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Supplementary-Supplementary Appendix

SSA-1. Revisiting the practical factorability of indel confguration multiplication factor 

(discussed in SA-1).

The block-wise (contrasted to segment-wise) factorization formulas, Eqs.(SA-1.9,10) in 

“suppl_blueprint1.xxx.doc”, are actually NOT so practically useful for the following three 

reasons:

(1) They are not applicable to the gapped segments containing insertion-type gaps, as in 

Figure SS1 A. 

(2) They are not so useful when actually calculating the contributions to a given MSA (of 

extant sequences), instead of to a given set of states at all nodes (including both extant and 

ancestral sequences).

(3) They are not so useful, either, when attempting to calculate the increment(s) of the 

contributions (or the entire MSA probability) caused by a move in the gap-confguration(s) of 

an MSA.

Thus, we hereby attempt to give practically more useful formulas for the block-wise 

factorization of the contributions.

First, we will specify a reference ancestral sequence state, s0 (n) , at each internal 

node (n Î N IN ). (Thus far, only one reference sequence state ( s0
Root ) was specifed in each 

gapped segment, only at the root node (nRoot ).) A simplest candidate of a set of such 

reference states would be the ancestral gap states uniquely (and fairly quickly) given by the 

Dollo parsimony principle (Farris 1977). (See Figure SS1 B for an example. Indeed, our 

program implementation of this calculation will use the Dollo parsimonious gap states as the 

reference states, s0 (n){ }
n Î N IN .) Then, using the identity:

dRX
ID (sA (b), s0

Root, t )[CK ] = dRX
ID (s0

A (b), s0
Root, t )[CK ] + dRX

ID (sA(b), s0
A (b), t )[CK ], 

where s0
A (b)º s0 nA (b)( ) , we can rewrite Eq.(SA-1.3) supplemented with Eq.(SA-1.4) as 

follows:

MP a[s1, s2,..., sN X ]; s(n){ }

NIN ; s0
Root;CK Téë ùû

º MP a[s1, s2,..., sN X ]; s(n){ }
NIN ;CK Téë ùû mP s nRoot( ) , s0Root, nRoot;CK

é
ë

ù
û

´ exp -F0 [T, s0 (n){ }
NIN , CK; QID(b){ }

T
]( ) ´ exp - dt dRX

ID (sA (b), s0
A(b), t )[CK ]t nA (b)( )

t nD (b)( )
ò

bÎ{b}T

å
æ

è
çç

ö

ø
÷÷

.

   --- Eq.(SSA-1.1)

Here, 
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F0 [T, s0(n){ }
NIN , CK; QID(b){ }

T
] º dt dRX

ID(sA(b), s0
Root, t )[CK ]t nA (b)( )

t nD (b)( )
ò

bÎ{b}T

å

F0 [T, s0(n){ }
NIN , CK; QID(b){ }

T
] º dt dRX

ID(s0
A(b), s0

Root, t )[CK ]t nA (b)( )

t nD (b)( )
ò

bÎ{b}T

å

 --- Eq.(SSA-1.2)

is the “reference” phase factor determined uniquely by the tree (T ), the gapped segment (

CK
) and the reference sequence states ( s0 (n){ }

NIN ) (and the indel model ( QID(b){ }
T

)); the 

factor is independent of any other specifc local indel histories that are compatible with the 

MSA within CK
, hence it can be computed easily (and fairly quickly).

Second, we will re-defne effectively independent indel blocks (, which were 

referred to as “partial indel history zones” in Figure S3 C (in 

“suppl_blueprint1_ANEX.xxx.pdf”,) so that they can also cover more complex cases 

including insertions. For this purpose, let us recall that we are now considering gap-state 

confgurations within the direct product space, CK ´T  (as represented by the array of trees in 

Figure SS1 B), or more simply, CK ´ NIN (T ) . The latter is usually adequate for the current 

purpose, because we are considering all possible sets of ancestral gap-states compatible with 

the local MSA, instead of all possible indel histories compatible with the local MSA. (Please 

remember that gap-states at external nodes ( n Î NX ) are already fxed, given a local MSA.) 

Now, remember that the Dollo parsimonious ancestral state contains the smallest number of 

ancestral sites occupied by residues, because the Dollo parsimonious history consists of the 

shortest paths (along the tree) connecting residue-occupied sites at external nodes (see, e.g., 

Figure 4 of Ezawa, Graur and Landan Part I). In other words, all other MSA-compatible 

ancestral gap-states can be made from the Dollo parsimonious state by flling some empty 

sites (i.e., gaps) at ancestral nodes with residues in a phylogenetically consistent manner (e.g.,

Chindelevitch et al. 2006; Diallo et al. 2007), which is enabled by extending some “paths” of 

residue-occupied sites from the network of such sites representing the Dollo parsimonious 

states (see, e.g., Figure 4 of Ezawa, Graur and Landan Part I). This “minimal” nature of the 

Dollo parsimonious indel history enables it to partition each gapped segment (CK ´T ) into 

some blocks, GK; i
 ( i =1,2,..., IK

), each of which can accommodate some indels (in 

parsimonious indel histories), and a “partitioning” network of residue-occupied sites of the 

Dollo parsimonious states extended across the tree, denoted as GK; 0
. (Figure SS1 C 

illustrates such a partitioning.) This partitioning can be represented in an abstract equation 

using the symbol, “ ”, for a union of sets:

       . --- Eq.(SSA-1.3)
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(Here, it should be noted that the sets involved in the right-hand side are mutually disjoint 

from one another.) By defnition, every pair of a node and a site (referred henceforth as a 

“node-site pair”) belonging to GK; 0
 must always be occupied by a residue, regardless of the 

indel histories (as long as they are compatible with the MSA). In contrast, each node-site pair 

belonging to GK; i
 ( i =1,2,..., IK

) can be either empty or occupied with a residue 

depending on the MSA-compatible history, although it should always be empty in the Dollo 

parsimonious indel history. And it should also be noted that every indel event in every MSA-

compatible parsimonious (or next-parsimonious) indel histories should be completely 

confned in one of 
GK; i{ }

i=1,2,...,IK

; otherwise, the “partitioning” network, 
GK; 0

, is not 

working as it should, thus it must be re-defned. Therefore, each of 
GK; i{ }

i=1,2,...,IK

 defnes 

an “effectively independent indel block” (previously referred to as “partial indel history 

zone”), or an “indel block” for short. (We consider that two node-site pairs belong to the 

same indel block if they are connected via a path of node-site pairs that are empty in the Dollo

parsimonious history. Otherwise, that is, if they are clearly separated by at least a node-site 

pair that is occupied by a residue in the Dollo parsimonious history, we consider them as 

belonging to different indel blocks.)

Now, let us extend Eq.(SA-1.7) (in “suppl_blueprint1_ANEX.xxx.pdf”) for the purely 

vertical partitioning of a gapped segment, in order to create a formula suitable for the more 

general partitioning Eq.(SSA-1.3). For this purpose, let P GK; i{ } n
 be the projection of an 

indel block GK; i
 onto a node n  (, which could be either internal or external), which is 

nothing other than the set of all sites (both empty and residue-occupied) in the ancestral 

sequence at n  belonging to GK; i . Similarly, let P GK; 0{ } n
 be the projection of the 

partitioning network GK; 0
 onto n . (Panels D & E of Figure SS1 illustrate these 

projections.) Then, thanks to Eq.(SSA-1.3), the following decomposition always holds at node

n :

 .   --- Eq.(SSA-1.4)

(Again, the sets involved in the right-hand side are mutually disjoint. It should also be noted 

that P GK; i{ } n
’s may be empty sets for some i ’s.)  Now, each element of

DS CK; s0
Root;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ;Té

ë
ù
û
, i.e., a set of differences of internal gap 

states (within the region 
CK

) from the reference root state (
s0
Root

),
s(n) - s0

Root{ }
NIN

[CK ]
, 
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could be considered as an N IN -tuple, and that each of its components is the difference of an 

internal gap state ( s(n) ) at an internal node (n ) from s0
Root , which will be denoted as

s(n) - s0
Root( ) CK[ ]  hereafter. (It should be noted that the components of the N IN -tuples are 

NOT mutually independent of each other, because they have to satisfy the phylogenetic 

consistency condition.) Because differences in the indel blocks are effectively independent of 

one another, we almost always have:

s(n) - s0
Root( ) CK[ ]

= s0(n) - s0
Root( ) CK[ ] + s(n) - s0 (n)( ) P GK; 0{ } n

é
ë

ù
û + s(n) - s0(n)( ) P GK; i{ } n

é
ë

ù
û( )i=1

IKå

 .

  --- Eq.(SSA-1.5)

Here, 
s(n)- s0

Root( ) P GK; i{ } n
é
ë

ù
û
 is the gap-state difference within the indel block, 

GK; i

. 

Because the gap-state within the partitioning network ( GK; 0
) is almost always identical to 

that for s0 (n) , the second term on the right-hand side almost always vanishes, hence we 

have:

s(n) - s0
Root( ) CK[ ] = s0 (n) - s0

Root( ) CK[ ] + s(n) - s0(n)( ) P GK; i{ } n
é
ë

ù
û( )i=1

IKå
 .

--- Eq.(SSA-1.6)

Now, consider the N IN -tuple again. As already noted, its different components are NOT 

independent of one another. Nevertheless, as long as the partitioning network remains intact, 

it is suffcient to consider the phylogenetic consistency conditions among the components,

s(n)- s0(n)( ) P GK; i{ } n
é
ë

ù
û n Î N IN (T ){ }

, within each indel block (
GK; i

). In such cases, 

components within different indel blocks can be treated independently of one another. Thus, 

the space of ancestral state differences, 
DS CK; s0

Root;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ;Té
ë

ù
û
, 

can be approximately decomposed as follows. First, separate the constant differences between

the reference ancestral states and the reference root state from the remaining variable parts:

DS CK; s0
Root;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ; Té

ë
ù
û

= s0(n) - s0
Root{ }

NIN (T )
+ DS CK; s0(n){ }

NIN (T )
;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ;Té

ë
ù
û

 .

 --- Eq.(SSA-1.7)

On the right-hand side, the frst term represents the set of constant differences, and the second 

term represents the remaining variable parts. Then, the second term can be approximately 

decomposed as follows:
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DS CK; s0 (n){ }
N IN (T )

;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ; Té
ë

ù
û

»
i=1

IK

´ DS GK; i; s0(n){ }
NIN (T )

;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ; Té
ë

ù
û

 .  --- Eq.(SSA-1.8)

Here, each element of the component space,

DS GK; i; s0 (n){ }
N IN (T )

;a[s1, s2,..., sN X ]; n Î N IN (T ){ } ;Té
ë

ù
û

, is a phylogenetically consistent 

set, 
s(n)- s0(n){ }

NIN GK; i
éë ùû º s(n)- s0(n)( ) P GK; i{ } n

é
ë

ù
û n Î NIN (T ){ }

, of ancestral gap 

state differences within the given indel block, GK; i
.

Now, in order to extend the purely vertical factorization of the multiplication factor, 

Eq.(SA-1.9) (or Eq.(SA-1.9’)) in “suppl_blueprint1_ANEX.xxx.pdf”, we need two 

assumptions, in addition to the approximate space decomposition given by Eqs.(SSA-1.7,8). 

One is the assumption that the region-wise increment of the exit rate can also be further 

decomposed (at least approximately) just as in Eq.(SSA-1.6):

dRX
ID (s(n), s0(n), t )[CK ] » dRX

ID (s(n), s0 (n), t ) GK; i
éë ùû( )i=1

IKå
. --- Eq.(SSA-1.9)

 (Here we omitted the increment confned in GK; 0
, because the ancestral gap states within 

the partitioning network are almost always unchanged.) The other is the assumption that the 

(multiplicative) increment of the prior probability of the root state confned in CK
 can also 

be further factorized (at least approximately) as:

mP s nRoot( ) , s0Root, nRoot;CK
é
ë

ù
û

» mP s nRoot( ) , s0Root, nRoot; P GK; 0{ } nRoot
é
ë

ù
û ´ mP s nRoot( ) , s0Root, nRoot; P GK; i{ } nRoot

é
ë

ù
ûi=1

IKÕ
 .

   --- Eq.(SSA-1.10)

(Whether Eqs.(SSA-1.9.10) indeed hold or not is non-trivial in general, especially when the 

considered model has indel variation across sites (or regions). Here, however, we assume that 

they hold at least approximately.)

Using Eqs.(SSA-1.9,10), the fact that different indel blocks ( GK; i
’s)are almost 

always independent of each other, and the fact that the partitioning network ( GK; 0
) almost 

always remains intact, the multiplication factor, Eq.(SA-1.3) supplemented with Eq.(SA-1.4) 

(both in “suppl_blueprint1_ANEX.xxx.pdf”), which has been rewritten here as Eq.(SSA-1.1) 

supplemented with Eq.(SSA-1.2), can be further factorized (at least approximately) as 
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follows:


MP a[s1, s2,..., sN X ]; s(n){ }

NIN ; s0
Root;CK Té

ë
ù
û

»

MP a[s1, s2,..., sN X ]; s0 (n){ }

NIN ; s0
Root; GK; 0 Téë ùû

´

MP a[s1, s2,..., sN X ]; s(n){ }

NIN ; s0 (n){ }
NIN ; GK; i Téë ùûk=1

IKÕ

  . --- Eq.(SSA-1.11)

Here,


MP a[s1, s2,..., sN X ]; s0 (n){ }

NIN ; s0
Root; GK; 0 Téë ùû

º mP s nRoot( ) , s0Root, nRoot; P GK; 0{ } nRoot
é
ë

ù
û´ exp -F0 [T, s0 (n){ }

NIN , CK; QID (b){ }
T
]( )

--- Eq.(SSA-1.12)

is the portion of the multiplication factor associated with the ancestral gap states, s(n){ }
NIN

, 

within the gapped segment, CK
, contributed from the partitioning network, Γ Κ ; 0

. It should 

be noted that this portion remains unchanged regardless of the ancestral gap states, {s (n )}
Ν IN .

And

Μ̆ P [α [ s1 , s2 , . . ., sNX ]; {s(n )}
Ν IN ; {s0(n )}Ν IN ; Γ Κ ; i |T ]

¿ ΜP [α [ s1 , s2 , . . . , sNX ]; {s(n )}
Ν IN ; Γ Κ ; i |T ] μP [s (nRoot ) , s0

Root , nRoot ; P {ΓΚ ; i }|nRoot ]
× exp (− ∑

b∈{b}
T

∫
t (nA (b) )

t (nD(b))
dτ δRX

ID
( s A (b ) , s0

A
(b ) , τ )[ Γ Κ ; i ])

--- Eq.(SSA-1.13)

, with

ΜP [α [ s1 , s2 , .. . , sNX ]; {s(n )}
Ν IN ; Γ Κ ; i | T ]

¿ ∏
b∈{b }

T
{ ∏
γ
κb

(b ) ⊆ Γ
Κ ; i

~μP [(
~Λ ID [γκb(b ); α ( sA(b ) , sD(b ))] , b) | ( s

A
(b ) , nA(b ))]}

--- Eq.(SSA-1.14)

is the portion of the multiplication factor contributed from the indel block, Γ Κ ; i
. 

Then, substituting Eq.(SSA-1.11) into Eq.(SA-1.2) in “suppl_blueprint1_ANEX.xxx.pdf”, 

and using Eqs.(SSA-1.7,8), we get the approximate factorization of the entire multiplication 

factor for the local MSA within CΚ
:

~̆Μ P [α [ s1 , s2 , .. . , sNX ]; s0
Root ; C Κ |T ]

¿ Μ̆P [α [ s1 , s2 , . . . , sNX ]; {s0(n )}
Ν IN ; s0

Root ; Γ Κ ; 0 |T ]
×∏i=1

I
Κ

( ~̆ΜP [α [ s1 , s2 ,. .. , sN X ]; {s0(n )}Ν IN ; Γ Κ ; i | T ])

   --- Eq.(SSA-1.15)

. Here, 
Μ̆ P [α [ s1 , s2 , . . . , sNX ]; {s0(n )}Ν IN ; s0

Root ; ΓΚ ; 0 |T ]
 has already been defned in Eq.

(SSA-1.12), and
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∑
¿ Δ

Σ[ ΓΚ ; i ; {s0 (n )}Ν IN
; α [ s

1
, s
2
,. .. , s

NX ] ; {n∈Ν IN
(T )} ; T ] ¿

¿ {s (n ) − s0(n )}Ν IN[ Γ Κ ; i ] ¿¿ ¿¿

∑
¿ Δ

Σ[ ΓΚ ; i ; {s0 (n )}Ν IN
; α [ s

1
, s
2
,. .. , s

NX ] ; {n∈Ν IN
(T )} ; T ] ¿

¿ {s (n ) − s0(n )}Ν IN[ Γ Κ ; i ] ¿¿ ¿¿

--- Eq.(SSA-1.16)

(with the summands defned in Eq.(SSA-1.13)) is the total multiplicative contribution from 

the indel block Γ Κ ; i
. 

Because each of the multiplicative factors in the approximate factorization formula, 

Eq.(SSA-1.15), can in principle be calculated independently of one another, this should 

facilitate the computation of the entire multiplication factor for each gapped segment, and also

the computation of its change in response to a move of the gap-pattern in the gapped segment 

and its neighbors. Thus, this extension of the vertical partitioning ((SA-1.9,10) in 

“suppl_blueprint1.xxx.doc”) will resolve the three drawbacks of its predecessor mentioned at 

the top of this section.
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Supplementary-Supplementary Figures (with legends)
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(A) Tree (    ) Gapped segment (      ) in MSA
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(D) Projection onto the external node, x6 
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(E) Projection onto the ancestral node, a2 

P G K ; 0{ } x 6 = D , E{ } , P G K ; 1{ } x 6 = A , B , C{ } , P G K ; 2{ } x 6 = F{ } .

P G K ; 0{ } x 6 = A , B , D , E{ } , P G K ; 1{ } x 6 = { } , P G K ; 2{ } x 6 = C , F{ } .

Figure SS1. Extending notion of purely vertical partitioning of gapped segment.
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(A) An example of an input data set, consisting of a tree ( T ) and a gapped segment ( CΚ
) of 

a multiple sequence alignment (MSA). In this example, purely vertical partitioning (i.e., 

partitioning purely in terms of nodes (or the tree), as in Figure S3 or section SA-1 of 

“suppl_blueprint1_ANEX.xxx.pdf”) does NOT work, because of the insertion of site F. (In 

this fgure, capital roman alphabets label the sites in the MSA.)

(B) Minimal gap states reconstructed under the Dollo parsimony principle. The black-flled 

circles represent the sites flled with residues at the nodes, and color-shaded open circles 

represent the empty sites at the nodes. The colors correspond to the colors in panel A. And a 

black branch (edge) indicates that the site remains flled with a residue along the branch, 

whereas a colored branch indicates that the site could become (or remain) empty along the 

branch.

(C) According to the Dollo parsimonious gap states in panel B, we can defne a partitioning 

network ( Γ Κ ; 0
) and indel blocks ( Γ Κ ; i

, with i=1, . .. , I Κ ). (Here, I Κ = 2 .) The 

partitioning network is constructed by connecting all black-flled nodes and black branches. 

An indel block is constructed by connecting contiguous open nodes and colored branches.

(D) & (E) Projections of the partitioning network and indel blocks onto the external node,

x 6 , and their projections onto the ancestral node, a 2 , respectively. In these panels, the 

relevant nodes are highlighted by coloring the other nodes and branches in grey. In each 

panel, the results of the projections are shown below the array of trees (, which represents

CΚ × T ).
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