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Supplementary appendix

SA-1. Practical factorability of indel configuration multiplication factor into 
contributions from isolated gap masses
For this purpose, it would be more convenient to use the ancestral-state-based equations 

derived in section SM-4 of (Ezawa, unpublished A 2016b), rather than to use the indel-

history-based equations derived in subsection 4.2 of (Ezawa, Graur and Landan, Part I). Thus,

we begin by recalling the key results of the former.

Provided that the indel model satisfies the conditions (i), (ii) and (iii) (see R6 and R7 of 
Ezawa, unpublished A 2016b), the probability, P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦, that a given MSA (
α[s1, s2,..., sNX ]) result from an indel process along a given tree (T ) is factorized as in 

Eq.(SM-4.20) of (Ezawa, unpublished A 2016b):

P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦= P0 s0
Root T⎡⎣ ⎤⎦ Μ̃P α[s1, s2,..., sNX ]; s0

Root;CΚ T⎡⎣ ⎤⎦
Κ=1

Κmax

∏ .   --- Eq.

(SA-1.1)
Here, s0

Root  denotes a “reference” root sequence state that is consistent with the MSA, and

P0 s0
Root T⎡⎣ ⎤⎦  is the probability that the sequence state remained s0

Root  all across the tree (see 

Eq.(SM-4.21) of ibid. for details). And 
Μ̃P α[s1, s2,..., sNX ]; s0

Root;CΚ T⎡⎣ ⎤⎦
 is the 

multiplication factor contributed from a local region (CΚ
). It’s specific expression is given 

by Eq.(SM-4.22) of ibid.:
Μ̃P α[s1, s2,..., sNX ]; s0

Root;CΚ T⎡⎣ ⎤⎦

≡ ΜP α[s1, s2,..., sNX ]; s(n){ } ΝIN ; s0
Root;CΚ T⎡⎣ ⎤⎦

s(n) − s0
Root{ }

ΝIN
[CΚ ]

∈ ΔΣ CΚ ; s0
Root ;α[s1,s2,...,sNX ]; n∈Ν

IN (T ){ } ;T⎡
⎣

⎤
⎦

∑ . --- Eq.(SA-1.2)

Here, 
ΔΣ CΚ; s0

Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ } ; T⎡
⎣

⎤
⎦
 is the space of deviations of 

ancestral state spaces (
s(n){ } Ν IN

) from 
s0
Root

 within 
CΚ

 (denoted as 
s(n) − s0

Root{ }
ΝIN
[CΚ ]

 

in the range of summation). And the summand is given by Eq.(SM-4.18) of ibid.:
ΜP α[s1, s2,..., sNX ]; s(n){ } ΝIN

; s0
Root;CΚ T⎡⎣ ⎤⎦

≡ΜP α[s1, s2,..., sNX ]; s(n){ } ΝIN
;CΚ T⎡⎣ ⎤⎦ µP s n

Root( ) , s0Root, nRoot;CΚ
⎡
⎣

⎤
⎦

× exp − dτ δRX
ID (sA (b), s0

Root, τ )[CΚ ]t nA (b)( )
t nD (b)( )∫

b∈{b}T

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, --- Eq.(SA-1.3)

with Eq.(SM-4.13) of ibid.:
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ΜP α[s1, s2,..., sNX ]; s(n){ } ΝIN ;CΚ T⎡⎣ ⎤⎦

≡ µ̃P Λ̃ ID γκb (b);α(s
A(b), sD (b))⎡⎣ ⎤⎦, b( ) (sA (b), nA (b))⎡

⎣
⎤
⎦

γκb (b)⊆CΚ

∏
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪b∈ b{ } T

∏
. --- Eq.(SA-1.4)

Here, µ̃P Λ̃ ID γκb (b);α(s
A(b), sD (b))⎡⎣ ⎤⎦, b( ) (sA (b), nA(b))⎡

⎣
⎤
⎦
 is the multiplication factor 

contributed from the portion of the PWA (α(sA (b), sD (b)) ) between the ancestral state (

sA (b)) and the descendant state ( sD (b)) along the branch (b ), confined in a region (

γκb (b), which is within CΚ
). (See Eq.(SM-4.11), Eq.(R6.8). and Eq.(SM-2.14) of ibid.)

µP s n
Root( ) , s0Root, nRoot;CΚ

⎡
⎣

⎤
⎦
 is the multiplicative difference of the probability of state

s nRoot( )  at the root (nRoot ) from that of s0
Root  originated from CΚ

 (see Eq.(SM-4.16) of 

ibid.). And δRX
ID (sA (b), s0

Root, τ )[CΚ ] is the increment of the exit rate of the ancestral state 

( sA (b)), compared to that of the reference state ( s0
Root ), coming from the state difference 

confined in CΚ
 (see Eq.(SM-4.14) of ibid.).

For the current purpose, it would be more convenient to reorganize Eq.(SA-1.3) 

accompanied by Eq.(SA-1.4) as follows:

ΜP α[s1, s2,..., sNX ]; s(n){ } Ν IN
; s0

Root;CΚ T⎡⎣ ⎤⎦

= µP s n
Root( ) , s0Root, nRoot;CΚ

⎡
⎣

⎤
⎦ µ̃P α(s

A (b), sD (b));CΚ (sA (b), nA(b))⎡
⎣

⎤
⎦

b∈ b{ } T

∏
, --- Eq.

(SA-1.3’)

with

µ̃P α(s
A (b), sD(b));CΚ (sA (b), nA (b))⎡

⎣
⎤
⎦

≡ exp − dτ δRX
ID (sA (b), s0

Root, τ )[CΚ ]t nA (b)( )
t nD (b)( )∫

⎛
⎝
⎜

⎞
⎠
⎟

× µ̃P Λ̃ ID γκb (b);α(s
A (b), sD (b))⎡⎣ ⎤⎦, b( ) (sA (b), nA (b))⎡

⎣
⎤
⎦

γκb (b)⊆ CΚ

∏

  .  --- Eq.(SA-1.4’)

Now, we are ready to discuss the problem at hand, that is, calculating the 

multiplication factor, Eq.(SA-1.2), when the local MSA contains at least two isolated gap-

masses, as in Figure 3C or Figure S3A. (We will use the latter for illustration.) In such a case, 

some of the ancestral nodes (“R” and “a1” in the current example) have virtually fixed gap 

states (Figure S3B). [NOTE: More precisely, as noted also in Appendix A2, the states at these 

nodes in some non-parsimonious indel histories have extra sites that are destined to vanish 

completely from the extant sequences (as in Figure S4). Each of such indel histories, however,

requires at least two additional indels that are coordinated exquisitely. Thus, in general, their 

contributions are negligible.] Such ancestral nodes could be used to “partition” the set of all 
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internal nodes, Ν IN , into three sub-sets:

 Ν IN =Ν0
IN ∪Ν1

IN ∪Ν2
IN .  --- Eq.(SA-1.5)

Here, Ν0
IN  is the subset consisting of the “partitioning” nodes with virtually fixed ancestral 

states (like the red-shaded nodes in Figure S3C); each of Ν1
IN  and Ν2

IN  is the subset 

consisting of internal nodes involved in one of the isolated gap-masses (like the nodes 

enclosed in dashed boxes in Figure S3C). Likewise, we can also decompose each set of all 
ancestral states, s(n){ } Ν IN , as:

s(n){ } ΝIN
= s(n){ } Ν0IN ∪ s(n){ } Ν1IN ∪ s(n){ } Ν2IN

.   --- Eq.(SA-1.6)

Here, 
s(n){ } Ν0IN

 is virtually fixed. And 
s(n){ } Ν1IN

 and 
s(n){ } Ν2IN

 are virtually independent of 

each other. Hence, 
ΔΣ CΚ; s0

Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ } ; T⎡
⎣

⎤
⎦
 can be approximately 

expressed as a direct product:

  
ΔΣ CΚ; s0

Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ } ; T⎡
⎣

⎤
⎦ ≈ ΔΣ( ) 0 × ΔΣ( ) 1 × ΔΣ( ) 2

. --- Eq.(SA-1.7)

Here, ΔΣ( ) k  ( k  = 0, 1 or 2) is a shorthand notation of a “component” of

ΔΣ CΚ; s0
Root;α[s1, s2,..., sNX ]; n ∈ Νk

IN (T ){ } ; T⎡
⎣

⎤
⎦
, and consists of the sets of local-MSA-

consistent ancestral states at nodes in Νk
IN  (more precisely, their differences from s0

Root ). 

(Note that 
ΔΣ( ) 0 = s(n) − s0

Root{ }
Ν0
IN{ } .) Another essential element is the decomposition of the

set of branches:
        {b}T = {b}T

0 ∪{b}T
1 ∪{b}T

2 . --- Eq.(SA-1.8)

Here, {b}T
k  ( k  = 1 or 2) is the set of branches that are directly connected with at least one 

node in Νk
IN  (like the branches in the dashed boxes in Figure S3C); {b}T

0  is the set of 

remaining branches (i.e., those connected solely with nodes in Ν0
IN ).

Now, substituting Eqs.(SA-1.7,8) into Eq.(SA-1.2) accompanied by Eqs.(SA-

1.3’,4’), we get an approximate equation:

Μ̃P α[s1, s2,..., sNX ]; s0
Root;CΚ T⎡⎣ ⎤⎦ ≈ Μ̃P( )

0
Μ̃P( )

1
Μ̃P( )

2

 . --- Eq.(SA-1.9)

Here, 

Μ̃P( )
k
≡

θ µP s n
Root( ) , s0Root, nRoot;CΚ

⎡
⎣

⎤
⎦; n

Root;Νk
IN( )

× µ̃P α(s
A (b), sD(b));CΚ (sA(b), nA(b))⎡

⎣
⎤
⎦

b∈ b{ } T
k

∏

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

s(n) − s0
Root{ }

Νk
IN [CΚ ]∈ ΔΣ( ) k

∑
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    --- Eq.(SA-1.10)
is the collection of contributions from the sub-histories of indels along the branches in {b}T

k  (

k  = 0, 1 or 2). In this equation, it is tacitly agreed that the sequence states at nodes in

s(n){ } Ν0IN
 are fixed as mentioned above. And we also defined the following function:

                θ x; n; ʹΝ( ) ≡
x if n ∈ ʹΝ ,
1 otherwise .
⎧
⎨
⎩

   --- Eq.(SA-1.11)
When there are K  2( )  isolated gap-masses, Eq.(SA-1.9) can be generalized as:

Μ̃P α[s1, s2,..., sNX ]; s0
Root;CΚ T⎡⎣ ⎤⎦ ≈ Μ̃P( )

0
Μ̃P( )

kk=1

K
∏

, --- Eq.(SA-1.9’)

where 
Μ̃P( )

k

 is the total contribution from the 
k

-th gap mass (like Eq.(SA-1.10)), and

Μ̃P( )
0

 is the contribution from the remaining, “fixed,” part of the indel histories.

It turned out that the purely vertical partitioning given above is NOT adequately general to 

cover most conceivable cases, including those with insertions. See SSA-1 in 

“suppl_addendum.xxx.doc” for an extended method to remedy this drawback. 

SA-2. Proof of necessary and sufficient condition, Eq.(SA-2.1), for independent effects of 
overlapping isolated shifts
As described in Appendix A5, the effects of the shifts of two isolated gap-blocks can be 

regarded as nearly independent of each other   if the approximate equation, Eq.(A5-1) holds  :

log P ( ʹc , ʹ́ʹc , ʹ́c )( )( ) + log P (−, ʹ́c , −)( )( ) ≈
?
log P ( ʹc , ʹ́ʹc , −)( )( ) + log P (−, ʹ́ʹc , ʹ́c )( )( )

 . 

--- Eq.(SA-2.1)
Here, ʹc  and ʹ́c  are the portions of MSA columns flanking the two gap-blocks in question, 

and ʹ́ʹc  is the remaining portion of the column. ( ʹc , ʹ́ʹc , ʹ́c ) denotes the MSA column 

created by aligning these portions. ( ʹc , ʹ́ʹc , −)  denotes the column made from ( ʹc , ʹ́ʹc , ʹ́c ) 
by replacing the residues in ʹ́c  with gaps. And other similar symbols can be interpreted 

accordingly. In this section, we will prove that Eq.(A5-1) (or Eq.(SA-2.1)) is indeed sufficient 

for the independent effects of the shifts of isolated gap-blocks. For this purpose, we here 
introduce a symbol, ... , which is a shorthand notation of log P (...)( )( ) . (For example,

ʹc , ʹ́ʹc , ʹ́c  denotes log P ( ʹc , ʹ́ʹc , ʹ́c )( )( ) .)

We first consider the situation illustrated in Figure 12 B. We here use the following 

symbols for the portions of the columns:
        ʹc  denotes the shifted portion corresponding to the “CC” occupying sequences 1 and 2;
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ʹ́c  denotes the shifted portion corresponding to the “C” occupying sequence 5;

ʹ́ʹc1  denotes the unmoved portion corresponding to the “TTT” occupying sequences

3, 4 and 5;

ʹ́ʹc2  denotes the unmoved portion corresponding to the “- - CC” occupying 

sequences 1, 2, 3 and 4; and
ʹ́ʹc3  denotes the unmoved portion corresponding to the “CT” occupying sequences 

3 and 4.

Because we are considering a substitution model that allows each site to evolve 

independently of the other sites, the logarithm of the residue component of the MSA 

probability is given by a summation of column-wise log-likelihoods over all MSA columns. 

Therefore, when comparing the log-component of the MSA after the double-shift with that 

before the double-shift, it is sufficient to compare the contributions from the columns affected 

by the shifts, i.e., the columns shaded in blue and/or red. Then, the difference of the log-

component after the move from that before the move is expressed as:
  Δ logP( ) 12B ≡ ʹc , ʹ́ʹc1 + ʹ́ʹc2, ʹ́c + −, ʹ́ʹc3, −{ } − −, ʹ́ʹc1 + ʹ́ʹc2, − + ʹc , ʹ́ʹc3, ʹ́c{ } . 

--- Eq.(SA-2.2)
On the other hand, when only each of the two shifted portions (i.e., ʹc  and ʹ́c ) is shifted 

from the MSA before the double-shift, we have two possible differences:

   
Δ logP( ) 12B ( ʹc alone) ≡ ʹc , ʹ́ʹc1 + −, ʹ́ʹc3, ʹ́c{ } − −, ʹ́ʹc1 + ʹc , ʹ́ʹc3, ʹ́c{ }

,   --- Eq.(SA-

2.3a)

   
Δ logP( ) 12B ( ʹ́c alone) ≡ ʹ́ʹc2, ʹ́c + ʹc , ʹ́ʹc3, −{ } − ʹ́ʹc2, − + ʹc , ʹ́ʹc3, ʹ́c{ }

.  --- Eq.(SA-

2.3b)
The independence of the effects of the shifts means that Δ logP( ) 12B

 is equal to the 

summation of Δ logP( ) 12B ( ʹc alone)  and Δ logP( ) 12B ( ʹ́c alone) . Thus, using Eq.(SA-2.2) and 

Eqs.(SA-2.3a,b), we must have:

0 = Δ logP( ) 12B − Δ logP( ) 12B ( ʹc alone) + Δ logP( ) 12B ( ʹ́c alone){ }
= −, ʹ́ʹc3, − + ʹc , ʹ́ʹc3, ʹ́c − −, ʹ́ʹc3, ʹ́c − ʹc , ʹ́ʹc3, −

  .   --- Eq.(SA-2.4)

This is nothing other than Eq.(SA-2.1) (i.e., Eq.(A5-1)).

Next we consider the situation illustrated in Figure 12 C. To represent the portions 

of the columns, we will use the same symbols as above, but associate them with slightly 

different meanings:
        ʹc  denotes the shifted portion corresponding to the “CC” occupying sequences 1 and 2;
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ʹ́c  denotes the shifted portion corresponding to the “T” occupying sequence 5;

ʹ́ʹc1  denotes the unmoved portion corresponding to the “TT” occupying sequences 

3 and 4;

ʹ́ʹc2  denotes the unmoved portion corresponding to the “CT” occupying sequences 

3 and 4.

In this case, the difference of the log-component after the double-shift from that before the 

double-shift is expressed as:
  Δ logP( ) 12C ≡ ʹc , ʹ́ʹc1, − + −, ʹ́ʹc3, ʹ́c{ } − −, ʹ́ʹc1, ʹ́c + ʹc , ʹ́ʹc3, −{ } . --- Eq.(SA-2.5)

The effects of the single-shifts are calculated as:

   
Δ logP( ) 12C ( ʹc alone) ≡ ʹc , ʹ́ʹc1, ʹ́c + −, ʹ́ʹc3, −{ } − −, ʹ́ʹc1, ʹ́c + ʹc , ʹ́ʹc3, −{ }

 ,  --- Eq.

(SA-2.6a)

   
Δ logP( ) 12C ( ʹ́c alone) ≡ −, ʹ́ʹc1, − + ʹc , ʹ́ʹc3, ʹ́c{ } − −, ʹ́ʹc1, ʹ́c + ʹc , ʹ́ʹc3, −{ }

 .  --- Eq.

(SA-2.6b)

Using Eq.(SA-2.5) and Eqs.(SA-2.6a,b), the independence of the effects of the shifts can be 

expressed as:

0 = Δ logP( ) 12C − Δ logP( ) 12C ( ʹc alone) + Δ logP( ) 12C ( ʹ́c alone){ }
= ʹc , ʹ́ʹc1, − + −, ʹ́ʹc1, ʹ́c − ʹc , ʹ́ʹc1, ʹ́c − −, ʹ́ʹc1, −{ }

+ −, ʹ́ʹc3, ʹ́c + ʹc , ʹ́ʹc3, − − −, ʹ́ʹc3, − − ʹc , ʹ́ʹc3, ʹ́c{ }

   .   --- Eq.(SA-2.7)

The expression in each pair of braces on the right hand side of Eq.(SA-2.7) vanishes if Eq.

(A5-1) (i.e., Eq.(SA-2.1)) holds. Thus, in conjunction with Eq.(SA-2.4), Eq.(SA-2.7) 

demonstrates that the effects of two overlapping isolated shifts are independent of each other 

if Eq.(A5-1) holds. (And the arguments in this section also indicates that Eq.(A5-1) is actually

the necessary and sufficient condition for the independence of the effects of overlapping 

shifts.)

SA-3. Non-factorability of residue configuration probability change into contributions 
from shifts of isolated gap-blocks
As described in Appendix A5 (and proved in Supplementary appendix SA-2), we found that 

the effects of the shifts of two isolated gap-blocks can be regarded as nearly independent of 

each other   if the approximate equation, Eq.(A5-1) (or Eq.(SA-2.1)) holds  :
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log P ( ʹc , ʹ́ʹc , ʹ́c )( )( ) + log P (−, ʹ́c , −)( )( ) ≈
?
log P ( ʹc , ʹ́ʹc , −)( )( ) + log P (−, ʹ́ʹc , ʹ́c )( )( )

 . 

--- Eq.(SA-3.1)
Here, ʹc  and ʹ́c  are the portions of MSA columns flanking the two gap-blocks in question, 

and ʹ́ʹc  is the remaining portion of the column. ( ʹc , ʹ́ʹc , ʹ́c ) denotes the MSA column 

created by aligning these portions. ( ʹc , ʹ́ʹc , −)  denotes the column made from ( ʹc , ʹ́ʹc , ʹ́c ) 
by replacing the residues in ʹ́c  with gaps. And other similar symbols can be interpreted 

accordingly. 

In order to examine under what condition(s) Eq.(SA-3.1) (i.e., Eq.(A5-1)) holds, we
consider a situation illustrated in Figure 13. Let P ω, ʹω ; ʹ́ʹc( )  be the joint probability that 
we have ω  and ʹω  at the upper-ends of branches delimiting ʹ́c  and ʹc , respectively, and 

also have the residue configuration in ʹ́ʹc . Under the situation in Figure 13, it can be 

expressed as follows:
    P ω, ʹω ; ʹ́ʹc( ) = P ω; nR( ) P ω ↦ ʹω ; ʹ́ʹb1( ) P̃L ω; ʹ́ʹb2, c( ) P̃L ʹω ; ʹ́ʹb3, c( )  . --- Eq.(SA-3.2)
Using this probability, we can calculate the probability P ( ʹc , ʹ́ʹc , ʹ́c )( )  as:

  
P ( ʹc , ʹ́ʹc , ʹ́c )( ) = P ω, ʹω ; ʹ́ʹc( ) P̃L ω; ʹ́b , c( ) P̃L ʹω ; ʹb , c( ){ }

ʹω ∈Ω
∑

ω∈Ω
∑

 .  --- Eq.(SA-

3.3a)
If, for example, ʹ́c  is occupied solely with gaps, we have P̃L ω; ʹ́b , c( ) =1 for every ω . 

This and similar facts yield the following:

    
P (−, ʹ́ʹc , ʹ́c )( ) = P ω, ⋅ ; ʹ́ʹc( ) P̃L ω; ʹ́b , c( ){ }

ω∈Ω
∑

 ,   --- Eq.(SA-3.3b)

    
P ( ʹc , ʹ́ʹc , −)( ) = P ⋅ , ʹω ; ʹ́ʹc( ) P̃L ʹω ; ʹb , c( ){ }

ʹω ∈Ω
∑

 ,   --- Eq.(SA-3.3c)

     P (−, ʹ́ʹc , −)( ) = P ⋅ , ⋅ ; ʹ́ʹc( )  .    ---Eq.(SA-3.3d)

Here, we introduced the notations:

    P ω, ⋅ ; ʹ́ʹc( ) ≡ P ω, ʹω ; ʹ́ʹc( )
ʹω ∈Ω

∑ , P ⋅ , ʹω ; ʹ́ʹc( ) ≡ P ω, ʹω ; ʹ́ʹc( )
ω∈Ω

∑ , and 

    P ⋅ , ⋅ ; ʹ́ʹc( ) ≡ P ω, ʹω ; ʹ́ʹc( )
ʹω ∈Ω

∑
ω∈Ω

∑ .  ---Eq.(SA-3.4a,b,c)

Thus, for Eq.(SA-3.1) (i.e., Eq.(A5-1)) to hold as an exact equation for any residue 
configurations of 

ʹc
 and 

ʹ́c
, (and thus for any probability vectors 

P̃L ʹω ; ʹb , c( ){ }
ʹω ∈Ω

 and

P̃L ω; ʹ́b , c( ){ }
ω∈Ω

,)  the probabilities 
P ω, ʹω ; ʹ́ʹc( ){ }

ω , ʹω ∈Ω

 must satisfy the following 

equation:
  P ω, ʹω ; ʹ́ʹc( ) = P ω, ⋅ ; ʹ́ʹc( ) P ⋅ , ʹω ; ʹ́ʹc( ) P ⋅ , ⋅ ; ʹ́ʹc( ) for ∀ ω, ʹω( ) ∈Ω2  . --- Eq.(SA-

8



3.5)
In other words, their ω -dependence and ʹω –dependence must decouple. In the situation at 

hand, where P ω, ʹω ; ʹ́ʹc( ){ }
ω , ʹω ∈Ω

 is given by Eq.(SA-3.2), the condition approximately 

holds when branch ʹ́ʹb1  is so long that P ω ↦ ʹω ; ʹ́ʹb1( )  nearly saturates. Or, unless Eq.(SA-

3.5) holds even approximately, Eq.(SA-3.1) (  i.e  ., Eq.(A5-1)) could still be satisfied provided   
that either ʹb  or ʹ́b  is quite long (and thus either P̃L ʹω ; ʹb , c( )  or P̃L ω; ʹ́b , c( )  is nearly 

saturated).
If, however, none of the branches ʹb , ʹ́b  and ʹ́ʹb  is quite long, it is unlikely that 

Eq.(SA-3.1) (i.e., Eq.(A5-1)) should hold even approximately. Thus, in general, it would be 
safe not to assume the approximate equation, Eq.(A5-1). This restriction makes the 

calculation of the effects of two “isolated” shifts a bit cumbersome when they happen to 

affect the same column(s).
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Supplementary Figures (with legends)

Figure S1. Unlikely instances of “vertical-split”s.
A. An unlikely “vertical-split” (of gap-blocks). This is somewhat similar to a CII, though not 

exactly the one. B. An unlikely “vertical-split” (of sequence-blocks). This is actually an “ex-

nihilo” aligned with a gap-block. These “vertical-splits” are unlikely, because they require one

more indel than those in panels E&F of Figure 4.
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Figure S2.  Secondary moves of gap-blocks.
A. An “incomplete purge.”  B. A “merge + split” of two gap-blocks affecting the same set of 

sequences. (It is likely to have actually resulted from the “shift” of the bridging gapless 

segment.)  C. An “incomplete merge” of two gap-blocks affecting the complementary sets of 

sequences. (It could also be interpreted as a “merge + split” (complementary).)

It is relatively less likely that these moves (or their reverses) actually resulted in the 

reconstructed MSAs, because they do not change the number of indels and thus only slightly 

change the indel component of the likelihood.
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Figure S3. Indel histories that can yield horizontally overlapping gap-blocks.
A. An example local MSA. It is more complex than Figure 3A, though the two figures are the 

same in essence. Each cell in the MSA is assigned either an ancestry index (L, R, or arabic 

numeral) or a gap (a lump of triple-dashes). The italicized Arabic numeral on the left indicates

the sequence on the external node labeled with the same numeral in the tree. The masses of 

gaps isolated from each other are shaded in cyan and yellow. B. The Dollo parsimonious 

states obtained from the MSA in panel A. Any ancestral states consistent with the MSA must 

keep the occupied sites in the Dollo parsimonious states. Thus, the states “R” and “a1” here 

(red-shaded) indicate that the two isolated gap masses must have been created independently 

from each other. C. As a result, the indel history (or the ancestral states) yielding the cyan gap 

mass (enclosed in blue dashed box) is virtually independent of the history (or the ancestral 

states) yielding the yellow gap mass (enclosed in orange dashed box), separated by the red-

shaded sequence states. (See, e.g., Eq.(SA-1.7) of Supplementary appendix SA-1.) D. The 

resulting multiplication factor, 
Μ̃P α[s1, s2,..., sNX ]; s0

Root;CΚ T⎡⎣ ⎤⎦
, is approximately the 
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product of the contributions from different parts of the phylogenetic tree: one from the part 

with “fixed” ancestral states (
Μ̃P( )

0

), and the others from the isolated gap-masses (
Μ̃P( )

1

and
Μ̃P( )

2

). (See Eq.(SA-1.9) of Supplementary appendix SA-1.)

NOTE: For more general gap patterns, this purely vertical partitioning will NOT work. See 

Section SSA-1 (and Figure SS1) of “suppl_addendum.xxx.pdf” for an extended method that 

can partition such more general cases.
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Figure S4. Example of non-parsimonious history that “connect” effectively independent 
indel blocks.
We will use the example MSA (and tree) given in Figure S3A.

In this case, an extra site (grey cell with ancestry “x1”) in the ancestral states (R and a1) was 

deleted in all extant sequences (1-6), resulting in a null column (grey). (In this case, in 

addition to the four deletions needed for creating MSA in Figure S3A, two more deletions  ,   

along branches   a1  -3 and   R  -4, are necessary   in order to completely delete the site with 

ancestry “x1”.)

Such null columns will not usually be predicted via single-optimum-search aligners.
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