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Abstract

Accurately estimating the probabilities of pairwise-alignments (PWAs) of ancestral and de-

scendant sequences is essential when aiming for precise evolutionary analyses on homologous

(i.e., ancestor-sharing) sequences. Doing so in the presence of realistic insertions/deletions,

however, has been hampered by many formidable technical challenges. Recently [1], based

on the theoretical formulation dealing with stochastic models of sequence evolution with

realistic insertions/deletions [2, 3], we invented an algorithm to compute practically exact

probabilities of insertion-type gaps alone and those of deletion-type gaps alone. However,

accurate computation of the final type of gapped segments (called case-(iv)), in each of

which intersion-type gaps and deletion-type gaps coexist and adjoin each other, has been

left unresolved as the ”last piece of the puzzle” of accurately estimating the probabilities of

ancestor-descendant PWAs.

Here, we construct a new perturbation method to provide this ”last piece of the puzzle”,

that is, to accurately, and systematically, compute the probabilities of case-(iv) gapped

segments. In short, this new method classifies (or ”colors”) the sites in the sub-sequence

evolution in each case-(iv) segment into ”ancestral” and ”descendant” types; then it considers

only those insertions/deletions which change the coloring-pattern of the sub-sequence as

”perturbations”; and finally it computes the probabilities of the contributing evolutionary

histories of the sub-sequence from the lowest-order perturbation terms upward. Our in silico

”experiments” indicated that this new method computes probabilities quite accurately, even

with only 2nd- and 3rd-order terms.

Combining the results of this study and of a previous work of ours [1], we should

now be able to estimate the probabilities of ancestor-descendant PWAs quite accurately.



Thus, this study represents a significant step toward the ultimate goal of precise evolu-

tionary analyses on homologous sequences. The method reported here has been imple-

mented in an open-source package of prototype Perl scripts and modules, named ”LAST-

PIECE( P)”, which is available at the FTP repository of the ANEX project in Bioinformat-

ics.org (https://www.bioinformatics.org/ftp/pub/anex/).

[Keywords: pairwise sequence alignment (PWA), probability, evolution, (stochastic)

sequence evolution model, insertion/deletion (indel), accurate computation, perturbation

method, DNA sequence, biological sequence ]

[Abbreviations: hidden Markov model (HMM), multiple sequence alignment (MSA), pre-

served ancestral site (PAS), pairwise sequence alignment (PWA), Thorne-Kishino-Felsenstein

(TKF) ]
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1 Introduction

1.1 Background

Aligning homologous, i.e., ancestor-sharing, sequences is a cornerstone of homology-based

analyses of bio-molecular sequences, such as DNA, RNA, and protein sequences (e.g., [4, 5,

6, 7, 8, 9]). Traditionally, a sequence alignment has been represented in the form of a matrix,

in which each row represents a sequence and each row, often called a ”site”, represents a

set of residues descended from a common ancestral residue (e.g., [4, 10]); when a sequence

lacks a residue, a gap (usually denoted by a dash, ”-”) is placed in the corresponding cell.

Depending on the number of sequences involved, there are two major categories of sequence

alignments: a pairwise (sequence) alignment (PWA) that consists of two sequences (e.g.,

[11, 12]), and a multiple sequence alignment (MSA) that consists of three or more sequences

(e.g., [13, 14, 4]). In principle, the alignment of some homologous sequences is a product of

the evolution of the sequence, and should be determined uniquely by the evolutionary events
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such as insertions and deletions (often referred collectively as ”indels”).2 , 3

The inevitable serious problem is that the nature will never give us such a true sequence

alignment as it is; all we are left with is a set of extant sequences consisting only of residues,

i.e., with all gaps removed. This means that we have to infer, or reconstruct, the alignment

from the extant sequences, by placing gaps so that they will collectively represent some

plausible (and hopefully close to true) evolutionary history of the sequences. At least up

to now, the prevalent practice is to (attempt to) find an alignment that optimizes a score

function prescribed by certain rules (e.g., [11, 12, 24, 13, 14, 4, 25, 26, 27, 10, 28]).

Unfortunately, such reconstruction of sequence alignments has turned out to be a very

tough, error-prone, process; some recent studies on the sequence alignment errors indicated

that a considerable fraction, often even a majority or a near-majority, of gaps are erroneous

(e.g., [10, 29, 30]). Regarding the causes of such alignment errors, some studies revealed

that the inherent stochasticity of the sequence evolution plays an important, or dominant,

role (e.g., [31, 32, 30]). In other words, the true sequence alignment very frequently is not

the optimum, because the evolutionary processes are stochastic.4 These studies suggest that

merely finding a single optimum alignment is not enough, and that the most truthful way

should be to present a probability distribution of alignments inferred from the set of extant

sequences.

Actually, the idea of providing the probability distribution of alignments, often referred to

2An insertion of a residue creates a column with gaps in all sequences except the offsprings of the ancestral

sequence that underwent the insertion. A deletion of a residue creates a column with gaps in the offsprings

of the ancestral sequence that experienced the deletion.
3In this study, we deal with collinear sequence alignments; an alignment is called ”collinear” (e.g., [15]) if it

is devoid of genomic rearrangements such as inversions, duplications, and translocations (e.g., [16, 17, 18, 19]).

(Possibly non-collinear) alignments of (usually very long) sequences that possibly underwent such genomic

rearrangements are called ”genome alignments”, and they are not the subject of this study. Readers who

are interested in genome alignments should refer, e.g., to: [15, 20, 21, 22, 23].
4In fact, this is the case even with the ideal score of the log-probability under the stochastic evolution

model that actually created the true alignment.
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as ”statistical alignment” [33], is not new. As far as we know, the first attempt to compute the

probabilities of pairwise sequence alignments and use them as scores was made in the ground-

breaking work (in 1986) by Bishop and Thompson [34], who used a simple probabilistic

model to assign ”probabilities” to gaps and gapless columns . Then, in another ground-

breaking work (in 1991), Thorne, Kishino and Felsenstein proposed an evolution model of

biological sequences allowing only single-residue insertions/deletions (indels) (TKF91, in

[35]). Then, they further attempted to ”inch toward” the realistic sequence evolution, by

proposing an evolution model that permits multi-residue indels of some sorts by considering

a biological sequence as a sequence of fragments, each of which consisting of one or more

residues, and by allowing only single-fragment indels (TKF92, in [36]). The computation of

alignment probabilities under these TKF models were later cast into standard Hidden Markov

Models (HMMs) (e.g., [33, 37]), which were easier to handle than the original computational

procedures derived by TKF [35, 36]. Although standard HMMs have flaws similar to those

of the TKF91 & TKF92 models, such as the inability to faithfully take account of nested

and/or overlapping indels, there were still some attempts to incorporate some effects of

overlapping indels into standard HMMs (e.g., [37]). Meanwhile, as an attempt to handle

more realistic sequence evolution models, Miklós and Toroczkai [38] proposed a method

to compute alignment probabilities under an evolution model that allows any lengths of

insertions (with geometrically distributed rates) but only single-residue deletions.

The evolution models handled up to then were dissatisfactory in the sense that their

insertion/deletion processes are not realistic, in at least two ways: (1) most of them permit

only single-residue indels or multi-residue indels with the geometrically distributed rates,

whereas many empirical studies indicate that multi-residue indels occur quite often, and

with the rates following power-law (e.g., [39, 40, 41, 42, 43, 44, 45])5; and (2) most of them

(or all except [38] and [37]) cannot take account of nested and/or overlapping indels, which

5Some studies based on standard HMMs alleviated this flaw (not fully but to some extent) by using mixed

geometric distributions (e.g., [25, 31]).
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are expected from natural evolution processes of biological sequences.

In our view, a satisfactory method was first proposed in the milestone work (in 2004) by

Mikós, Lunter, and Holmes [2]. Their ”long indel” model is a space-homogeneous6 genuine

sequence evolution model 7 of a biological sequence that can in principle incorporate any

indel length distributions, including biologically realistic power-laws. This study [2] made a

couple of new achievements: (i) they verbally proved that, under the ”long indel” model 8,

the probability of an ancestor-descendant PWA9 can be factorized into the product of the

probabilities of ”chop zones”, each of which is delimited by a gapless column (or the left-end

of the alignment) and the next gapless column (or the right-end of the alignment), excluding

the former column and including the latter one; (ii) after arguing that the probability of

each chop zone should be approximated well by the summation of the probabilities of indel

histories with less than an arbitrary number of indels which are shorter than an arbitrary

6A sequence evolution model is called ”space-homogenous” if its rates of evolutionary events are uniform,

i.e., independent of the positions, along the sequence.
7A sequence evolution model is regarded as genuine only when it follows the evolutionary principle; The

evolutionary principle requires that, when a certain time-interval is divided into two or more sub-time-

intervals, the probability of each evolution process of a sequence during the time-interval must result from

multiplying the probabilities of sub-processes of the sequence as a whole during all these sub-time-intervals.

In other words, the evolutionary principle dictates that the probability of each evolution process can be

factorized vertically ( i.e., along the time-interval), in contrast to horizontally (i.e., along the sequence) as

HMMs do. In the context of a continuous-time Markov model, the evolutionary principle, in conjunction with

the ”completeness” of the set of (intermediate) states, leads to the famous Chapman-Kolmogorov equation,

which in turn is equivalent to the defining equation of the finite-time transition probability operator (e.g.,

Eq. (R3.18) in [3]).
8This factorization of the PWA probability does not necessarily work in a genuine sequence evolution

model in general. A previous study of ours [3] provided a set of conditions under which the alignment

probability in a genuine sequence evolution model is factorable. It is exactly because the ”long indel” model

satisfies these conditions that the alignment probability in the model is factorable.
9Although they [2] discussed simply a PWA of two sequences in general, it is actually equivalent to an

ancestor-descendant PWA, because the ”long indel” model is time-reversible. Here we specifically put forth

an ancestor-descendant PWA because it is the main focus of this study.
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length (finite trajectory approximation), they provided an algorithm to recursively calculate

the probability of each individual indel history (referred to as the ”trajectory likelihood”);

(iii) they provided a dynamic programming algorithm of O(L4) time-complexity, where L is

the size of the sequence lengths, to compute the joint probability of two sequences from the

probabilities of the chop zones; (iv) they also came up with an algorithm (a sort of Viterbi

algorithm [46]) to search for an alignment with the largest probability under the ”long indel”

model; although they did not explicitly show it, they used it to validate their method using

a set of structural sequence alginments (HOMSTRAD [47]).

Since the aforementioned milestone work by by Mikós, Lunter, and Holmes [2], more than

a decade had passed without any particular advances regarding the application of the genuine

sequence evolution models to the analytical or deductive studies, although some advances had

been made on the study using the simulators of genuine sequence evolution (e.g., [48, 49, 50]).

It was our previous studies [3, 1, 30] that made some advances for the first time since [2] in

the deductive study of statistical alignment under the genuine sequence evolution models.

One of our major achievements was to answer the question on the factorability of alignment

probabilities [3]. More precisely, after defining a ”gapped segment” as delimited by a gapless

column and the next gapless column (similarly to the definition of the aforementioned ”chop

zone”) but excluding both, and we first reformulated the factorability problem so that we will

ask whether the alignment probability (under general, genuine sequence evolution model)

can be factorized into the product of an overall factor and the contributions from the gapped

segments. Then, we provided the conditions on the indel rates and the exit rate under which

the alignment probability is indeed factorable, for ancestor-descendant PWAs and for MSAs.

Another major achievement was to provide concrete methods to calculate the contribution

from each gapped segment [1]. The ”long indel” paper [2] did clearly provide methods

to compute alignment probabilities and the joint probability of a sequence pair using the

probabilities of chop zones as a building block, as well as an algorithm to compute the

probability of each individual indel history that will contribute to the probability of a chop
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zone. In that paper ([2]), however, it was unclear how the probability of each chop zone was

computed. In a previous paper of ours [1], we addressed this problem. First, we classified the

gapped segments (, each of which in an ancestor-descendant PWA is simply a chop-zone with

the gapless column on its right removed,) into four major categories, which we referred to as

case-(i), -(ii), -(iii), and -(iv) segments: a case-(i) ”gapped” segment contains no ancestral or

descendant residues; a case-(ii) segment contains some ancestral residues but no descendant

residues; a case-(iii) segment contains some descendant residues but no ancestral residues;

and a case-(iv) segment contains some ancestral residues and some descendant residues,

and none of them are homologous to one another.10 , 11 Then, applying either of the two

defining integral equations of sequence evolution (Eqs.(R4.4) &(R4.5) in [3]) to each gapped

segment, we derived the algorithms to numerically compute ”practically exact” probabilities

of (the gap configurations of) case-(i), (ii), and (iii) gapped segments [1]. Because of technical

difficulties, however, we were not able to give an algorithm to compute practically, or almost,

exact probabilities of case-(iv) gapped segments; so we settled for providing methods to

compute all contributions from parsimonious and next-to-parsimonious indel histories that

are responsible for each case-(iv) segment [1].

So, combining the results of Mikós, Lunter, and Holmes [2] and our previous results [3, 1],

we are now almost in a position to compute ”practically exact” probabilities of ancestor-

descendant PWAs: we now know that ,under a genuine sequence evolution model satisfying

10Following the viewpoint of [2], we don’t care about the relative order between the ancestral and descen-

dant residues in each case-(iv) gapped segment,, because we consider an alignment as a homology structure

[51, 52], in which the order makes sense only among residues in the same sequence(, and in which homologous

residues are vertically aligned to each other, of course).
11In terms of gap-configurations, a case-(i) ”gapped” segment contains no gaps, a case-(ii) segment contains

only ”deletion-type” gaps in the descendant sequence, a case-(iii) segment contains only ”insertion-type”

gaps in the ancestral sequence, and a case-(iv) segment contains both ”insertion-type” gaps in the ancestral

sequence and ”deletion-type” gaps in the descendant sequence, which are adjoining each other, i.e., not

mediated by any gapless columns.
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the factorability conditions, the alignment probability is factorized into the product of an

overall factor and the contributions from gapped segments; and we already have algorithms

to compute practically exact probabilities of case-(i), (ii) and (iii) gapped segments; we are

now left with only one issue, which is computing the practically (or nearly) exact probabilities

of case-(iv) gapped segments. The purpose of this study is to attempt to provide this last

piece of the ”puzzle” of computing the probability of ancestor-descendant PWAs. Once

this ”puzzle” is solved, it will be relatively easy to apply the solution to a wide range

of problems, such as the construction of probabilistic ancestor-descendant PWAs, as well

as the approximate construction of probabilistic MSAs. Therefore, this ”last piece of the

puzzle”, if provided, will greatly enhance our ability to truthfully reconstruct the alignments

of homologous sequences based on genuine sequence evolution models.

In this study, we will attempt to provide the ”last piece” by constructing a new perturba-

tion method, which divides the instantaneous rate operator of a genuine sequence evolution

model into ”base” and ”perturbation” parts in a different manner than the old perturbation

method previously provided [3, 1]. In the old method, the ”base” part consisted only of the

exit rate term and the ”perturbation” parts contained all insertion and deletion operators

and rates accompanying them. Therefore, the perturbation level in the old method is noth-

ing other than the number of indel events constituting each indel history. In contrast, in

the new method, even the zeroth-order probabilities may be contributed from some indel

histories consisting of a large number of indels each. Therefore, there is a hope that, in

this new perturbation method, even the summation of low order terms could give a good

approximation of the exact probabilities (of case-(iv) gapped segments), and we will see that

this is indeed the case.
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1.2 Notes on recent developments

After having finished this study and while preparing this manuscript, we learned that there

have been a couple of new developments regarding this subject of accurate PWA probability

computation [53, 54, 55]. First, in an attempt to speed up Miklós et al.’s approach to

compute PWA probabilities [2], a simulation-based approach has been devised [53]. A key

strategy of theirs is to decouple the stage of computing the ”chop-zone” probabilities and

the stage of PWA inference, by re-using the ”chop-zone” probabilities pre-computed in the

first stage. 12 We view this development very favorably, and we hope that they will go on

to extend their efforts to statistical MSA problems. (Although the current implementation

seems to use only geometric length distributions, incorporating, e.g., power-law distributions

does not seem so hard.) In principle, this simulation-based approach could also solve exactly

the same problem that we are about to address in this paper. Nevertheless, we strongly

believe that this deductive study of ours is still indispensable, for at least two reasons. One

reason is that simulation-based approaches and deductive approaches are two essential and

complementary kinds of approaches, on both of which any scientific disciplines have been

developed and advanced properly. It is only if these two kinds of approaches are advanced

soundly that the study of a scientific discipline will develop in a wholesome manner. The

other reason is that we, human-beings, are, after all, creatures of reasoning. Every time

a new fact is revealed, there arise strong demands for the reason(s) behind it. Generally,

deductive studies are much better at satisfying these demands than simulation-based studies.

Therefore, we consider it absolutely necessary to disclose this deductive study of ours now,

even after the advent of a simulation-based approach [53].

Second, there have been a couple of attempts to incorporate the effects of overlapping

indels into the framework of (pair-)HMMs [54, 55], although with the instantaneous in-

12As you can see, this strategy is very similar to the strategy employed by ANEX, a program package we

recently developed to address statistical MSA problem under genuine sequence evolution models [56]. See

also footnote 30 below.
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del length distributions being geometric. Especially in [55], an attempt has been made to

approximate the master equation of continuous-time Markov model (with geometric indel

length distributions) within (pair-)HMMs (or finite-state automata). We consider that these

attempts are laudable. At the same time, however, we find it a pity that these studies

confined themselves in biologically unrealistic geometric indel length distributions. We wish

that they could have extended their efforts to more biologically realistic power-law indel

length distributions, or at least to mixed geometric distributions. 13

1.3 Structure of This Paper

This article is structured as follows. In Section 2, we explain the basic ideas and principles

underlying the method proposed here. Then, in Section 3, we propose the basic framework

based on the theory we previously provided [3, 1], which extends a space-homogeneous

theory [2] (see also [48]) to more general situations. Based on the proposed basic framework,

in Section 4, we construct a new ”perturbation theory” that enables us to compute the

probabilities of case-(iv) gap-patterns as accurately as desired. The next section (Section 5)

unfolds the concrete computations at the 2nd- and 3rd-order levels in this new ”perturbation

13Incidentally, many (or most) of the combinations of parameter values in the simulation study of [55]

seem unrealistic for a study of homologous sequences. In our view, the product t × µ (, where t is the

time-lapse and µ is the deletion rate,) must be less than the upper-bound of about 1/4 (≈ 4 × 1/16,

where the 4 (substitutions/site) is an (extremely generous) upper-limit of the evolutionary distance with

detectable homology (via residue configurations), and the 1/16 (deletions/substitution) is a half of the 1/8

(indels/substitutions) estimated in a genome-wide analysis [57]); and the product should usually be much

less than this upper-bound (i.e., 1/4). Otherwise, it should be extremely hard, or impossible, to detect

homology between the ancestral and descendant sequences. For example, when t = 8 and µ = 0.5, we expect

that each site suffers (at least) 4 (= 8× 0.5) deletions on average!; (actually, though, each site can suffer at

most one deletion, because it will never come back once it is deleted); how is it possible to detect homology

in such a circumstance? We strongly urge the researchers (especially theoretical ones) in this field to have a

decent sense of biologically realistic scales, which will help avoid futile disputes, for example.
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theory.” Then, in Section 6, we provide a prototype algorithm to compute the probabilities

to the third-order level of ”perturbation”, and demonstrate how accurate its results are.

Finally, in Section 7, we discuss some of possible further developments and outstanding

issues.

For clarity, in this article, we focus only on the sequence evolution via insertions/deletions,

by assuming that the probability of a sequence alignment (given a fixed phylogenetic tree,

if necessary) can be decoupled into the product of the probability under the substitution

model and the probability under the insertion/deletion model. This decoupling can be done

if the sequence evolution model satisfies a set of conditions, for example, as we showed before

[30] (via a generalization of the proof by Kim and Sinha [58] ), the following three conditions

will suffice: (i) the indel rates (excluding the multiplication factors assigned to the inserted

residues) are independent of the residue state and the substitution process before the indel

event; (ii) the substitution rates at each site are independent of the states and the evolu-

tionary processes at other sites; and (iii) the probability of the residue state of each inserted

sub-sequence (conditioned on the insertion) can be factorized into the product of residue

probabilities (at the time) over the inserted sites. This focusing on insertions/deletions

significantly simplifies the problem at hand.

Then, we also assume that the indel evolution model we deal with here satisfies the

”sufficient and nearly necessary” set of conditions for factorable probabilities of ancestor-

descendant PWAs [3], namely: (1) the rate of each (indel) event is independent of the

region(s) outside of the site(s) it affect; and (2) the increment of the exit rate by each indel

event is independent of the region(s) outside of the site(s) it affect.

2 Underlying ideas and principles

In a previous work of ours [1], we provided a pair of algorithms to compute the probabilities

of isolated gaps, i.e., case-(ii) gapped segments having only ancestral sites and case-(iii)
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gapped segments having only descendant sites. As a matter of fact, these probabilities were

relatively easy to compute, because all the sites under consideration (in between a pair of

preserved ancestral sites (PASs) belong either only to the ancestor or only to the descendant;

in the former case, those sites are destined to be deleted eventually, and in the latter case,

NONE of those sites existed at the initial time (i.e., in the ancestral sequence). This means

that, when dealing with each case-(ii) or -(iii) gapped segment, we do NOT need to keep track

of the origins of the sites (in between the PASs) during the evolution, and this effectively

enabled us to focus only on the evolution of the number of those sites (or, equivalently, the

length of the region).

In contrast, each case-(iv) gapped segment consists of some ancestral sites and some

descendant sites that are not homologous to any ancestral ones. Therefore, when considering

the evolution of the region in question, we need to keep track of the origins of the sites, that

is, whether each site existed from the beginning (of the time-interval) or was newly inserted

at some point. This fact makes it much more difficult to compute the probabilities of of

case-(iv) gap-patterns than to compute the probabilities of case-(ii) and -(iii) gap-patterns.

Nevertheless, by carefully considering the situations in question, as well as the nature of

insertions and deletions, the problem could be surprisingly simplified, as we explain in the

following.

Let us consider a general indel history that results in a case-(iv) gapped segment (e.g.,

Figure 1). First, when focusing on the segment alone in a PWA, it consists of three kinds of

ingredients: (i) two preserved ancestral sites (PASs), where an ancestral site is aligned with

a descendant site, that flank the segment 14; (ii) some ”ancestral sites” that were deleted at

some point in the time-interval; and (iii) some ”descendant sites” that were inserted at some

point in the time-interval. Next, when considering the indel history as well, there may also

be (iv) ”evanescent” (or ”transient”) sites, which were inserted at some point and deleted

14Strictly speaking, these PASs do not belong to the gapped segment. However, when computing the

probability, we will consider that the segment includes the PASs.
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Figure 1: Time-trajectories of ancestral (red), descendant (cyan), and evanescent (yellow) sites

in example indel history that results in case-(iv) gapped segment. Sequence states at different time-

points, labelled s0, s1, ..., s7, are aligned just as in a normal multiple sequence alignment (MSA). Sites sharing

the same ancestry are aligned vertically. The ’—’ in a white cell indicates that the sequence lacked the site

at that time. The pair of blue dashed lines diverging from an ”X” represents an insertion. The pair of red

dashed lines converging to an ”X” represents a deletion. The ”1, 2, ..., 9, A, ..., F” in the red cells are the

ancestry indexes of the ancestral sites.The ancestry indexes of the inserted sites (cyan and yellow boxes), υj
(with j = 1, 2, ...8), were assigned in the temporal order of creation.

at some later point.

For the moment from now, let us ignore the ”evanescent” sites (as in Figure 2). When

constructing a PWA, especially when the homology structure alone is important, we could

completely segregate ancestral sites from descendant sites. When considering the time-

trajectories of those sites, however, we observe that the ancestral sites and descendant sites

were actually intermingled with one another, as shown in Figure 2. This is because the

sites in a (sub-)sequence at each time-point must follow a strict spacial order; site A on

the left of site B must NEVER be placed on the right of B. Taking another look at the

time-trajectories of the sites (e.g., in Figure 2), we notice that, at each time-point, some

ancestral sites are lumped together against the background of surrounding descendant sites,

to form a ”cluster”; similarly, some descendant sites form a ”cluster” against the background

of surrounding ancestral sites. By introducing symbols ”A” and ”D” to denote a ”cluster”

of ancestral sites and a ”cluster” of descendant sites, respectively, we could represent the
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Figure 2: Time-trajectories of ancestral (red) and descendant (cyan) sites, when we ignore

evanescent sites (shaded in gray). This figure differs from Figure 1 only in how the evanescent sites

are colored/shaded. Now, the evolution of the ”A”/”D”-coloring-pattern has become clearer. The pattern

evolution here is: ”A ”(s0 & s1) → ”ADA” (s2) → ”ADADA” (s3) → ”DADA” (s4) → ”DA” (s5) → ”D”

(s6 & s7 ). The timing slightly differs from that when evanescent sites are also taken into account (Figure

3).

sub-sequence at a time-point as an alternating concatenation of ”A”s and ”D”s, such as

”ADADA”. This way, the indel history of the sub-sequence could be broadly represented by

a ”time-series”, such as, ”A → ADA → ADADA → DADA → DA → D” (Figure 2).

Now, let us incorporate the evanescent sites again, and pay attention to their surroundings

(Figure 3). First, an evanescent site, or a lump of contiguous evanescent sites, is regarded

as belonging to a ”D”-region, if any of the following is satisfied: (i) it was inserted within,

or at the end of, a (lump of) descendant site(s) (e.g., υ7 in Figure 3); (ii) it was inserted in

conjunction with one or more descendant site(s) (e.g., υ3 in Figure 3); or (iii) it spawned

one or more descendant site(s) within, or at the end of, it (e.g., υ1 in Figure 3). Second,

the evanescent site(s) will not be regarded as either ”A” or ”D”, if they were created after

the deletion of all ancestral sites and before the first creation of descendant sites. (These

sites can still be incorporated into our framework without any problem. See below.) Then,

each of the remaining evanescent sites is regarded as belonging to an ”A”-region, which

should be uniquely determined at the time of the site’s creation (the surrounding of e.g., υ4
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Figure 3: Evolution of ”A”/”D”-coloring pattern of region in between PASs (”L” and ”R”),

after taking account of evanescent sites again. In each sequence state, the dashed-bordered transparent

rectangles colored in red and blue represent the ”A”-region and the ”D”-region, respectively. The pattern

evolution here is: ”A ”(s0) → ”ADA” (s1 & s2) → ”ADADA” (s3) → ”DADA” (s4) → ”DA” (s5) → ”D”

(s6 & s7 ). The timing slightly differs from that when evanescent sites are ignored (Figure 2). This figure

was created by merely adding the ”A”- and ”D”-region indicators to Figure 1.

in Figure 3). An important corollary of these rules is that a (lump of) evanescent site(s)

always belongs to a ”D”-region if it was inserted at the boundary of an ”A”-region and the

”D”-region (e.g., υ7 in Figure 3); this will play an important role below, when defining the

”base” rate operator acting on each region.

Following the rules prescribed in the previous paragraph, the ”A/D-coloring pattern

evolution”, or the ”broad time-series”, is nearly uniquely assigned to each indel history

resulting in a case-(iv) gapped segment (Figure 3). This means that we may accurately

compute the probability of each case-(iv) gapped segment as follows: (i) classify all the

indel histories resulting in a given segment into the ”broad time-series”, (ii) compute the

probability contributed by (all the histories belonging to) each ”broad time-series”, and

(iii) sum all the probabilities computed as in (ii). In practice, however, the ”A/D-coloring

pattern” could be quite complex; for such complex cases, the probability computation might

be too time-consuming to be practically feasible unless some smart time-saving algorithms

are invented. Therefore, for the moment, it would be wise to deal with the problem via a
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Figure 4: Example indel history with ”A/D”-coloring ambiguity. The same notations as in Figure

3 are used here. The indel histories on the left and right are in fact identical to each other; the ancestral sites

with indexes 3 and 4 and the descendant site with index υ5 cannot be uniquely ordered, because they are

not homologous to each other, and because there are no sites determining their relative order. In this indel

history, two lumps of evanescent sites, [υ1, υ2] and [υ3, υ4], were created. Depending on which of the lumps

incorporates the descendant site (υ5), there are two ways of coloring the evanescent sites in ”A” (transparent

red) and ”D” (transparent cyan), as shown here.

sort of ”perturbation method”,where the probabilities will be computed starting from the

simplest patterns of ”A/D-coloring pattern evolution” and gradually moving on to complex

patterns. 15

In the following couple of sections, we will concretely construct a new ”perturbation-

method” that embodies the computation strategy explained above.

15As a matter of fact, there could be an ambiguity on the ”A/D”-coloring of evanescent sites, (probably

only) in an exceptional type of indel histories, which satisfy the following conditions (see Figure 4 for an

example): (1) two lumps of evanescent sites were independently created in an ”A”-region; (2) then, the sites

in between the two lumps were deleted; (3) then, some descendant sites were created exactly at the boundary

between the two lumps; and (4) no other descendant sites were created within, or at the end of, the two

lumps of evanescent sites. In such indel histories, either of the two lumps could be colored ”A”, and each

such indel history could be counted twice in the perturbation method unfolded below. This means that some

correction should be done in order to rectify such double-counting and obtain perfectly exact probabilities.

Fortunately, each such indel history inevitably involves at least six insertions/deletions (i.e., an insertion-

deletion pair for each lump of evanescent sites, a deletion (of intervening ”A”-sites), and an insertion (of the

descendant sites)) that are in extremely exquisite spatial relationships to each other. Therefore, the total

contributions from such indel histories are expected to be negligible in most practical analyses.
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3 Basic Framework

We concretize the above computation strategy founded on the theoretical formulation we

provided before [3, 1], which can handle stochastic sequence evolution models generalizing

Miklós et al.’s ”long-indel model” [2] (and also of the model used by a genuine sequence

evolution simulator, Dawg [48]). For the problem at hand, i.e., regarding a case-(iv) gapped

segment, it is sufficient to consider a sub-sequence (or a region) consisting of the two flanking

preserved ancestral sites (PASs), labelled as ”L” (for left) and ”R” (for right) hereafter, and

the sites in between them, labelled as 1, 2, ...,∆L(s), where the ∆L(s) is the number of sites

in between the PASs and it varies while the sequence state, s, evolves. Aside from these

labels, each of the sites, x = L, 1, 2, ...,∆L(s), R is also assigned an ”ancestry index”, denoted

υ(x) [3]. These indexes as a function of x also vary in the course of the evolution, because

insertion(s)/deletion(s) could change the position (along the sequence) of the site with a

particular ancestry. (Thus, if you want to make their time-dependence explicit, you could

use the notation, υ(x, t).) 16 Since the sole role of these ”ancestry index”es is to keep track

of the time-trajectories of the sites involved, we could arbitrarily assign the indexes, { υ(x) |

x = L, 1, ...,∆L(s), R }, as long as the sites of different origins carry different indexes.

Because the sites L and R are preserved throughout the evolution under consideration, the

ancestry indexes at these sites are also fixed. Thus, we will henceforce assign υ(L) = L and

υ(R) = R. Then, the basic sequence state (concerning only insertions/deletions) is denoted

as:

〈s | = 〈 [L, υ(1), υ(2), ..., υ(∆L(s)), R] | . (1)

(Or,

〈s(t) | = 〈 [L, υ(1, t), υ(2, t), ..., υ(∆L(s), t), R] |

16It should be noted, however, that each site must keep its unique ancestry index during its evolutionary

course, from the beginning to the end.
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to explicitly represent its time-dependence.) Next, we define the time-frame. Let the time-

interval in question begin at tI and end at tF . Thus, we will consider that the time t always

be within the interval, [tI , tF ].

As described in section R3 of a previous work of ours [3], the stochastic time-evolution

of this sequence is controlled/prescribed by the (instantaneous) indel rate operator, Q̂ID(t),

which can be decomposed as:

Q̂ID(t) = Q̂I(t) + Q̂D(t) , (2)

Q̂m(t) = Q̂m
M(t) + Q̂m

X(t) (m = I,D) . (3)

And the actions of the components on the sequence state, Eq. 1, are:

〈s | Q̂I
M(t) =

∆L(s)+1∑
x=−1

∞∑
l=1

rI(x, l; s, t)〈s | M̂I(x, l) , (4)

〈s | Q̂D
M(t) =

∆L(s)+1∑
xB=−∞

+∞∑
xE=max{0,xB}

rD(xB, xE; s, t)〈s | M̂D(xB, xE) , (5)

〈s | Q̂m
X(t) = −Rm

X(s, t)〈s | (m = I,D) . (6)

Here, as in [3], we tacitly assumed that the sub-sequence in question is embedded in an

infinitely long sequence. And, for computational convenience, we replaced x = R and x = L

with x = 0 and x = ∆L(s) + 1, respectively, for the site numbers of the flanking PASs. 17

The above equations use the same notations as in a previous work of ours [3]. Especially,

M̂I(x, l) is the operator that inserts a string of length l between the sites x and x + 1, and

rI(x, l; s, t) is the instantaneous rate that such an insertion occurs on the sequence state 〈s |

at time t; M̂D(xB, xE) is the operator that deletes the sites, x = xB through x = xE (both

inclusive), and rD(xB, xE; s, t) is the instantaneous rate that such a deletion occurs on 〈s |

at time t. The RI
X(s, t) and RD

X(s, t) are the insertion and deletion components, respectively,

17The difference from the equations in [3] is that the site number, x, starts with x = 0 (and ends with

x = ∆L(s) + 1 (= L(s)− 1, where L(s)
def
= ∆L(s) + 2 is the number of sites in the sequence state, s)) here,

whereas it starts with x = 1 (and ends with x = L(s)) in [3].
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of the exit rate, RID
X (s, t), of the state 〈s | at time t via insertions/deletions. Specifically,

RID
X (s, t) = RI

X(s, t) +RD
X(s, t) , (7)

RI
X(s, t) =

∆L(s)+1∑
x=−1

∞∑
l=1

rI(x, l; s, t) , (8)

RD
X(s, t) =

∆L(s)+1∑
xB=−∞

+∞∑
xE=max{0,xB}

rD(xB, xE; s, t) , (9)

These equations, Eq.1 through Eq.9, provide the foundation for our strategy to compute

the probability of each case-(iv) gapped segment. Using these equations, we could at least

theoretically calculate the transition probability from a sequence state to another in between

the PASs, L and R, just as described in a previous work of ours [3]. In general, however, such

state transitions are not limited to those providing case-(iv) gap-patterns. To go further, we

will resort to a sort of ”perturbation theory”, as unfolded in the next section.

4 New Perturbation Method 18 to Systematically Com-

pute Probabilities of Case-(iv) Gap-Patterns up to

Desired Level of Accuracy

4.1 Broad Account of the Procedures

As explained in Section 2, the time evolution of a sub-sequence yielding a case-(iv) gapped

segment follows a particular time-series of ”A(ncestral)/D(escendant)-coloring”, such as ”A

18The ”perturbation method” unfolded here is somewhat similar to, yet significantly different from, the

perturbation-theoretical approach in our previous studies [3, 1]; especially, the ”base”-”perturbation” de-

composition of the rate operator, Q̂ID, differs between the two approaches. Here, the probabilities computed

via the latter approach (so that the evolutionary histories include as much indels as desired) are regarded as

”exact”-solutions (under the ”base” rate operator here), and thus the term, ”perturbation”, always refers to

that in the method constructed here.
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→ ADA → ADADA → DADA → DA → D” (Figure 3); especially, it must always start

with ”A” (ancestral only) and end with ”D” (descendant only). Now, we slice the broad

evolutionary history at the times, tk with k = 1, 2, ..., NSl − 1, when the ”A/D”-coloring

patterns of the sequence change (Figure 5). (The NSl above is the number of slices in the

broad history.) Then, each slice, e.g., in an open time-interval, (tk, tk+1), shows a fixed

”A/D”-coloring pattern, e.g., ”DADA”, in which ”A” and ”D” alternate. This suggests

the strategy for computing the total probability that each particular time-series of ”A/D”-

coloring occurs: (i) within each slice, decompose the rate operator Q̂ID(t) into the ”base”-

and ”perturbation”-parts; (ii) within each slice, compute the probabilities of state transitions

through each slice under (or conditioned on) its fixed ”A/D”-coloring pattern, using the

”base”-part of Q̂ID(t); (iii) between two consecutive slices, compute the probabilities of the

”coloring-pattern-transition” from each slice to the next, by multiplying the rates of the

particular insertions/deletions that changes the ”A/D”-coloring pattern(, which probably

belong to the ”perturbation” part); (iv) stack the probabilities of the slices (via (ii)) and the

”coloring-pattern-transitions” (via (iii)), from the beginning to the end, and integrate over

the times, (tI <)t1 < t2 < ... < tNSl−1(< tF ), to get the probability contributed from the

particular pattern of ”A/D”-coloring evolution to the case-(iv) gapped segment.

4.2 ”Base”-”Perturbation” Decomposition of Rate Operator

Within each slice of a fixed ”A/D”-coloring pattern, we can formally decompose the rate

operator Q̂ID(t) into the ”base”-and ”perturbation”-parts. Hereafter in this subsection, we

will consider a slice in the open time-interval, (tk, tk+1), and refer to it as ”slice k”. The k

can range from 0 through NSl − 1, where t0
def
= tI and tNSl

def
= tF are the initial and final

times, respectively, of the whole time-interval considered here. Let NC(k) be the number

of colored regions in slice k, and let Ci (with i = 1, ..., NC(k)) be the i-th colored region,

numbered from left to right. For example, in the above case of ”DADA” (for slice k (= 4)),

23



  

L 1 2 3 --- 4 5 6 7 --- --- --- 8 9 A B --- --- --- --- C D E F R

Time

L 1 2 3 --- 4 --- --- 7 --- --- --- 8 --- --- B u
1 --- --- --- --- --- E F R

L 1 2 3 u
4 4 --- --- 7 --- --- --- 8 --- --- B u

1
u
2 --- u

3 --- --- E F R

L 1 2 3 --- --- --- --- 7 u
5

u
6 --- 8 --- --- B u

1
u
2 --- u

3 --- --- --- F R

L --- --- --- --- --- --- --- --- u
5

u
6

u
7 8 --- --- B u

1
u
2

u
8

u
3 --- --- --- F R

L --- --- --- --- --- --- --- --- u
5

u
6

u
7 --- --- --- --- u

1
u
2

u
8

u
3 --- --- --- F R

L --- --- --- --- --- --- --- --- u
5

u
6

u
7 --- --- --- --- u

1
u
2

u
8 --- --- --- --- --- R

L --- --- --- --- --- --- --- --- u
5

u
6 --- --- --- --- --- --- u

2
u
8 --- --- --- --- --- R

X X X

X

X

X

X

X X

X

X

X

X

X

X

t
1

t
2

t
3

t
4

t
5

Figure 5: Slicing ”A”/”D”-coloring pattern evolution. This figure was created from Figure 1 by

adding the times, t1, ..., t5, at which the ”A/D”-coloring-pattern changes, and by removing the state labels

(s0, ..., s7) for clarity. To clarify the slices, each of the time is accompanied by a triangle on the time-axis

and a thick dashed horizontal line.

NC(k) = 4, C1 and C3 represent the 1st and 2nd ”D”-colored regions, respectively, and C2

and C4 represent the 1st and 2nd ”A”-colored regions, respectively. Hereafter, the ”D”- and

”A”-colored regions will be abbreviated as the ”A”- and ”D”-regions, respectively. And let

xB(i) and xE(i) be the site numbers at the beginning and end, respectively, of the region Ci.

Especially, xB(i+ 1) = xE(i) + 1, xB(1) = 1 and xE(NC(k)) = ∆L(t) always hold. Then, we

define the ”base” rate operator, Q̂ID
0 (i; t), for the region Ci, as follows:

Q̂ID
0 (i; t) = Q̂I

0 M(i; t) + Q̂D
0 M(i; t) + Q̂ID

0 X(i; t), (10)

〈s | Q̂I
0 M(i; t) =

xE(i)−1+σE(i)∑
x=xB(i)−σB(i)

∞∑
l=1

rI(x, l; s, t)〈s | M̂I(x, l) , (11)

〈s | Q̂D
0 M(i; t) =

∑
xB

∑
xE

xB(i)≤xB≤xE≤xE(i) ,

(xB ,xE)6=(xB(i),xE(i))

rD(xB, xE; s, t)〈s | M̂D(xB, xE) , (12)

〈s | Q̂ID
0 X(i; t) = −∆RID

X (s, Ci, t)〈s | . (13)

First note that no deletions in the deletion component, Eq.12, stick out of the region Ci;

thus, this ”base” rate operator focuses on the deletions occurring totally within the region.

Also note that Eq.12 does not include the deletion of an entire Ci (i.e., M̂D(xB(i), xE(i));

such a deletion will be included in the ”perturbation” part (defined below). In the insertion
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component, Eq.11, each of σB(i) and σE(i) takes only the values 0 and 1. These values are

determined to realize the affiliation rules for the ”evanescent” sites prescribed in Section

2. Specifically, σB(i) = σE(i) = 1 if Ci is a ”D”-region; if Ci is an ”A”-region, σB(i) = 1

still holds if i = 1, and σE(i) = 1 still holds if i = NC(t); in the remaining cases, each

of them equals 0. In the exit-rate component, Eq.13, ∆RID
X (s, Ci, t)

def
= δRID

X (s, {s \ Ci}, t)

(
def
= RID

X (s, t)−RID
X ({s \ Ci}, t)) is the increment of the exit rate caused by the existence of

the region Ci in the sequence state s (at t). 19

In fact, the insertion and deletion components of the ”base” rate operator, Eqs.11 & 12,

are defined so that Q̂ID
0 (i; t)’s with different i’s do not interfere with each other, provided

that Condition (i) in section R6 of a previous study of ours [3] is satisfied between different

Ci’s. Besides, the exit rates, ∆RID
X (s, Ci, t)’s, with different i’s are also independent of each

other, provided that the Condition (ii) for the factorability of the PWA probabilities (in

section R6 of [3]) is satisfied. If these conditions hold, we actually have:

RID
X (s, t) = RID

X ([L,R], t) +

NC(t)∑
i=1

∆RID
X (s, Ci, t). (14)

Because RID
X ([L,R], t) is like a ”constant” independent of the specific state of the sub-

sequence (as long as it has the PASs, L and R), it would be convenient to define an operator,

Q̂ID
0 X(0; t), such that

〈s | Q̂ID
0 X(0; t)

def
= −RID

X ([L,R], t)〈s | . (15)

Then, for a positive NC(k), we define the ”base” total rate operator as follows:

Q̂ID
0 (t)

def
= Q̂ID

0 X(0; t) +

NC(k)∑
i=1

Q̂ID
0 (i; t). (16)

From the above arguments, we see that the Q̂ID
0 (i; t)’s with different i’s do not interfere with

one another. Thus, under the aforementioned conditions, they could be time-integrated

independently from one another, to get the ”base” finite-time transition operator, P̂ ID
0 (t, t′),

19Here, the {s \ Ci} represents the sequence state formed by removing Ci from s.
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as follows:

P̂ ID
0 (t, t′)

def
= T

{
exp

(∫ t′

t

dτ Q̂ID
0 (τ)

)}
(17)

= P̂ ID
0 (0; t, t′)×

NC(k)∏
i=1

P̂ ID
0 (i; t, t′) , with

P̂ ID
0 (0; t, t′) = exp

(
−
∫ t′

t

dτ RID
X ([L,R], τ)

)
× 1̂ , (18)

P̂ ID
0 (i; t, t′)

def
= T

{
exp

(∫ t′

t

dτ Q̂ID
0 (i; τ)

)}
(with i = 1, ..., NC(k)) . (19)

Here, T {...} represents the time-ordered product of operators in which an operator at time

τ comes on the right of other operators acting earlier than τ and on the left of others acting

later than τ . And the ”1̂” above is the identity operator.

The ”perturbation” part, denoted here as ∆Q̂ID(t), is simply defined as:

∆Q̂ID(t)
def
= Q̂ID(t)− Q̂ID

0 (t) . (20)

Because the ”base” operator, Q̂ID
0 (t) in Eq.16, includes the entire exit-rate component,

Q̂ID
X (t)(

def
= Q̂I

X(t) + Q̂D
X(t)), as well as the entire insertion-mutation component, Q̂I

M(t),

∆Q̂ID(t) is purely a linear combination of the deletion operators representing deletions ex-

tending into two or more regions, as well as deletions of the whole regions of single ”A”s and

single ”D”s. As it is, the explicit expression of ∆Q̂ID(t) is considerably complex.

Fortunately, the fact that we are now dealing only with a single case-(iv) gapped segment,

as well as the natures of ”A” and ”D” regions, will considerably simplify the expression of

the ”effective part”, ∆Q̂ID
Eff (t), of the perturbation part, which collects all those deletions

which could actually occur in the indel histories we want, as follows. First, we can ignore

all deletions that affects L and/or R, because, by definition, the PASs, L and R, have never

experienced deletions. Second, we can also ignore all deletions each of which deletes a whole

”D”-region, because the ”D”-regions, also by definition, must NOT be deleted entirely. (If

so, they are just lumps of evanescent sites.) This also means that a deletion can always
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Figure 6: Deletions included in the ”effective” perturbation part (∆Q̂ID
Eff (t)) of the rate oper-

ator. a. The deletion of an entire ”A”-region alone. b. The simultaneous deletion of an entire ”A”-region

and parts of the flanking ”D”-regions. c. A ”boundary-eroding” deletion. In each panel, the red and cyan

rectangles represent an ”A”-region and a ”D”-region, respectively.

be ignored if it deletes two or more contiguous regions, as ”A” and ”D” always alternate.

Taking account of these two restrictions, we see that the constituent deletion operators of the

”effective part”, ∆Q̂ID
Eff (t), can be classified into two categories: (i) ”A-deleting” deletions,

each of which deletes an entire ”A”-region (Figure 6 a), and may simultaneously delete (a)

part(s), but never the whole, of the flanking ”D”-region(s) (Figure 6 b) and (ii) ”boundary-

eroding” deletions, each of which straddles two contiguous regions, but does NOT delete any

whole regions (Figure 6 c). These results can be expressed as follows:

∆Q̂ID
Eff (t) = Q̂D

M :A-del(t) + Q̂D
M :B-er(t) , (21)

Q̂D
M :A-del(t)

def
=

NC(k)∑
i=1

δ(color(i), A) Q̂D
M :A-del(i; t) , (22)

〈s | Q̂D
M :A-del(i; t)

def
=

xB(i)∑
xB=xB(i−1)+1

xE(i+1)−1∑
xE=xE(i)

rD(xB, xE; s, t)〈s | M̂D(xB, xE) , (23)

Q̂D
M :B-er(t) =

NC(k)−1∑
i=1

Q̂D
M :B-er(i; t) , (24)

〈s | Q̂D
M :B-er(i; t)

def
=

xE(i)∑
xB=xB(i)+1

xE(i+1)−1∑
xE=xB(i+1)

rD(xB, xE; s, t)〈s | M̂D(xB, xE) . (25)
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Here, the subscripts, ”A-del” and ”B-er”, are short for ”A-deleting” and ”boundary-eroding”,

respectively. In Eq.22, the δ(color(i), A) is an analog of Cronecker’s delta, and δ(color(i), A) =

1 if Ci is an ”A”-region, and = 0 otherwise. In Eq.23, we define xB(0) = 0 and xE(NC(k) +

1) = ∆L(s) + 1, to cover the cases where color(C1) = A and color(CNC(k)) = A, respec-

tively. As indicated by their definitions, Eqs.23 and 25, the Q̂D
M :A-del(i; t) is the collection of

all deletions deleting the entire ”A”-region, Ci, and the Q̂D
M :B-er(i; t) is the collection of all

”boundary-eroding” deletions affecting Ci and Ci+1.

For completeness, let us finally consider slices with NC(k) = 0, which could occur if all

ancestral sites are deleted before any ”D”-regions are created. Such a slice consists only

of evanescent sites, and it begins and ends with the sequence state, [L,R]. Therefore, the

total probabilities for such a slice and a series of such slices (with various time-intervals) are

exactly equal to those of case-(i) gapped segments, which can be computed using the whole

rate-operator, Q̂ID(t) in Eq.2, exactly as described in a previous study of ours [1] (, or, via

a faster method identical in essence to that in subsection 4.3).

4.3 Computing Transition Probabilities within Each Slice

If we want to compute a transition probability within each slice, say, slice k in (tk, tk+1), we

first need to specify the ”initial” and ”final” lengths of the regions, Ci with i = 1, ..., NC(k)

, at times t+k
def
= tk + ε and t−k+1

def
= tk+1 − ε, respectively. (Here, ε is an infinitesimal

value.) This is equivalent to specifying the ”initial” and ”final” values of xE(i), with i =

1, ..., NC(k); let xE(i;F ) and xE(i;F ) (both with i = 1, ..., NC(k)) be such ”initial” and

”final” values, respectively. Similarly, let xB(i; I) and xB(i;F ) be the ”initial” and ”final”

values, respectively, of xB(i) (with i = 1, ..., NC(k)). More generally, let xB(i; t) and xE(i; t)

be the beginning and end coordinates, respectively, of the region Ci at time t in (tk, tk+1).

(See Figure 7 for a schematic illustration of the situation considered here.)

As in the previous subsection, we consider that Conditions (i) and (ii) in section R6 of
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Figure 7: Sequence evolution (via indels) under ”base” rate operator, Q̂ID
0 (t), within slice k (in

(tk, tk+1)). As before, the red and cyan rectangles represent an ”A”-region and a ”D”-region, respectively.

Each thick, light-colored downward arrow suggests that the stochastic evolution of the corresponding region

(Ci) is dictated by the relevant ”base” rate operator (Q̂ID
0 (i; t)).

a previous study of ours [3] are satisfied between the ”base” rate operators, Q̂ID
0 (i; t)’s, on

different Ci’s. Then, in the current perturbation framework, the ”zero-th approximation”

of the transition probabilities within slice k can be obtained by sandwiching the factorized

form of the ”base” transition operator, Eq.(17), with the initial and final sequence states.

As far as this ”zero-th approximation” is concerned, we could express the sequence state,

〈s | in Eq.1, as a ”tensor product”:

〈s(t) | = 〈s0 | ⊗

NC(k)⊗
i=1

〈s(Ci; t) |

 , with (26)

〈s0 |
def
= 〈[L,R] | , (27)

〈s(Ci; t) |
def
= 〈[υ(xB(i; t), t), ..., υ(xE(i; t), t)] | . (28)

Here, υ(x, t) is the ancestry index of the x th site at time t. Hence, using this ”tensor prod-

uct” expression, the ”zero-th approximation” of the transition probability can be calculated

formally as:

P0

[(
s(t−k+1), t−k+1

)
|
(
s(t+k ), t+k

)] def
= 〈s(t+k ) | P̂ ID

0 (t+k , t
−
k+1) | s(t−k+1)〉
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= exp

(
−
∫ t−k+1

t+k

dτ RID
X ([L,R], τ)

)
×

NC(k)∏
i=1

〈s(Ci; t+k ) | P̂ ID
0 (i; t+k , t

−
k+1) | s(Ci; t−k+1)〉.(29)

To attain the second equation, we used the fact, 〈s0 | P̂ ID
0 (0; t, t′) | s0〉 = exp

(
−
∫ t′
t
dτ RID

X ([L,R], τ)
)

.

Therefore, the problem of computing the ”zero-th approximation” of the transition proba-

bilities within each slice can be reduced to that of computing the multiplication factors, or

transition probabilities within each colored region, denoted here as:

µP0

[
(s(Ci; t

−
k+1), t−k+1) | (s(Ci; t+k ), t+k )

] def
= 〈s(Ci; t+k ) | P̂ ID

0 (i; t+k , t
−
k+1) | s(Ci; t−k+1)〉 , (30)

for each Ci (with i = 1, ..., NC(k)). 20 (To remember the situation under consideration, see

Figure 7.)

For a locally space-homogeneous model, whose insertion/deletion rates are homogeneous

within each of most gapped segments, we derived a system of iterative equations to give

effectively exact multiplication factors for isolated gaps. (See section SM-3 in additional

file 1 of a previous work of ours [1].) It should be noted that, within each Ci and under

the ”base” rate operator, we can forget about the origins (or ancestries) of the sites in the

region, because all of them will eventually be deleted anyway if Ci is an ”A”-region, and

because none of them belonged to the ancestral (or initial) sequence state, anyway, if Ci is

a ”D”-region. It follows that, under a locally space-homogenous model, the state, 〈s(Ci; t) |,

depends only on the number of sites in Ci, i.e., ∆L(i; t)
def
= xE(i; t) − xB(i; t) + 1; we can

thus express this fact explicitly as: 〈s(Ci; t) |= 〈∆L(i; t) |, just as in the derivation for an

isolated gap. Moreover, ∆RID
X (s, Ci, t) also depends only on ∆L(i; t) (and possibly t); let

us remember this fact by using an ”alias”, ∆RID
X (∆L(i; t), t), of ∆RID

X (s, Ci, t). Therefore,

following almost exactly the same procedure (as in SM-3 of a previous study of ours [1]), we

20In the current ”perturbation” method, the ”zero-th” approximation does not mean that there are no

insertions/deletions during the time-interval, (t+k , t
−
k+1); actually, there could be any numbers of inser-

tions/deletions, as long as they occur totally within each of the regions (Ci’s) and as long as they do

not delete any of the entire Ci’s.
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could derive a system of iterative equations also for effectively exact multiplication factors

for each Ci in slice (tk, tk+1), under a locally space-homogenous model.

The only differences from the previous method [1] are: (i) the exit rate used here is

the increment, ∆RID
X (s, Ci, t) (see the description below Eq.13), instead of the whole rate,

RID
X (s, t) (in Eq.7); (ii) both initial and final states have nonzero sites in between L and R,

whereas, for an isolated gap, either of them has no sites in between; and (iii) the ”effective”

rate operator differs slightly, specifically, the one used here lacks the deletion of the entire Ci,

and it may also lack insertions at both or either end(s) if Ci is an ”A”-region. (See appendix

A for the specific computation along this line.)

Here, however, we provide a much faster approach; it is based on a direct approximation

of the following definition:

P̂ ID
0 (i; tF , tI)

def
= T

{
exp

[∫ tF

tI

dτ Q̂ID
0 (i; τ)

]}
def
= lim

NP→∞

(
1̂ + ∆NP

t · Q̂ID
0 (i; t̄1)

)
· · ·
(
1̂ + ∆NP

t · Q̂ID
0 (i; t̄NP

)
)
, (31)

where t̄j = tI + (j − 1/2)∆NP
t (j = 1, 2, ..., NP ), with ∆NP

t
def
= (tF − tI)/NP . This

should be realized with an algorithm of space-complexity O(NPL
CO) and time-complexity

O(NP{LCO}2).

Now, for a specific region Ci in a given slice in (tk, tk+1) (or in [t+k , t
−
k+1]), let us compute the

transition probabilities (or the multiplication factors), µP0

[
(∆L(i;F ), t−k+1) | (∆L(i; I), t+k )

]
(σBE(i)),

with ranging ∆L(i; I), ∆L(i;F ), and [t+k , t
−
k+1] ∈ [tI , tF ], by directly approximating the defi-

nition, Eq.31, of the finite-time transition operator. The first thing we need to do is discretize

the time-interval, [tI , tF ], with a number of (usually equal-spaced) points in between tI and

tF ; Here, we choose, tj = tI + j · ∆NP
t (j = 1, 2, ..., NP − 1), with ∆NP

t
def
= (tF − tI)/NP .

And we set t0
def
= tI and tNP

def
= tF . 21 Then, we define a series of ”discretized” finite-time

transition operators:

P̂
ID [NP ]
0 (i; tI , tj)

def
=

(
1̂ + ∆NP

t · Q̂ID
0 (i; t̄1)

)
· · ·
(
1̂ + ∆NP

t · Q̂ID
0 (i; t̄j)

)
(32)

21The tj ’s defined here are related to the t̄j ’s defined above via the relations, t̄j = (tj−1 + tj)/2.
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for j = 1, 2, ..., NP , and P̂
ID [NP ]
0 (i; tI , t0) = 1̂. To express this definition more precisely, we

can use the recursion relation:

P̂
ID [NP ]
0 (i; tI , tj) = P̂

ID [NP ]
0 (i; tI , tj−1) ·

(
1̂ + ∆NP

t · Q̂ID
0 (i; t̄j)

)
(33)

for j = 1, 2, ..., NP , and, again, P̂
ID[NP ]
0 (i; tI , t0) = 1̂.

Next, we define the multiplication factors:

µ
[NP ]
P0

[(s(Ci; tj), tj) | (s(Ci; tI), tI)]
def
= 〈s(Ci; tI) | P̂ ID [NP ]

0 (i; tI , tj) | s(Ci; tj)〉 , (34)

for j = 0, 1, ..., NP . Then, by substituting Eq.33 (for j = 1, ..., NP ) into the right-hand side

of the above equation, and using
∑

s(Ci,tj−1)∈S(Ci)
| s(Ci; tj−1)〉〈s(Ci; tj−1) |= 1̂(, where S(Ci)

denotes the space of all possible states in the region Ci), we get:

µ
[NP ]
P0

[(s(Ci; tj), tj) | (s(Ci; tI), tI)]

=
∑

s′∈S(Ci)

[
µ

[NP ]
P0

[(s′, tj−1) | (s(Ci; tI), tI)]×

×
(
δ(s′, s(Ci; tj)) + ∆NP

t · 〈s′ | Q̂ID
0 (i; t̄j) | s(Ci; tj)〉

)]
. (35)

Here, we set s′ = s(Ci; tj−1) for simplicity. This gives the recursion relations for the ”directly

approximated” multiplication factors at time-points, t1, t2, ..., tNP
(= tF ), and the relations

can be computed by iteration. As argued above, in the locally space-homogeneous model we

deal with, the state within each region (Ci) is determined by the number of sites, ∆L(i; t),

in between the PASs. Thus, under the same setting as for Eq.56, the recursion relations,

Eq.35, become:

µ
[NP ]
P0

[(∆Lj, tj) | (∆LI , tI)] (σBE(i))

=
(

1−∆NP
t ·∆RID

X (∆Lj, t̄j)
)
· µ[NP ]

P0
[(∆Lj, tj−1) | (∆LI , tI)] (σBE(i))

+∆NP
t ·
[ min(LCO

I , ∆Lj−1)∑
l=1

{
(∆Lj − l − 1 + σBE(i))× gI(l, t̄j)×

×µ[NP ]
P0

[(∆Lj − l, tj−1) | (∆LI , tI)] (σBE(i))
}
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+(∆Lj + 1)

min(LCO
D , LCO−∆Lj)∑

l=1

{
gD(l, t̄j)×

×µ[NP ]
P0

[(∆Lj + l, tj−1) | (∆LI , tI)] (σBE(i))
} ]

, (36)

with the initial condition:

µ
[NP ]
P0

[(∆L0, t0) | (∆LI , tI)] (σBE(i)) = δ(∆L0,∆LI) .

(It should be noted that tI = t0.) Here, for clarity, we used the short-hand notations,

∆LI = ∆L(i; I) and ∆Lj = ∆L(i; j). Here, we also used the fact that the dependence

of the factors on the region Ci is only through σBE(i) (
def
= σB(i) + σE(i)). 22 When tI is

fixed, the recursion relations, Eq.36, with ranging ∆Lj, ∆LI , and tj has the space- and

time-complexities of O(NP{LCO}2) and O(NP{LCO}3), respectively. If the model is time-

homogeneous as well, this will be sufficient, because µ
[NP ]
P0

[· · ·]’s depend on tI and tj only

through tj − tI . If the model is not time-homogeneous, however, we also need to compute

the Eq.36 with ranging tI . If such computations are performed serially, the total time-

complexity becomes O({NP}2{LCO}3).

Alternatively, we could extend the time-interval backward, from [tF , tF ]. See appendix B

if you are interested in the specific expression of the resulting recursion relation.

To further raise the level of approximation, we need to switch on Q̂D
M :B-er(t) in Eq.21,

because this term also preserves the ”A/D”-coloring pattern of the sub-sequence.

Although we could, at least theoretically, directly approximate the definition of the finite-

time transition operator:

P̂ ID
0+B-er(t, t

′)
def
= T

{
exp

(∫ t′

t

dτ
[
Q̂ID

0 (τ) + Q̂D
M :B-er(τ)

])}
, (37)

such computations will get practically impossible as the number of colored regions increases

22The above recursion relation is valid for ∆Lj = 1, ..., LCO, and ∆LI = 1, ..., LCO; ∆Lj = 0 needs to

be excluded because Q̂ID
0 (i; t) does NOT include the deletion of an entire region; and ∆LI = 0 is excluded

because we are here considering the evolution of a colored-region after its creation.

33



(to, e.g., 3 or 4), because we need to keep at least O({LCO}2NC ) multiplication factors in the

memory during the computation for the time-slice with NC colored regions.

In this regard, a more promising approach would be to iteratively solve the integral equa-

tion in which the ”base”-operator is Q̂ID
0 (τ) and the ”perturbation” operator is Q̂D

M :B-er(t),

because the factors, Q̂D
M :B-er(i; t)’s (with i = 1, ..., NC − 1), could be dealt with separately.

See appendix C for more details.

[NOTE:] In this study, however, we regard the ”boundary-eroding” deletions in Eq.25 also

as ”coloring-pattern-changing events”, and deal with them as ”perturbations” just as the ”A-

deleting” deletions in Eq.22 and the ”D”-creating insertions (in the ”base” rate operator).

This means that, hereafter, the evolution of each colored-region in each slice is described by

the ”base” rate operator, Q̂ID
0 (i; t) (defined in Eq.10), and the resulting ”base” multiplication

factor, µP0

[
(∆L(i;F ), t−k+1) | (∆L(i; I), t+k )

]
.

4.4 Computing Probability of Change in ”A/D”-Coloring-Pattern

Broadly speaking, changes in the ”A/D”-coloring patterns can be classified into two cate-

gories: (a) deletion of an ”A”-region, possibly accompanying the size reduction of either or

both of the flanking ”D”-regions, as well as their merger; and (b) creation of a new ”D”-

region, possibly accompanying the split of the ”parent” ”A”-region into two ”A”-regions.

Changes in category (a) are caused by the ”A-deleting” rate operator, Q̂D
M :A-del(t) in Eq.22.

In contrast, changes in category (b) are caused by the insertion operators on the ”A”-regions

in Q̂ID
0 (t) (in Eq.16). (In addition, in this study, we include (c) ”boundary-eroding” dele-

tions, caused by Q̂D
M :B-er(t) in Eq.24, into the ”perturbation”. )

Deferring the summation of the contributions from different indel operators to the next

subsection, here we focus on the computation of the action of each single indel operator. Each

rate operator that accommodates the indel operator always takes the form of a distribution,

which originates from the indel rates that the indel operators are multiplied by. Therefore,
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the action of a rate operator, e.g., Q̂D
M :A-del(t) at a ”moment”, t, always occurs in the form,

dt Q̂D
M :A-del(t), where dt is an infinitesimal time-element. In numerical computation, the

minimum time-width, denoted here as ∆t (e.g., = (tF − tI)/NP ), or its multiple in some

cases, will play the role of dt. When a pattern-changing indel occurs at (actually, closely

around) time tk, we pick the minimum time-interval, [ta, ta + ∆t], that encompasses tk. We

assume that the indel occurs somewhere within the aforementioned time-interval, but that

we do not know exactly when. Näıvely, the action of the relevant term in dt Q̂D
M :A-del(t) (or

dt Q̂ID
0 (t)) should be the combination of the following:

(1) deleting a specified set of sites, or inserting a specified number of sites at a specified

position, in the sequence state before the indel; and

(2) multiplying the probability (computed up to there) by ∆t times the relevant indel

rate.

When ∆t is sufficiently small, i.e., ∆t� 1/|∆RID(∆L, t)|, where ∆L is the length change

caused by the relevant indel, this näıve prescription works well. If, however, ∆t is relatively

large, e.g., ∆t×|∆RID(∆L, t)| ≥ O(1), this may not be the case, because other indel events

can get involved with a non-negligible probability, especially when a long subsequence is

inserted/deleted. In order to keep the high accuracy of the computation even when ∆t is

relatively large, one way would be to use a sufficiently small time-interval , say, ∆′t(� ∆t),

only to compute the probabilities of ”A/D”-coloring changes, and to graft them with the

transition probabilities (for the time-lapse ∆t − ∆′t) under an unchanged ”A/D”-coloring

pattern. This should work as long as the ”A/D”-coloring changes are relatively rare.

4.5 Computing Total Contributions from Each Pattern of ”A/D”-

Coloring Evolution

In the previous subsection, we focused on the contribution from each single coloring-pattern-

changing insertion/deletion event. Here, we consider the collective effects of each type of
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Figure 8: Partial coloring-pattern evolution underlying multiplication factors on ”D”-

region creation and ”A”-region deletion. a. Evolution underlying the ”D”-creation fac-

tor, µD-cr[(x, [t, t + ∆t]) ; (∆FL, t
′)], in Eq.38. b. Evolution underlying the ”A”-deletion factor,

µA-del[(∆IL, t
′) ; (0,−δ∆LfD, [t − ∆t, t])](σBE(= 0)), in Eq.41. As in previous figures, the red and cyan

rectangles represent an ”A”-region and a ”D”-region, respectively. Note that, in panel b, δ∆LfD
def
=

δ∆LLfD + δ∆LRfD. See the text for more details on each setting.

such insertions/deletions . (As in the previous subsections, a locally space-homogeneous

model is assumed also here. Thus, gI(l, t) is the rate of an insertion of length l at time t,

and gD(l, t) is the rate of the deletion of a length l sub-sequence at time t; these rates are

independent of the positions of the events as long as they occur in between the PASs, L and

R.)

With the current definition of the ”A/D”-coloring (given in Section 2), the creation of

a ”D”-region is relatively easy to deal with, because each ”D”-region is created by a single

insertion event, and because all sites inserted by the event belong to the ”D”-region at its

beginning (Figure 8 a). It should also be noted that the insertion event creating the ”D”-

region belongs to the ”base” rate-operator, Q̂0(iA; τ), where τ is the time of the creation, and

CiA at τ is the ”A”-region from which the ”D”-region was created. Hence, the probability

(more precisely, the multiplication factor) that a ”D”-region(, referred to as CiD ,) was created

at a specific site, say x in CiA , at some time in a (small) time-interval, [t, t + ∆t], and that
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the region evolved, without vanishing, to have ∆FL sites at a later time, t′, is calculated as:

µD-cr [(x, [t, t+ ∆t]) ; (∆FL, t
′)]

=
∞∑
l=1

[∫ t+∆t

t

dτ gI(l, τ) · µP0 [(∆FL, t
′) | (l, τ)] (σBE = 2)

]
. (38)

On the left-hand side, we omitted the trivial dependence of the µD-cr[· · ·] on CiA and CiD .

And the µP0 [· · ·] on the right-hand side can be computed as described in subsection 4.3, with

σBE (= σB(iD) + σE(iD)) = 2, as explicitly shown as an argument of µP0 [· · ·].

When numerically computing Eq.38, we apply the prescription given in subsection 4.4,

and also set the upper-bound LCOI of the insertion length. When ∆t is sufficiently small, the

right-hand side of Eq.38 can be approximated as:

∆t×
LCO
I∑
l=1

[
gI(l, t) · µP0 [(∆FL, t

′) | (l, t+ ∆t)] (σBE = 2)
]
. (39)

And, when ∆t is relatively large, the measure explained in subsection 4.4 is specifically

expressed as follows (using ∆′t(� ∆t)):

µD-cr [(x, [t, t+ ∆′t]) ; (∆FL, t
′)]

≈
∞∑
l′=1

[
∆′t×

LCO
I∑
l=1

[
gI(l, t) · µP0 [(l′, t+ ∆t) | (l, t+ ∆′t)] (σBE = 2)

]
×µP0 [(∆FL, t

′) | (l′, t+ ∆t)] (σBE = 2)

]
.

= ∆′t×
LCO
I∑
l=1

[
gI(l, t) · µP0 [(∆FL, t

′) | (l, t+ ∆′t)] (σBE = 2)
]
. (40)

The space-complexity required to store all these factors isO(NP L
CO) (except for µP0 [· · ·]’s

that require O(NP{LCO}2) memory space), and the time-complexity required to compute

these equations is O(NP {LCO}2), making the computation feasible. Because the relevant

”D”-region did not exist before t, the accompanying multiplication factor is 1 (unity) in this

case.

Next, we will deal with a relatively difficult case, which is the deletion of an ”A”-region

(Figure 8 b). As indicated by Eq.23, the deletion of an ”A”-region could, in general, ad-
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ditionally delete some sites in the flanking ”D”-regions. Therefore, when computing their

contributions to the probabilities of case-(iv) gapped segments, the number of such addi-

tionally deleted sites must also be recorded. Let δ∆LLfD and δ∆LRfD, respectively, be the

numbers of such deleted sites in the left-flanking and right-flanking ”D”-regions. In a general

insertion/deletion model, both δ∆LLfD and δ∆LRfD must be recorded, which means that we

must store O(NP {LCO}3) factors, which may be quite hard on the computer(s). (Note that

one O(LCO) comes from the ”initial” length of the ”A”-region to be deleted.) Fortunately, in

a locally space-homogeneous model considered here, after factoring out the transition proba-

bilities for the flanking ”D”-regions, the remaining factor depends on the number of deleted

”D”-sites only through the summation, δ∆LfD
def
= δ∆LLfD + δ∆LRfD, because the deletion

rate, gD(l, t), depends only on the deletion length, i.e., the total number of sites deleted.

Thus, the factor we need to store should be the probability (more precisely, the multi-

plication factor) that an ”A”-region(, referred to as CiA ,), which had ∆IL sites at time t′,

was later deleted at some time in a (small) time-interval, [t−∆t, t], simultaneously with the

deletion of δ∆LfD sites in the flanking ”D”-region(s). It is expressed as:

µA-del [(∆IL, t
′) ; (0,−δ∆LfD, [t−∆t, t])] (σBE)

=
∞∑
l=1

[∫ t

t−∆t

dτ gD(l + δ∆LfD, τ) · µP0 [(l, τ) | (∆IL, t
′)] (σBE)

]
. (41)

Here, again, on both hand sides, we explicitly recorded the dependence of the multiplication

factors on σBE
def
= σB +σE, which could significantly change the results. Especially, it should

be noted that only δ∆LfD = 0 is meaningful when σBE = 2, because there are no flanking

”D”-regions in such a case.

In the numerical computation, we do as in subsection 4.4 and set the upper-bound, LCOD ,

of the deletion length. When ∆t is sufficiently small, the right-hand side of Eq.41 can be

approximated as:

∆t×
LCO
D −δ∆LfD∑

l=1

[
gD(l + δ∆LfD, t) · µP0 [(l, t−∆t) | (∆IL, t

′)] (σBE)
]
. (42)
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When, ∆t is relatively large, the measure explained in subsection 4.4 is specifically ex-

pressed (using ∆′t(� ∆t)), just as in the ”creation” case above:

µA-del [(∆IL, t
′) ; (0,−δ∆LfD, [t−∆′t, t])] (σBE)

≈ ∆′t×
LCO
D −δ∆LfD∑

l=1

[
gD(l + δ∆LfD, t) · µP0 [(l, t−∆′t) | (∆IL, t

′)] (σBE)
]
. (43)

If nothing else is done to effectively adjust the exponential factor, any of these factors,

Eqs.41, 42, 43, could be accompanied by the multiplication factor:

exp

{
−
∫ t

t−∆t

dτ∆RID(∆LafD(t−∆t), τ)

}
, (44)

where ∆LafD(t − ∆t) is the total number of sites in the affected flanking ”D”-region(s) at

time t−∆t. 23

Now, at last, we can compute the probabilities (or their total) of the insertion/deletion

histories having a given pattern of ”A/D”-coloring evolution. As described in the beginning

of this section (section 4), we first identify the times at which the coloring-pattern changes,

24 and slice the coloring pattern history at these times. Then, for each colored region, say

Ci in each slicegiven by an (open) time-interval, e.g., (tk, tk+1), assign

µP0

[
(∆L(i; t−k+1), t−k+1) | (∆L(i; t+k ), t+k )

]
(σBE(i))

if it remained existing at both tk and tk+1,

µD-cr

[
(x, [tk, tk + ∆t]) ; (∆L(i; t−k+1), t−k+1)

]
23It should be noted, however, that the introduction of multiplication factors like this is equivalent to

assuming that no indel events hit the relevant regions during the time-interval in question ([t − ∆t, t] in

the above case). Such an assumption should hold well if ∆t · |∆RID(∆L, τ)| � 1, where ∆L is the total

length of the relevant regions. Otherwise, it would be better to ”pad” the time-interval with the transition

probabilities under the unchanged ”A/D”-coloring pattern, though it might sometimes be time-consuming.
24Remember that we also regard the ”boundary-eroding” deletions in Eq.25 as belonging to ”pattern-

changing” events.
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Figure 9: Colored region extending across slice boundary. When a colored region (in this case,

Ci(k − 1) or Cj(k)) extends across the boundary (tk) between two slices (k − 1 over (tk−1, tk) and slice k

over (tk, tk+1)), the multiplication factor for this region can span these slices. All you have to do is match

the region lengths at the boundary, and sum over the lengths, as shown in this schematic equation. In

this figure, the notations j(k − 1) and i(k) represent the j th region in slice k − 1 and the i th region in

slice k, respectively. Although an ”A”-region (red) extends across the boundary in this figure, a ”D”-region

(cyan) can also extend similarly. (Remember that, for an ”A”-region to extend, its σBE needs to remain

unchanged.)

if it was created immediately after tk, and

µA-del

[
(∆L(i; t+k ), t+k ) ; (0,−δ∆LfD, [tk+1 −∆t, tk+1])

]
(σBE)

if it was deleted immediately before tk+1. Then, at each time tk, sum over all possible

lengths, ∆L(i; t+k )’s and ∆L(j, t−k )’s, of the regions involved (Ci(k)’s in the slice after tk, and

Cj(k−1)’s in the slice before tk). If a colored region extends across the time tk without being

affected by any perturbations (Figure 9)(, which means that even σBE remains unchanged),

the relevant summation (and the accompanying ”matching” of the pair of lengths across tk)

”join”s the multiplication factors before and after tk, giving a multiplication factor defined

in the joint interval, say, (tk−1, tk+1).

This way, we are left only with the summations at the ”perturbation” events, each re-

garding the regions affected by the event. After computing these summations, we can, at

least in principle, obtain the total contribution for a given pattern evolution by ”integrating”

over the times of the events. In practice, however, especially when multiple events are in-
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volved, the required multiple-time integration could be extremely time-consuming, if näıvely

performed. It should therefore be desirable to, whenever possible, deal with the ”pertur-

bations” one after another, each time computing the summation and the time-integration

required for each event, to store the ”interim” results, and then to re-use them for the ”next

step” of the computation. This strategy is somewhat similar to that of the ”pruning” (aka,

”peeling”) algorithm for the computation of the likelihood of a phylogenetic tree under a

given substitution model, given a sequence data set [59] [60] [61]. In the next section, we will

apply these procedures to the concrete computations of the probabilities when the number

of perturbations are relatively small.

5 Concretely Computing Contributions to Case-(iv)

Probabilities at Given Perturbation Levels

In Section 4, we mathematically derived the ”ingredients” to compute the probabilities of

case-(iv) gap-patterns. Now, by putting these ”ingredients” together, we will concretely

compute the probabilities at relatively low perturbation levels, to illustrate the computation

procedures explained at the bottom of subsection 4.5. Throughout this section, again, it is

assumed that the computations are performed under a locally space-homogeneous model.

Moreover, we assume that we consider that the ancestral sequence existed at the ”initial

time”, tI , and the descendant sequence was sampled (or examined) at the ”final time”, tF .

This means that the time-interval, [tI , tF ], gives the entire time-frame for the evolution of

the sequence we are interested in. And let ∆ILA be the number of ancestral sites at time

tI , and let ∆FLD be the number of descendant sites at time tF , both excluding the PASs, L

and R. Then, what we want is the probability of having descendant sites at tF conditioned

on totally non-homologous ancestral sites at tI :

Pcase-(iv) [(∆FLD, tF ) | (∆ILA, tI)]
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def
= P [([L, υ′(1), · · · , υ′(∆FLD), R], tF ) | ([L, υ(1), · · · , υ(∆ILA), R], tI)] |

υ(i) 6= υ′(j)

for ∀i = 1, ...,∆ILA;

∀j = 1, ...,∆FLD

.(45)

When we compute the probabilities of ancestor-descendant PWAs, however, what we actually

need is the multiplication factor:

µP case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]
def
=
Pcase-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

P [([ ], [tI , tF ]) | (∆ILA, tI)]
, (46)

where P [([ ], [tI , tF ]) | (∆ILA, tI)] is the probability that no indel events hit the region during

[tI , tF ], conditioned on ∆ILA ancestral sites in between the PASs, L and R, at tI . Then, in

our perturbation method, the multiplication factor (Eq.46) is expanded as:

µP case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

= µ2nd
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)] + µ3rd

P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)] + · · ·(47)

Here, µ2nd
P case-(iv)[· · ·] and µ3rd

P case-(iv)[· · ·] are the total summations of all 2nd-order contribu-

tions and all 3rd-order contributions, respectively, to the multiplication factor, Eq.46.

It should be noted that, under the locally space-homogeneous model we are considering,

the identity:

Pcase-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
+

∫ tF

tI

dτRID
X ([L,R], τ)

)
≡ µP case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
(48)

holds, thanks to the equation:

P [([ ], [tI , tF ]) | (∆ILA, tI)] = exp

(
−
∫ tF

tI

dτ
[
RID
X ([L,R], τ) + ∆RID

X (∆ILA, τ)
])

.

Actually, the identities similar to Eq.48 hold also for the partial contributions to the prob-

abilities of case-(iv) gapped segments, and they will be used frequently in the following

sub-sections.

Once we obtain the analytical form of each contribution, which includes some time-

integrations, the numerical computation of each time-integration could be most simply done

42



with the trapezoidal formula (see, e.g., Press et al. [62]). If you would, however, Sympson’s

formula could also be applied (again, see, e.g., Press et al. [62]), with some extra care in the

vicinity of the boundaries when the time-interval is an odd number times the time-element

(∆t). In the following, we will only give the analytical forms of the contributions.

5.1 Second-order Contributions

To have a case-(iv) gapped segment, at least two pattern-changing events are necessary: a

”deletion” of the ancestral sites, and an ”insertion” of the descendant sites. This means that

the minimum perturbation level for case-(iv) is the second order. Varying in the time-order

of the insertion and the deletion, as well as in their spatial-order, the second-order patterns

of ”A/D”-coloring evolution are broadly classified into three (Figure 10): (i) A → ”∅” → D

25 ; (ii) A → AD → D; and (iii) A → DA → D. Let us derive analytical expressions of the

contributions from these patterns one by one.

5.1.1 (i) A → ”∅” → D

Let us assume that the ”A”-region was completely deleted at some time in [t1 − dt1, t1],

and that the ”D”-region was created at some time in [t2, t2 + dt2] (with t1 ≤ t2). Then the

analytical expression for the contribution of pattern (i) to the probability (and multiplication

factor) we want is:

P
2nd (i)
case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
+

∫ tF

tI

dτRID
X ([L,R], τ)

)
≡ µ

2nd (i)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∫ tF−dt2

tI+dt1

dt1

∫ tF−dt2

t1

dt2

[
(µA-del [(∆ILA, tI) ; (0, 0, [t1 − dt1, t1])] (σBE = 2)/dt1)×

×µP case-(i) [(0, t2) | (0, t1)]× (µD-cr [(x, [t2, t2 + dt2]) ; (∆FLD, tF )] /dt2)
]
. (49)

25Here, the ∅ (for ”empty-set”) is double-quoted, to remind us that some evanescent sites may actually

have existed between the deletion of the ”A”-region and the creation of the ”D”-region.
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Figure 10: Topologies of 2nd-order A/D-coloring pattern histories that result in case-(iv)

gapped segments. (Left) pattern (i) (A → ”∅” → D); (Center) pattern (ii) (A → AD → D); (Right)

pattern (iii) (A → DA → D). As in the previous figures, the red and cyan rectangles represent an ”A”-

region and a ”D”-region, respectively. And the yellow rectangle (in panel a) represents a lump of evanescent

sites that are not colored either ”A” or ”D”. The transparent red triangle converging to an ”X” represents

the complete deletion of an ”A”-region; the transparent cyan triangle diverging from an ”X” represents

the creation of a ”D”-region. The thin-colored downward arrow represents evolution via the ”base” rate

operator.

Here, µP case-(i) [(0, t2) | (0, t1)] is the multiplication factor for the ”case-(i) gapped segment”,

which does not have any ancestral or descendant sites in between L and R, at both times t1

and t2. (We do not care whether or not any evanescent sites existed during the open interval,

(t1, t2).) This factor could be computed practically exactly as a by-product of the algorithm

in SM-3 of [1], or via a faster algorithm based on the recursion relation nearly identical

to Eq.36 with σBE(i) = 2; it requires only two modifications: (1) inclusion of ∆LI = 0

(actually, the factors with this value are all we need to compute here) and ∆Lj = 0, and

(2) replacement of the upper-bound of the 1st summation with min(LCOI , ∆Lj) . 26 It

should also be noted that the µA-del[· · ·] and µD-cr[· · ·] above are infinitesimal probabilities

of O(dt1) and O(dt2), respectively; thus their division by dt1 and dt2, respectively, give

26Alternatively, we could devise another faster algorithm based on the recursion relation nearly identical

to Eq.62 with σBE(i) = 2; again, we need only two modifications: (1) inclusion of ∆LF = 0 (actually,

the factors with this value are all we need to compute here) and ∆Lj = 0, and (2) replacement of the

upper-bound of the 2nd summation with min(LCO
D , ∆Lj).
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probability densities. Another point to note is the existence of the dt1, dt2, etc. in the

upper- and lower-bounds of the time-integrations; we deliberately employed this extremely

unconventional notation, in order to facilitate the transition from the analytical expression

to the numerical computation; (we will keep using this notation hereafter, too); if, instead,

you intend to calculate these equations completely analytically, just ignore these infinitesimal

time-elements in the integration boundaries. 27

As argued at the bottom of subsection 4.5, it would save time to perform the calculation

associated with individual events one after another. See appendix D for details on such

a series of calculations. The calculations can be done with the maximum time-complexity

of O({NP}2{LCO}2), and the space-complexity of at most O(NP{LCO}2), where NP is the

number of sub-time-intervals and LCO is the upper-bounds of the number of sites included

in each colored region.

5.1.2 (ii) A → AD → D

As opposed to the pattern (i), let us assume here that the ”D”-region is created at some time

in [t1, t1 + dt1], and that the ”A”-region is completely deleted at some time in [t2 − dt2, t2]

(with t1 + dt1 ≤ t2 − dt2). In this pattern, the ”base” rate operator, Q̂ID
0 (i = 1; t), for the

”A”-region (C1) has σBE = 2 for t < t1 and σBE = 1 for t1 < t < t2 − dt2. Meanwhile, the

operator for the ”D”-region always has σBE = 2. Let ∆L1 be the length of the ”A”-region

at t1, δ∆L2 be the number of sites in the ”D”-region deleted in conjunction with the entire

”A”-region (in [t2−dt2, t2]), and ∆L2 be the length of the ”D”-region iat t2. (We also assume

here that, during [t2−dt2, t2], the ”D”-region only suffered the deletion that erased the entire

”A”-region.) Figure 11 illustrates the situation.

Under this setting, we obtain the following expression for the contribution from pattern

27At the top of the above equation, we explicitly wrote down the expression including the portion of

Pcase-(iv)[· · ·], because this is the first concrete expression given in this section. Hereafter, however, we will

omit such expressions.
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Figure 11: Setting for computing probabilities of 2nd-order pattern (ii) (A → AD → D), in

Eq.50. This figure was created from the center panel of Figure 10, by adding further annotations. In each

transparent-colored downward arrow, which indicates evolution via the ”base” rate operator, only the value

of σBE is shown. Note that, in this figure (and in previous figures), dt1, etc. are made disproportionately

large, to clearly show changes via insertions/deletions.

(ii):

µ
2nd (ii)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∞∑
∆L1=1

∞∑
∆L2=1

∞∑
δ∆L2=0

∫ tF−dt1−dt2

tI

dt1

∫ tF

t1+dt1+dt2

dt2

[
µP0 [(∆L1, t1) | (∆ILA, tI)] (σBE = 2)×

× (µD-cr [(x = ∆L1, [t1, t1 + dt1]) ; (∆L2 + δ∆L2, t2 − dt2)] /dt1)×

× exp

(
−
∫ t2

t2−dt2
dτ2 ∆RID

X (∆L2 + δ∆L2, τ2)

)
×

× (µA-del [(∆L1, t1) ; (0,−δ∆L2, [t2 − dt2, t2])] (σBE = 1)/dt2)×
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×µP0 [(∆FLD, tF ) | (∆L2, t2)] (σBE = 2)
]
. (50)

It should be noted here that, normally, the argument, t2 − dt2 of the µD-cr[· · ·] should be

expressed as t2, because the result remain unchanged for the integration of a well-behaved

function of time, and the exponential factor in the 3rd last line should be omitted because it

usually gives 1 (unity). Here, however, we deliberately chose these expressions, to facilitate

the translation to the numerical computation. 28

In numerical computation, the upper-limits of the above summations must be finite

numbers, instead of infinity. For example, if we consider each region-length to be LCO or

less, the above triple-summations will be replaced by:

LCO∑
∆L1=1

LCO∑
∆L2=1

LCO−∆L2∑
δ∆L2=0

.

As usual, it should be time-efficient to perform the computations associated with indi-

vidual events separately, one after another. Such ”pruning-like” computation in this case is

detailed in appendix E. The series of computations can be performed with the maximum

time-complexity of O({NP}2{LCO}3) and the maximum space-complexity of O(NP{LCO}2).

5.1.3 (iii) A → DA → D

Actually, contributions from this pattern is identical to those from pattern (ii), as long as

the indel rates are symmetric regarding the reversal of the spacial order of sites, which is

indeed the case with the locally space-homogeneous model we are now dealing with. Thus,

we can just ”borrow” the results of the pattern (ii), to compute the contributions from the

pattern (iii) here. This is most easily implemented by doubling the results in the previous

sub-subsection. (Even if the model is not spatially symmetric, we can easily modify the

equations for the pattern (ii), to obtain those for the pattern (iii).)

28As already argued in footnote 23, it would be better to replace the exponential factor with appropriate

transition probabilities under the unchanged ”A/D”-coloring pattern, if the numerical counterpart of dt is

not sufficiently small.
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5.1.4 Summary

By combining all these results obtained in the previous sub-subsections, we can obtain the

total contributions from all the second-order terms, as follows:

µ2nd
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

=
∑

α= i, ii, iii

µ
2nd (α)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

= µ
2nd (i)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)] + 2× µ2nd (ii)

P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)] . (51)

5.2 Third-order Contributions

The third-order terms are contributed by ”A/D”-coloring evolution patterns with three, i.e.,

one plus the minimum (=2), pattern-changing events. In addition to the creation of a ”D”-

region and the complete deletion of an ”A”-region, the additional event could be an insertion

or a deletion. Besides, the additional event could be a ”boundary-eroding” deletion included

in the perturbation, Eq.21. Varying in (1) the kind of the additional event, (2) the time-order

of the events, and (3) their spatial relationships, the third-order ”A/D”-coloring evolution

patterns can be broadly classified into the following six (Figure 12): (a) A → ADA → AD

→ D; (b) A → ADA → DA → D; (c) A → DA → DAD → D; (d) A → AD → DAD → D;

(e) A→ DA
B-er→ DA→ D; and (f) A→ AD

B-er→ AD→ D. In (e) and (f), the ”B-er” indicates

that a ”boundary-eroding” deletion occurred then. As you can see, the patterns (b), (d) and

(f) are the space-reversal of the patterns (a), (c) and (e), respectively. If the indel evolution

model we consider is symmetric under the space-reversal(, which is indeed the case here),

(b), (d) and (f) give contributions identical to those of (a), (c) and (e), respectively. (Even

if otherwise, the analytical expressions of the former’s contributions can be easily derived

by properly modifying those of the latter’s.) Hence, in the following, we will only describe

contributions from the patterns, (a), (c), and (e).
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Figure 12: Topologies of 3rd-order ”A/D”-coloring pattern histories that result in case-(iv)

gapped segments. (Left) pattern (a) (A → ADA → AD → D); (Center) pattern (c) (A → DA →
DAD → D); (Right) pattern (e) (A → DA

B-er→ DA → D). The notations are basically the same as in

the 2nd-order ”A/D”-coloring-pattern histories (Figure 10). The transparent black triangle converging to

an ”X” represents a ”boundary-eroding” deletion. Patterns (b), (d) and (f) were omitted here; they can be

obtained via the space-reversal of patterns (a), (c) and (e), respectively.

5.2.1 (a) A → ADA → AD → D

Let us assume that the ”D”-region was created at some time in [t1, t1 + dt1], that the ”A”-

region on the right was completely deleted at some time in [t2−dt2, t2], and that the remaining

”A”-region was completely deleted at some time in [t3 − dt3, t3], with t1 + dt1 ≤ t2 − dt2

and t2 ≤ t3− dt3. In this pattern, the ”base” rate operators, Q̂ID
0 (i; t)’s, for the ”A”-regions

have σBE = 2 before the ”D”-creation (i.e., t < t1), and σBE = 1 after the ”D”-creation

(i.e., t1 < t(< t3)). As usual, the ”D”-region always has σBE = 2. Let ∆LL1 and ∆RL1 be

the sizes of the left- and right-fragments, respectively, of the ”A”-region at t1. 29 Let δ∆L2

be the number of sites in the ”D”-region deleted in conjunction with the entire ”A”-region

on the right (in [t2 − dt2, t2]), and ∆L2 be the size of the ”D”-region immediately after this

deletion (and also assume that the ”D”-region suffered no other indels during [t2 − dt2, t2]).

29The ”left- and right-fragments” here mean the fragments of the ”A”-region that are on the left and

right, respectively, of the position where the ”D”-region was inserted. (We assume that indels involving the

position did not occur after t1 and before the insertion of the ”D”-region.)
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Figure 13: Setting for computing probabilities of 3rd-order pattern (a) (A → ADA → AD

→ D), in Eq.52. This figure was created from the left panel of Figure 12, by adding further annotations.

Notes similar to those on Figure 11 apply also here.

And let δ∆L3 be the number of sites in the ”D”-region deleted in conjunction with the entire

remaining ”A”-region (in [t3 − dt3, t3]), and ∆L3 be the site of the ”D”-region immediately

after this deletion (and also assume that the ”D” region suffered no other indels during

[t3 − dt3, t3]. Figure 13 illustrates the setting.

Under this setting, the contributions from the pattern (a) can be analytically expressed

as:

µ
3rd (a)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
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=
∞∑

∆LL1=1

∞∑
∆RL1=1

∞∑
∆L2=1

∞∑
δ∆L2=0

∞∑
∆L3=1

∞∑
δ∆L3=0

∫ tF−dt1−dt2−dt3

tI

dt1

∫ tF−dt3

t1+dt1+dt2

dt2

∫ tF

t2+dt3

dt3

[
µP0 [(∆L1 = ∆LL1 + ∆RL1, t1) | (∆ILA, tI)] (σBE = 2)×

× (µD-cr [(x = ∆LL1, [t1, t1 + dt1]) ; (∆L2 + δ∆L2, t2 − dt2)] /dt1)×

× exp

(
−
∫ t2

t2−dt2
dτ2 ∆RID

X (∆L2 + δ∆L2, τ2)

)
×

× (µA-del [(∆RL1, t1) ; (0,−δ∆L2, [t2 − dt2, t2])] (σBE:R = 1)/dt2)×

×µP0 [(∆L3 + δ∆L3, t3 − dt3) | (∆L2, t2)] (σBE = 2)

× exp

(
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆L3 + δ∆L3, τ3)

)
×

× (µA-del [(∆LL1, t1) ; (0,−δ∆L3, [t3 − dt3, t3])] (σBE:L = 1)/dt3)×

×µP0 [(∆FLD, tF ) | (∆L3, t3)] (σBE = 2)
]
. (52)

(Here, the same notes as in the previous subsection apply to the notations and factors

with analytically no effects, which were introduced merely to facilitate the translation to the

numerical computation.)

This expression involves summations over six lengths and integrations over three time-

intervals. Thus, if näıvely performed, it could take too long to finish within a reason-

able amount of time. Therefore, following the general strategy already proposed, we will

perform computations associated with the individual events, one after another. See ap-

pendix F for details. The series of computations can be performed with the maximum time-

complexity of max [ O({NP}2{LCO}3), O(NP{LCO}4) ] and the maximum space-complexity

of O(NP{LCO}2).

5.2.2 (c) A → DA → DAD → D

Let us assume that the ”D”-regions on the left and on the right were created at some times

in [t1, t1 +dt1] and [t2, t2 +dt2], respectively, and that the ”A”-region was completely deleted

at some time in [t3− dt3, t3], with t1 + dt1 ≤ t2 and t2 + dt2 ≤ t3− dt3. Here, the ”base” rate

operators, Q̂ID
0 (i; t)’s, for the ”A”-region has σBE = 2 for t < t1, σBE = 1 for t1 < t < t2,
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Figure 14: Setting for computing probabilities of 3rd-order pattern (c) (A → DA → DAD →
D), in Eq.53. This figure was created from the center panel of Figure 12, by adding further annotations.

Notes similar to those on Figure 11 apply also here.

and σBE = 0 for t2 < t < t3. Let ∆1LA and ∆2LA be the sizes of the ”A”-region at t1, t2,

respectively; let ∆3LDL be the size of the ”D”-region on the left at t3; let ∆3LDR be the size

of the ”D”-region on the right at t3. And let δ∆3LDL and δ∆3LDR be the numbers of sites in

the ”D”-regions on the left and right, respectively, that were deleted in conjunction with the

complete deletion of the ”A”-region (in [t3−dt3]). (And we also assume that the ”D”-regions

suffered no other indels during [t3 − dt3, t3].) We also define ∆3LD
def
= ∆3LDL + ∆3LDR and

δ∆3LD
def
= δ∆3LDL + δ∆3LDR. Figure 14 illustrates the setting.

Under this setting, the contributions from the pattern (c) can be analytically expressed

52



as:

µ
3rd (c)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=
∞∑

∆1LA=1

∞∑
∆2LA=1

∞∑
∆3LDL=1

∞∑
∆3LDR=1

∞∑
δ∆3LDL=0

∞∑
δ∆3LDR=0

∫ tF−dt1−dt2−dt3

tI

dt1

∫ tF−dt2−dt3

t1+dt1

dt2

∫ tF

t2+dt2+dt3

dt3

[
µP0 [(∆1LA, t1) | (∆ILA, tI)] (σBE = 2)×

×µP0 [(∆2LA, t2) | (∆1LA, t1)] (σBE = 1)×

× (µD-cr [(x1 = 1, [t1, t1 + dt1]) ; (∆3LDL + δ∆3LDL, t3 − dt3)] /dt1)×

× (µD-cr [(x2 = ∆2LDL + ∆2LA, [t2, t2 + dt2]) ; (∆3LDR + δ∆3LDR, t3 − dt3)] /dt2)×

× exp

(
−
∫ t3

t3−dt3
dτ3[∆RID

X (∆3LDL + δ∆3LDL, τ3) + ∆RID
X (∆3LDR + δ∆3LDR, τ3)]

)
×

× (µA-del [(∆2LA, t2) ; (0,−δ∆3LD = −(δ∆3LDL + δ∆3LDR), [t3 − dt3, t3])] (σBE = 0)/dt3)×

×µP0 [(∆FLD, tF ) | (∆3LD = ∆3LDL + ∆3LDR, t3)] (σBE = 2)
]
. (53)

As in the previous cases, we attempt to save time and memory by performing com-

putations associated with the individual events, one after another. See appendix G for

details. The series of computations can be performed with the maximum time-complexity of

O({NP}2{LCO}4) and the maximum space-complexity of O(NP{LCO}3), which could be too

large for a single personal computer. Fortunately, the computations can be easily cast into

parallel or distributed computing, which reduces the maximum time- and space-complexities

to O({NP}2{LCO}3) and O(NP{LCO}2), respectively.

5.2.3 (e) A → DA
B-er→ DA → D

Now, we assume that the ”D”-region was created at some time in [t1, t1 + dt1], that the

”boundary-eroding” deletion occurred at some time in [t2− dt2, t2], and that the ”A”-region

was completely deleted at some time in [t3 − dt3, t3], with t1 + dt1 ≤ t2 − dt2 and t2 ≤

t3 − dt3. Here, the ”base” rate operators, Q̂ID
0 ’s, for the ”A”-region has σBE = 2 for t < t1,

and σBE = 1 for t > t1. Let ∆1LA and ∆2LA be the sizes of the ”A”-region at t1 and

t2, respectively, and let δ∆2LA be the number of sites in the ”A”-region deleted by the
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Figure 15: Setting for computing probabilities of 3rd-order pattern (e) (A → DA
B-er→ DA →

D), in Eq.54. This figure was created from the right panel of Figure 12, by adding further annotations.

Notes similar to those on Figure 11 apply also here.

”boundary-eroding” deletion. (And we also assume that the ”A”-region suffered no other

indels during [t2− dt2, t2].) Let ∆2LD and ∆3LD be the sizes of the ”D”-region at t2 and t3,

respectively, and let δ∆2LD and δ∆3LD be the numbers of sites in the ”D”-region deleted

by the ”boundary-eroding” deletion (in [t2 − dt2, t2]) and sites deleted in conjunction with

the complete deletion of the ”A”-region (in [t3− dt3, t3]), respectively. (And we also assume

that the ”D”-region suffered no other indels during [t2− dt2, t2] and [t3− dt3, t3].) Figure 15

illustrates the setting.

Under this setting, the contributions from the pattern (e) can be analytically expressed
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as:

µ
3rd (e)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=
∞∑

∆1LA=1

∞∑
∆2LA=1

∞∑
∆2LD=1

∞∑
δ∆2LA=1

∞∑
δ∆2LD=1

∞∑
∆3LD=1

∞∑
δ∆3LD=0

∫ tF−dt1−dt2−dt3

tI

dt1

∫ tF−dt3

t1+dt1+dt2

dt2

∫ tF

t2+dt3

dt3

[
µP0 [(∆1LA, t1) | (∆ILA, tI)] (σBE(IA) = 2)×

×µP0 [(∆2LA + δ∆2LA, t2 − dt2) | (∆1LA, t1)] (σBE1 = 1)×

× (µD-cr [(x = 1, [t1, t1 + dt1]) ; (∆2LD + δ∆2LD, t2 − dt2)] /dt1)×

× exp

{
−
∫ t2

t2−dt2
dτ2

[
∆RID

X (∆2LA + δ∆2LA, τ2) + ∆RID
X (∆2LD + δ∆2LD, τ2)

]}
×

×gD(δ∆2LA + δ∆2LD, t2)×

× (µA-del [(∆2LA, t2) ; (0,−δ∆3LD, [t3 − dt3, t3])] (σBE2 = 1)/dt3)×

×µP0 [(∆3LD + δ∆3LD, t3 − dt3) | (∆2LD, t2)] (σBE(D) = 2)×

× exp

{
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆3LD + δ∆3LD, τ3)

}
×

×µP0 [(∆FLD, tF ) | (∆3LD, t3)] (σBE(D) = 2)
]
. (54)

As we can see, this computation could be harder than the computations in the patterns

(a) and (c), because it involves summations over seven lengths, more than the six lengths

for the patterns (a) and (c)!! As in the previous cases, we will follow the general strategy,

and perform the computations serially. See appendix H for details. The largest compu-

tation step in this series of computations can be performed with the time-complexity of

O({NP}2{LCO}4) and the space-complexity of O(NP{LCO}3), which could be too large for

a single personal computer. Fortunately, the computation can be easily cast into parallel or

distributed computing, and be ”decomposed” into O({LCO}2) smaller-sized computations,

each of which has the time- and space-complexities of O({NP}2{LCO}2) and O(NP{LCO}2),

respectively.
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5.2.4 Summary

By combining all these results obtained in the previous sub-subsections, we can obtain the

total contributions from all the third-order terms, as follows:

µ3rd
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

=
∑

α= a, b, c, d, e, f

µ
3rd (α)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

= 2×
{ ∑
α= a, c, e

µ
3rd (α)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

}
. (55)

5.3 Notes on probabilities of gapped segments on boundaries

Provided that the evolution model at hand dictates how to handle indel rates on the boundary,

it is not so hard to derive the formulas for the probabilities of gapped segments on the se-

quence boundary: in each of the formulas provided in this section, just replace one of the

indel rates in the bulk with the indel rates on the boundary, when the entity in question is on

the boundary. One thing that must be kept in mind is that the probabilities of horizontally

symmetrical patterns (e.g., the 2nd-order patterns (ii) and (iii)) are not equal any longer.

Therefore, the summations given in sub-subsections 5.1.4 and 5.2.4 cannot be reduced to their

final forms, and you must compute the contributions from every single pattern diligently.

This can double the computational time compared to that for the bulk probabilities.

In the actual sequence study, boundary indel rates can vary greatly depending on a num-

ber of factors, including how the aligned sequences were prepared, and whether any biological

important sites or regions are on (or near) the boundaries. Therefore, without any clear ideas

on these factors, it may be a good idea to exclude gapped segments on the boundaries from

your data analyses.
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6 Implementing and Validating the New ”Perturba-

tion” Method

6.1 Implementation

The new ”perturbation” method proposed here was implemented into a package of proto-

type Perl scripts and Perl packages, named ”LASTPIECE( P),” which abbreviates ”Local

Alignment-STate Probability that Insertion-type and dEletion-type gaps Co-Exist(, Perl-

version).” The package can do the following:

1. it computes the multiplication factors of the probabilities of case-(i), (ii), (iii) and (iv)

gapped segments of ancestor-descendant PWAs under a (locally) space-homogeneous

genuine stochastic sequence evolution model;

2. currently, it explicitly incorporates the evolution model used by Dawg [48] with either

power-law or geometric indel length distributions, although it can easily be modified

to accept, any genuine evolution model (as long as it is (locally) space-homogeneous)

and/or any indel length distributions;

3. Its main master script, ’lastpiece.alpha.pl’, collectively computes the multiplication

factors of the gap-configurations with 1, 2, ..., NUB ancestral sites and/or with 1, 2,

..., NUB descendant sites, where NUB is a user-specified upper-bound, for a range of

time-lapses, from near zero to a user-specified maximum value;

4. by default, it computes the multiplication factors of the case-(iv) gapped segments up

to (and including) the 3rd-order perturbation level;

5. it does not only output the final results, i.e., the ”practically exact” multiplication

factors of case-(i), (ii) and (iii) gapped segments, as well as the factors of case-(iv)

gapped segments up to 3rd-order, but it does also output the total contributions from

the 2nd-order patterns (i) & (ii), and those from the 3rd-order patterns (a), (c) & (e);
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6. the package also has some supplementary scripts that enable simple analyses on the

computed multiplication factors, such as collectively calculating theoretically predicted

frequencies of gap-configurations, collectively calculating the ratios, each of a case-(iv)

multiplication factor to the corresponding product of case-(ii) and case-(iii) factors,

tallying the frequencies of gap-configurations in a set of simulated ancestor-descendant

PWAs, etc.

7. unfortunately, the current version computes only the probabilities in the bulk; however,

it is possible to implement the computation of probabilities on the boundaries (see

subsection 5.3); this is left as a future task.

It is worth noting that, once the main outputs of the main master script (”lastpiece.alpha.pl”)

are obtained, they can be fed again and again into algorithms to compute probabilities of

ancestor-descendant PWAs or MSAs(, as long as the computational parameters match);

such algorithms are integral parts of other program packages of ours, namely, LOLIPOG [1],

ComplLiMment [30], and ANEX [56]. 30

This package (LASEPIECE( P)) is available as an open-source package at the FTP repos-

itory of the ANEX project in Bioinformatics.org (https://www.bioinformatics.org/ftp/pub/anex/).

(Currently, the package runs on the Terminal of Mac OS X; it should run also on some other

UNIX platforms, including Linux, although we have not yet confirmed that it does.)

In the current version (ver. 0.3), the main master script (”lastpiece.alpha.pl”) performs all

the computational steps serially; it thus uses only a single CPU (or core) and is considerably

slow. As explained in appendixes E through H, however, most of the computational steps

30 This strategy of pre-computing and re-using the multiplication factors has already been suggested in

Additional File 1 of [1], and has actually been implemented since version 0.6 of LOLIPOG( P) [1] and

version 0.6 of ComplLiMment( P) [30], both of which were released in 2015. We learned that a recent

”simulation-based” approach to statistical PWA [53] also employs this strategy of pre-computing and re-

using the probabilities of gapped segments (more precisely, ”chop-zones” in their study). We do not know

whether they have just borrowed our idea or independently come up with this strategy by themselves.
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can be easily cast into parallel or distributed computing; we expect that, once this is done,

and if the main scripts are also translated into C, for example, the computation could be

more than 1000 times faster (if distributed to about 100 CPUs).

6.2 Validation via in silico experiments

In order to validate the method presented here, we simulated the evolution of 100,000 DNA

sequences, each of which was 10,000 bases long initially, down each of the time-intervals

of 0.2, 0.5, and 1.0 (in the unit of the expected number of substitutions per site); then, we

counted how frequently each configuration of the gapped segments occur in the bulk (i.e., not

on either end) of the resulting ancestor-descendant PWAs; and finally, compared such ”ob-

served” frequencies 31 of the gap-configurations with their theoretically expected frequencies

computed from the multiplication factors obtained by running ”lastpiece.alpha.pl” described

in the previous subsection. (Appendix I explains how we computed the theoretically expected

frequencies from the multiplication factors.)

The simulation parameters used are: insertion rate = deletion rate = 0.1 (events/site/unit-

time); upper-bound of the insertion length = upper-bound of the deletion length = 100;

insertion- and deletion-length distributions are both power-law with the exponent of -1.6

(i.e., {frequency} ∝ L−1.6, where L is the indel length).32

We matched these parameters with the corresponding parameters for ”lastpiece.alpha.pl”.

The remaining important parameters for ”lastpiece.alpha.pl” are set as follows: upper-bound

of the number of initial or final sites for the multiplication factors to be output = 100;

upper-bound of the number of sites as the arguments of multiplication factors (such as

31It should be kept in mind that the ”observed” frequency of each configuration is a stochastic variable,

which in general approximately follows a Poisson distribution. Thus, when dealing with an ”observed”

frequency, don’t forget that it is actually fluctuating, with its standard error well-approximated by its square

root. (For example, when an ”observed” frequency is 100, its standard error is about 10 (=
√

100).)
32Parameters for substitutions are irrelevant, because we are interested exclusively in insertions/deletions

here.
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µP0 [(∆L2, t2) | (∆IL1, t1)] (σBE)) to be computed = 150 33; size of the sub-time-interval (cor-

responding to dt) = 0.01. On our Mac Pro (Late 2013) desktop computer (with OS version

10.11.6, with one 3.5 GHz 6-core Intel Xeon E5 Processor and 16 GB physical memory),

using only a single core, it took 307 hours and 51 minutes, or 12.83 days, to finish this

computation.

The full results of the numerical computation are freely available as an archive file that ac-

companies LASTPIECE( P) at the Bioinformatics.org FTP repository (https://www.bioinformatics.org/ftp/pub/anex/).

Here, we only show the results at some sample points, which we believe are enough to demon-

strate the accuracy of our new perturbation method.

In a previous study of ours [1], we compared the multiplication factors of case (ii) and

case (iii) gapped segments at various perturbation levels to the ”practically exact” solutions;

in that study, however, the ”practically exact” solutions themselves were not validated. Here,

we first conduct this validation, by comparing the theoretically expected frequencies of case

(ii) and case (iii) gap-configurations computed from the ”practically exact” multiplication

factors to the frequencies ”observed” in the simulated PWAs. As shown in Table 1, the

”practically exact” theoretical frequencies do indeed approximate the actually ”observed”

frequencies extremely well ! (Although the table here shows the results for case (ii) gapped

segments only, the approximations are actually extremely good also for case (iii).)

Then, we go on to validate our main subject, i.e., the multiplication factors of the case-

(iv) gapped segments. Tables 2, 3, and 4 show the results with the time-lapses of 0.2, 0.5, and

1.0, respectively 34; each table compares some observed frequencies with the corresponding

theoretical expectations by only parsimonious indel histories, by parsimonious plus next-to-

parsimonious indel histories, by our new perturbation method (2nd-order only), and by our

33This value was chosen in order to take some account of the effects of intermediate states with more than

100 sites, while keeping the computation-time from growing tremendously.
34These translate to 0.04, 0.1, and 0.2 indels/site, respectively, under the current setting of {total insertion

rate} = {total deletion rate} = 0.1 events/unit-time.
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Table 1: ”Practically exact” theoretical frequencies compared to ”observed” frequences: for

case (ii) gap-configurations

Time-lapse = 0.2 Time-lapse = 0.5 Time-lapse = 1.0

nA
∗ Theor.† Obs.‡ (Ratio[) Theor.† Obs.‡ (Ratio[) Theor.† Obs.‡ (Ratio[)

1 7647035 7639772 (1.001) 14545190 14520543 (1.002) 18462846 18425261 (1.002)

2 2555279 2556655 (0.999) 4954761 4956088 (1.000) 6476811 6471697 (1.001)

5 592030 592456 (0.999) 1154814 1154915 (1.000) 1524810 1523018 (1.001)

10 195150 195096 (1.000) 380309 379167 (1.003) 501694 500482 (1.002)

20 64347 63781 (1.009) 125332 124964 (1.003) 165252 164916 (1.002)

30 33672 33714 (0.999) 65690 65579 (1.002) 86816 86379 (1.005)

40 21285 20923 (1.017) 41621 41318 (1.007) 55183 54745 (1.008)

50 14914 14798 (1.008) 29218 28968 (1.009) 38844 38681 (1.004)

60 11141 11046 (1.009) 21830 21688 (1.007) 29054 28959 (1.003)

70 8679 8631 (1.006) 16950 16559 (1.024) 22528 22171 (1.016)

80 6934 6867 (1.010) 13411 13438 (0.998) 17755 17477 (1.016)

90 5548 5442 (1.019) 10491 10163 (1.032) 13866 13563 (1.022)

100 3511 3375 (1.040) 6867 6724 (1.021) 9763 9673 (1.009)

(The total indel rate is 0.2 indels/site/unit-time.)

∗ The number of ancestral sites.

† The theoretically expected frequency computed from the ”practically exact” multiplication factor

(rounded to the nearest whole number).

‡ The frequency observed in simulated PWAs.

[ The ratio of the theoretically expected frequency to the observed frequency (rounded to the nearest thousandth).
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new perturbation method (2nd-order plus 3rd-order). 35

These tables clearly indicate that the new perturbation method provides a dramatic im-

provement in the accuracy, compared to our previous method based only on parsimonious

(and possibly next-to-parsimonious) contributions; the accuracy improvement gets more re-

markable as the numbers of sites increase. In fact, the theoretical prediction by the new

perturbation method is amazingly accurate: even with only the 2nd-order terms, the predic-

tion is more than a half of the observation up to (and including) 75 ancestral (=descendant)

sites (when time-lapse = 0.5); if we incorporate the 3rd-order terms, this is the case even up

to (and including) 95 sites and even with time-lapse = 1.0!! 36

Still, accounting for just a little over 1
2

of the observation may not be satisfactory for

some people or some sorts of applications. As far as we can think of, there are at least

three potential causes of these underestimations: (1) insufficiently fine partition of the time-

interval, (2) insufficient incorporation of the effects of gapped segments containing more sites

than the upper-bound for the output, and (3) lack of the 4th- or higher order terms. They

are detailed in the following.

(1) In our in silico experiment, we used the sub-time interval of 0.01 (= ∆t). This may

35The frequencies compared here are ”double-cumulative” frequencies. The double-cumulative frequency

at (x, y) is defined by the summation of the frequencies over nA = x, ..., nUB
A and nD = y, ..., nUB

D . Here,

nA is the number of ancestral sites in the gapped segment, nD is the number of descendant sites in the

gapped segment; nUB
A and nUB

D are the upper-bounds of nA and nD, respectively. In this validation study,

nUB
A = nUB

D = 100. These double-cumulative frequencies were used here because each particular case-(iv)

configuration occurred only less than once in our simulated PWAs if both ancestral sites and descendant

sites are many (∼100).
36These tables (i.e., tables 2, 3, and 4) may give you an impression that the theoretically expected

frequencies substantially underestimate the observed frequencies at small values of nAD. Such ostensible

underestimates actually resulted mostly from the underestimated frequencies of larger gap-configurations.

(Remember that the tables show double-cumulative frequencies.) Indeed, when comparing the expected raw

frequencies of individual gap-configurations with the observed ones, the expected frequencies (via 2nd + 3rd

order) are nearly 100% of the observed ones at nAD = 1, and about 95% at nAD = 10.
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not have been sufficiently fine, especially when considering a large number of sites. For

example, when ∆L = 100 and gI(τ) = gD(τ) = 0.1, the increment of the exact rate is

∆RID
X (∆L, τ) = (gI(τ)+gD(τ))×∆L = 0.2×100 = 20. Thus, ∆t×∆RID

X (∆L, τ) = 0.2.

This means that the region having 100 sites could suffer an indel in nearly 20% of the cases

even during the smallest time-interval, ∆t; this in turn means that a considerable fraction

of events (or histories) could have been ignored in our numerical computation. This effect of

”coarse-graining” is also indicated by the somewhat unexpectedly poor accuracy for the cases

with the time-interval = 0.2, which is approximated by only 20 sub-intervals. At present, the

only remedy for this problem is to use a smaller sub-time interval. Since the computational

steps are at most O({NP}2), where NP is the number of partitions (of the largest time-

interval, which is 1.0 in this study), the computational time is expected to become 4 times

as long if ∆t is halved, and 16 times as long if ∆t is quartered.

(2) In numerical computations, we always need to set an upper-bound (say, 100) of the

number of sites that the subject region can contain. On the other hand, the actual evolution

of sequences should not care about such an artificial upper-bound; in other words, there

could be evolutionary histories in which the subject region contained more sites than the

upper-bound once(, or twice, ...) in the middle of the evolutionary course, and in which

the number of its sites finally got within the upper-bound. The contributions from such

evolutionary histories are destined to be ignored, and the effects of such ignored histories are

expected to be bigger as the number of (initial or final) sites approaches the upper-bound.

One way to alleviate the effect of these ignored histories is to set two kinds of upper-bounds,

one for the purpose of computation and the other for the purpose of the output. (The former

is usually larger than the latter.) Actually, we took this measure: setting the upper-bound

of 150 for computation and 100 for the output (shown in the tables in this paper). We

also perform the computation using the upper-bound of 100 for both computation and the

output (data not shown); the comparison of both results clearly indicated that this ”enlarged

upper-bound for computation” —em does work, sometimes enhancing the prediction up to

63



2- or 3-fold (especially when the time-lapse is large). However, it remains to be seen whether

this upper-bound of 150 for computation was enough or not. For example, increasing the

upper-bound to 200 may dramatically improve the accuracy further. The problem is that

the site-number dependence of the computational time could be O({LCO}4), where LCO is

the upper-bound of the site number for computation. Thus, using 200 instead of 150 could

more than triple the computational time.

(3) The current version of LASTPIECE( P) incorporates up to (and including) the 3rd-

order contributions. It is quite natural to expect that the accuracy will improve further

if the 4th or higher-order contributions are also incorporated. We expect that the 4th-

order terms will substantially increase the accuracy, because the 4th-order terms includes

the evolutionary histories in which both insertions and deletions occur in the middle of

the region. Insertions/deletions (indels) occurring in the middle of the region can occur at

multiple alternative positions, whereas indels occurring at either end of the have only two

options, at most. Thus, the number of possible histories could substantially increase if the

indels occur in the middle. This is the reason why the 4th-order terms are expected to

improve the accuracy substantially. We are not sure, however, how much the 5th or higher

order terms will improve the accuracy.

Of the above three potential causes, (1) and (2) should be rectified relatively easily: as

long as you have enough time, computer memory and storage, just changing the parameters

and runring the current version of LASTPIECE P would solve (or ease) the problem. Still,

this consumes a tremendous amount of computational time, and thus translating into C

and/or introducing parallel (or distributed) computing will greatly enhance the utility of the

method. We recommend addressing problem (3) only after problems (1) and (2) are taken

care of. It is possible that, as long as LCO is around 100, solving problems (1) and (2) should

provide enough accuracy, and that solving (3) should gain only a limited improvement. It

is certain, however, incorporating higher-order terms should improve the accuracy if LCO

increases further.
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Table 2: Comparing ”observed” frequences ∗ with various theoretical expectations: for case

(iv) gap-configurations with time-lapse = 0.2 (or 0.04 indels/site)

Observed† Theoretically expected ‡

nAD
∗ — parsimonious parsimonious

+ next-to-

parsimonious

new-

perturbation[,

2nd order

new-

perturbation[,

2nd + 3rd order

1 839485 584428 (0.70)♣ 735068 (0.88) 759127 (0.90) 782203 (0.93)

2 389944 206152 (0.53) 304891 (0.78) 338223 (0.87) 357031 (0.92)

5 164745 56895 (0.35) 104936 (0.64) 135579 (0.82) 147156 (0.89)

10 79684 18007 (0.23) 40373 (0.51) 63333 (0.79) 70104 (0.88)

25 21078 2024 (0.096) 6213 (0.29) 15684 (0.74) 17759 (0.84)

50 3219 119 (0.037) 475 (0.15) 2328 (0.72) 2656 (0.83)

75 285 5.8 (0.020) 25 (0.088) 206 (0.72) 234 (0.82)

90 21 0.40 (0.019) 1.5 (0.071) 15 (0.71) 17 (0.81)

95 6 0.088 (0.015) 0.29 (0.048) 2.8 (0.47) 3.2 (0.53)

∗ The frequencies compared here are ”diagonal”, ”double-cumulative” frequencies, which at nAD is defined here

as the summation over #{ancestral sites} = nAD, ..., 100 and #{descendant sites} = nAD, ..., 100.

† The frequency observed in simulated PWAs.

‡ The theoretically expected frequency computed from the ”practically exact” multiplication factor.

(Theoretically expected frequencies are written to two significant figures if they are less than 10;

otherwise, they are rounded to the nearest whole number.)

[ The new perturbation method proposed in this paper.

♣ The parenthesized number in each cell of the 3rd, .., or 6th column is the ratio

of the theoretically expected frequency to the observed frequency (written to two significant figures).

65



Table 3: Comparing ”observed” frequences ∗ with various theoretical expectations: for case

(iv) gap-configurations with time-lapse = 0.5 (or 0.1 indels/site)

Observed† Theoretically expected ‡

nAD
∗ — parsimonious parsimonious

+ next-to-

parsimonious

new-

perturbation[,

2nd order

new-

perturbation[,

2nd + 3rd order

1 4115710 2114384 (0.51)♣ 2932548 (0.71) 3667248 (0.89) 3940229 (0.96)

2 1983127 594118 (0.30) 1053356 (0.53) 1633121 (0.82) 1854776 (0.94)

5 862274 106693 (0.12) 259875 (0.30) 641992 (0.74) 776779 (0.90)

10 430149 20742 (0.048) 66275 (0.15) 296020 (0.69) 374083 (0.87)

25 118736 893 (0.0075) 4109 (0.035) 72998 (0.61) 96877 (0.82)

50 19752 29 (0.0015) 136 (0.0069) 11109 (0.56) 15063 (0.76)

75 2041 2.1 (0.0010) 7.7 (0.0038) 1068 (0.52) 1456 (0.71)

90 214 0.22 (0.0010) 0.74 (0.0035) 93 (0.43) 130 (0.61)

95 53 0.057 (0.0010) 0.18 (0.0034) 21 (0.40) 30 (0.57)

∗, †, ‡, [, ♣ the same notes as in Table 2 apply.
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Table 4: Comparing ”observed” frequences∗ with various theoretical expectations: for case

(iv) gap-configurations with time-lapse = 1.0 (or 0.2 indels/site)

Observed† Theoretically expected ‡

nAD
∗ — parsimonious parsimonious

+ next-to-

parsimonious

new-

perturbation[,

2nd order

new-

perturbation[,

2nd + 3rd order

1 10964544 4031861 (0.37)♣ 6088386 (0.56) 9172625 (0.84) 10448969 (0.95)

2 5596227 879561 (0.16) 1850172 (0.33) 4085212 (0.73) 5114311 (0.91)

5 2548574 95576 (0.038) 294546 (0.12) 1557902 (0.61) 2170348 (0.85)

10 1322899 10819 (0.0082) 43926 (0.033) 703358 (0.53) 1051858 (0.80)

25 393051 288 (0.00073) 1249 (0.0032) 172182 (0.44) 278141 (0.71)

50 72832 16 (0.00022) 58 (0.00080) 27321 (0.38) 45839 (0.63)

75 9131 1.3 (0.00014) 4.8 (0.00053) 2969 (0.33) 5077 (0.56)

90 1045 0.15 (0.00014) 0.50 (0.00048) 311 (0.30) 543 (0.52)

95 262 0.037 (0.00014) 0.12 (0.00046) 77 (0.29) 136 (0.52)

∗, †, ‡, [, ♣ the same notes as in Table 2 apply.

67



6.3 Significance of genuine sequence evolution model

Since we confirmed that the new perturbation method enables us to compute the multiplica-

tion factors of case-(iv) gapped segments quite accurately already at the 3rd-order level, we

can use now these multiplication factors to compare the case-(iv) multiplication factors to the

product of the corresponding case-(ii) and case-(iii) multiplication factors at the same finite

time-lapse. Previously [1], this comparison was made only in the limit where the time-lapse

approaches 0 (zero).

Table 5 shows the results, in terms of the ratio of a raw case-(iv) factor, which was

computed up to (and including) the 3rd order, to the product of practically exact case-(ii)

and -(iii) factors. (The table shows only the ratios of some ”diagonal” configurations, with

#ancestral residues = #descendant residues = nAD.) It is noteworthy that the ratio vary

greatly, from around 1.5 at nAD = 1 to over 15 at nAD = 50; the ratio does not seem to

depend so much on the time-lapse at least up to nAD = 50. We consider that the results

for nAD > 50 are more or less due to artifacts caused by the finite upper-bound of the

indel lengths (, which is 100 here); especially with a small time-lapse, the ratio is mostly

determined by the overlapping indels in the 2nd-order patterns (ii) and (iii), and the number

of such indels decreases as nAD increases.

It should be noted that, in the simple generalized HMM of Kim and Sinha [58], this ratio

should be 1 (unity), independently of the numbers of ancestral and descendant residues.

Standard HMMs (e.g., [37]) are also expected to give more or less similar results. Therefore,

this Table 5 demonstrates how important it is to use genuine sequence evolution models when

accurately computing (and comparing) the probabilities of ancestor-descendant PWAs, which

in turn will provide building blocks in the computation of MSA probabilities (e.g., [3, 30],

which borrowed the concept of phylogenetic MSA construction from [63, 64]).

Some might argue that generalized HMMs (e.g., [65]) should provide enough flexibility

to incorporate such variations in the relative probabilities of gapped segments (see, e.g., [66];
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but also see [67] to prevent your view from being biased). Although their claim may be true

in a sense, you must remember that generalized HMMs should suffer from the ”agony of

the rich”; that is, generalized HMMs should in general have a compromised predictive power

because it can accommodate much more degrees of freedom than necessary. It should be

noted that the variation in the ratio shown in Table 5 is nothing other than a consequence of

the evolutionary principle, and thus it is a theoretical prediction that emerged naturally from

the nearly accurate computation under the genuine sequence evolution model; to obtain it

with a genuine evolution model, you don’t need to artificially adjust any parameters. The

above consideration definitely argues for the necessity of using genuine sequence evolution

models for an accurate computation of alignment probabilities.

Of course, you could use some generalized HMMs with the parameters adjusted so that

they will reproduce the evolutionary features as shown in Table 5. In this case, however,

you already depended on the genuine sequence evolution model, and thus its indispensability

will never be compromised at all. Besides, there may be other yet undiscovered features

of the genuine sequence evolution model that cannot be reproduced by the aforementioned

parameter-adjusted generalized HMMs. 37

7 Discussions

As indicated by previous studies (e.g., [10, 29, 30]), reconstructing a sequence alignment

is a crucial yet highly error-prone step, and one of the major causes of errors is the inher-

ent stochasticity of sequence evolution processes (e.g., [31, 32, 30]). This fact necessitates

the probability distribution of alignments under the genuine sequence evolution model, and

makes it all the more crucial to compute the probabilities of sequence alignments as ac-

37The exceptions to these arguments are generalized HMMs that have been directly derived from genuine

sequence evolution models. For example, the ”long indel” model [2] and the models proposed (and used) in

our previous works [3, 1, 30] fall into this category.
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Table 5: Comparing case-(iv) multiplication factors ∗ to product of case-(ii) and case-(iii)

multiplication factors

nAD
∗ Time-lapse = 0.2 Time-lapse = 0.5 Time-lapse = 1.0

1 1.58 † 1.62 1.62

2 1.94 2.03 2.09

5 3.18 3.36 3.51

10 5.26 5.62 5.88

25 10.91 11.76 12.23

50 16.22 17.34 17.87

75 13.52 14.79 16.51

90 7.58 10.13 13.96

95 5.15 8.65 13.44

100 3.39 8.63 14.39

(The total indel rate is 0.2 indels/site/unit-time.)

∗ The case-(iv) multiplication factors compared here are raw, ”diagonal”, factors,

with #{ancestral sites} = #{descendant sites} = nAD.

† The number in each cell is the ratio of the case-(iv) multiplication factor (2nd + 3rd order) to

the product of corresponding case-(ii) and case-(iii) multiplication factors. More precisely:

µ2nd + 3rd
P case-(iv)

[(nAD, tF ) | (nAD, tI)]/
{
µP case-(ii) [(−, tF ) | (nAD, tI)]× µP case-(iii) [(nAD, tF ) | (−, tI)]

}
,

with tF − tI = 0.2, 0.5, or 1.0. Each ratio is written to the nearest hundredth.
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curately as possible. Fortunately, the probability of alignments under a genuine sequence

evolution model is factorable into the product of an overall factor and contributions from

gapped segments (e.g., [2]), provided that the model satisfies a couple of conditions [3].

Regarding ancestor-descendant PWAs, the gapped segments were classified into the four

categories, namely, case-(i), -(ii), -(iii) and -(iv) segments [1]. In a previous work of ours

[1], we provided a pair of methods to numerically compute practically exact probabilities

of case-(i), -(ii) and -(iii) segments, but left the computation of practically or nearly exact

probabilities of case-(iv) segments unresolved as the ”last piece of the puzzle”.

In this study, aiming to resolve this ”last piece of the puzzle”, we constructed a new

”perturbation” method, by reformulating the previous perturbation framework of genuine

sequence evolution model [3, 1]. The validation analyses indicated that new ”perturbation”

method works considerably well, computing the probabilities of case-(iv) segments fairly

accurately, already at the 3rd-order level (when the 2nd-order is the lowest), even when

both the numbers of ancestral and descendant residues are near the upper-bound of 100.

(See Tables 2, 3, and 4.) Now that we can compute fairly accurate probabilities of case-

(iv) segments, we should be able to compute the probabilities of ancestor-descendant PWAs

fairly accurately. Moreover, using the technique of stacking up ancestor-descendant PWAs

along the phylogenetic tree [63, 64, 3, 30], we could also compute the probabilities of MSAs

much more accurately than in the previous efforts (e.g., [30]). In fact, in view of the result

that the approximation by parsimonious and next-to-parsimonious indel histories are pretty

poor when gaps are considerably long (Tables 2, 3, and 4), it may be better to revisit the

previous analyses on MSA errors [30], using the results of this new perturbation method.

Meanwhile, the results of our analysis (Table 5) revealed an important feature of genuine

sequence evolution that can never be reproduced by other, non-evolutionary, probabilistic

models of sequence alignments, including standard HMMs, reconfirming our previous claim

[1] that using genuine sequence evolution models is indispensable to the computation of ac-

curate probability distribution of sequence alignments, hence to the truthful ”reconstruction”
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of sequence alignments.

Each term of the case-(iv) probability in our new perturbation method (in section 5)

involves multiple time-integrations and multiple summations over intermediate states (in

terms of the number of residues), and its näıve numerical computation could take practically

forever even with current state-of-the art desktop computers 38 Fortunately, such multiple

time-integrations combined with multiple summations could be unraveled into a series of

much lighter (i.e., less complex) computations, just as in the pruning algorithm for computing

the likelihood of a tree given an MSA (e.g., [59, 60, 61]).

We implemented the computational method up to (and including) the 3rd-order into a

package of Perl scripts and modules, named ”LASTPIECE( P),” which is short for ”Local

Alignment-STate Probability that Insertion-type and dEletion-type gaps Co-Exist(, Perl-

version).” Although the current version (ver. 0.3) is fairly slow, it could potentially be

speeded up 1,000-fold or more, if it is translated into a more time-efficient language, such as

C, and if a few parts of particularly heavy computations are cast into parallel (or distributed)

computing. And you must not forget that, once the program finishes running, the obtained

results can be reused over and over again, and fed into other programs to compute fairly

accurate probabilities of PWAs or MSAs, including our new program package, ”ANEX P”

(”Alignment Neighborhood EXplorer(, Perl-version)”), that approximately computes the

probability distribution of alternative MSAs under some genuine sequence evolution model

with realistic indels [56]. 39

We expect that extending the computation to the 4th- or 5th-order will further improve

the accuracy, at some expense of computational time. Although you may be able to imple-

ment the 4th-order computations in an ad-hoc manner, as we did in the 2nd- and 3rd-orders,

38The situation may change once quantum computation technologies become feasible and widely available

in the future.
39This strategy of pre-computing and re-using the multiplication factors is very similar to the strategy

employed by a recent ”simulation-based” approach to statistical PWA [53]. We are sure, however, that we

have devised the strategy by ourselves. See footnote 30 for more details.
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it would be a greatly painstaking job. And we expect that an ad-hoc implementation of

the 5th-order computations would be almost impossible, unless a large number of excellent

experts are involved. Thus, the key to implement such higher-order computations should

be to devise a way to unravel the higher-order computation automatically, like the pruning

algorithm for computing the tree likelihood under a given residue configuration of an MSA

(e.g., [59, 60, 61]). It should be remembered that the computation of 2nd- and 3rd-order

terms were performed by merging the building blocks one after another in a bottom-up man-

ner, and there seem to be some patterns regarding how the blocks are merged, although we

are not sure whether the patterns have already been exhausted or not. In any case, imple-

menting individual merger processes in these patterns and unraveling each term into a series

of these merger patterns should be the key to the automated computation of higher-order

terms.

The success of our new perturbation method implies that a similar method may work

also for the probabilities of MSAs. We believe that the key to the success of this new per-

turbation method was its smart classification of indel events into ”base” and ”perturbation”

indels. Specifically, ”base” indels are indels not changing the coloring pattern, which can

occur relatively frequently because of their rich positional degrees of freedom; ”perturbation”

indels, on the other hand, are indels changing the coloring pattern, which occur relatively

rarely because of their positional constraints. When dealing with MSAs, (the topology of)

the ancestral states, i.e., sequence states at internal nodes, may be the analog of the coloring

pattern for an ancestor-descendant PWA. Indeed, indel histories that keep the ancestral-state

topology includes all the indels histories that keep the ancestor-descendant PWAs along indi-

vidual branches. And, using the results of this study and a previous study of ours [1], we are

now capable of computing nearly exact probabilities of ancestor-descendant PWAs. There-

fore, by reformulating the probability of an MSA, from the summation over all indel histories

that creates the gap-configuration of the MSA to the summation over all sets of ancestral

states that are consistent with the MSA (exactly as the reformulation from Eqs.(R7.4&2) to
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Eqs.(R7.5&6) of [3]), and by sorting the sets of ancestral states in order of increasing com-

plexity, we may construct a ”perturbation method” to compute MSA probabilities. And, as

the results of this paper suggest, even the contributions from parsimonious (and maybe plus

next-to-parsimonious) sets of ancestral states 40 alone may provide fairly accurate probabil-

ities of MSAs (more precisely, probabilities of gapped segments in MSAs). For example, we

previously estimated the frequencies of gapped segments in the MSAs of three sequences

using only parsiminous indel histories, and found a small but non-negligible subset of (prob-

ably long) segments whose frequencies were substantially underestimated (Figure 6 b of [1]).

Using the method suggested in this paragraph could dramatically reduce such underestimates

of (long-)segment frequencies. (Of course, it should be examined whether these expectations

are indeed the case or not ,e.g., via in silico experiments.)

It should be noted here that the method presented in this paper is applicable to any

natural continuous-time Markov models of insertions/deletions, with any (yet biologically

meaningful) total rates and any length distributions of insertions and deletions as long as

the rates and distributions are uniform at least within each gapped segment(, and as long

as the entire sequence evolution model satisfies the factorability conditions [3]). This means

that, in principle, 41 the method may be applied also to indel length distributions other than

the power-law distributions (e.g., [39, 40, 41, 42, 43, 44, 45]), which in a sense represent

”average” behaviors, to incorporate more ”genome-specific” or ”region-specific” behaviors.

For example, insertions of transposable elements e.g., [68, 69]) may be incorporated; the

simplest way to do this would be to merely add a delta-function-like spike in the insertion

length distribution; a more refined way may be to allow the insertions at inter-site positions

whose flanking sites show some specific ”motif”s, or their approximations with runs of an-

40These should not be confused with parsimonious (and maybe plus next-to-parsimonious) indel histories,

because the former can result in indel histories with practically unlimited numbers of indels, albeit following

strict constraints at all internal nodes.
41The current version of LASTPIECE( P) has not implemented this feature yet.
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cestry indexes (assuming that the ”motif”s are nearly conserved during the time-interval in

question). Another example would be the incorporation of the evolution of tandem repeat

arrays (like micro-satellites and mini-satellites) (e.g., [70, 71, 72]). It may be harder to incor-

porate it, because tandem arrays show complex evolutionary patterns (e.g., [70]). However,

provided that their evolution can be well-approximated with continuous-time Markov models,

and provided that the model allows the decomposition into the ”base” and ”perturbation”

parts (as in subsection 4.2 of this study), the method in this paper should be applicable

(maybe with some modifications).

Incidentally, the creation and deletion of ”D(escendant)” and ”A(ncestral)” segments in

this new ”perturbation” method (as seen in section 2) may be reminiscent of the ”birth-

death” processes of single sites in the TKF91 model [35]. In this sense, this new ”perturba-

tion” method may be considered as an ”extension” of TKF91’s ”birth-death” approach [35]

to realistic models of insertion/deletion, although we are not sure yet as to how rigorously

this ”extension” makes sense. In any case, delving further into the theoretical side of this new

”perturbation” method may lead to some (analytical or numerical) methods that are much

faster and/or much more accurate than the numerical computational method presented in

this paper.

To summarize, the new perturbation method constructed in this study enable us to com-

pute case-(iv) probabilities fairly accurately, and thus providing the ”last piece of the puz-

zle” of accurately computing the probabilities of ancestor-descendant PWAs under genuine

sequence evolution models (with any natural length distributions of insertions/deletions).

Combined with our new program package, ”ANEX P,” to approximately compute the prob-

ability distribution of alternative MSAs [56], this study (and its main product, ”LAST-

PIECE P”) will open up the possibility of the truthful reconstruction of sequence alignments,

and thus for more accurate evolutionary analyses of homologous biological sequences.
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7.1 Final Note

Some of our comments in this paper or other papers may sound like harsh criticisms on

other researchers or their works. We strongly urge the readers to understand that such

comments are our candid expressions of our sincere and pure hope for the advance of the

science in the right direction, and that we have no intension to attack, harm, or hurt anybody

or anybody’s works. It should be kept in mind that we, all hard-working researchers in the

world, are not enemies to each other but actually comrades to each other, who are fighting

against the common enemies, i.e., insufficient understanding of the Mother Nature and the

lack of tools potent enough to uncover the essence of natural phenomena, as well as being

complacent of the status quo like that. We truly hope for the future where we, all researchers,

go hand-in-hand with each other to improve our understanding of the Mother Nature, by

bringing together ones’ own strengths under the common cause instead of competing against

each other or even sabotaging each other’s studies , and by sharing all information with

each otherinstead of keeping crucial information to oneself. Then, our understanding of the

Mother Nature should surely improve much faster than we’ve ever experienced. (If, however,

there are, by any chance, corrupt researchers who are indulging in the complacency and/or

who attempt to deform the scientific truths to their own interests, we wlll resolutely fight

against them.)
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Appendixes

A Iteratively Solving Integral Equations for ”Basic”

Multiplication Factors, Eq.30

In subsection 4.2, we provided a very fast method to compute the ”basic” multiplication

factors (Eq.30) in a practically exact manner, by directly approximating the definition of the

finite-time evolution operator (Eq.31). Here, we describe another approach to the compu-

tation, based on the iterative solution of the integral equations, like the practically exact

computation of case-(i), (ii), and (iii) multiplication factors that we derived previously [1].

Although this approach is somewhat slower than the definition-based approach, it has an

advantage that the upper-bound of the number of insertions/deletions (indels) incorporated

can be controlled totally independently of the accuracy of numerical computation of the

time integrations. Therefore, the approach provided here should be more suitable than the

definition-based approach when examining, e.g., how the accuracy of the computed multipli-

cation factors depends on the maximum number of indels considered, as we did previously

regarding case-(ii) and (iii) multiplication factors [1]. 42

First, by sandwiching the integral equation,Eq.(R4.5) in a previous paper of ours [3]

(rewritten for P̂ ID
0 (i; t+k , t

−
k+1)), with 〈∆L(i; I) | and | ∆L(i;F )〉, and by explicitly recording

the dependence on σBE(i) (
def
= σB(i) + σE(i)), we get:

µP0

[
(∆L(i;F ), t−k+1) | (∆L(i; I), t+k )

]
(σBE(i))

= δ(∆L(i; I),∆L(i;F )) exp

{
−
∫ t−k+1

t+k

dt∆RID
X (∆L(i; I), t)

}
42Another possible merit would be that the method provided here involves time integrations, which could be

done via a more accurate algorithm, whereas the definition-based method involves multiple-multiplications to

approximate an infinite-multiplications; (I do not know any methods that substantially improve the accuracy

of the infinite-multiplications over multiple-multiplications.)
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+ (∆L(i; I)− 1 + σBE(i))

LCO
I∑
l=1

∫ t−k+1

t+k

dt
[
exp

{
−
∫ t

t+k

dτ∆RID
X (∆L(i; I), τ)

}
×

×gI(l, t)× µP0

[
(∆L(i;F ), t−k+1) | (∆L(i; I) + l, t)

]
(σBE(i))

]
+

min(∆L(i;I)−1,LCO
D )∑

l=1

(∆L(i; I)− l + 1)

∫ t−k+1

t+k

dt
[
exp

{
−
∫ t

t+k

dτ∆RID
X (∆L(i; I), τ)

}
×

×gD(l, t)× µP0

[
(∆L(i;F ), t−k+1) | (∆L(i; I)− l, t)

]
(σBE(i))

]
. (56)

Here, δ(∆L,∆L′|) is Kronecker’s delta, which equals 1 if ∆L = ∆L′|, and 0 otherwise; gI(l, t)

is the rate of an insertion of length l between a given pair of contiguous sites at time t, and

gD(l, t) is the rate of the deletion of a specific sub-sequence of length l at time t. Here, we

also introduced the cut-off lengths, LCOI and LCOD , for insertions and deletions, respectively.

As in section SM-3 of a previous study of ours [1], the above integral equation system

can be solved by iteration. The starting point is the ”zero-event approximation” :

µ
〈0〉
P0

[
(∆LF , t

−
k+1) | (∆Lt, t)

]
(σBE)

= δ(∆Lt,∆LF ) exp

{
−
∫ t−k+1

t

dτ∆RID
X (∆Lt, τ)

}
. (57)

Here and below, we use the ”short-hand” notations, ∆LF for ∆L(i;F ) ∆Lt for ∆L(i; t), and

σBE for σBE(i), purely for clarity. And let µ
〈nS〉
P0

[
(∆LF , t

+
k ) | (∆Lt, t)

]
be the approximation

at the nS th step, which includes all the responsible indel histories (in the ”base” rate

operator) with nS or less indels. Then, by solving the following recursion relation, we can

improve the approximation one by one, to the accuracy level we desire (provided that we

have enough time to do so):

µ
〈nS〉
P0

[
(∆LF , t

−
k+1) | (∆Lt, t)

]
(σBE)

= δ(∆Lt,∆LF ) exp

{
−
∫ t−k+1

t

dτ∆RID
X (∆Lt, τ)

}

+ (∆Lt − 1 + σBE)

LCO
I∑
l=1

∫ t−k+1

t

dt′
[
exp

{
−
∫ t′

t

dτ∆RID
X (∆Lt, τ)

}
×

×gI(l, t′)× µ〈nS−1〉
P0

[
(∆LF , t

−
k+1) | (∆Lt + l, t′)

]
(σBE)

]
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+

min(∆Lt−1,LCO
D )∑

l=1

(∆Lt − l + 1)

∫ t−k+1

t

dt′
[
exp

{
−
∫ t′

t

dτ∆RID
X (∆Lt, τ)

}
×

×gD(l, t′)× µ〈nS−1〉
P0

[
(∆LF , t

−
k+1) | (∆Lt − l, t′)

]
(σBE)

]
. (58)

As in section SM-3 of a previous work of ours [1], the above recursion relation could be

rewritten as:

µ
〈nS〉
P0

[
(∆LF , t

−
k+1) | (∆Lt, t)

]
(σBE)

= δ(∆Lt,∆LF ) exp

{
−
∫ t−k+1

t

dτ∆RID
X (∆Lt, τ)

}

+

∫ t−k+1

t

dt′
[
exp

{
−
∫ t′

t

dτ∆RID
X (∆Lt, τ)

}
×

×Φ
〈nS〉
µ 0

[
(∆LF , t

−
k+1) ; (∆Lt, t

′)
]

(σBE)
]
, (59)

with the ”auxiliary function”,

Φ
〈nS〉
µ 0

[
(∆LF , t

−
k+1) ; (∆Lt, t

′)
]

(σBE)

def
= (∆Lt − 1 + σBE)

LCO
I∑
l=1

[
gI(l, t

′)× µ〈nS−1〉
P0

[
(∆LF , t

−
k+1) | (∆Lt + l, t′)

]
(σBE)

]

+

min(∆Lt−1,LCO
D )∑

l=1

[
(∆Lt − l + 1)gD(l, t′)× µ〈nS−1〉

P0

[
(∆LF , t

−
k+1) | (∆Lt − l, t′)

]
(σBE)

]
. (60)

As an additional note, although we have formally dealt with ∆RID
X (∆L, t′) thus far, it is

actually a linear function:

∆RID
X (∆L, t′) = GID[LCOI , LCOD , t′]×∆L (61)(

with GID[LCOI , LCOD , t′]
def
=

LCO
I∑
l=1

gI(l, t
′) +

LCO
D∑
l=1

gD(l, t′)
)
,

under the locally space-homogeneous model. Knowing this fact will considerably speed up

the computation.

For a fixed ∆LF , the above system of recursion equations, Eq.59 and Eq.60 with rang-

ing ∆Lt and t (and t′), could be numerically solved via an algorithm of time-complexity
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O(NIDL
CO(LCO + NP )NP ) and space-complexity O(LCONP ), just as in SM-3 of [1]. Here,

LCO is the upper-bound of ∆Lt (and ∆LF ), NP is the number of sub-intervals into which the

time-interval (t+k , t
−
k+1) (or rather [tI , tF ]) is partitioned, and NID is the maximum number of

indels that we take account of. Because the recursion equation systems with different ∆LF ’s

can be solved independently of each other, the computation could easily be parallelized (or

rather, cast into distributed computing). And each computation should take as much time

as in the case of isolated gaps (i.e., Eqs.(SM-3.4a,b) in [1]). Therefore, when LCO is consider-

ably large, say, 1000, although it may take too much time to numerically solve this recursion

equation system with a single CPU (or core), the computation could finish typically in a few

hours if you can access, e.g., hundreds of CPUs simultaneously. Moreover, once computed,

the results could be stored and re-used for various analyses under the same evolution model.

In this sense, this computation itself could be feasible.

By substituting the solutions of the recursion equation system, Eq.59 and Eq.60, into

Eq.29, we can obtain the practically exact ”zero-th approximation” of the transition proba-

bilities within each slice.

B Backward-Extension to Directly Approximate Defi-

nition of Finite-Time Evolution Operator, Eq.31

In subsection 4.2, we directly approximated the definition of the finite-time evolution operator

(Eq.31) forward, i.e., from the initial time (tI) to the final time (tF ).

Alternatively, we could extend the time-interval backward, from [tF , tF ]. In this case, we

obtain the following recursion relation:

µ
[NP ]
P0

[(∆LF , tF ) | (∆Lj, tj)] (σBE(i))

=
(

1−∆NP
t ·∆RID

X (∆Lj, t̄j+1)
)
· µ[NP ]

P0
[(∆LF , tF ) | (∆Lj, tj+1)] (σBE(i))
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+∆NP
t ·
[

(∆Lj − 1 + σBE(i))×
min(LCO

I , LCO−∆Lj)∑
l=1

{
gI(l, t̄j+1)×

×µ[NP ]
P0

[(∆LF , tF ) | (∆Lj + l, tj+1)] (σBE(i))
}

+

min(LCO
D , ∆Lj−1)∑
l=1

{
(∆Lj − l + 1)× gD(l, t̄j+1)×

×µ[NP ]
P0

[(∆LF , tF ) | (∆Lj − l, tj+1)] (σBE(i))
} ]

, (62)

with the ”initial” condition:

µ
[NP ]
P0

[(∆LF , tF ) | (∆LNP
, tNP

)] (σBE(i)) = δ(∆LF ,∆LNP
) .

This recursion relation is valid for ∆Lj = 1, ..., LCO, and ∆LF = 1, ..., LCO, for reasons

similar to those given below Eq. 36 (in subsection 4.2).

C Iteratively Solving Integral Equation for Finite-Time

Transition Probabilities when ”Boundary-Eroding”

Deletions are Switched on

Here, let us formally attempt to compute the finite-time transition probabilities when the

”boundary-eroding” rate operator, Q̂D
M :B-er(t) (in Eq.21), is switched on.

In Eq.24, Q̂D
M :B-er(t) was expanded into the summation of operators, Q̂D

M :B-er(i; t)’s, acting

only on individual region-boundaries. Thus, we will define a series of ”perturbed” rate

operators:

Q̂
ID(0)
B-er (t)

def
= Q̂ID

0 (t) ,

Q̂
ID(i)
B-er (t)

def
= Q̂

ID(i−1)
B-er (t) + Q̂D

M :B-er(i; t) (i = 1, ..., NC(k)− 1). (63)

Then, the ”perturbed” rate operator, Q̂
ID(NC(k)−1)
B-er (t) = Q̂ID

0 (t) + Q̂D
M :B-er(t), incorporates all

”boundary-eroding” deletions. Using the above series of ”perturbed” rate operators, and fol-
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lowing the same procedure as when obtaining the fundamental integral equation, Eq.(R4.5) in

[3], we can derive a series of integral equations for P̂
ID(i)
B-er (t, t′)

def
= T

{
exp

[∫ t′
t
dτ Q̂

ID(i)
B-er (τ)

]}
:

P̂
ID(i)
B-er (t, t′) = P̂

ID(i−1)
B-er (t, t′) +

∫ t′

t

dτ P̂
ID(i−1)
B-er (t, τ) Q̂D

M :B-er(i; τ) P̂
ID(i)
B-er (τ, t′) , (64)

with i = 1, ..., NC(k) − 1. Each of these integral equations could be solved by iteration, as

we solved the integral equation, Eq.56, above. Because the perturbation term, Q̂D
M :B-er(i; τ),

in each of the above integral equations acts only on two contiguous colored regions, we need

to track only changes in the lengths of the two regions; this may significantly reduce the

working space-complexity. At least theoretically, if you will, you could directly solve the

”one-shot” integral equation:

P̂ ID
B-er(t, t

′) = P̂ ID
0 (t, t′) +

∫ t′

t

dτ P̂ ID
0 (t, τ) Q̂D

M :B-er(τ) P̂ ID
B-er(τ, t

′) , (65)

where we set P̂ ID
B-er(t, t

′)
def
= P̂

ID(NC(k)−1)
B-er (τ, t′) (= T

{
exp

[∫ t′
t
dτ
(
Q̂ID

0 (τ) + Q̂D
M :B-er(τ)

)]}
).

In practice, a possibly big problem is that solving this equation could require a tremendous

amount of memory, because you need to keep track of changes in the lengths of all colored

regions. Provided that you have adequate resources to do that, of course, solving Eq.65 alone

may be preferable to solving Eq.64’s serially. In any case, Eq.64 and Eq.65 are identical if

the slice in question consists of only two colored regions, and they do not even exist if the

slice has only one region.

D Time-Efficient Computation of Contributions from

2nd-order Pattern (i): A → ”∅” → D

The contributions from the 2nd-order pattern (i), Eq. 49, were given in subsection 5.1.1.

As argued at the bottom of subsection 4.5, it would save time to perform the calculation

associated with individual events one after another.
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In the case at hand, this could be done in two ways. The first method performs the

integration over (tI +dt1 <)t1(< t2) first, and then integrates over (tI +dt1 <)t2(< tF −dt2).

It can be written as:

µ
2nd (i)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∫ tF−dt2

tI+dt1

dt2

[
µA → ”∅” [(∆ILA, tI) ; (0, 0) ; t2] (σBE = 2)×

× (µD-cr [(x = 1, [t2, t2 + dt2]) ; (∆FLD, tF )] /dt2)
]
, (66)

with the ”extended” multiplication factor, µA → ”∅”[· · ·], defined as:

µA → ”∅” [(∆ILA, tI) ; (0, 0) ; t2] (σBE = 2)

def
=

∫ t2

tI+dt1

dt1

[
(µA-del [(∆ILA, tI) ; (0, 0, [t1 − dt1, t1])] (σBE = 2)/dt1)×

×µP case-(i) [(t2, 0) | (t1, 0)]
]
. (67)

By (numerically) pre-computing Eq.67 with t2 ∈ [tI + dt1, tF − dt2] and with ∆ILA =

1, 2, ..., LCO, and storing the results, we can avoid the repeated computation, which could

occur if we directly compute Eq.49.

The second method performs the integration over (t1 <)t2(< tF − dt2) first, and then

integrates over (tI + dt1 <)t1(< tF − dt2). We have:

µ
2nd (i)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∫ tF−dt2

tI+dt1

dt1

[
(µA-del [(∆ILA, tI) ; (0, 0, [t1 − dt1, t1])] (σBE = 2)/dt1)×

×µ”∅” → D [t1 ; x = 1 ; (∆FLD, tF )]
]
, (68)

with the definition:

µ”∅” → D [t1 ; x = 1 ; (∆FLD, tF )]

def
=

∫ tF−dt2

t1

dt2

[
µP case-(i) [(t2, 0) | (t1, 0)]×

× (µD-cr [(x, [t2, t2 + dt2]) ; (∆FLD, tF )] /dt2)
]
. (69)
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Similarly to the 1st method, the pre-computation of Eq.69 will avoid the repeated compu-

tation encountered in the näıve (numerical) computation of Eq.49.

E Time-Efficient Computation of Contributions from

2nd-order Pattern (ii): A → AD → D

The contributions from the 2nd-order pattern (iI), Eq. 50, were given in subsection 5.1.2.

As usual, it should be time-efficient to perform the computations associated with individual

events separately, one after another.

In this case, such ”computational factorization” is done as follows. First, we (analytically)

define the following ”complex” multiplication factor (of O(dt1 · dt2)):

µD-cr → A-del [(∆L1, x, [t1, t1 + dt1]) ; (∆L2, [t2 − dt2, t2])] (σBE = 1)

def
=

∞∑
δ∆L2=0

[
µD-cr [(x = ∆L1, [t1, t1 + dt1]) ; (∆L2 + δ∆L2, t2 − dt2)]×

× exp

(
−
∫ t2

t2−dt2
dτ2 ∆RID

X (∆L2 + δ∆L2, τ2)

)
×

×µA-del [(∆L1, t1) ; (0,−δ∆L2, [t2 − dt2, t2])] (σBE = 1)
]
, (70)

which, after being divided by dt1 ·dt2, gives the (finite) probability density that a ”D”-region

was created between x and x + 1(, which is on either end, in any case,) of an ”A”-region

of size ∆L1, immediately after t1, and that the ”A”-region (evolved with σBE = 1) was

completely deleted (immediately before t2), leaving the ”D”-region of size ∆L2 at time t2.

When dealing with a time-homogeneous model, the collection of these multiplication factors

with ranging ∆L1, ∆L2 and t2 − t1 can be numerically computed with the time-complexity

of O(NP{LCO}3), because the summation,
∑∞

δ∆L2=0 should be of O(LCO) time-complexity

(in numerical computation). Regarding the space-complexity, storing the inputs, µD-cr[· · ·]

and µA-del[· · ·], requires the memories of O(NPL
CO) and O(NP{LCO}2), respectively, and

storing the output, µD-cr → A-del[· · ·], also requires the memory of O(NP{LCO}2). Thus, the
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space-complexity for this definition is O(NP{LCO}2).

As Figure 11 indicates, the aforementioned µD-cr → A-del[· · ·] covers the ”amputated” por-

tion of the coloring-pattern evolution, after the initial period of a single ”A” and before the

final period of a single ”D”. We will express this fact with the equation:

(
µ

2nd (ii)
P case-(iv)

)
Amp.

[(∆L2, t2) | (∆L1, t1)]× (dt1 · dt2)

def
= µD-cr → A-del [(∆L1, x, [t1, t1 + dt1]) ; (∆L2, [t2 − dt2, t2])] (σBE = 1). (71)

Here, the subscript, ”Amp.”, on the left-hand side stands for ”amputated”. Now, using this

”amputated” multiplication factor, Eq.50 is rewritten as:

µ
2nd (ii)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∞∑
∆L1=1

∞∑
∆L2=1

∫ tF−dt1−dt2

tI

dt1

∫ tF

t1+dt1+dt2

dt2

[
µP0 [(∆L1, t1) | (∆ILA, tI)] (σBE = 2)×

×
(
µ

2nd (ii)
P case-(iv)

)
Amp.

[(∆L2, t2) | (∆L1, t1)]×

×µP0 [(∆FLD, tF ) | (∆L2, t2)] (σBE = 2)
]
. (72)

This equation tells us that the full multiplication factors for the 2nd-order evolution

pattern (ii) can be obtained by ”extending” their ”amputated” version, both to the initial

time and to the final time, each via ”convolution” with µP0 [· · ·](σBE = 2).

Eq.72 can be made further time- and space-efficient by separately performing the compu-

tations associated with (∆L1, t1) and (∆L2, t2). First, we (analytically) define the following

”extended” version of the ”amputated” factor:

(
µ

2nd (ii)
P case-(iv)

)
Amp.&Ext.-I

[(∆L2, t2) | (∆ILA, tI)]

def
=

∞∑
∆L1=1

∫ t2−dt1−dt2

tI

dt1

[
µP0 [(∆L1, t1) | (∆ILA, tI)] (σBE = 2)×

×
(
µ

2nd (ii)
P case-(iv)

)
Amp.

[(∆L2, t2) | (∆L1, t1)]
]
. (73)

Here, the subscript, ”Amp.&Ext.-I”, stands for ”amputated and extended to the initial time
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(i.e.. tI)”. Using this ”extended” version, Eq.72 can be rewritten as:

µ
2nd (ii)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∞∑
∆L2=1

∫ tF

tI+dt1+dt2

dt2

[(
µ

2nd (ii)
P case-(iv)

)
Amp.&Ext.-I

[(∆L2, t2) | (∆ILA, tI)]×

×µP0 [(∆FLD, tF ) | (∆L2, t2)] (σBE = 2)
]
. (74)

The numerical computation of the definition, Eq.73, with ranging ∆ILA, ∆L2, and t2−tI , re-

quires the space-complexity of O(NP{LCO}2) and the time-complexity of O({NP}2{LCO}3).

And so does the numerical computation of Eq.74 with ranging ∆ILA, ∆FLD and tF − tI .

The O({NP}2{LCO}3) time-complexity may be relatively time-consuming. Once the in-

put factors become available, however, the computation for different combinations of the

region-lengths, (∆ILA, ∆FLD), can be done independently, and thus this computation can

easily be parallelized (or cast into distributed computing). (For example, if these computa-

tions with different ∆ILA’s are distributed, time-complexity of each computation reduces to

O({NP}2{LCO}2), while its space-complexity remaining the same.) Thus, you may manage

to numerically compute these contributions from the pattern (ii).

As in appendix D, the order of the time-integrations may be reversed, integrating over

(t1 + dt1 + dt2 <)t2(< tF ) first and then integrating over (tI <)t1(< tF − dt1 − dt2). In this

case, we (analytically) define the ”amputated-and-extended” factor:(
µ

2nd (ii)
P case-(iv)

)
Amp.&Ext.-F

[(∆FLD, tF ) | (∆L1, t1)]

def
=

∞∑
∆L2=1

∫ tF

t1+dt1+dt2

dt2

[(
µ

2nd (ii)
P case-(iv)

)
Amp.

[(∆L2, t2) | (∆L1, t1)]×

×µP0 [(∆FLD, tF ) | (∆L2, t2)] (σBE = 2)
]
. (75)

Here, the subscript, ”Amp.&Ext.-F”, stands for ”amputated and extended to the final time

(i.e., tF )”. Using this, Eq.72 can be rewritten as:

µ
2nd (ii)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
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=
∞∑

∆L1=1

∫ tF−dt1−dt2

tI

dt1

[
µP0 [(∆L1, t1) | (∆ILA, tI)] (σBE = 2)×

×
(
µ

2nd (ii)
P case-(iv)

)
Amp.&Ext.-F

[(∆FLD, tF ) | (∆L1, t1)]
]
. (76)

The numerical computations resulting from this reverse-order procedure also have the time-

complexity of O({NP}2{LCO}3) and the space-complexity of O(NP{LCO}2), and can easily

be ”parallelized”, e.g., by distributing the computations with different ∆FLD’s.

Here, for later use, we give an ”alias” to
(
µ

2nd (ii)
P case-(iv)

)
Amp.&Ext.-F

[· · ·], as follows:

µD-cr → AD → D [(∆L1, x, [t1, t1 + dt1]) ; () ; (∆FLD, tF )] (σBE = 1)

def
=

(
µ

2nd (ii)
P case-(iv)

)
Amp.&Ext.-F

[(∆FLD, tF ) | (∆L1, t1)]× dt1 . (77)

This will be used as an ingredient for the 3rd-order pattern (a).

F Time-Efficient Computation of Contributions from

3rd-order Pattern (a): A → ADA → AD → D

The contributions from the 3rd-order pattern (a), Eq. 52, were given in subsection 5.2.1.

These contributions can be computed in a time-efficient manner, as in appendix E.

First, we observe that, during the time interval, [t1, t3−dt3], if we ignore the left-fragment

of the ”A”-region, the remaining portion (consisting of the ”D”-region and the right-fragment

of the ”A”-region) is identical to those defining the factor, µD-cr → AD → D[· · ·] defined in Eq.77

(, which is O(dt1) here,) with some modifications on the arguments. Thus, we can formally

perform the time-integration over (t1 + dt1 + dt2 <)t2(< t3 − dt3) and the summations over

δ∆L2 and ∆L2, to get:

µ
3rd (a)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∞∑
∆LL1=1

∞∑
∆RL1=1

∞∑
∆L3=1

∞∑
δ∆L3=0

∫ tF−dt1−dt2−dt3

tI

dt1

∫ tF

t1+dt1+dt2+dt3

dt3

[
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µP0 [(∆L1 = ∆LL1 + ∆RL1, t1) | (∆ILA, tI)] (σBE = 2)×

× (µD-cr → AD → D [(∆RL1, x = ∆LL1, [t1, t1 + dt1]) ; () ; (∆L3 + δ∆L3, t3 − dt3)] (σBE:R = 1)/dt1)×

× exp

(
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆L3 + δ∆L3, τ3)

)
×

× (µA-del [(∆LL1, t1) ; (0,−δ∆L3, [t3 − dt3, t3])] (σBE:L = 1)/dt3)×

×µP0 [(∆FLD, tF ) | (∆L3, t3)] (σBE = 2)
]
. (78)

Second, we lump together the factors, µD-cr → AD → D[· · ·] and µA-del[· · ·], as well as the

exponential factor in between, and perform the summation over δ∆L3. This gives a set of

multiplication factors (of O(dt1 · dt3)) that depend on the lengths ∆LL1, ∆RL1 and ∆L3,

and the times, t1 and t3, thus requiring the space-complexity of O({NP}2{LCO}3) if you

want to store all of them. Fortunately, when the evolution model is time-homogeneous, the

factors depend on the times only through t3 − t1. Besides, in the computation of Eq.52, all

we need regarding the dependence on (∆LL1,∆RL1) is through ∆L1 = ∆LL1 +∆RL1. Thus,

we could reduce the space-complexity to O(NP{LCO}2) by defining the following ”complex”

factors(, which are of O(dt1 · dt3)):

µD-cr → A-del → A-del [(∆L1, ·, [t1, t1 + dt1]) ; () ; (∆L3, [t3 − dt3, t3])] (σBE:R = σBE:L = 1)

def
=

∆L1−1∑
∆RL1=1

∞∑
δ∆L3=0

[
µD-cr → AD → D [(∆RL1, x = ∆LL1, [t1, t1 + dt1]) ; () ; (∆L3 + δ∆L3, t3 − dt3)] (σBE:R = 1)×

× exp

(
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆L3 + δ∆L3, τ3)

)
×

×µA-del [(∆LL1 = ∆L1 −∆RL1, t1) ; (0,−δ∆L3, [t3 − dt3, t3])] (σBE:L = 1)
]
. (79)

These factors for ranging ∆L1, ∆L3, and t3−t1 can be numerically computed with the space-

complexity ofO(NP{LCO}2) and the time-complexity ofO(NP{LCO}4), and the computation

is easily cast into parallel or distributed computing. (For example, if the computations with

different ∆L1’s (or ∆L3’s) are distributed, each computation has the time-complexity of

O(NP{LCO}3), albeit with an unchanged space-complexity.)
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Now, by referring to Figure 13, we notice that the aforementioned µD-cr → A-del → A-del[· · ·]

covers the ”amputated” portion of the coloring-pattern evolution for the 3rd-order class (a).

Thus, we can define the ”amputated” version of µ
3rd (a)
P case-(iv)[· · ·] as:

(
µ

3rd (a)
P case-(iv)

)
Amp.

[(∆L3, t3) | (∆L1, t1)]× (dt1 · dt3)

def
= µD-cr → A-del → A-del [(∆L1, ·, [t1, t1 + dt1]) ; () ; (∆L3, [t3 − dt3, t3])] (σBE:R = σBE:L = 1).

(80)

Then, the rest of the computation procedure for this pattern (a) is prescribed with the

equations almost identical to Eq.72 and Eqs.73 & 74 (or Eqs.75 & 76). The only differ-

ences are: (1) the superscript, ”2nd (ii)” should be replaced with ”3rd (a)”; (2) (∆L2, t2)

should be replaced with (∆L3, t3); and (3)
∫ tF−dt1−dt2
tI

dt1
∫ tF
t1+dt1+dt2

dt2 should be replaced

with
∫ tF−dt1−dt2−dt3
tI

dt1
∫ tF
t1+dt1+dt2+dt3

dt3. And, of course, arguments on the space- and time-

complexities also hold in the same way.

G Time-Efficient Computation of Contributions from

3rd-order Pattern (c): A → DA → DAD → D

The contributions from the 3rd-order pattern (c), Eq. 53, were given in subsection 5.2.2. As

in appendix G, the equation can be cast into a series of equations to time-efficiently calculate

these contributions.

First, we deal with the creation of the ”D”-region on the right (in [t2, t2 + dt2]) (and a

part of the complete deletion of the ”A”-region (in [t3 − dt3, t3])), in two steps. In the first

step, we define the following complex factor(, which is O(dt2 · dt3)):

µD-cr(R) → ·A-del [(∆2LA, x2, [t2, t2 + dt2]) ; (−δ∆3LDL,∆3LDR, [t3 − dt3, t3])] (σBE3 = 0)

def
=

∞∑
δ∆3LDR=0

[
µD-cr [(x2, [t2, t2 + dt2]) ; (∆3LDR + δ∆3LDR, t3 − dt3)]×
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× exp

(
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆3LDR + δ∆3LDR, τ3)

)
×

×µA-del [(∆2LA, t2) ; (0,−δ∆3LD = −(δ∆3LDL + δ∆3LDR), [t3 − dt3, t3])] (σBE = 0)
]
, (81)

where x2 (= ∆2LDL + ∆2LA) only serves as a reminder of the insertion position of the

”D”-region. With ranging ∆2LA, δ∆3LDL, ∆3LDR and t3 − t1, this computation has the

time-complexity of O(NP{LCO}4) and the space-complexity of O(NP{LCO}3). If, however,

we only memorize the output, e.g., for each fixed ∆3LDR, and output the results each time

when all the factors for the fixed ∆3LDR are computed, the space-complexity reduces to

O(NP{LCO}2). (The same holds true for the parallel (or distributed) computing, in which

case the time-complexity also reduces to O(NP{LCO}3).)

In the second step, we define its ”extended” version(, which is O(dt3)):

µ·A → ·AD → ·A-del [(∆1LA, t1) ; x2 ; (−δ∆3LDL,∆3LDR, [t3 − dt3, t3])] (σBE2 = 1, σBE3 = 0)

def
=

∞∑
∆2LA=1

∫ t3−dt2−dt3

t1+dt1

dt2

[
µP0 [(∆2LA, t2) | (∆1LA, t1)] (σBE2 = 1)×

×
(
µD-cr(R) → ·A-del [(∆2LA, x2, [t2, t2 + dt2]) ; (−δ∆3LDL,∆3LDR, [t3 − dt3, t3])] (σBE3 = 0)/dt2

) ]
. (82)

With ranging ∆1LA, δ∆3LDL, ∆3LDR, and t3 − t1, this definition can be computed with

the space-complexity of O(NP{LCO}3) and the time-complexity of O({NP}2{LCO}4). If,

for example, the computations with different ∆3LDR’s are distributed (or parallelized),

each computation has the space-complexity of O(NP{LCO}2) and the time-complexity of

O({NP}2{LCO}3).

Using the above definition of µ·A → ·AD → ·A-del[· · ·], the expression we desire, i.e., Eq.53,

reduces to:

µ
3rd (c)
P case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

(
−
∫ tF

tI

dτ∆RID
X (∆ILA, τ)

)
=

∞∑
∆1LA=1

∞∑
∆3LDL=1

∞∑
∆3LDR=1

∞∑
δ∆3LDL=0

∫ tF−dt1−dt2−dt3

tI

dt1

∫ tF

t1+dt1+dt2+dt3

dt3

[
µP0 [(∆1LA, t1) | (∆ILA, tI)] (σBE = 2)×

× (µD-cr [(x1 = 1, [t1, t1 + dt1]) ; (∆3LDL + δ∆3LDL, t3 − dt3)] /dt1)×
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× exp

(
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆3LDL + δ∆3LDL, τ3)

)
×

×
(
µ·A → ·AD → ·A-del [(∆1LA, t1) ; x2 ; (−δ∆3LDL,∆3LDR, [t3 − dt3, t3])] (σBE2 = 1, σBE3 = 0)/dt3

)
×

×µP0 [(∆FLD, tF ) | (∆3LD = ∆3LDL + ∆3LDR, t3)] (σBE = 2)
]
. (83)

Next, we deal fully with the complete deletion of the ”A”-region (in [t3 − dt3, t3]). Al-

though, in the current setting, the results of the deletion depend on ∆3LDL and ∆3LDR,

what we finally want is the function of the total length, ∆3LD
def
= ∆3LDL + ∆3LDR, of the

”D”-region after the deletion. Hence, we define the following complex factor(, which is

O(dt1 · dt3)):

µD-cr(L) → D-cr(R) → A-del [(∆1LA, x1 = 1, [t1, t1 + dt1]) ; x2 ; (∆3LD, [t3 − dt3, t3])] (σBE2 = 1, σBE3 = 0)

def
=

∆3LD−1∑
∆3LDL=1

∞∑
δ∆3LDL=0

[
exp

(
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆3LDL + δ∆3LDL, τ3)

)
×

×µD-cr [(x1 = 1, [t1, t1 + dt1]) ; (∆3LDL + δ∆3LDL, t3 − dt3)]×

×µ·A → ·AD → ·A-del [(∆1LA, t1) ; x2

; (−δ∆3LDL,∆3LDR = ∆3LD −∆3LDL, [t3 − dt3, t3])] (σBE2 = 1, σBE3 = 0)
]
. (84)

With ranging ∆1LA, ∆3LD and t3 − t1, this computation has the space-complexity of

O(NP{LCO}3) and the time-complexity of O(NP{LCO}4), which may be quite hard on a

single computer. However, if computations with, e.g., different ∆1LA’s are distributed (or

parallelized), the space- and time-complexities of each computation reduce to O(NP{LCO}2)

and O(NP{LCO}3), respectively. 43

Now, Figure 14 suggests that the aforementioned µD-cr(L) → D-cr(R) → A-del[· · ·] covers the

”amputated” portion of the coloring-pattern evolution for the 3rd-order class (c). Thus, we

have the ”amputated” multiplication factor:(
µ

3rd (c)
P case-(iv)

)
Amp.

[(∆3LD, t3) | (∆1LA, t1)]× (dt1 · dt3)

43The entire result of this definition is of size O(NP {LCO}2), thus may be stored in the memory of a

common contemporary computer.
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def
= µD-cr(L) → D-cr(R) → A-del [(∆1LA, x1 = 1, [t1, t1 + dt1]) ;

x2 ; (∆3LD, [t3 − dt3, t3])](σBE2 = 1, σBE3 = 0) . (85)

As in appendix F the rest of the computation procedure for this pattern (c) is prescribed

with the equations almost identical to Eq.72 and Eqs.73 & 74 (or Eqs.75 & 76). The

only differences are: (1) the superscript, ”2nd (ii)” should be replaced with ”3rd (c)”; (2)

(∆L1, t1) and (∆L2, t2) should be replaced with (∆1LA, t1) and (∆3LD, t3), respectively; and

(3)
∫ tF−dt1−dt2
tI

dt1
∫ tF
t1+dt1+dt2

dt2 should be replaced with
∫ tF−dt1−dt2−dt3
tI

dt1
∫ tF
t1+dt1+dt2+dt3

dt3.

Again, arguments on the space- and time-complexities remain the same.

H Time-Efficient Computation of Contributions from

3rd-order Pattern (e): A → DA
B-er→ DA → D

The contributions from the 3rd-order pattern (e), Eq. 54, were given in subsection 5.2.3.

Here is a series of measures to quickly compute these contributions.

First, paying attention to the ”boundary-eroding” deletion, we define the following com-

plex factor(, which is O(dt1 · dt2)):

µD-cr → B-er· [(x = 1, [t1, t1 + dt1]) ; (∆2LD,−δ∆2LA, [t2 − dt2, t2])]

def
=

∞∑
δ∆2LD=1

[
µD-cr [(x, [t1, t1 + dt1]) ; (∆2LD + δ∆2LD, t2 − dt2)]×

× exp

{
−
∫ t2

t2−dt2
dτ2 ∆RID

X (∆2LD + δ∆2LD, τ2)

}
× dt2 g̃D(δ∆2LA + δ∆2LD, t2)

]
. (86)

With ranging ∆2LD, δ∆2LA and t2−t1, this computation has the space- and time-complexities

of O(NP{LCO}2) and O(NP{LCO}3), respectively.

Second, paying attention to the ”boundary-eroding” deletion, again, we define the fol-

lowing(, which is also O(dt1 · dt2)):

µ(A →) D-cr(L) → B-er [(∆1LA, x = 1, [t1, t1 + dt1]) ; (∆2LD,∆2LA, [t2 − dt2, t2])] (σBE1 = 1)
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def
=

∞∑
δ∆2LA=1

[
µD-cr → B-er· [(x = 1, [t1, t1 + dt1]) ; (∆2LD,−δ∆2LA, [t2 − dt2, t2])]×

×µP0 [(∆2LA + δ∆2LA, t2 − dt2) | (∆1LA, t1)] (σBE1 = 1)×

× exp

{
−
∫ t2

t2−dt2
dτ2

[
∆RID

X (∆2LA + δ∆2LA, τ2)
]}]

. (87)

With ranging ∆1LA, ∆2LD and ∆2LA, and t2−t1, this computation has the space- and time-

complexities of O(NP{LCO}3) and O(NP{LCO}4), respectively. If, however, we distribute

the computations, e.g., with different ∆1LA’s, the space- and time-complexities of each

computation become O(NP{LCO}2) and O(NP{LCO}3), respectively.

Third, paying attention to the complete deletion of the ”A”-region (in [t3 − dt3, t3]), we

define the following complex factor(, which is O(dt3)):

µDA → A-del [(∆2LD,∆2LA, t2) ; (∆3LD, [t3 − dt3, t3])] (σBE2 = 1)

def
=

∞∑
δ∆3LD=0

[
µA-del [(∆2LA, t2) ; (0,−δ∆3LD, [t3 − dt3, t3])] (σBE2 = 1)×

×µP0 [(∆3LD + δ∆3LD, t3 − dt3) | (∆2LD, t2)] (σBE(D) = 2)×

× exp

{
−
∫ t3

t3−dt3
dτ3 ∆RID

X (∆3LD + δ∆3LD, τ3)

}]
. (88)

With ranging ∆2LD, ∆2LA, ∆3LD and t3 − t2, this computation also has the space- and

time-complexities of O(NP{LCO}3) and O(NP{LCO}4), respectively. If, however, we dis-

tribute the computations, e.g., with different ∆3LD’s, the space- and time-complexities of

each computation become O(NP{LCO}2) and O(NP{LCO}3), respectively, as in the previous

computation.

Next, we further combine the complex factors, Eq.87 and Eq.88, and define the following

higher-level complex factor(, which is O(dt1 · dt3)):

µ(A →) D-cr(L) → B-er → A-del [(∆1LA, x = 1, [t1, t1 + dt1]) ; () ; (∆3LD, [t3 − dt3, t3])] (σBE1 = σBE2 = 1)

def
=

∞∑
∆2LD=1

∞∑
∆2LA=1

∫ t3−dt3

t1+dt1+dt2

dt2

[
(
µ(A →) D-cr(L) → B-er [(∆1LA, x = 1, [t1, t1 + dt1]) ; (∆2LD,∆2LA, [t2 − dt2, t2])] (σBE1 = 1)/dt2

)
×

×µDA → A-del [(∆2LD,∆2LA, t2) ; (∆3LD, [t3 − dt3, t3])] (σBE2 = 1)
]
. (89)
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With ranging ∆1LA, ∆3LD and t3−t1, this computation has the space- and time-complexities

of O(NP{LCO}3) and O({NP}2{LCO}4), respectively; this is considerably hard on a single

computer. One big problem is the large size of the input data, µ(A →) D-cr(L) → B-er[· · ·] and

µDA → A-del[· · ·], each of which takes O(NP{LCO}3) memory space if you want to store all

of its elements. (In contrast, the output data, µ(A →) D-cr(L) → B-er → A-del[· · ·], take up only

O(NP{LCO}2) memory space.) The only way to avoid this problem of large space-complexity

(using a single computer) is to read in only µ(A →) D-cr(L) → B-er[· · ·] with a particular ∆1LA

and only µDA → A-del[· · ·] with a particular ∆3LD, compute µ(A →) D-cr(L) → B-er → A-del[· · ·] with

this particular combination, (∆1LA,∆3LD), and free the memory space for the input data

after the end of this particular computation. Then, the required memory space reduces

to O(NP{LCO}2), and repeating this procedure for all combinations of (∆1LA,∆3LD) will

give the complete definition, Eq.89. When performing parallel (or distributed) computing, as

well, it should be wise to distribute the computations with different (∆1LA,∆3LD)’s, not just

those differing in ,e.g., ∆1LA’s alone, to reduce the space-complexity of each computation

(also to O(NP{LCO}2)); in this case, the time-complexity of each computation also reduces

to O({NP}2{LCO}2).

Now, as Figure 15 suggests, the higher-level complex factor defined in Eq.89 covers the

”amputated” portion of the coloring-pattern evolution for the 3rd-order pattern (e). Thus,

we define the following ”amputated” multiplication factor:(
µ

3rd (e)
P case-(iv)

)
Amp.

[(∆3LD, t3) | (∆1LA, t1)]× (dt1 · dt3)

def
= µ(A →) D-cr(L) → B-er → A-del [(∆1LA, x = 1, [t1, t1 + dt1]) ; ()

; (∆3LD, [t3 − dt3, t3])](σBE1 = σBE2 = 1) . (90)

Then, again, the remaining procedure is prescribed with the equations almost identical

to Eq.72 and Eqs.73 & 74 (or Eqs.75 & 76). The only differences are: (1) the superscript,

”2nd (ii)” should be replaced with ”3rd (e)”; (2) (∆L1, t1) and (∆L2, t2) should be replaced

with (∆1LA, t1) and (∆3LD, t3), respectively; and (3)
∫ tF−dt1−dt2
tI

dt1
∫ tF
t1+dt1+dt2

dt2 should be
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replaced with
∫ tF−dt1−dt2−dt3
tI

dt1
∫ tF
t1+dt1+dt2+dt3

dt3. Again, the space- and time-complexities

of the computations are the same as in ”2nd (ii)”.

I Computing Theoretically Expected Frequencies of Gap-

Configurations

To validate the new perturbation method presented in this study, we computed theoretically

expected frequencies of the configurations of gapped segments in the bulk (i.e., not on either

end ) of ancestor-descendant PWAs, and compared them with their frequencies actually

”observed” in the bulk of simulated PWAs. Here we explain how the expected frequencies

are computed.

First, the multiplication factor, e.g., Eq. 47 for case-(iv) segments, was transformed into

the probability that the segment, including both flanking preserved ancestral sites (PASs),

occurs in the PWAs. This can be done by modifying the identity, Eq. 48, as follows:

Pcase-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

≡ µP case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]× exp

{
−
∫ tF

tI

dτ
[
RID
X ([L,R], τ) + ∆RID

X (∆ILA, τ)
]}

.

(91)

We know that, in (locally) space-homogeneous model, ∆RID
X (∆ILA, τ) = (gI(τ)+gD(τ))·

∆ILA holds [48, 3], where gI(τ) (
def
=
∑LCO

I
l=1 gI(l, τ)) is the total insertion rate per site at time

τ , and gD(τ) (
def
=
∑LCO

D
l=1 gD(l, τ)) is the total deletion rate per site at time τ .

The question is: what on earth is the RID
X ([L,R], τ)? Actually, the answer to this ques-

tion can vary, depending on how we treat the ”surrounding regions” flanking the PASs,

L and R, especially, insertions occurring there (discussed to some extent in section R8 of

[3]). For example, the evolution model used by Dawg [48] made a quite natural choice,

considering that insertions occur also in these regions at the same rate as in the subject se-

quence, and incorporating such insertions into the evolution of the sequence. In this model,
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R
ID (Dawg)
X ([L,R], τ) | = gI(τ) +

∑LCO
D

l=1 {(l − 1) gD(l, τ)} + 2 (gI(τ) + gD(τ)), where the

summation in the 2nd term comes from deletions sticking out of the subject sequence [48].

Meanwhile, the ”long indel” model of Miklós et al. [2] made another choice, giving such

insertions the rates that are ”mirror-images” of the rates of deletions reaching either end of

the sequence, in order to keep the model time-reversible. (The expression of RID
X ([L,R], τ)

for the ”long indel” model is omitted here because it is somewhat complex.)

In this study, we make yet another choice, that is, we don’t care at all whether any

insertions occur or not in the ”surrounding regions”. This choice should be appropriate for

the problem at hand, because insertions in the ”surrounding regions”, if at all, will never

erode the gapped segment (including the PASs, L and R). Thus, the RID
X ([L,R], τ) we want

is:

R
ID (Our)
X ([L,R], τ) = R

ID (Dawg)
X ([L,R], τ)− 2 gI(τ)

= gI(τ) +

LCO
D∑
l=1

{(l − 1) gD(l, τ)} + 2 gD(τ) . (92)

(Incidentally, if we time-integrate this equation across a phylogenetic tree, the result becomes

equivalent to the total summation of the exponentiated factors in Eq.(SM-7.1) of [1], as it

should be.)

Substituting these results into Eq. 91, we get:

Pcase-(iv) [(∆FLD, tF ) | (∆ILA, tI)]

= µP case-(iv) [(∆FLD, tF ) | (∆ILA, tI)]×

× exp

{
−
∫ tF

tI

dτ
[
gI(τ) +

LCO
D∑
l=1

{(l − 1) gD(l, τ)} + 2 gD(τ) + (gI(τ) + gD(τ)) ·∆ILA

]}
.

(93)

To compute the expected frequency of each configuration of the case (iv) gapped-segment,

which is uniquely specified by (∆ILA,∆FLD), we simply multiply the probability, Eq. 93,

by the total number, NT , of regions that could potentially become the gapped segment in
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question. Thus, we have:

{Theoretically expected frequency of (∆ILA,∆FLD)} = NT×Pcase-(iv) [(∆FLD, tF ) | (∆ILA, tI)] .

(94)

Although we discussed case-(iv) gapped segments as an example, we could also obtain the

theoretically expected frequencies of the configurations of case-(ii) and -(iii) gapped segments

in totally similar manners.

In this study, we näıvely substituted the total number of ancestral sites, NS0 × LS0,

for NT . Here NS0 and LS0 are the number of ancestral sequences and the length of the

ancestral sequences, respectively. In this study, NS0 = 10+5 and LS0 = 10+4. Therefore,

NT ≈ 10+5 × 10+4 = 10+9. There are at least two factors to consider in order to determine

whether this näıve measure and Eq. 94 work well. First, the actual number of available

regions must be the number of sub-sequences embedded in the ancestral sequences. This

should be NS0 × (LS0 − ∆ILA − 1) for the configuration, (∆ILA,∆FLD). In this study,

∆ILA ≤ 100 � 10+4 = LS0. Therefore, the aforementioned actual number should be well

approximated (albeit slightly overestimated) by NS0 × LS0. Second, Eq. 94 exactly holds

only when the available NT regions are independent of each other, whereas some nearby

regions actually overlap each other; this poses the problem of auto-correlations. As long

as the gapped segments are distributed sparsely enough within the sequences, such auto-

correlations should be negligible. This must be indeed the case when the time-interval is 0.2

or 0.5, although it may not necessarily the case when the time-interval is 1.0. Anyway, in this

study, we will use the näıve equation, Eq. 94, and solving the problem of auto-correlations

will be left for future studies. 44

44A brief consideration suggests that the auto-correlation here should cause an ”exclusion effect”; two (or

more) different gapped segment should never overlap each other, thus the frequency of actual occurrences

should be somewhat lower than predicted by Eq. 94, provided that the probability is practically exact.
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