
(This should be easily constructed ros the raw list o gap-blocks, as long as it stores the branches
and ‘U’ or ‘L’ statuses o the gap-blocks.)

(1) First, construct @inter_block_relations

$inter_block_relations[$bl1] [$bl2] = $relation→ ,
or the relation between the $bl1 th and $bl2 th blocks.
#
Here, $relation can be:
#
‘NIF’ (or ‘non-inter ering’),
‘S’ (or “e ective sibling” ‘sibling/parent/child’ o the $bl th block),
‘Cp’ (or ‘cosplesentary’),
‘ONN’ (or ‘overlapping yet non-nesting’ NOR ‘cosplesentary-sibling/parent/child’),
‘ONCS’ (or ‘overlapping yet non-nesting’ but ‘cosplesentary-sibling/parent/child’ o the
$bl th block),
‘>’ (or the $bl2 th block being ‘vertically included’ in the $bl1 th block),
‘>(ch)’ (or the $bl2 th block being ‘vertically included’ in, and an “effective child” o , the
$bl1 th block), # ADDED on Jan 16, 2019.
‘<’ (or the $bl2 th block ‘vertically including’ the $bl1 th block),
‘<(pa)’ (or the $bl2 th block ‘vertically including’, and being an “effective parent” o , the
$bl1 th block), # ADDED on Jan 16, 2019.
‘=’ (or ‘vertically identical’).
#
#NOTE1: Actually, the ‘sibling’ and ‘cosplesentary-sibling’ here include the ‘parent-child’
and ‘cosplesentary-parent-child’ relationships, respectively.
#

74

sy @inter_block_relations = ();
 or (sy $bl1=0; $bl1<$B; $bl1++) { # Outer or-loop (over $bl1).

 sy ($br1, $u_or_d1) = @{$in o_gblocks[$bl1]}[$indx_br, $indx_u_or_d];
 sy $eq_br1 = $equiv_br->{$br1};
 sy $pa_br1 = $node2pa {$br1};→
 # sy $eq_pa_br1 = $equiv_br->{$pa_br1};
 # sy $children1 = $node2ch {$br1};→
 # sy $depth1 = $node2depth->{$br1};
 sy $sibs1 = $node2ch {$pa_br1}; → # ADDED on Jan 16, 2019.

 or (sy $bl2=0; $bl2<$B; $bl2++) { # Middle or-loop (over $bl2).
i ($bl2 == $bl1) {

$relations_ _bl1[$bl2] = undef;
next;

}
sy ($br2, $u_or_d2) = @{$in o_gblocks[$bl2]}[$indx_br, $indx_u_or_d];
sy $eq_br2 = $equiv_br->{$br2};
sy $pa_br2 = $node2pa {$br2};→
sy $pa_br2 = $br2pa {$br2};→

sy $children2 = $br2ch {$br2};→
sy $depth2 = $node2depth {$br2};→
sy $sibs2 = $node2ch {$pa_br2}; → # ADDED on Jan 16, 2019.

(1) (vertically) equivalent or cosplesentary.

i ($br1 == $br2) {
$relations_w_bl1[$bl2] = ($u_or_d1 eq $u_or_d2) ? ‘=’ : ‘Cp’ ;
next;

} elsi ((defned $eq_br2) and ($br1 == $eq_br2)) {
$relations_w_bl1[$bl2] = ($u_or_d1 eq $u_or_d2) ? ‘Cp’ : ‘=’ ;
next;

}

(2) $br2 is the parent o $br1, or its equivalent.

i ($br2 == $pa_br1) {

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘>(ch)’; # $bl2 is an “e ective child” o $bl1.
 } else {
 $rel = ‘>’; # $bl2 is included in $bl1.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘ONCS’; # Overlapping but non-nesting and cosplesentary-parent-child.
 } else {
 $rel = ‘ONN’; # Overlapping but non-nesting NOR cosplesentary-parent-child.
 }
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {

75

 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘S’; # Parent-child.
 } else {
 $rel = ‘NIF’; # $bl1 and $bl2 are e ectively “non-inter ering”.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘<(pa)’; # $bl2 is an “e ective parent” o $bl1.
 } else {
 $rel = ‘<’; # $bl2 includes $bl1.
 }
}

 }

 $relations_w_bl1[$bl2] = $rel;
 next;

} elsi ((defned $eq_br2) and ($eq_br2 == $pa_br1)) {

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘ONCS’; # Overlapping but non-nesting and cosplesentary-parent-child.
 } else {
 $rel = ‘ONN’; # Overlapping but non-nesting NOR cosplesentary-parent-child.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘>(ch)’; # $bl2 is an “e ective child” o $bl1.
 } else {
 $rel = ‘>’; # $bl2 is included in $bl1.
 }
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘<(pa)’; # $bl2 is an “e ective parent” o $bl1.
 } else {
 $rel = ‘<’; # $bl2 includes $bl1.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs1} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘S’; # Parent-child.
 } else {
 $rel = ‘NIF’; # $bl1 and $bl2 are e ectively “non-inter ering”.
 }

 }

 $relations_w_bl1[$bl2] = $rel;
 next;
}

(3) $br1 is the parent o $br2, or its equivalent.

i ($br1 == $pa_br2) {

76

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘<(pa)’; # $bl2 is an “e ective parent” o $bl1.
 } else {
 $rel = ‘<’; # $bl2 includes $bl1.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘S’; # Parent-child.
 } else {
 $rel = ‘NIF’; # $bl1 and $bl2 are e ectively “non-inter ering”.
 }
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘ONCS’; # Overlapping but non-nesting and cosplesentary-parent-child.
 } else {
 $rel = ‘ONN’; # Overlapping but non-nesting NOR cosplesentary-parent-child.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘>(ch)’; # $bl2 is an “e ective child” o $bl1.
 } else {
 $rel = ‘>’; # $bl2 is included in $bl1.
 }
}

 }

 $relations_w_bl1[$bl2] = $rel;
 next;

} elsi ((defned $eq_br1) and ($eq_br1 == $pa_br2)) {

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘ONCS’; # Overlapping but non-nesting and cosplesentary-parent-child.
 } else {
 $rel = ‘ONN’; # Overlapping but non-nesting NOR cosplesentary-parent-child.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘>(ch)’; # $bl2 is an “e ective child” o $bl1.
 } else {
 $rel = ‘>’; # $bl2 is included in $bl1.
 }
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘<(pa)’; # $bl2 is an “e ective parent” o $bl1.
 } else {

77

 $rel = ‘<’; # $bl2 includes $bl1.
 }
} else { # i ($u_or_d2 eq ‘L’)
 i (@{$sibs2} == 2) { # ADDED on Jan 16, 2019.
 $rel = ‘S’; # Parent-child.
 } else {
 $rel = ‘NIF’; # $bl1 and $bl2 are e ectively “non-inter ering”.
 }
}

 }

 $relations_w_bl1[$bl2] = $rel;
 next;
}

(4) $br1 is the sibling o $br2.

i ($pa_br1 == $pa_br2) {

 sy $rel;

 i (($pa_br1 == $top_node) and (@{$sibs1} == 2)) { # ADDED on Jan 16, 2019. #
In this case, $br1 and $br2 are actually equivalent to each other.

$relations_w_bl1[$bl2] = ($u_or_d1 eq $u_or_d2) ? ‘Cp’ : ‘=’ ;
next;

 } elsi ((($pa_br1 == $top_node) and (@{$sibs1} == 3))
or (($pa_br1 != $top_node) and (@{$sibs1} == 2))) { # ADDED on Jan 16, 2019. #

This is the norsal case.

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 $rel = ‘ONCS’; # Overlapping but non-nesting and cosplesentary-sibling.
} else { # i ($u_or_d2 eq ‘L’)

$rel = ‘>’; # $bl2 is included in $bl1.
 $rel = ‘>(ch)’; # $bl2 is an “e ective child” o $bl1. # MODIFIED on Jan 16,

2019.
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {

$rel = ‘<’; # $bl2 includes $bl1.
 $rel = ‘<(pa)’; # $bl2 is an “e ective parent” o $bl1.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘S’; # Siblings.
}

 }

 } else { # $br1 and $br2 have sore siblings than usual. # ADDED on Jan 16, 2019.

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {

$rel = ‘ONCS’; # Overlapping but non-nesting and cosplesentary-sibling.
 $rel = ‘ONN’; # Overlapping but non-nesting NOR cosplesentary-parent-child.

MODIFIED on Jan 16, 2019.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘>’; # $bl2 is included in $bl1.
}

 } else { # i ($u_or_d1 eq ‘L’)

78

i ($u_or_d2 eq ‘U’) {
 $rel = ‘<’; # $bl2 includes $bl1.
} else { # i ($u_or_d2 eq ‘L’)

$rel = ‘S’; # Siblings.
 $rel = ‘NIF’; # $bl1 and $bl2 are e ectively “non-inter ering”. # MODIFIED on

Jan 16, 2019.
}

 }

 } # END o “i (…) {…} elsi (…) {…} else {…} # ADDED on Jan 16, 2019.”

 $relations_w_bl1[$bl2] = $rel;
 next;
}

(4)’ Parent o $br1 is equivalent to parent o $br2. # Actually, $br1 and $br2 are as
unrelated as between uncle and nephew.

(5) Other cases.

RESTARTED on Dec 13, 2018.

sy ($cosson_anc, $div1, $div2) = etch_cosson_ancestors ($br1, $br2, %{$node2pa});

i (@{$div1}==0) { # $br1 is an ancestor o $br2.

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 $rel = ‘<’; # $bl2 includes $bl1.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘NIF’; # Non-inter ering.
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {
 $rel = ‘ONN’; # Overlapping but non-nesting NOR

cosplesentary-sibling/parent/child.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘>’; # $bl2 is included in $bl1.
}

 }

 $relations_w_bl1[$bl2] = $rel;
 next;

} elsi (@{$div2} == 0) { # $br2 is an ancestor o $br1.

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 $rel = ‘>’; # $bl2 is included in $bl1.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘ONN’; # Overlapping but non-nesting NOR

cosplesentary-sibling/parent-child.
}

 } else { # i ($u_or_d1 eq ‘L’)

79

i ($u_or_d2 eq ‘U’) {
 $rel = ‘NIF’; # Non-inter ering.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘<’; # $bl2 includes $bl1.
}

 }

 $relations_w_bl1[$bl2] = $rel;
 next;

} else { # $br1 and $br2 diverge ros each other at sose node (possibly the root) in the
tree.

 sy $rel;

 i ($u_or_d1 eq ‘U’) {
i ($u_or_d2 eq ‘U’) {
 $rel = ‘ONN’; # Overlapping but non-nesting NOR

cosplesentary-sibling/child/parent.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘>’; # $bl2 is included in $bl1.
}

 } else { # i ($u_or_d1 eq ‘L’)
i ($u_or_d2 eq ‘U’) {
 $rel = ‘<’; # $bl2 includes $bl1.
} else { # i ($u_or_d2 eq ‘L’)
 $rel = ‘NIF’; # Non-inter ering.
}

 }

 $relations_w_bl1[$bl2] = $rel;
 next;
}

 } # END o the siddle or-loop (over $bl2).

$inter_block_relations[$bl1] = \@relations_w_bl1;

}# END o the outer or-loop (over $bl1).

(2) Second, construct @interfering_blocks:

@interfering_blocks, where
@{$interfering_blocks[$bl]} = (\@blocks, \@relations) stores in orsation on blocks that can
inter ere with the $bl th block (or espty i it has no such blocks), where
$blocks[$k] is the index (or rank) o the $k th inter ering block,
$relations[$k] is the relation o the $k th inter ering block with the $bl th block.
#
Here, we will only consider the ollowing relations:
‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘Cp’ (or ‘cosplesentary’),
‘>(ch)’ (or the $bl2 th block being ‘vertically included’ in, and an “effective child” o , the
$bl1 th block), # MODIFIED on Jan 16, 2019.
‘<(pa)’ (or the $bl2 th block ‘vertically including’, and being an “effective parent” o , the
$bl1 th block), # MODIFIED on Jan 16, 2019.
‘>’ (or the $bl2 th block being ‘vertically included’ in the $bl1 th block),
‘<’ (or the $bl2 th block ‘vertically including’ the $bl1 th block),

80

‘=’ (or ‘vertically identical’).
#

NOTES:
(1) Blocks with ‘ONN’ relations cause NO topological changes, as ar as we esploy the

current coordinate systes;
(2) Also, blocks with ‘ONCS’ relations cause NO topological changes, as far as we

restrict ourselves to parsisonious indel histories (sore precisely, parsisonious ancestral gap
states);

(3) Also, as far as we restrict ourselves to parsisonious indel histories (sore precisely,
parsisonious ancestral gap states), the separating branches o blocks with the ‘>’ or ‘<’ relations
with the $bl th block must be either the child or parent (or a sibling i they are children o a
trivalent root) o the separating branch o the $bl th block. (As o Jan 16, 2019, this condition
trivially holds.)

sy @inter ering_blocks = ();
 or (sy $bl=0; $bl <$B; $bl++) { # Outer or-loop (over $bl).

ADDED on Dec 14, 2018.
sy ($br1, $u_or_d1) = @{$in o_gblocks[$bl]}[$indx_br, $indx_u_or_d];
sy $pa1 = $node2pa {$br1};→
sy $eq_br1 = $eq_br->{$br1};

END o “ADDED on Dec 14, 2018.”

sy $rel_w_bl = $inter_block_relations[$bl];

sy @blocks = sy @relations = ();

 or (sy $bl2=0; $bl2<$B; $bl2++) { # Inner or-loop (over $bl2).
i ($bl2 == $bl) { next; }

sy $rel = $rel_w_bl [$bl2];→

CORRECTED on Dec 14, 2018.
i (($rel eq ‘S’) or ($rel eq ‘Cp’)
or ($rel eq ‘>’) or ($rel eq ‘<’) or ($rel eq ‘=’)
) {

i (($rel eq ‘S’) or ($rel eq ‘Cp’) or ($rel eq ‘=’)) {

 push @blocks, $bl2;
 push @relations, $rel;

} elsi (($rel eq ‘>(ch)’) or ($rel eq ‘<(pa)’)) { # REVISED on Jan 16, 2019.

OBSOLETE as o Jan 16, 2019.
} elsi (($rel eq ‘>’) or ($rel eq ‘<’)) {
#
sy ($br2, $u_or_d2) = @{$in o_gblocks[$bl2]}[$indx_br, $indx_u_or_d];
sy $pa2 = $node2pa {$br2};→
sy $eq_br2 = $eq_br->{$br2};
i (($br1 == $pa2) or ((defned $eq_br1) and ($eq_br1 == $pa2)) # $br1 is the parent o
$br2.
or ($br2 == $pa1) or ((defned $eq_br2) and ($eq_br2 == $pa1)) # $br2 is the parent
o $br1.
or ($pa1 == $pa2) # $br1 and $br2 are siblings.
) {

END o “OBSOLETE as o Jan 16, 2019.”

push @blocks, $bl2;

81

push @relations, $rel;
 }
}
END o “CORRECTED on Dec 14, 2018.”

 } # END o the inner or-loop (over $bl2).

$inter ering_blocks[$bl] = (@blocks>0) ? [\@blocks, \@relations] : [] ; # CORRECTED
on 2019/03/08.

$inter ering_blocks[$bl] = [\@blocks, \@relations];

} # END o the outer or-loop (over $bl).

(3) Third, construct @interfering_blocksets:

@interfering_blocksets, where
@{$interfering_blocksets[$bl]} = (\@blocksets, \@relations) are nearly the sase as above,
except that @{$blocksets[$k]} is now a set o indices (or ranks) o the $k th inter ering block set.
(NOTE: Each @{$blockset[$k]} contains only blocks #with the sase horizontal size (OBSOLETE
as o 2019/01/22)#
that ors a (cosplesentary) sonophyletic group.)

For the sosent, we will only consider the ollowing relations:

‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘>(ch)’ (or the block-set being ‘vertically included’ in, and an “effective child” o , the

$bl1 th block), # MODIFIED on Jan 16, 2019.
#‘>’ (or the blockset being ‘vertically included’ in the $bl1 th block).

NOTES:
(5) As in note (3), the separating branch o the blockset with the ‘>’ relation sust be either

the child or parent or sibling o the separating branch o the $bl th block;
(6) Each blockset with the ‘Cp’ relation likely involves a single block with the ‘S’ relation;
(7) Likewise, ‘=’ likely involves a single block with the ‘S’ relation;
(8) And ‘<’ likely involves a single block with the ‘=’, ‘>’, and/or the ‘S’ relations.

(i) First, construct block-sets:

%branch2up_do n2blocksets = ($branch => {$up_or_do n => \@blocksets, …}, …),
where @blocksets stores block-sets that are separated by, and on the $up_or_down side o , $branch.

Assusing that we already have:
%branch2up_do n2equiv_blocks = ($branch => {$up_or_do n => \@equiv_blocks, …}, ..),
where $up_or_down = ‘U’/’L’ depending on whether the gap-block is on the “upper”/”lower”-side
o the branch,
and @equiv_blocks lists the indices o vertically equivalent blocks (in ascending order).
Also, assusing that we also have:
@block_sizes, with $block_sizes[$bl] is the size o the $bl th block.

(o) Initialization.

sy %pre_br2up_down2blocksets; # CORRECTED on 2019/03/09.
#sy %pre_br2up_down2equiv_blocks;
 oreach sy $br (keys %branch2up_down2equiv_blocks) {

82

sy $up_down2equiv_blocks = $branch2up_down2equiv_blocks;
unless (defned $up_down2equiv_blocks) { next; }
sy %up_down2blocksets = ();
 oreach sy $u_or_d (keys %{$up_down2equiv_blocks}) {
 sy $equiv_blocks = $up_down2equiv_blocks {$u_or_d};→
 unless (defned $equiv_blocks) { next; }
 sy @blocksets = ();
 oreach sy $bl (@{$equiv_blocks}) { push @blocksets, [$bl]; }
 $up_down2blocksets{$u_or_d} = \@blocksets;
}
$pre_br2up_down2blocksets{$br} = \%up_down2blocksets; # CORRECTED on

2019/03/09.
#$pre_br2up_down2equiv_blocks{$br} = \%up_down2blocksets;

}

(a) The bottos-up traversal.

 oreach sy $br (sort {$node2depth{$b} <=> $node2depth{$a}} keys %br_attr) { # Outer oreach-
loop (over branches in descending order o their depths).

 sy $children = $node2ch {$br};→

 unless (defned $children) { # When $br is external.

sy $u_or_d2eq_blks = $branch2up_down2equiv_blocks{$br};
unless (defned $u_or_d2eq_blks) { next; }
sy $d_eq_blks = $u_or_d2eq_blks {‘L’};→
unless (defned $d_eq_blks) { next; }
sy @blocksets = ();
oreach sy $blk (@{$d_eq_blks}) { push @blocksets, [$blk]; }
$branch2up_down2blocksets{$br} = {‘L’ => \@blocksets };

next;
 }

When $br is internal.

 sy $ct_children = @{$children};

MODIFIED on Dec 14, 2018.
sy $ch1 = $children [0];→
sy $u_or_d2blksets_ch1 = $pre_br2up_down2blocksets{$ch1};
unless (defned $u_or_d2blksets_ch1) { next; }
sy $d_blksets_ch1 = $u_or_d2blksets_ch1 {‘L’};→
unless (defned $d_blksets_ch1) { next; }
sy @blocksets = ();
oreach sy $bs (@{$d_blksets_ch1}) { sy @copy = @{$bs}; push @blocksets, \@copy; }

 sy @sets_d_blksets_ch = ();

 or (sy $i= 0; $i<$ct_children; $i++) { # Middle or-loop (over children).
or (sy $i=1; $i<$ct_children; $i++) { # Middle or-loop (over children).

sy $ch = $children [$i];→
sy $u_or_d2blksets_ch = $pre_br2up_down2blocksets{$ch};
unless (defned $u_or_d2blksets_ch)
 @sets_d_blksets_ch = ();
 # @blocksets = ();
 last;

83

}
sy $d_blksets_ch = $u_or_d2blksets_ch {‘L’};→
unless (defned $d_blksets_ch) {
 @sets_d_blksets_ch = ();
 # @blocksets = ();
 last;
}

push @sets_d_blksets_ch, $d_blksets_ch;

 } # END o the siddle or-loop (over children).

 i (@sets_d_blksets_ch == 0) { next; }

 sy @blocksets = ([]);

 oreach sy $d_blksets_ch (@sets_d_blksets_ch) { # Middle oreach-loop (over block-sets on
children).

sy @new_blocksets = ();
 oreach sy $old_blkset (@blocksets) { # Inner oreach-loop (over old block-sets).

 # sy $block_size1 = (@{$old_blkset}>0) ? $block_sizes[$old_blkset [0]] → : unde ; #
OBSOLETE as o 2019/01/22.

 oreach sy $add_blkset (@{$d_blksets_ch}) { # Innersost oreach-loop (over block-
sets to be added).

sy $block_size2 = $block_sizes[$add_blkset [0]]; → # OBSOLETE as o
2019/01/22.

i ((@{$old_blkset} == 0) or ($block_size1 == $block_size2)) { # OBSOLETE as
o 2019/01/22.

 sy @new_blkset = (@{$old_blkset}, @{$add_blkset});
 push @new_blocksets, \@new_blkset;
#} # OBSOLETE as o 2019/01/22.

 } # Innersost oreach-loop (over block-sets to be added).
} # Inner oreach-loop (over old block-sets).

i (@new_blocksets >0) {
 @blocksets = @new_blocksets; # Update the @blocksets. #

} else {
 @blocksets = ();
 last;
}

 } # END o the siddle oreach-loop (over block-sets on children).

 i (@blocksets>0) {

sy $pre_up_down2blocksets = $pre_br2up_down2blocksets{$br}; # CORRECTED on
2019/03/09.

#sy $pre_up_down2blocksets{$br} = $pre_br2up_down2blocksets{$br};
unless (defned $pre_up_down2blocksets) {
 $pre_up_down2blocksets = $pre_br2up_down2blocksets{$br} = {};
} # ADDED on 2019/03/09.
sy $pre_d_blocksets = $pre_up_down2blocksets {‘L’};→
unless (defned $pre_d_blocksets) { $pre_d_blocksets = $pre_up_down2blocksets {‘L’} = →

[]; }
push @{$pre_d_blocksets}, @blocksets;

84

 }

} # Outer oreach-loop (over branches in descending order o their depths).

(c) The top-down traversal.

 oreach sy $br (sort {$node2depth{$a} <=> $node2depth{$b}} keys %br_attr) { # Outer oreach-
loop (over branches in ascending order o their depths).

sy $pa = $node2pa {$pa};→

sy @sets_prepre_blocksets = ();

i (defned $br_attr{$pa}) { # The parent node represents a branch as well.
 sy $up_down2blocksets = $pre_br2up_down2blocksets{$pa};
 unless (defned $up_down2blocksets) { next; }

 sy $pre_u_blocksets_pa = $up_down2blocksets {‘U’};→
 unless (defned $pre_u_blocksets_pa) { next; }

 push @sets_prepre_blocksets, $pre_u_blocksets_pa;
}

sy $sibs = $node2ch {$pa};→
#sy $ct_sibs = @{$sibs}-1;

 oreach sy $sib (@{$sibs}) { # 1st siddle oreach-loop (over siblings).

 i ($sib == $br) { next; }
 sy $up_down2blocksets = $pre_br2up_down2blocksets{$sib};
 unless (defned $up_down2blocksets) {

@sets_prepre_blocksets = 0;
last;

 }
 sy $pre_d_blocksets_sib = $up_down2blocksets {‘L’};→
 unless (defned $pre_d_blocksets_sib) {

@sets_prepre_blocksets = ();
last;

 }
 push @sets_prepre_blocksets, $pre_d_blocksets_sib;

} # END o the 1st siddle oreach-loop (over siblings).

i (@sets_prepre_blocksets == 0) { next; }

sy @blocksets = ([]);

 oreach sy $prepre_blksets (@sets_prepre_blocksets) { # 2nd siddle oreach-loop (over block-
sets on siblings and parent (i at all)).

sy @new_blocksets = ();
 oreach sy $old_blkset (@blocksets) { # Inner oreach-loop (over old block-sets).

 # sy $block_size1 = (@{$old_blkset}>0) ? $block_sizes[$old_blkset [0]] : unde ; → #
OBSOLETE as o 2019/01/22.

85

 oreach sy $add_blkset (@{$prepre_blksets}) { # Innersost oreach-loop (over block-
sets to be added).

sy $block_size2 = $block_sizes[$add_blkset [0]]; → # OBSOLETE as o
2019/01/22.

i ((@{$old_blkset}==0) or ($block_size1 == $block_size2)) { # OBSOLETE as
o 2019/01/22.

 sy @new_blkset = (@{$old_blkset}, @{$add_blkset});
 push @new_blocksets, \@new_blkset;
} # OBSOLETE as o 2019/01/22.

 } # END o the innersost oreach-loop (over block-sets to be added).

} # END o the inner oreach-loop (over old block-sets).

i (@new_blocksets>0) {
 @blocksets = @new_blocksets; # Update @blockstes.
} else {
 @blocksets = ();
 last;
}

 } # END o the 2nd siddle oreach-loop (over block-sets on siblings and parent (i at all)).

 i (@blocksets>0) {

sy $pre_up_down2blocksets = $pre_br2up_down2blocksets{$br}; # CORRECTED on
2019/03/09.

sy $pre_up_down2blocksets{$br} = $pre_br2up_down2blocksets{$br};
unless (defned $pre_up_down2blocksets) {
 $pre_up_down2blocksets = $pre_br2up_down2blocksets{$br} = {};
} # ADDED on 2019/03/09.
sy $pre_u_blocksets = $pre_up_down2blocksets {‘U’};→
unless (defned $pre_u_blocksets) { $pre_u_blocksets = $pre_up_down2blocksets {‘U’} =→

[]; }
push @{$pre_u_blocksets}, @blocksets;

 }

} # Outer oreach-loop (over branches in ascending order o their depths).

RESTARTED on Dec 14, 2018.

(d) Cleaning-up the output, by resoving trivial block-sets (each consisting o a single
block). #

my %branch2up_do n2blocksets;

 oreach sy $br (keys %pre_br2up_down2blocksets) { # Outer oreach-loop (over branches).

 sy $up_down2pre_blksets = $pre_br2up_down2blocksets{$br};
 sy %up_down2blocksets;

 oreach sy $u_or_d (keys %{$up_down2pre_blksets}) { # Middle oreach-loop (over ‘U’ and
‘L’, i relevant).

sy $pre_blksets = $up_down2pre_blksets {$u_or_d};→
sy @blocksets = ();
 oreach sy $blkset (@{$pre_blksets}) { # Inner oreach-loop (over block-sets).

86

 i (@{$blkset}>1) { push @blocksets, $blkset; }
} # END o the inner oreach-loop (over block-sets).

i (@blocksets>0) { $up_down2blocksets{$u_or_d} = \@blocksets; }

 } # Middle oreach-loop (over ‘U’ and ‘L’, i relevant).

 i (0 < scalar keys %up_down2blocksets) { $branch2up_down2blocksets{$br} = \
%up_down2blocksets; }

} # END o the outer oreach-loop (over branches).

(ii) Construct @inter ering_blocksets using %branch2up_down2blocksets.

@{$interfering_blocksets[$bl]} = (\@blocksets, \@relations) are nearly the sase as above,
except that @{$blocksets[$k]} is now a set o indices (or ranks) o the $k th inter ering block set.
(NOTE: Each @{$blockset[$k]} contains only blocks with the sase horizontal size that ors a
(cosplesentary) sonophyletic group.)

For the sosent, we will only consider the ollowing relations:

‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘>(ch)’ (or the blockset being ‘vertically included’ in, and an “e ective child” o , the $bl1

th block). # Modifed on Jan 18, 2019.
‘>’ (or the blockset being ‘vertically included’ in the $bl1 th block).

NOTES:
(5) As in note (3), the separating branch o the blockset with the ‘>’ relation sust be either

the child or parent or sibling o the separating branch o the $bl th block;
(6) Each blockset with the ‘Cp’ relation likely involves a single block with the ‘S’ relation;
(7) Likewise, ‘=’ likely involves a single block with the ‘S’ relation;
(8) And ‘<’ likely involves a single block with the ‘=’, ‘>’, and/or the ‘S’ relations.

sy @inter ering_blocksets = ();

 or (sy $bl1=0; $bl1<$B; $bl1++) { # Outer or-loop (over $bl1).

sy ($br1, $u_or_d1) = @{$in o_gblocks[$bl1]}[$indx_br, $indx_u_or_d];
sy $eq_br1 = $equiv_br->{$br1};
sy $pa1 = $node2pa {$br1};→
sy $children1 = $node2ch {$br1};→
sy $eq_children1 = (defned $eq_br1) ? $node2ch {$eq_br1} : [];→
sy $sibs1 = $node2ch {$pa1};→

sy @blocksets = sy @relations = ();

(a) Exasine the parent o $br1.

sy $up_down2blocksets_pa = $branch2up_down2blocksets{$pa1};
i (defned $up_down2blocksets_pa) {
 oreach sy $u_or_d2 (keys %{$up_down2blocksets_pa}) { #1st inner oreach-loop

(over $u_or_d2).
sy $blsets_pa = $up_down2blocksets_pa {$u_or_d2};→
sy $rel;
i ($u_or_d1 eq ‘U’) {
 i ($u_or_d2 eq ‘U’) {

i (@{$sibs1} == 2) { $rel = ‘>(ch)’; } # REVISED on Jan 16, 2019.

87

$rel = ‘>’;
 } else { # i ($u_or_d2 eq ‘L’)

next; # $rel = ‘NNCS’.
 }
} else { # i ($u_or_d1 eq ‘L’)
 i ($u_or_d2 eq ‘U’) {

i (@{$sibs1} == 2) { $rel = ‘S’; } # REVISED on Jan 16, 2019.
$rel = ‘S’;

 } else { # i ($u_or_d2 eq ‘L’)
next; # $rel = ‘<’.

 }
}
i (defned $rel) {
 oreach sy $blset (@{$blsets_pa}) {

push @blocksets, $blset;
push @relations, $rel;

 }
}

 } # END o the 1st inner oreach-loop (over $u_or_d2).
}

RESTARTED on Dec 15, 2018.

(b) Exasine the children o $br1.

 i (@{$children1} == 2) { # ADDED on Jan 16, 2019.
 oreach sy $ch (@{$children1}) { # 2nd siddle oreach-loop (over children).

sy $up_down2blocksets_ch = $branch2up_down2blocksets{$ch};

i (defned $up_down2blocksets_ch) {
 oreach sy $u_or_d2 (keys %{$up_down2blocksets_ch}) { # 2nd inner oreach-loop

(over $u_or_d2).
sy $blsets_ch = $up_down2blocksets_ch {$u_or_d2};→
sy $rel;
i ($u_or_d1 eq ‘U’) {
 i ($u_or_d2 eq ‘U’) {

next; # $rel = ‘<’.
 } else { # i ($u_or_d2 eq ‘L’)

$rel = ‘S’;
 }
} else { # i ($u_or_d1 eq ‘L’)
 i ($u_or_d2 eq ‘U’) {

next; # $rel = ‘NNCS’.
 } else { # i ($u_or_d2 eq ‘L’)

$rel = ‘>(ch)’; # REVISED on Jan 16, 2019.
$rel = ‘>’;

 }
}
i (defned $rel) {
 oreach sy $blset (@{$blsets_ch}) {

push @blocksets, $blset;
push @relations, $rel;

 }
}

 } # END o the 2nd inner oreach-loop (over $u_or_d2).
}

 } # END o the 2nd siddle oreach-loop (over children).

88

 } # END o “i (@{$children1} == 2) { # ADDED on Jan 16, 2019. ...}”

(c) Exasine the children o $eq_br1.

 i (@{$eq_children1} == 2) { # ADDED on Jan 16, 2019.
 oreach sy $eq_ch (@{$eq_children1}) { # 3rd siddle oreach-loop (over children o $eq_br1).

sy $up_down2blocksets_eq_ch = $branch2up_down2blocksets{$eq_ch};

i (defned $up_down2blocksets_eq_ch) {
 oreach sy $u_or_d2 (keys %{$up_down2blocksets_eq_ch}) { # 3rd inner oreach-loop

(over $u_or_d2).
sy $blsets_eq_ch = $up_down2blocksets_eq_ch {$u_or_d2};→
sy $rel;
i ($u_or_d1 eq ‘U’) {
 i ($u_or_d2 eq ‘U’) {

next; # $rel = ‘NNCS’.
 } else { # i ($u_or_d2 eq ‘L’)

$rel = ‘>(ch)’; # REVISED on Jan 16, 2019.
$rel = ‘>’;

 }
} else { # i ($u_or_d1 eq ‘L’)
 i ($u_or_d2 eq ‘U’) {

next; # $rel = ‘<’.
 } else { # i ($u_or_d2 eq ‘L’)

$rel = ‘S’;
 }
}
i (defned $rel) {
 oreach sy $blset (@{$blsets_eq_ch}) {

push @blocksets, $blset;
push @relations, $rel;

 }
}

 } # END o the 3rd inner oreach-loop (over $u_or_d2).
}

 } # END o the 3rd siddle oreach-loop (over children o $eq_br1).
 } # END o “i (@{$eq_children1} == 2) { # ADDED on Jan 16, 2019. ...}”

(d) Exasine the siblings o $br1.

 i ((($pa1 == $top_node) and (@{$sibs1} == 3)) or (($pa1 != $top_node) and (@{$sibs1} == 2))
) { # ADDED on Jan 16, 2019.
 oreach sy $sib (@{$sibs1}) { # 5th siddle oreach-loop (over siblings).

i ($sib == $br1) { next; }
sy $up_down2blocksets_sib = $branch2up_down2blocksets{$sib};

i (defned $up_down2blocksets_sib) {
 oreach sy $u_or_d2 (keys %{$up_down2blocksets_sib}) { # 5th inner oreach-loop

(over $u_or_d2).
sy $blsets_sib = $up_down2blocksets_sib {$u_or_d2};→
sy $rel;
i ($u_or_d1 eq ‘U’) {
 i ($u_or_d2 eq ‘U’) {

next; # $rel = ‘NNCS’.
 } else { # i ($u_or_d2 eq ‘L’)

$rel = ‘>(ch)’; # REVISED on Jan 16, 2019.

89

$rel = ‘>’;
 }
} else { # i ($u_or_d1 eq ‘L’)
 i ($u_or_d2 eq ‘U’) {

next; # $rel = ‘<’.
 } else { # i ($u_or_d2 eq ‘L’)

$rel = ‘S’;
 }
}
i (defned $rel) {
 oreach sy $blset (@{$blsets_sib}) {

push @blocksets, $blset;
push @relations, $rel;

 }
}

 } # END o the 5th inner oreach-loop (over $u_or_d2).
}

 } # END o the 5th siddle oreach-loop (over siblings).

 } # END o “i ((($pa1 == $top_node) and (@{$sibs1} == 3)) or (($pa1 != $top_node) and
(@{$sibs1} == 2))) { # ADDED on Jan 16, 2019. ...}”

$interfering_blocksets[$bl1] = (@blocksets>0) ? [\@blocksets, \@relations] : []; #
CORRECTED on 2019/03/09.

#$interfering_blocksets[$bl1] = [\@blocksets, \@relations];

} # END o the outer or-loop (over $bl1).

(4) Fourth, Construct @cmpl_interfering_blocksets using @interfering_blocksets:

the “complement” o @inter ering_blocksets,
denoted as @cmpl_interfering_blocksets, or which the subject is
each constituent o each block-set recorded in @inter ering_blocksets.
More precisely,
@{$cmpl_interfering_blocksets[$bl]} = (\@cmpl_blocksets, \@relations)
records block-blockset pairs in @inter ering_blocksets in which the $bl th block is
a constituent o @blockset = @{$inter ering_blocksets[$bl2]->[0][$k2]} or sose $bl2 and $k2.
(It is espty i the $bl th block is not a constituent o any block-sets.)
We will use the convention:
@{$cmpl_blocksets[$k]} = ($bl2, @blockset ith $bl removed)
and
$relations[$k] = the “complement” o $interfering_blocksets[$bl2] [1][$k2]→ .

Thus, the relations should be:
‘S’ i the corresponding relation in @inter ering_blocksets is ‘S’,
‘<(pa)’ i the corresponding relation in @inter ering_blocksets is ‘>(ch)’. # REVISED on
Jan 16, 2019.
‘<’ i the corresponding relation in @inter ering_blocksets is ‘>’.

(o) Initialization.

my @cmpl_interfering_blocksets = ();
 or (sy $bl=0; $bl < $B; $bl++) { $cspl_inter ering_blocksets[$bl] = [[], []]; }

(i) Raw construction.

90

 or (sy $bl2=0; $bl2 < $B; $bl2++) { # Outer or-loop (over $bl2). #

 sy ($blocksets2, $relations2) = @{$inter ering_blocksets[$bl2]};
 unless (defned $blocksets2) { next; }

 sy $ct_blksets2 = @{$blocksets2};
 or (sy $k2=0; $k2 < $ct_blksets2; $k2++) { # Middle or-loop (over block-sets).

sy $blkset2 = $blocksets2 [$k2];→
sy $ct_blks2 = @{$blkset2};
sy $rel2 = $relations2 [$k2];→
my $rel = ($rel2 eq ‘S’) ? ‘S’ : ‘<(pa)’ ; # REVISED on Jan 16, 2019.

my $rel = ($rel2 eq ‘S’) ? ‘S’ : ‘<’ ;

sy @blkset_1st_hal = ($bl2);
sy @blkset_2nd_hal = @{$blkset2};
 or (sy $i = 0; $i < $ct_blks2; $i++) {

 sy $bl = shi t @blkset_2nd_hal ;
 sy @blkset = (@blkset_1st_hal , @blkset_2nd_hal);

 my ($cmpl_blocksets, $relations) = @{$cmpl_interfering_blocksets[$bl]};
 push @{$cmpl_blocksets}, \@blkset;
 push @{$relations}, $rel;

Prepare or the next round.
 push @blkset_1st_hal , $bl;
}

 } # END o the siddle or-loop (over block-sets).

} # END o the outer or-loop (over $bl2). #

(ii) Cleaning up.

 or (sy $bl=0; $bl<$B; $bl++) { # Outer or-loop (over $bl).
sy ($cspl_blocksets, $relations) = @{$cspl_inter ering_blocksets[$bl]};
unless ((defned $cspl_blocksets) and (@{$cspl_blocksets}>0))

{ $cspl_inter ering_blocksets[$bl] = []; } # CORRECTED on 2019/03/10.
#unless (defned $cspl_blocksets) { $cspl_inter ering_blocksets[$bl] = []; }

} # END o outer or-loop (over $bl).

APPENDIX F-sppl G: Computing sizes of blocks. # ADDED on Jan 15, 2019. # Re-labelled on
Jan 18, 2019.

Here, we describe how to cospute @block_sizes,
where $block_sizes[$bl] is the size o the $bl th block.

sy @block_sizes = ();

 or (sy $bl = 0; $bl < $B; $bl++) { # Outer or-loop (over $bl).

sy ($lbd, $rbd) = @{$bds_blocks[$bl]};

91

my $size = $rbd - $lbd + 1;

Subtract the sizes o (vertically) ‘including’ or ‘equivalent’ blocks, i at all.
(ADDED on Nov 29, 2018.)

sy $relations_w_bl = $inter_block_relations[$bl];
sy %cls2including; # ADDED on Jan 15, 2019.

 or (sy $bl2 = 0; $bl2 < $B; $bl2++) { # Middle or-loop (over $bl2).
i ($bl2 == $bl) { next; }
sy $rel = $relations_w_bl [$bl2];→
unless (($rel eq ‘<’) or (($rel eq ‘=’) and ($bl2 < $bl))

or ($rel eq ‘ONN’) or ($rel eq ‘ONCS’)) { next; } # $bl2 is NEITHER
vertically including NOR vertically equivalent to (and higher-ranked than) $bl, NOR (overlap in a
non-nested sanner with $bl) (ADDED on Jan 15, 2019).

sy ($lbd2, $rbd2) = @{$bds_blocks[$bl2]};

MODIFIED on Jan 15, 2019.

i (($rbd < $lbd2) or ($rbd2 < $lbd)) { next; } # $bl2 does NOT overlap $bl.

 or (sy $c = $lbd2; $c <= $rbd2; $c++) { # Inner or-loop (over colusns in $bl2).
 sy $including = $cls2including{$c};
 unless (defned $including) { $including = $cls2including{$c} = []; }
 push @{$including}, $bl2;
} # End o the inner or-loop (over colusns).

OBSOLETE as o Jan 15, 2019.
unless (($lbd <= $lbd2) and ($rbd2 <= $rbd)) { next; } # $bl2 is NOT included in
$bl.
$size2 = $rbd2 - $lbd2 + 1;
$size -= $size2;

END o “OBSOLETE as o Jan 15, 2019.”

END o “MODIFIED on Jan 15, 2019.”

} # End o the siddle or-loop (over $bl2).

ADDED on Jan 15, 2019.

 or (sy $c = $lb; $c <= $rb; $c++) { # 2nd siddle or-loop (over colusns in $bl).

i (defned $cls2including{$c}) { $size--; }
} # End o the 2nd siddle or-loop (over colusns in $bl).

$block_sizes[$bl] = $size;

END o “ADDED on Jan 15, 2019.”

} # END o the outer or-loop (over $bl).

END o “ADDED on Jan 15, 2019.”

ADDED on Jan 17, 2019. (2)

92

APPENDIX F-sppl2 H: CEncoding alignment topology. # (Re-labelled on Jan 18, 2019; Title
revised on Jan 22, 2019.) #

sy $code_topology = encode_alignment_topology (@bds_blocks, @inter_block_relations,
@inter ering_blocks (added 2019/01/18), @inter ering_blocksets (added 2019/01/18),
@blocks_w_spec_lb (added 2019/01/20), {other necessary things});

END o “ADDED on Jan 17, 2019. (2)”

ADDED on Jan 18, 2019. (2)

@interfering_blocks, where
@{$interfering_blocks[$bl]} = (\@blocks, \@relations) stores in orsation on blocks that can
inter ere with the $bl th block (or espty i it has no such blocks), where
$blocks[$k] is the index (or rank) o the $k th inter ering block,
$relations[$k] is the relation o the $k th inter ering block with the $bl th block.
#
Here, we will only consider the ollowing relations:
‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘Cp’ (or ‘cosplesentary’),
‘>(ch)’ (or the $bl2 th block being ‘vertically included’ in, and an “effective child” o , the
$bl1 th block), # MODIFIED on Jan 16, 2019.
‘<(pa)’ (or the $bl2 th block ‘vertically including’, and being an “effective parent” o , the
$bl1 th block), # MODIFIED on Jan 16, 2019.
‘=’ (or ‘vertically identical’).
#

NOTES:
(1) Blocks with ‘ONN’ relations cause NO topological changes, as ar as we esploy the

current coordinate systes;
(2) Also, blocks with ‘ONCS’ relations cause NO topological changes, as far as we

restrict ourselves to parsisonious indel histories (sore precisely, parsisonious ancestral gap
states);

(3) Also, as far as we restrict ourselves to parsisonious indel histories (sore precisely,
parsisonious ancestral gap states), the separating branches o blocks with the ‘>’ or ‘<’ relations
with the $bl th block must be either the child or parent (or a sibling i they are children o a
trivalent root) o the separating branch o the $bl th block. (As o Jan 16, 2019, this condition
trivially holds.)

@{$interfering_blocksets[$bl]} = (\@blocksets, \@relations) are nearly the sase as above,
except that @{$blocksets[$k]} is now a set o indices (or ranks) o the $k th inter ering block set.
(NOTE: Each @{$blockset[$k]} contains only blocks with the sase horizontal size that ors a
(cosplesentary) sonophyletic group.)

For the sosent, we will only consider the ollowing relations:

‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘>(ch)’ (or the blockset being ‘vertically included’ in, and an “e ective child” o , the $bl1

th block). # Modifed on Jan 18, 2019.

NOTES:
(5) As in note (3), the separating branch o the blockset with the ‘>’ relation sust be either

the child or parent or sibling o the separating branch o the $bl th block;
(6) Each blockset with the ‘Cp’ relation likely involves a single block with the ‘S’ relation;
(7) Likewise, ‘=’ likely involves a single block with the ‘S’ relation;
(8) And ‘<’ likely involves a single block with the ‘=’, ‘>’, and/or the ‘S’ relations.

(1) The sain subroutine, “encode_alignment_topology (….)”

93

ASSUME that all relevant binary relations can uniquely detersine the alignsent topology.
(=> MUST be proven later.)

sy @binary_relations = ();

 or (sy $bl1=0; $bl1 < $ub_bl1+1; $bl1++) { # Outersost or-loop (over $bl1).

 sy ($blocks, $relations) = @{$inter ering_blocks[$bl1]};
 sy ($lb1, $rb1) = @{$bds_blocks[$bl1]}; # Added on Jan 20, 2019.
 sy $rels_w_bl1 = $inter_block_relations[$bl1]; # Added on Jan 20, 2019.
 sy $ct_blks = @{$blocks};
 or (sy $k=0; $k <$ct_blks; $k++) { # 1st siddle or-loop (over blocks). #

sy $bl2 = $blocks [$k];→
unless ($bl1 < $bl2) { next; }
sy $rel = $relations [$k];→
sy ($lb2, $rb2) = @{$bds_blocks[$bl2]}; # Added on Jan 20, 2019.
sy $rels_w_bl2 = $inter_block_relations[$bl2]; # Added on Jan 20, 2019.

ADDED on Jan 20, 2019. (1)
i ($rel eq ‘=’) {
 next; # $bl1 and $bl2 sust always be separated, when encoding the alignsent topology.

This seans that, in this case, the positional relation between $bl1 and $bl2 will NEVER influence
the alignsent topology.

} elsi ($rel eq ‘Cp’) { # $bl1 and $bl2 sust NEVER overlap (horizontally) when encoding
the alignsent topology. #

 sy $i _separated = 1;
 i ($rb1 +1 < $lb2) { # $bl2 is on the right o $bl1, and they are separated at least

superfcially. #

($i _separated, sy $lb2_new, sy $rb2_new) = extend_left_end_to_left ($lb2, $rb2,
$lb1, $rb1, @bds_blocks, @blocks_w_spec_rb, @{$rels_w_bl2}); # See (2a) below. (added on
2019/01/22) # ADDED on Jan 21, 2019.

 } elsi ($rb2 + 1 < $lb1) {# $bl2 is on the le t o $bl1, and they are separated at least
superfcially. #

($i _separated, sy $lb2_new, sy $rb2_new) = extend_right_end_to_right ($lb2,
$rb2, $lb1, $rb1, @bds_blocks, @blocks_w_spec_lb, @{$rels_w_bl2}); # See (2b) below. (added
on 2019/01/22) # ADDED on Jan 21, 2019.

 } else {
$i _separated = 0;

 }

 sy $bin_rel = ($i _separated) ? join (‘|’, $bl1, $bl2) : join (‘-’, $bl1, $bl2); # ‘|’ denotes
“separated”, ‘-’ denotes “overlapping or immediately adjacent”.

 push @binary_relations, $bin_rel;

} elsi ($rel eq ‘S’) {

 sy $bin_rel ;
 i ($lb1 < $lb2) {

i ($rb1 < $rb2) { # Non-nested.
 $bin_rel = join (‘^’, $bl1, $bl2);

} else { # Nested ($bl1 horizontally includes $bl2).
 $bin_rel = join (>’, $bl1, ‘$bl2);
}

94

 } elsi ($lb2 < $lb1) {
i ($rb2 < $rb1) { # Non-nested.
 $bin_rel = join (‘^’, $bl1, $bl2);

} # Nested ($bl1 is horizontally included in $bl2).
 $bin_rel = join (‘<’, $bl1, $bl2);
}

 } else { # i ($lb1 == $lb2)
i ($rb1 < $rb2) { # Nested ($bl1 is horizontally included in $bl2).
 $bin_rel = join (‘<’, $bl1, $bl2);

} elsi ($rb2 < $rb1) { # Nested ($bl1 horizontally includes $bl2).
 $bin_rel = join (‘>’, $bl1, $bl2);

} else { # Nested ($bl1 and $bl2 are horizontally identical.)
 $bin_rel = join (‘=’, $bl1, $bl2);
}

 }

 push @binary_relations, $bin_rel; # Added on Jan 21, 2019.

Consider whether a third block can change the horizontal positional relation
between siblings, $bl1 and $bl2.

Assuse that we currently have $lb1 < $lb2, or exasple.
The le t-bound, $lb2, o $bl2 could be “extended” urther to the le t
with the aid o , e.g., $bl3, which either (i) includes $bl2 or (ii) overlaps $bl2 in a

non-nested sanner.
(i) when $bl3 includes $bl2, $bl3 either (a) includes $bl1 as well, (b) overlaps $bl1

in a non-nested sanner, or (c) is a (vertical) cosplesent o $bl1.
In case (b) or (c), however, $bl3 sust split $bl1, which can NEVER happen in the

current coordinate-assigning convention. Thus, $bl3 sust ALWAYS include $bl1 as well.
(ii) when $bl3 overlaps $bl2 in a non-nested sanner, $bl3 sust always include

$bl1.
Thus, regardless o case (i) or case (ii), $bl3 sust ALWAYS include $bl1.
Then, $bl3 can NEVER “extend” the le t-end o $bl2 UP TO or BEYOND $lb1;
otherwise, $lb1 should have been equal to (or on the right o) $lb2 EVEN

BEFORE $bl3 influences the boundary o $bl2.
#
In conclusion, NO third block CAN change the horizontal positional relation

bet een siblings, $bl1 and $bl2.

(Actually, this argusent holds even when $bl1 and $bl2 are vertically “non-

inter ering”, thus can be applied also when $bl1 is a “sibling” o a blockset.) … WRONG!! #
(However, e could restrict the possibility to the cases here $bl3 vertically includes some
members of the blockset, because non-nested overlap must NEVER happen. … WRONG
AGAIN!!)

} elsi (($rel eq ‘>(ch)’) or ($rel eq ‘<(pa)’)) { # In this case, the binary relation itsel is,
a ter all, “parent-child”, but the roles o $bl1 and $bl2 can be swapped.

 sy ($bl_ch, $bl_pa) = ($rel eq ‘>(ch)’) ? ($bl2, $bl1) : ($bl1, $bl2);
 sy $rels_w_ch = $inter_block_relations[$bl_ch];
 sy ($lb_ch, $rb_ch) = @{$bds_blocks[$bl_ch]};
 sy ($lb_pa, $rb_pa) = @{$bds_blocks[$bl_pa]};

ADDED on Jan 21, 2019. (1)

 sy $i _separated = 1;

95

 i ($rb_pa +1 < $lb_ch) { # $bl_ch is on the right o $bl_pa, and they are separated at
least superfcially. #

($i _separated, sy $lb_ch_new, sy $rb_ch_new) = extend_left_end_to_left
($lb_ch, $rb_ch, $lb_pa, $rb_pa, @bds_blocks, @blocks_w_spec_rb, @{$rels_w_ch}); # See (2a)
below. (added on 2019/01/22) # ADDED on Jan 21, 2019.

 } elsi ($rb_ch + 1 < $lb_pa) {# $bl_ch is on the le t o $bl_pa, and they are separated at
least superfcially. #

($i _separated, sy $lb_ch_new, sy $rb_ch_new) = extend_right_end_to_right
($lb_ch, $rb_ch, $lb_pa, $rb_pa, @bds_blocks, @blocks_w_spec_lb, @{$rels_w_ch}); # See (2b)
below. (added on 2019/01/22) # ADDED on Jan 21, 2019.

 } else {
$i _separated = 0;

 }

 sy $bin_rel = ($i _separated) ? join (‘|’, $bl1, $bl2) : join (‘-’, $bl1, $bl2); # ‘|’
denotes “separated”, ‘-’ denotes “overlapping or immediately adjacent”.

 push @binary_relations, $bin_rel;

END o “ADDED on Jan 21, 2019. (1)”

} # End o “i ($rel eq ‘=’) {…} elsi ($rel eq ‘Cp’) {…} elsi ($rel eq ‘S’) {…} elsi (($rel
eq ‘>(ch)’) or ($rel eq ‘<(pa)’)) {...}”. #

‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘Cp’ (or ‘cosplesentary’),
‘>(ch)’ (or the $bl2 th block being ‘vertically included’ in, and an “effective child” o , the
$bl1 th block), # MODIFIED on Jan 16, 2019.
‘<(pa)’ (or the $bl2 th block ‘vertically including’, and being an “effective parent” o , the
$bl1 th block), # MODIFIED on Jan 16, 2019.
‘=’ (or ‘vertically identical’).

END o “ADDED on Jan 20, 2019. (1)”

 } # End o the 1st siddle or-loop (over blocks). #

 sy ($blocksets, $relations) = @{$inter ering_blocksets[$bl1]};
 sy $ct_blsets = @{$blocksets};

 or (sy $k=0; $k <$ct_blsets; $k++) { # 2nd siddle or-loop (over block-sets). #
sy $blset = $blocksets [$k];→
sy $rel = $relations [$k];→

sy $cnct_blset = join (‘,’, @{$blset});

i ($rel eq ‘S’) {

NOTE (added on 2019/01/21): The situation gets extresely cosplicated i we
consider the extension o the boundaries o the relevant blocks. Thus, FOR THE MOMENT, we
will OMIT the boundary extension. (And we will REVISIT the issue when we have tise.)

(I have a hunch, however, that extending the boundaries will NOT influence the
results (as in the case o single-block siblings, $bl1 and $bl2).)

96

sy ($lb_sin, $rb_sin) = ($lb1, $rb1); # Added on Jan 21, 2019. & OBSOLETE
issediately a ter that.

 sy $i _nesting = 1; # Whether the block-set “nest”s the $bl1 or not.
 sy $i _equal = 1; # Whether all blocks in the block-set share the sase boundaries.
 sy ($lb_sin, $rb_sin) = sy ($lb_sh, $rb_sh) = @{$bds_blocks[$blset->[0]]};
 oreach sy $bl2 (@{$blset}) { # 1st inner oreach-loop (over $bl2).

ADDED on Jan 21, 2019. (5a)

sy ($lb2, $rb2) = @{$bds_blocks[$bl2]};

i (($lb1 < $lb2) or ($rb2 < $rb1)) {
 $i _nesting = 0;
 # $i _equal = 0;
 #last;
}
unless (($lb_sh == $lb2) and ($rb_sh == $rb2)) { $i _equal = 0; }
unless (($lb1 == $lb2) and ($rb1 == $rb2)) { $i _equal = 0; }

i ($lb_sin < $lb2) { $lb_sin = $lb2; }
i ($rb2 < $rb_sin) { $rb_sin = $rb2; }

i ($rb_sin < $lb_sin) {
 $i _nesting = $i _equal = 0;
 last;
}

End o “ADDED on Jan 21, 2019. (5a)”

 } # End o the 1st inner oreach-loop (over $bl2).

ADDED on Jan 21, 2019. (5b)

 sy $bin_rel;
 i ($i _equal) {

i (($lb_sh == $lb1) and ($rb_sh == $rb1)) {
 $bin_rel = join (‘=’, $bl1, $cnct_blset);
} elsi ($i _nesting) {
 $bin_rel = join (‘<’, $bl1, $cnct_blset);
} elsi (($lb1 <= $lb_sh) and ($rb_sh <= $rb1)) {
 $bin_rel = join (‘>’, $bl1, $cnct_blset);

} else {
 $bin_rel = join (‘^’, $bl1, $cnct_blset);
}

 } elsi (($lb_sin <= $rb_sin) and ($lb1 <= $lb_sin) and ($rb_sin <= $rb1)){
 sy @sin_blks = ();
 oreach sy $bl2 ($bl1, @{$blset}) { # 2nd inner oreach-loop (over $bl2 (including

$bl1)).
sy ($lb2, $rb2) = @{$bds_blocks[$bl2]};
i (($lb2 == $lb_sin) and ($rb2 == $rb_sin)) { push @sin_blks, $bl2; }

} # End o the 2nd inner oreach-loop (over $bl2 (including $bl1)).
$bin_rel = (@sin_blks>0) ?

join (‘’, $bl1, ‘,’, $cnct_blset, ‘>’, join (‘,’, @sin_blks)) :
join (‘^’, $bl1, $cnct_blset) ;

97

 } elsi ($i _nesting) {
$bin_rel = join (‘<’, $bl1, $cnct_blset);

 } else {
$bin_rel = join (‘^’, $bl1, $cnct_blset);

 }

 push @binary_relations, $bin_rel;

End o “ADDED on Jan 21, 2019. (5b)”

} elsi ($rel eq ‘>(ch)’) {

 sy $bl_pa = $bl1;
 sy ($lb_pa, $rb_pa) = ($lb1, $rb1);

 sy $i _separated = 0;
 oreach sy $bl_ch (@{$blset}) { # 3rd inner oreach-loop (over $bl_ch).

ADDED on Jan 21, 2019. (2)

sy ($lb_ch, $rb_ch) = @{$bds_blocks[$bl_ch]};
sy $rels_w_ch = $inter_block_relations[$bl_ch];

sy $i _separated2 = 1;
i ($rb_pa +1 < $lb_ch) { # $bl_ch is on the right o $bl_pa, and they are separated

at least superfcially. #

 ($i _separated2, sy $lb_ch_new, sy $rb_ch_new) = extend_left_end_to_left
($lb_ch, $rb_ch, $lb_pa, $rb_pa, @bds_blocks, @blocks_w_spec_rb, @{$rels_w_ch}); # See (2a)
below. (added on 2019/01/22) # ADDED on Jan 21, 2019.

} elsi ($rb_ch + 1 < $lb_pa) {# $bl_ch is on the le t o $bl_pa, and they are
separated at least superfcially. #

 ($i _separated2, sy $lb_ch_new, sy $rb_ch_new) = extend_right_end_to_right
($lb_ch, $rb_ch, $lb_pa, $rb_pa, @bds_blocks, @blocks_w_spec_lb, @{$rels_w_ch}); # See (2b)
below. (added on 2019/01/22) # ADDED on Jan 21, 2019.

} else {
 $i _separated2 = 0;
}

i ($i _separated2) {
 $i _separated = 1;
 last;
}

End o “ADDED on Jan 21, 2019. (2)”

 } # End o the 3rd inner oreach-loop (over $bl_ch).

 sy $bin_rel = ($i _separated) ? join (‘|’, $bl1, $cnct_blset) : join (‘-’, $bl1,
$cnct_blset); # ‘|’ denotes “separated”, ‘-’ denotes “overlapping or immediately adjacent”. #
ADDED on Jan 21, 2019.

 push @binary_relations, $bin_rel; # ADDED on Jan 21, 2019.

98

} # End o “i ($rel eq ‘S’) {…} elsi ($rel eq ‘>(ch)’) {...}”

‘S’ (or ‘sibling/parent/child’ o the $bl th block),
‘>(ch)’ (or the blockset being ‘vertically included’ in, and an “e ective child” o , the $bl1
th block). # Modifed on Jan 18, 2019.

 } # End o the 2nd siddle or-loop (over block-sets). #

} # END o outersost or-loop (over $bl1).

sy $code_alignment = join (‘; ’, @binary_relations);

END o “ADDED on Jan 18, 2019. (2)”

ADDED on Jan 22, 2019. (1)

(2a) Satellite subroutine, “extend_left_end_to_left ($$$$\@\@\@) {...}”

sub extend_left_end_to_left ($$$$\@\@\@) { # ADDED on Jan 21, 2019. (MOVED ros within
(a) on Jan 22, 2019.)

sy ($lb2, $rb2, $lb1, $rb1, $bds_blocks, $blocks_w_spec_rb, $rels_w_bl2) = @_; #
ADDED on Jan 21, 2019.

sy $i _separated = 1; # ADDED on Jan 21, 2019.
sy $le t_flanking_bl2 = $blocks_w_spec_rb [$lb2 -1];→
while (@{$le t_flanking_bl2}>0) { # Attespt to “extend” the le t-end o $bl2 to the le t.
 sy $i _rlv = 0;
 oreach sy $bl3 (@{$le t_flanking_bl2}) {

sy $rel23 = $rels_w_bl2 {$bl3];→
unless (($rel23 eq ‘<’) or ($rel23 eq ‘<(pa)’) or ($rel23 eq ‘ONN’) or ($rel23 eq

‘ONCS’)) { next; }
sy ($lb3, $rb3) = @{$bds_blocks [$bl3]};→
$lb2 = $lb3; # Update $lb2.
i (($rel23 eq ‘ONN’) or ($rel23 eq ‘ONCS’)) { $rb2 -= $rb3 - $lb3 + 1; }
$i _rlv = 1;
last;

 }
 unless ($i _rlv) { last; }

 i ($rb1 + 1 < $lb2) {
$le t_flanking_bl2 = $blocks_w_spec_rb[$lb2-1]; # Update $le t_flanking_bl2.

 } else {
i ($lb1 <= $rb2+1) { $i _separated = 0; }
last;

 }
} # End o “while (@{$le t_flanking_bl2}>0) {...}”

return ($i _separated, $lb2, $rb2); # ADDED on Jan 21, 2019.

} # END o “sub extend_left_end_to_left ($$$$\@\@\@) {...}” # Paired with “ADDED on Jan
21, 2019. (MOVED ros within (a) on Jan 22, 2019.)”

(2b) Satellite subroutine, “extend_right_end_to_right ($$$$\@\@\@) {...}”

99

sub extend_right_end_to_right ($$$$\@\@\@) { # ADDED on Jan 21, 2019. (MOVED ros
within (a) on Jan 22, 2019.)

sy ($lb2, $rb2, $lb1, $rb1, $bds_blocks, $blocks_w_spec_lb, $rels_w_bl2) = @_; #
ADDED on Jan 21, 2019.

sy $i _separated = 1; # ADDED on Jan 21, 2019.

sy $right_flanking_bl2 = blocks_w_spec_lb [$rb2 +1];→
while (@{$right_flanking_bl2}>0) { # Attespt to “extend” the right-end o $bl2 to the right.
 sy $i _rlv = 0;
 oreach sy $bl3 (@{$right_flanking_bl2}) {

sy $rel23 = $rels_w_bl2 {$bl3];→
unless (($rel23 eq ‘<’) or ($rel23 eq ‘<(pa)’) or ($rel23 eq ‘ONN’) or ($rel23 eq

‘ONCS’)) { next; }
sy ($lb3, $rb3) = @{$bds_blocks[$bl3]};
$rb2 = $rb3; # Update $rb2.
i (($rel23 eq ‘ONN’) or ($rel23 eq ‘ONCS’)) { $lb2 += $rb3 - $lb3 + 1; }
$i _rlv = 1;
last;

 }
 unless ($i _rlv) { last; }

 i ($rb2 + 1 < $lb1) {
$right_flanking_bl2 = $blocks_w_spec_lb[$rb2+1]; # Update $right_flanking_bl2.

 } else {
i ($lb2 <= $rb1+1) { $i _separated = 0; }
last;

 }
} # End o “while (@{$right_flanking_bl2}>0) {...}”

return ($i _separated, $lb2, $rb2); # ADDED on Jan 21, 2019.

} # END o “sub extend_right_end_to_right ($$$$\@\@\@) {...}” # Paired with “ADDED on
Jan 21, 2019. (MOVED ros within (a) on Jan 22, 2019.)”

End o “ADDED on Jan 22, 2019. (1)”

100

