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Abstract

Accurately reconstructing pairwise sequence alignments (PWAs) and/or multiple sequence

alignments (MSAs) is a central step in the study of homologous (i.e., ancestor-sharing)

biological sequences, such as DNA and protein sequences. It is known, however, that even the

state-of-the art methods to reconstruct MSAs mis-align the sequences very frequently, and

that a (near) majority of such mis-alignments are caused by the inherent stochastic nature

of the sequence evolution. This makes it important to construct a probability distribution

of alternative MSAs, rather than to reconstruct only a single optimum MSA. Although

such methods, also known as statistical MSA methods, do exist, all of such methods up to

now were inaccurate because they were based on non-evolutionary probabilistic models of

alignments, which cause over- and/or under-estimates of some MSA probabilities.

To address these problems, we have developed a method, called ANEX (Alignment Neigh-

berhood EXplorer), which constructs probability distributions of alternative MSAs in some

neighborhoods of an input MSA, under a specified genuine sequence evolution model with

realistic insertions/deletions (indels).

After receiving an MSA, a fixed phylogenetic tree, and a fixed evolution model parame-

ters, as inputs, ANEX first detects and excludes some segments highly likely to include errors

that are too complex to be corrected. Then, out of the remaining segments, it prepares pos-

sibly overlapping windows each of which contains up to a specified maximum number of

gap-blocks (rectangular blocks consisting only of gaps in the MSA). Then, in each window,

it explores the neighborhoods of the input sub-MSA, by horizontally moving, merging and/or

splitting the gap-blocks or their complementary residue-blocks, while computing the proba-

bilities of the resulting alternative MSAs under the genuine sequence evolution model with

substitutions and realistic indels.



Our manual validation using some simulated MSAs as inputs indicated that, within the

segments it examined, the ”neighborhoods” explored by ANEX did indeed encompass the

true MSAs in an overwhelming majority of mis-aligned regions, indicating that this strategy

should work at least to some extent.

Although the method is still at a somewhat rudimentary stage, this study represents a

significant first step toward the construction of an accurate probability distribution of alter-

native MSAs under genuine sequence evolution models with realistic indels, which in turn

will be indispensable for precise and truthful evolutionary analyses on homologous biological

sequences.

ANEX is available as an open-source package at an FTP repository of Bioinformatics.org

(https://www.bioinformatics.org/ftp/pub/anex/); currently , it is available only as an all-

Perl version ( ”ANEX P”), which runs on UNIX(-like) platforms.

[Keywords: sequence alignment, multiple sequence alignment (MSA), probability, evolu-

tion, (stochastic) sequence evolution model, insertion/deletion (indel), probability distribu-

tion, accurate computation, DNA sequence, biological sequence ]

[Abbreviations: alignment neighborhood explorer (ANEX), hidden Markov model (HMM),

multiple sequence alignment (MSA), preserved ancestral site (PAS), pairwise sequence align-

ment (PWA), Thorne-Kishino-Felsenstein (TKF) ]
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1 Introduction

1.1 Background

[ NOTE: This study has been conducted based on the results of our previous studies [1, 2,

3, 4]. Thus, for details on its background, or the background of its background, refer to (the

background part of) these studies. ]

The reconstruction of multiple sequence alignments (MSAs) is central to the advanced

studies of homologous (i.e., ancestor-sharing) biological sequences, such as DNA, RNA and

protein sequences (e.g., [5, 6, 7, 8, 9, 10]). 1 This is because MSAs supplies essential inputs

to a wide variety of homology-based sequence analyses, such as the inference of phylogenetic

relationships among biological sequences [20, 21], the prediction of their 3D structures [22],

the prediction and comparison of their functions [23, 24, 25], and the identification of their

sites or regions under selection [26]. Because of such central roles played by MSAs, the

development of an aligner that accurately and/or quickly reconstructs MSAs has been the

subject of vigorous and diligent efforts during the recent decades (�e.g., [5, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]).

As the studies progressed, however, it gradually turned out that this crucial step of

MSA reconstruction is highly error-prone [43, 37, 44, 45, 3]. For example, Wong et al. [44]

pointed out that different aligners produce different MSAs, which often result in conflicting

conclusions on the sequence phylogeny or positively selected sites, and they hypothesized that

uncertainty in the alignment can lead to such problems. Landan and Graur [45] estimated

that, depending on the sequence divergences, about 5-90% of the ”homologous” residue

1In this study, we deal with collinear sequence alignments. An alignment is called ”collinear” (e.g.,

[11]) if it is devoid of genomic rearrangements such as inversions, duplications, and translocations (e.g.,

[12, 13, 14, 15]). (Possibly non-collinear) alignments of (usually very long) sequences that possibly underwent

such genomic rearrangements are called ”genome alignments”, and they are not the subject of this study.

Readers who are interested in genome alignments should refer, e.g., to: [11, 16, 17, 18, 19].
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pairs in each reconstructed MSA are erroneous. And a previous study of ours [3] showed

that, depending on the evolutionary distances among homologous sequences, about 40-99%

of gapped segments in MSAs are involved in alignment errors. MSA errors influence the

results, and even the conclusions, of the downstream analyses (e.g., [46, 47, 48, 6, 44, 49]),

in particular the inference of insertions/deletions [37, 50].

To better understand the nature of such alignment errors in MSAs, we previously con-

ducted a meticulous study [3], in which errors in reconstructed MSAs of simulated DNA

sequences were characterized in detail. An important conclusion of that study was that a

substantial fraction (about 1/4 - 3/4) of alignment errors are due to the stochastic nature

of evolution processes, that is, because the true MSA is not the optimum even with the

”complete-likelihood” score [3], which is the logarithm of the occurrence probability of the

MSA computed with the very evolution model that was used for the simulation. This result

reconfirmed and extended the results of previous studies [51, 52], which revealed how im-

portant it is to take account of the stochastic nature of evolution processes when analyzing

pairwise alignments (PWAs)(, or, more precisely, analyzing pairs of homologous sequences).

The conclusion in the previous paragraph suggests that finding a single optimum MSA

will remain considerably error-prone even if we get to exhaustively search the space of alter-

native MSAs using the ”golden” score that perfectly predicts the (log-)probabilities of the

MSAs(, which is currently far from feasible, anyway). A way to overcome this problem of

stochasticity inherent in sequence alignments will be to construct a probability distribu-

tion of alternative MSAs, instead of reconstructing a single optimum MSA as commonly

practiced thus far.

The idea of providing the probability distribution of alignments, often referred to as

”statistical alignment” [53], is not new. After a couple of ground-breaking works on this

subject [54, 55, 56], the results of [55, 56], especially, were later cast into standard Hidden

Markov Models (HMMs) (e.g., [53, 57]). Since then, it has become common to address

the problem of statistical alignments using (standard) HMMs (or its derivatives such as
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transducers) (e.g., [58, 59, 60, 61, 62, 63, 50, 64, 65, 66]), probably because rich mathematical

and computational tools are available to handle (standard) HMMs [67].

However, the evolution models handled up to 2003 were dissatisfactory in the sense that

their insertion/deletion processes are not realistic, in at least two ways: (1) they permit

only single-residue indels or multi-residue indels with the geometrically distributed rates,

whereas many empirical studies indicate that multi-residue indels occur quite often, and

with the rates following power-law (e.g., [68, 69, 70, 71, 72, 73, 74])2; and (2) except [57] (see

below), they cannot take account of nested and/or overlapping indels, which are expected

from natural evolution processes of biological sequences.

To address these problems, some attempts were made. Knudsen and Miyamoto [57] at-

tempted to incorporate some effects of overlapping indels into standard HMMs. 3 Meanwhile,

as an attempt to handle more realistic sequence evolution models, Miklós and Toroczkai [75]

proposed a method to compute alignment probabilities under an evolution model that al-

lows any lengths of insertions (with geometrically distributed rates) but only single-residue

deletions. Then, finally, in a milestone work (in 2004) by Mikós, Lunter, and Holmes [76],

the first method based on a genuine sequence evolution model 4 was proposed. Their ”long

indel” model [76] is a space-homogeneous 5 genuine sequence evolution model of a biological

2Some studies based on standard HMMs alleviated this flaw (not fully but to some extent) by using mixed

geometric distributions (e.g., [35, 51]).
3Recently, there have been a couple of renewed efforts to incorporate the effects of overlapping indels into

pair-HMMs [65, 66]. We consider these efforts laudable. At the same time, however, we find it a pity that

these studies confined themselves in geometric indel length distributions. We wish that the studies could

have extended to more biologically realistic power-law indel length distributions.
4A sequence evolution model is regarded as genuine only when it follows the ”evolutionary principle,”

which is, in short, ”long-term evolution of a sequence results from the accumulation of the effects of its short-

term evolution.” For more detailed ”definition” of the ”evolutionary principle,” see, e.g., the background of

[4].
5A sequence evolution model is called ”space-homogenous” if its rates of evolutionary events are uniform,

i.e., independent of the positions, along the sequence.
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sequence that can in principle incorporate any indel length distributions, including biolog-

ically realistic power-laws. They [76] cast the computation of the probabilities of ancestor-

descendant PWAs into a generalized HMM. After this study, some advances had been made

on the study using the simulators of genuine sequence evolution (e.g., [77, 78, 79]).

Then, over a decade after [76], we generalized their ”long indel” model to genuine se-

quence evolution models that allow indel rates to vary across regions, and derived the ”suf-

ficient and nearly necessary set of conditions” under which the probability of each ancestor-

descendant PWA can be factorized into the product of an overall factor and contributions

from gapped segments [1]; and we also went on to extend the results to the factorability con-

ditions of MSA probabilities (ibid.). Then, in the subsequent study [2], we developed some

(mathematical and computational) tools to facilitate the computation of the probabilities

of ancestor-descendant PWAs and MSAs under a given genuine sequence evolution model.

Especially, we proposed a pair of numerical algorithms to practically exactly compute the

finite-time probabilities of isolated gaps in ancestor-descendant PWAs; although this study

left it unresolved to (nearly) exactly compute the finite-time probabilities of pairs of mu-

tually adjoining insertion-type and descendant-type gaps, the problem was ”solved,” in a

sense, in a recent study of ours [4]. 6 Regarding the probabilities of MSAs, we devised a

”local multi-path downhill algorithm” to enumerate all parsimonious sets of ancestral ”pres-

ence”/”absence” states (at all internal nodes) each of which is consistent with the MSA

[2]. And we also devised a method to approximate the MSA probability by summing the

contributions from all the indel histories each of which is consistent with the MSA and any

of the parsimonious sets of ancestral states (ibid.). 7

Therefore, since [76], the ”ingredients” have been almost ready to construct the prob-

6Although in a somewhat different format, this problem was also solved, in a sense, by a recent

”simulation-based” approach to statistical PWA [80].
7The contribution from each such indel history is computed according to [1], which extended the method

developed for HMMs (or transducers) [58, 59] to genuine sequence evolution models.
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ability distribution of alternative MSAs under a given genuine sequence evolution

model. There is, however, one problem: unlike with standard HMMs, computing alignment

probabilities, especially their indel components, with genuine sequence evolution models is

considerably slow, and even the exhaustive computation of PWA probabilities (via a dynamic

programming [76]) could be prohibitively time-consuming. 8 This means that a simple ap-

plication or a näıve extension of the previous methods for probabilistic MSAs using HMMs

(e.g., [58, 59, 60, 61, 62, 63, 50, 64]) to those using genuine sequence evolution models may

end up in an extremely slow method that could take practically forever to analyze even a

reasonably-sized MSA.

Fortunately, good news has come from a previous study of ours [3]. The study showed

that, as long as the aligned sequences are closely or moderately related, the true MSAs are in

the neighborhoods of (e.g., within four block-wise steps from) the reconstructed MSAs in an

overwhelming majority 9 of erroneous segments. This suggests a simple strategy to construct

an approximate MSA probability distribution by exploring only a neighborhood of

the input (reconstructed) MSA. Then, thanks to the good properties of the elementary moves

of MSAs (explained later in this paper), the MSA probabilities could be computed fairly

efficiently, which may enable us to construct good approximate MSA probability distributions

within a reasonable amount of time, even with a genuine sequence evolution model,.

We have actually implemented this simple strategy, and named the resulting new program

package ANEX, which stands for the ”alignment neighborhood explorer”. Given an

MSA of DNA sequences, a phylogenetic tree and a set of parameters of a genuine sequence

evolution model, ANEX creates possibly overlapping windows to cover ”analyzable portions”

of the input MSA, and explores the neighborhoods of the input MSA within each window

8This time-consuming nature of Miklós et al.’s algorithm [76] has been mitigated greatly, or at least

partially solved, by the recent ”simulation-based” approach [80].
9The ”overwhelming majority” here means about 99.5% for closely related sequences and about 80% for

moderately related sequences [3].
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while computing the probabilities of MSAs it visits. Our brief validation using a number of

reconstructed MSAs of simulated DNA sequences indicated that this simple strategy should

work.

1.2 Structure of this paper

This article is structured as follows. Section 2 explains the operations that make up ANEX, as

well as the ideas and principles underlying them. The section consists of a number of subsec-

tions (and sub-subsections). The subsections describe: (1) the overall workflow (subsection

2.1), (2) scanning the input MSA (subsection 2.2), (3) identifying ”likely complex errors”

(subsection 2.3), (4) creating windows for analyses (subsection 2.4), (5) exploring neighbor-

hoods (subsection 2.5), (6) computing MSA probabilities (subsection 2.6), (7) outputting

the results (subsection 2.7), (8) possible applications (subsection 2.8), and (8) conceivable

problems (subsection 2.9, which is just a gateway to appendix L). Then, in section 3, we

describe the implementation and ”validation” of ANEX. Finally, section 4 is dedicated for

discussions.

This paper has lots of appendixes, to which important yet detailed subjects are relegated

to, just in order to clarify the main text as much as possible. In particular, appendix A

explains, or defines, a number of terms that the readers may not be so familiar with. And

appendix D describes ”elementary move”s of gap-blocks (or residue-blocks), which are used

as important steps in the exploration of MSA neighborhoods.

Before we go on to the main contents, let us briefly note on the evolution model this study

deals with. The framework of ANEX, hence this study, assumes that the genuine sequence

evolution model at hand satisfies the conditions we previously put forth [3]. Specifically: (1)

the indel rates (excluding the multiplication factors assigned to the inserted residues) are

independent of the residue state and the substitution process before the indel event; (2) the

substitution rates at each site are independent of the states and the evolutionary processes
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at other sites; and (3) the probability of the residue state of each inserted sub-sequence

(conditioned on the insertion) can be factorized into the product of residue probabilities (at

the time) over the inserted sites. (Actually, these conditions are satisfied by most of the

sequence evolution models that have been used in the studies thus far.) As we showed in [3]

(by generalizing the proof by Kim and Sinha [81]), under these conditions, the probability

of each MSA can be factorized into the substitution component, which depends only on

the residue configuration of the MSA, and the indel component, which depends only on

the gap-configuration of the MSA. In addition, the indel portion of the evolution model is

also assumed to satisfy the three conditions we posed in [1], which are: (i) the rate of each

indel event is independent of the sequence state out of the region it affects; (ii) the increment

of the exit rate caused by each indel event is independent of the sequence state out of the

region it affects; and (iii) the probability of the sequence state at the root is factorized into

the product of the probability of a ”reference” state and the ”multiplicative increments”

(from the ”reference” probability) contributed independently by the gapped segments. 10

Under these conditions, the indel component of the MSA probability can be factorized into

the product of an overall factor and contributions from gapped segments (including ”trivial”

ones in between adjoining gapless columns).

2 Operations in ANEX and their Underlying Ideas and

Principles

[Outline]

This computer program, the ”alignment neighborhood explorer” (ANEX), takes an input

multiple sequence alignment (MSA), which is typically reconstructed by an aligner, and

10See section R8 of [1] for concrete examples of indel evolution models satisfying these conditions. For

example, a model whose indel rates are uniform along the sequence satisfies these conditions if one or both

end(s) of the sequence allow(s) indels just as the bulk of the sequence does.
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explores the MSA’s ”neighborhoods” in the MSA space. The program explores the neigh-

borhoods via combinations of ”elementary moves,” such as ”shifts” and (horizontal and

vertical) ”splits” of individual gap-blocks, (horizontal and vertical) ”merges”, ”purges” and

”reverse-purge”s (also known as ”ex-nihilo”s [45]) of pairs of gap-blocks, and the reversal of

”(incomplete-)collapse of independent insertions ((i)CII)”. (These ”elementary moves” are

described in some details in, e.g., [45, 3], and are re-described in appendix D below.) 11

Then, the program assigns probabilities to the MSAs resulting from such moves. The

probabilities are calculated under a genuine stochastic evolution model of an entire sequence

via substitutions and insertions/deletions (indels) with realistic indel length distributions,

taking advantage of the quite accurate multiplication factors pre-computed by our recently

developed program package, LASTPIECE [4]. 12

As a ”pre-processing” step, the program also identifies MSA portions with ”potentially

complex errors,” where restoring the true MSA is very likely formidable. In the current

version of ANEX, this is done using some properties of gaps in the MSA regions, like the

effective indel density and the possible involvement of long effective indels.13
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(iv)

Explore the MSA neighborhoods 

(within each window), while 

computing MSA probabilities. 

(v)
Output the results

[ mainly as tables of:
●  MSA probabilities,
●  indel components,
●  substitution components,
●  degrees of degeneracy,
●  counts of null columns,
●  minimum counts of indels ]

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC Wd
1

X
1

X
0

X
0
\X

1
:    -3   -2   -1  0   +1  +2

-4
-3
-2

-1          (numerical table)
 0
+1
+2

Input data:

MSATree(o)
Substitution model 

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

1

2

3

4

Scan the MSA for :

(i)

B0

1 NNN - - - N NNNN - - NN

2 NNN N N N N NNNN N - NN

3 NNN N N - - NNNN N N NN

4 NNN – N - - NNNN N N NN
B1 B2C1 C2

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

Gap confiuration  (G.C.) Likely “purie”-like errors

Inspect the G.C. to identify :

(ii)
“Likely complex errors”

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

Indel model 

(iii)
Create Windows out of the 

remaining portions of MSA. 

(Excluded)
1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC Wd
1

Figure 1: Flowchart explaining overall workflow of ANEX. In the gap configuration on the left of

(i), the ’N’ and ’-’ represent the presence of a residue and a gap (i.e., the absence of a residue), respectively.

And the blue and red rectangles enclose the gapless and gapped segments, respectively. On the right of

(i), the alignment of the regions shaded in red and blue indicates a ”purge”-like error. In (ii), the yellow-

shaded region likely contains a ”complex” error. In (iii) and (iv), the window (Wd1) is enclosed by a

cyan rectangular box, and the grey-shade indicates that the region has been excluded from further analyses.

In (iv), the window (Wd1) contains two gap-blocks, represented as rectangles shared in semi-transparent

red and blue. The coordinates, X0 (red) and X1 (blue), spanned by the red and blue both-headed arrows,

represent the possible moves (”shifts”) of the gap-blocks of the same colors (from the ”origin”, i.e., the input

MSA).
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2.1 Overall workflow

The flowchart of the program is shown in Figure 1. After receiving an input MSA and a tree

[ (o) ], it first scans the MSA for the gap configuration of the entire MSA and also for the

portions likely containing ”purge”-like errors [ (i) ]. During the course of this scan, it

also identifies the portions with ”likely complex errors” [ (ii) ]. Using the results of the

scan, it excludes such ”likely-complex-error” portions from further analyses, and creates

(possibly overlapping) windows out of the remaining portions of the input MSA [ (iii) ].

Then, in each such window, it explores the neighborhoods of the MSA , while calculating the

(log-) probabilities of the resulting alignments [ (iv) ]. Finally, the results are output [ (v)

].

In the following sub-sections, we will elaborate on how these steps are performed.

2.2 Scanning input MSA

Given an input MSA, the program first scans it horizontally, from left to right, and (con-

ceptually) chop the MSA into an alternating series of gapped and gapless segments (on

the left of step (i) in Figure 1). This operation is based purely on the gap configuration

of the MSA. More precisely, a gapped segment is defined as a run of contiguous gapped

11Be careful of some changes in the wording. For example, the ”merge (opposite types),” ”vertical merge

(deletions),” and ”vertical merge (insertions)” in [3] are referred to as ”merge (complementary)” (abbrevi-

ated as ”c-merge”), plain ”vertical merge” (abbreviated as ”v-merge”) and ”complementary vertical merge”

(abbreviated as”cv-merge”) respectively, in this study.
12 This strategy of pre-computing and re-using the multiplication factors has already been suggested in

Additional File 1 of [2], and has actually been implemented since version 0.6 of LOLIPOG( P) [2] and

version 0.6 of ComplLiMment( P) [3], both of which were released in 2015. We learned that a recent

”simulation-based” approach to statistical PWA [80] also employs this strategy of pre-computing and re-

using the probabilities of gapped segments (more precisely, ”chop-zones” in their study). We do not know

whether they have just borrowed our idea or independently come up with this strategy by themselves.
13See appendix A for the definition of the ”effective indel.”
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columns delimited by gapless columns (or a gapless column and an MSA end), and a gapless

segment is defined as a run of contiguous gapless columns [1, 2].

The program also searches for portions where ”purge”-like errors are likely (on the

right of step (i) in Figure 1). (For ”purge”-like errors, see, e.g., [45, 3].) Briefly, the search

is done via a sliding-window analysis. In each window, substitutional residue-differences

(SRDs) along the branches are estimated from the residue configurations of the columns.

If the estimated SRDs are significantly more than expected along a branch in a window,

the window is recorded as holding a ”purge”-like error candidate. If some of such

candidates (regarding the same branch) overlap or adjoin, they are merged. (Details on this

search process are described elsewhere [82].)

[The current version of ANEX actually searches for ”purge”-like error candidates by calling

a satellite script, ”detect purge cands.ver0.5.pl.”]

2.3 Identifying MSA portions with ”likely complex errors”

Quite frequently, MSAs reconstructed by an aligner (even if it is the state of the art) con-

tain ”complex” errors, each of which cannot easily be classified into a definite type or

expressed as a combination of definite types [3]. It will also be very difficult to rectify

such ”complex” errors and to recover the true MSA from the reconstructed one in such an

MSA portion. Therefore, it should be wise to exclude such portions from further analyses,

and it will also be honest (or truthful) to tell the users which portions of the input MSA likely

contain complex errors. ANEX identifies such portions by examining the gap configura-

tions and the effective indel events in each gapped segment (or each cluster of gapped

segments). (For details on this process, refer to [82].)

[ For the actual implementation of the identification of ”likely complex errors,” see the sub-

routine, ”wrapper detect cmplx error cand acls0,” in the module, ”MyDetect cmplx error cands.pm,”

of ANEX. ]
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2.4 Creating windows for MSA neighborhood exploration

After identifying regions likely to contain ”complex” errors and excluding them (as well as

a specified number of MSA columns flanking them) from further analyses, ANEX creates

windows in each of which it actually explores the neighborhoods of the input MSA.

Currently, ANEX’s creation of windows depends on the positional distribution of gap-

blocks in the input MSA . 14 Basically, the gap-blocks are determined via the Dollo-

parsimony-based indel history that can explain the gap-configuration of the input MSA

[83, 2]. (See appendix B for more details.)

Currently, ANEX creates two kinds of windows: (a) ordinary windows each of which

contains up to (and including) NW gap-blocks , where the NW is a user-specified number;

each ordinary window may include one or two sub-window(s), each of which contains up to

(and including) (NW − 1) gap-blocks; and (b) ”purge-like-error-candidate-containing”

windows, or PCC windows for short, each of which is constructed around a single ”purge-

like-error candidate” (described in subsection 2.2), and each of which can contain up to (and

including) (NW − 2) gap-blocks. As you can see, different maximum numbers of gap-blocks

are set for different types of windows; this is in order to keep the number of simultaneously

”shift”ed gap-blocks less than or equal to NW (see subsection 2.5 below, especially around

Figure 4, for more details).

For more details on how to create the windows, see appendix C.

2.5 Exploring neighborhoods of input MSA

After defining the (possibly overlapping) windows, ANEX explores the neighborhoods of the

input MSA via a window analysis (step (iv) in Figure 1). In each window, the program

examines alternative MSAs obtained from the input MSA via an ”elementary move”

[45, 3], or a combination of a number of elementary moves. Basically, each elementary

14Figure 2 illustrates the gap-blocks. For the definition of the term, ”gap-block,” see appendix A.
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Figure 2: Gap-block, ”isolated” gap-block, and sequence-block. (See also appendix A for the defi-

nitions of the headlined terms.) To focus on the gap-pattern, each residue was represented as ’N’ regardless

of its identity. A. The yellow-shaded portion of the MSA is a gap-block. It is delimited by two inter-column

positions (the vertical red dashed lines) and a branch in the tree (the red branch). (The identifiers of the

involved (or ”supporting”) sequences are also shaded in yellow.) B, C. ”Isolated” gap-blocks (shaded por-

tions enclosed by dashed boxes). In panel B, the isolation is obvious because the horizontal positions of the

gap-blocks do not overlap. In panel C, although the two gap-blocks overlap horizontally, they are separated

vertically with each other by three branches (in red). D. A pair of ”non-isolated” gap-blocks, which hori-

zontally overlap and are vertically separated by only two branches (in red). E. A sequence-block (in blue),

which is complementary to a gap-block (shaded in yellow).
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move is defined as the move of a ”gap-block,” which is a rectangular block of gaps (Figure

2, panel A), or as the move of a ”residue-block”, which is complementary to the gap-block

(Figure 2, panel E) 15. (In the current version, ANEX performs multiple-”shift”s, i.e.,

simultaneous independent ”shift”s of individual gap-blocks, by default; if applicable, it also

attempts some non-”shift” elementary moves, either as single moves or as a pair of moves,

followed by the multiple-”shift”s.)

Currently, ANEX attempts the following elementary moves (illustrated in Figure 3): (i)

”shift”, (ii) ”purge”, (iii-a) ”same-type-merge” (or ”s-merge” for short), (iii-b) ”complementary-

merge” (or ”c-merge” for short), (iv-a) ”same-type-split” (or ”s-split” for short), (iv-b)

”complementary-split” (or ”c-split” for short), (v) ”reverse-purge” (also known as ”ex-nihilo”

[45]), (vi-a) ”vertical-merge” (or ”v-merge” for short), (vi-b) ”complementary-vertical-merge”

(or ”cv-merge” for short), (vii-a) ”vertical-split” (or ”v-split” for short), (vii-b) ”complementary-

vertical-split” (or ”cv-split” for short), and (viii) ”reversal of (incomplete-)Collapse of In-

dependent Insertions” (or ”reverse-(i)CII” for short). For more details on these elementary

moves, see appendix D.

Current version of ANEX employs a simple architecture of combining the elementary

moves to explore the neighborhoods of the input MSA. Figure 4 illustrates the architecture.

First [ (I) ], ANEX constructs ordinary windows based on the gap-configurations, i.e.,

the set of gapped segments (as in step (iii) in Figure 1). Each ordinary window contains

NGB gap-blocks or less, where NGB is a user-specified number. Each ordinary window may

(or may not) include one or more sub-window(s) [ (II) ], each of which, if at all, contains

NGB − 1 gap-blocks or less. 16

Then [ (II) ], in each ordinary window (the ”Wdm,” with m = 1, 2, ...), ANEX attempts

the combinations of elementary moves as follows. (1) By default, it attempts the ”multiple-

shift”s of all gap-blocks, starting from the input MSA. (2) If there are appropriate gap-blocks,

15See appendix A for the definitions of the ”gap-block” and the ”residue-block.”
16An ordinary window itself is its sub-window, if it contains less than NGB gap-blocks.
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Figure 3: Elementary moves that ANEX attempts. The bold ’N’s represent the residues that

moved. A. A ”shift” of a single gap-block (shaded portion enclosed by the dashed box). B. A ”purge” of

two gap-blocks supported by the complementary sets of sequences. (Its reverse is a ”reverse-purge,” also

known as an ”ex-nihilo” [45].) C. An ”s-merge,” i.e., a ”same-type-merge,” which merges two gap-blocks

supported by the same set of sequences. (Its reverse is an ”s-split” of a gap-block.) D. A ”c-merge”, i.e.,

a ”complementary-merge,” which merges gap-blocks supported by the complementary sets of sequences.

(Its reverse is a ”c-split” of a gap-block.) E. A ”v-merge”, i.e., a ”vertical-merge” of gap-blocks. (Its

reverse is a ”v-split” of a gap-block.) F. A ”cv-merge”, i.e., a ”complementary-vertical-merge” of

residue-blocks (each complementary to a gap-block). (Its reverse is a ”cv-split” of a residue-block.) [Note:

This panel highlights the residue-blocks, instead of gap-blocks as the other panels do.] G. A ”revserse-CII”,

i.e., a ”reversal of a collapse of independent insertions,” which recovers the independent effective-

insertions that collapsed when the MSA is reconstructed [3]. [ This figure was adapted from Figure 3 of [3],

with somewhat modified naming of the moves. ]
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Figure 4: ANEX’s current architecture of MSA neighborhood exploration. In (III), the ”PCC”

stands for ”purge(-like-error)-candidate-containing”. In (I) and (II), the ”Wdm” (m= 1,2, ...) represents the

m-th ordinary window. And, in (III) and (IV), the ”Pwdn” (n=1,2, ...) represents the n-th PCC window.

For clarity, only one ordinary window and only one PCC window are chosen to show how the elementary

moves are combined. However, it should be understood that every window attempts the combinations of

the elementary moves following the structure shown in (II) or (IV). The dark-green dashed curved arrow

indicates that likely ”purge”-like errors help ANEX decide whether to attempt ”split”s or not. For more

detailed description, see the text.
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it attempts some elementary moves, or some pairs of elementary moves, that do not increase

the number of gap-blocks (those listed in the middle-left box in (II)); after attempting each

such move, the multiple-”shift”s of all the resulting gap-blocks follow. (3) ANEX attempts

”split”s of any of the four types (those listed in the middle-right box in (II)), which increase

the number of gap-blocks by one, not directly in the full ordinary window but in the sub-

window; it attempts a ”split” only if a likely ”purge”-like error suggests that the move may

be promising (the dark-green dashed curved arrow); each of such ”split”-attempts is followed

by the multiple-”shift”s of all the resulting gap-blocks in the sub-window. These restrictions

on the ”split”-attempts are intended to get the computation to finish within a reasonable

amount of time.

Independently of the ordinary windows, ANEX also constructs ”purge(-like-error)-candidate-

containing” (PCC) windows [ (III) ], each of which contains a merged set of (horizontally

and vertically) overlapping likely ”purge”-like errors, as well as less than or equal to NGB−2

gap-blocks. Then [ (IV) ], in each PCC window (the ”Pwdn,” with n = 1, 2, ...), ANEX first

attempts ”reverse-purge”s with some selected gap-block sizes; each attempt is followed by

the multiple-”shift”s of all new gap-blocks in the PCC window.

[The current version of ANEX performs the neighborhood exploration within each ordi-

nary window by calling a satellite script, ”anex for sgl wd.ver0.7.pl”; and it performs the

neighborhood exploration within each PCC window by calling a second satellite script,

”anex rev purge for sgl wd.ver0.7.pl.”]

In the current version of ANEX, the architecture of neighborhood exploration is quite

simple and näıve. We hope that the architecture will evolve into a smarter, more sophis-

ticated one in the future, maybe including appropriate combinations of three or more non-

”shift”-type moves depending on the specific configurations of gaps and residues within the

window (see [82] for more discussions).
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Figure 5: Mapping multiple-”shift”s onto hyper-rectangular coordinate space. This example

MSA (on the left) contains three non-interfering gap-blocks (blue, red, and yellow), whose ?shift?s are rep-

resented by the integer coordinates, X0, X1, and X2, respectively. Hence, each instance of the simultaneous

?shift?s of these gap-blocks corresponds to, i.e., can be mapped onto, a point in a 3-dimensional hyper-

rectangular lattice (on the right). (Here, the lattice is represented only with the framework and the origin,

as well as colored dashed lines indicating the origins of the individual gap-blocks clarifying the coordinate

frame.)

2.5.1 Algorithm to exhaustively perform multiple-”shift”s

As Figure 4 indicates, ANEX’s neighborhood exploration heavily depends on multiple-”shift”s.

It is thus crucial to exhaustively perform each set of multiple-”shift”s as efficiently as possible.

We have developed a quite efficient algorithm to do this within each window of a given MSA,

based on stacks with (B + 1) layers, where B is the number of gap-blocks in the window. 17

Basically, we can associate each instance of multiple-”shift”s with a point in a multi-

dimensional hyper-rectangular lattice that has integer coordinates, Xk ∈ { Lk, ..., 0, ..., Rk },

with k = 0, 1, ... B − 1 (Figure 5). Consider that an input MSA corresponds to the ori-

gin, (X0, X1, ..., XB−1) = (0, 0, ..., 0). Then, the point, e.g., (X0, X1, ..., XB−1) =

(k0, k1, ..., kB−1), corresponds to the alternative MSA created by ”shift”ing the 0th gap-

17Actually, we could design an algorithm that works in almost the same way, using a recursive-call of a

function (or subroutine). Basically, the algorithm we provide here was created from such a recursive-calling

algorithm, by removing the recursion(s) following the recipe in [84] (chapter 5).
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block by k0, the 1st gap-block by k1, ..., and the (B − 1)-th gap-block by kB−1, where k0,

k1, ..., kB−1 are integers each of which may be positive, zero, or negative. 18 As soon as a

gap-block is ”shift”ed, ANEX computes the properties (including the probabilities) of the

resulting MSA and stores the results into a B-dimensional array, whose array of level-(k+1)

corresponds to the axis of the coordinate Xk (as in Figure 6).

As briefly mentioned above, the stack used for exhaustively performing multiple-”shift”s

consists of (B + 1) layers. The 0-th layer constantly stores information on the input MSA

(within the window), whose coordinates are set to be X0 = X1 = ... = XB−1 = 0.

And the (k + 1)-th layer (with k = 0, 1, ..., B − 1) temporarily stores information on the

MSA in which the k-th gap-block was ”shift”ed by Xk from its ”parent MSA” in the k-th

layer, which always has Xk (= ... = XB−1) = 0. When”shift”ing the k-th gap-block,

the algorithm updates the information stored in the (k+ 1)-th layer through the B-th layer.

21 The ”shift”s are attempted always from the (B − 1)-th gap-block down to the 0-th gap-

block. Each gap-block (say, the k-th one) is first ”shift”ed to the right one by one (as in

Figure 6 A); when it is about to step ”beyond” the right-boundary of the coordinate, it is

returned to the origin (Figure 6 B), and is ”shift”ed to the left one by one; when it is about

to step ”beyond” the left-boundary of the coordinate, the gap-block is returned to the origin

again, and the algorithm goes one layer down, and ”shift”s the (k− 1)-th gap-block (Figure

6 C); finally, when the 0-th gap-block is about to step ”beyond” the left-boundary, all the

multiple-”shift”s end (Figure 6 D).

The elements described above are put together to form an algorithm to exhaustively

perform multiple-”shift”s, which can be neatly expressed as the following ”pseudo-code”. 22

18We employ the convention that positive and negative integers correspond to the ”shift”s to the right

and to the left, respectively. A zero means that the gap-block in question remains un-”shift”ed at the initial

position.
21The updated information in each of these layers is a copy of the information on the MSA resulting from

the ”shift” in question.
22In the ”pseudo-code,” some Perl notations are used. For example, a variable beginning with an ”$” is
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Figure 6: Algorithm for exhaustively performing multiple-”shift”s of gap-blocks. This figure

shows some typical moves within the multi-dimensional array when ANEX exhaustively performs multiple-

”shift”s of gap-blocks in a given window. For maximum clarity, the simplest non-trivial case of three blocks

(B = 3) is illustrated. As in text, we set the origin to be (X0, X1, X2) = (0, 0, 0). Each horizontal run

of boxes represents an array (with the left- and right- boundaries (Lk and Rk) and the origin (0) shown),

which corresponds to the coordinate axis of Xk (k = 0, 1, 2) in Figure 5. 20 Each downward brace indicates

that the array above it is essentially the element of the array below that it points at. In each panel (except

(O)), the configurations before and after the move are on the left and right, respectively, of the big solid

black arrow. The colored boxes represent the coordinates of the gap-blocks at that time. Especially, the

solid blue and red boxes represent the coordinates handled before and after the move, respectively. The red

transparent boxes represent the remaining coordinates. The (small) black arrow represents the direction of

the ”shift” handled at that time, and the white arrows represent the directions of other ”shift”s.
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[ Algorithm to exhaustively perform multiple-”shift”s ]

Input: An MSA within the window, represented as a set of columns

(= @A = (\@c0, \@c1, ..., \@c|A|−1)), where |A| is the number of columns in the MSA);

The number of gap-blocks (= $B);

Some properties of gap-blocks, that remain unchanged during the multiple-”shift”s,

(= @gb prp, with @{$gb prp[$k]} storing the properties of the $k-th gap-block ($k = 0, 1, ..., $B − 1));

The initial left- and right-ends of the gap-blocks, in terms of the column indexes in @A, (= @gb bd0,

with @{$gb bd0[$k]} = (left-end, right-end) for the $k-th gap-block ($k = 0, 1, ..., $B − 1));

The coordinate boundaries of the gap-blocks, (= @L and @R, where $L[$k] and $R[$k]

are the left- and right-boundaries, respectively, of the $k-th gap-block ($k = 0, 1, ..., $B − 1)).

Output: (The reference to) a $B-dimensional array, @Out,

each of whose terminal elements, $Out[$i[0]]→ [$i[1]]...[$i[$B − 1]],

is the reference to an array storing output properties of the MSA resulting from ”shift”ing

the k-th gap-block by $X[$k](= $i[$k] + $L[$k]) sites (with $k = 0, 1, ..., $B − 1)

from the input MSA.

Algorithm:

Initialize @Out, so that all its terminal elements refer (or point) to respective empty arrays.

Initialize a $B-dimensional array, @X(= ($X[0], $X[1], ..., $X[$B − 1])) ,

which specifies the current coordinates of the gap-blocks, to be (0, 0, ..., 0) .

Compute some properties of the input msa, @A, and store them into an array, @prpmsa .

Store the contents of @prpmsa into the terminal element of @Out corresponding to the ”origin”, i.e.,

a scalar. A variable beginning with an ”@” is an array (or a vector), the reference (or pointer) to which is

represented by prepending a ”\” to it. $a[$k] denotes the $k-th element of an array, @a. When a variable,

$pa, refers (or points) to an array, the array itself is denoted as @{$pa}, and $p → [$k] denotes the $k-th

element of the array.
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@{$Out[0− $L[0]]→ [0− $L[1]]...[0− $L[B − 1]]} ← @prpmsa .

Initialize the stack, @Stack, as follows:

Create @Stack ← ( ) .

For $n from 0 to $B, do the following:

Create @cp A← ( a copy of @A );

Create @gb bd← ( a copy of @gb bd0 ) ;

Create @cp X ← ( a copy of @X );

Create @cp prpmsa← ( a copy of @prpmsa );

@{$Stack[$n]} ← (\@cp A, \@gb bd, \@cp X, \@cp prpmsa) .

EndFor ($n)

Initialize a B-dimensional array, @sh, which specifies the directions of the ”shift”s,

to be (+1,+1, ...,+1); (NOTE: the $k-th gap-block (with $k = 0, 1, ..., $B − 1)

”shift”s to the right/left (by one site) if $sh[$k] = +1/−1.)

Initialize a scalar, $b, which specifies the gap-block to be ”shift”ed, to be $B − 1.

Initialize a scalar, $wrk layer, which refers (or points) to the working layer, as follows:

Create $wrk layer ← (pop @Stack) .

While (1), which means to loop ”forever” until interrupted, do the following:

Create ($pA, $pgb bd, $pX, $pprpmsa) ← @{$wrk layer} ;

Create $gb coord bf ← ($pX → [$b]) ;

Create $gb coord af ← $gb coord bf + $sh[$b] ;

If the $b th gap-block is about to step ”beyond” the right-boundary

(i.e., $R[$b] < $gb coord af), then:
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Create @cp layer ← ( a copy of @{$Stack[$b]} ) ;

$wrk layer ← \@cp layer ; (Get the $b-th gap-block back to the origin.)

$sh[$b] ← −1 ; (Flip the direction of the ”shift”.)

next ;

ElseIf the $b th gap-block is about to step ”beyond” the left-boundary

(i.e., $gb coord af < $L[$b]), then:

If $b = 0, then:

last ; (END of all possible multiple-”shift”s.)

EndIf

$sh[$b] ← +1 ; (Flip the direction of the ”shift”.)

$wrk layer ← ( pop @Stack) ; (Go one layer down,)

$b ← $b− 1 ; (that is, ”shift” the ($b− 1)-th gap-block from next.)

next ;

EndIf

{ Actually ”shift” the $b-th gap-block by $sh[$b],

and update @{$pA}, @{$pgb bd} and @{$pX}, to reflect the resulting changes };

{ Compute the properties of the resulting MSA,

and update @{$pprpmsa} by storing the results into it };

@{$Out[$i[0]]→ [$i[1]]...[$i[$B − 1]]} ← @{$pprpmsa} ,

where $i[$k] = $pX → [$k]− $L[$k] for $k = 0, 1, ..., $B − 1.

If $b < $B − 1, then:

For $n from $b+ 1 to $B − 1, do the following:

Create @cp wrk layer ← ( a copy of @{$wrk layer} ) ;

$Stack[$n]← \@cp wrk layer; (Update the higher-layers of the stack.)
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EndFor ($n)

$b ← $B − 1 ; (Update $b, which specifies the subject gap-block.)

EndIf

EndWhile (1)

Return \@Out .

EndAlgorithm

[ For the actual implementation in Perl, see the subroutine, ”nonrec mlt shifts gapblocks”,

in the module, ”MyANEX Main.pm”, in ANEX. ] 23

In retrospect, this algorithm could be simplified to some extent, if all the gap-blocks

are shifted to the left-boundaries of their coordinates before the (infinite) while-loop; then,

in the while-loop, we need only to ”shift” the gap-blocks to the right, which makes @sh

unnecessary.

2.5.2 Performing single ”shift” of gap-block: essence

The sub-subsection 2.5.1 above provided an algorithm to exhaustively perform multiple-

”shift”s. The fundamental building-block of such multiple-”shift”s is the single ”shift” of

each individual gap-block. Actually, this fundamental process can be concretely realized in

quite a simple manner.

Figure 7 illustrates the simplest case where a single isolated gap-block is ”shift”ed by one

site, to the left and to the right. By carefully comparing the MSAs before and after each

23This subroutine may appear quite messy because it also performs several other works while performing

multiple-”shift”s, and also because it incorporates several measures to speed up each step (of multiple-

”shift”s). Once you know the above ”essence” of the algorithm, however, it should not be so hard to

”decipher” the actual code.
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1 AGT-------CTGAG

2 AAT-------CCGAA

3 AGGTAGGCGTCCGAA

4 GGTTACACGTTTGAA

5 AGTTAGACGTCTGAA

1 AGTC-------TGAG

2 AATC-------CGAA

3 AGGTAGGCGTCCGAA

4 GGTTACACGTTTGAA

5 AGTTAGACGTCTGAA

Tree Before

After (R)

“Shift” to the right“Shift” to the left

1 AG-------TCTGAG

2 AA-------TCCGAA

3 AGGTAGGCGTCCGAA

4 GGTTACACGTTTGAA

5 AGTTAGACGTCTGAA

After (L)

Figure 7: Changes in MSA caused by single ”shift”s of gap-block. The subject gap-block and the

sequences supporting it are shaded in yellow. And the yellow branch phylogenetically delimits the gap-block.

Before the ”shift”s, the left- and right-flanking sites in the gap-block-supporting sequences are shaded in

cyan and magenta, respectively. Carefully compare the positions of these cyan- and magenta-shaded sites

before and after the single-”shift”s.

of the single-”shift”s in this figure, we notice that the effects of each single-site ”shift”

boils down to the following ”essence”:

In each of the gap-block supporting sequences,

swap the site at the rear-end of the gap-block

with the one flanking the front-end of it.

This simple nature of the single-”shift” will help quickly compute the increment of the

substitution component of the log-probability of the MSA in later subsection.

When the gap-block is surrounded by other gap-blocks that interfere with it, some com-

plications may arise. In such cases, however, the above ”essence” still continues to hold,

ableit with some additional adjustments. (See appendix E for details.)

Currently, ANEX skips downstream analyses on alternative MSAs resulting from multiple-

”shift”s if they have particular gap-block configurations. (See appendix F.) This way, ANEX

avoids redundancies in the alternative MSAs resulting from the entire neighborhood explo-

ration. Note that the multiple-”shift”s themselves are continued.
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2.5.3 Performing non-”shift”-type moves of gap-blocks

The moves of gap-blocks other than the ”shift”s (see Figure 3, appendix D) could be realized

in essentially the same manner as one or more single-”shift”s we discussed in sub-subsection

2.5.2. You need only to be careful about the ”supporting” sequences to be affected by the

move. In addition, in some ”split”s or ”merger”s, we need to add or remove some null-

columns before or after the ”shift”s. Moreover, in ”split”s, you must conceptually ”split”

the subject gap-block, before performing necessary ”shift”s; in ”merge”s, you must concep-

tually ”merge” the subject gap-blocks, after performing necessary ”shift”s; these conceptual

”split”s/”merge”s re-organize the set of gap-blocks.

The exceptions to the ”shift”-based realizations mentioned above are the realizations of

the ”cv-split”, ”cv-merge”, and ”reverse-(i)CII” (e.g., Figure 3 F & G); in these cases , you

need to handle residue-blocks, instead of gap-blocks. In the next sub-subsection, we discuss

”reverse-(i)CII,” which is most highly non-trivial.

[ For the actual implementation of these non-”shift”-type moves (except ”reverse-(i)CII”),

see the relevant subroutines(, which you can probably tell by the names,) in the module,

”MyANEX Main.pm”, of ANEX. ]

2.5.4 Performing ”reverse-(i)CII”

Performing ”reverse-(i)CII” may be quite hard if you stick to the gap-blocks, because a

”reverse-(i)CII” usually changes the (effective-)indel history, hence the gap-block structure,

drastically (Figure 3 G). Instead, if you pay attention to the residue-blocks, it may be rel-

atively easy, because ”revers”ing a(n) ”(i)CII” is, after all, nothing other than extracting

individual residue-blocks and separating them from each other horizontally (Figure 3 G).

Broadly speaking, ”reverse-(i)CII”s can be performed in two steps: (1) detecting can-

didate regions that may have suffered ”(i)CII”s; and (2) actually performing the ”reverse-

(i)CII” on each of such ”(i)CII”-candidate regions detected. An algorithm for step (1) is
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described in appendix G, and that for step (2) is described in appendix I. In step (1), divid-

ing a set of sequences into monophyletic groups plays an important role; an algorithm for

this job is provided in appendix H.

Unlike other moves, during which rearranging the set of gap-blocks is relatively easy, the

set of gap-blocks must be constructed from scratch after the ”reverse-(i)CII”.

It should also be noted that the current architecture of ANEX (Figure 4) is not capable

of taking full advantage of ”reverse-(i)CII”s. This is because they are attempted after the

creation of (especially ordinary) windows. For example, a(n) ”(i)CII” of two residue-blocks

(the reverse of Figure 3 G) typically removes two (or one) (effective-)insertion(s) and cre-

ates as many (effective-)deletions as the trivalent nodes separating the true residue-blocks.

Therefore, if the ”(i)CII”ed true residue-blocks are separated by three or more trivalent

nodes, the resulting gapped segment in the reconstructed MSA should have more gap-blocks

than the original gapped segment(s) in the true MSA. In consequence, the ”(i)CII”ed gapped

segment will often be excluded from the (ordinary) window-analysis from the beginning, es-

pecially when the number of aligned sequences is large. One way to avoid this problem

should be to perform the ”reverse-(i)CII”s before creating (ordinary) windows and, after

that, to create windows containing ”reverse-(i)CII”ed segments in parallel with the windows

only containing original input segments. This way, the ”reverse-(i)CII”s should be fully ex-

ploited, although it may become somewhat bothersome to manage and record the resulting

windows and the moves attempted within each window.

2.6 Computing logarithmic probabilities of alternative MSAs

As already mentioned in 1.2, ANEX uses genuine sequence evolution models that satisfy the

conditions posed in [3]. 24 Under such evolution models, the probability of each MSA can be

factorized into the substitution component, which depends only on the residue configura-

24Actually, these conditions are satisfied by most of the sequence evolution models that have been used in

the studies thus far.
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tion of the MSA, and the indel component, which depends only on the gap-configuration of

the MSA. Thus, given an alternative MSA (within each window), ANEX separately computes

the substitution and indel components of its probability, under a given phylogenetic tree and

a given sequence evolution model.

According to ANEX’s current architecture of the MSA neighborhood exploration (Fig-

ure 4), ANEX first performs zero, one or two non-”shift”-type moves of gap-blocks (sub-

subsection 2.5.3), then, using the resulting MSA as a new starting point (or ”origin”), it

further performs multiple-”shift”s exhaustively within a hyper-rectangular coordinate space

(sub-subsection 2.5.1). Taking account of this architecture, ANEX employs an asymmetrical

strategy for computing the probabilities of MSAs resulting from non-”shift”-type moves and

those resulting from multiple-”shift”s. In short, full computations of both components are

performed every time when a non-”shift”-type move is finished, whereas time-saving mea-

sures are taken when computing the components of an MSA resulting from a single-”shift”.

In the following sub-subsections, we give more details on these computations.

2.6.1 Logarithmic probabilities of MSAs resulting from non-”shift”-type moves

As explained above, ANEX fully compute the substitution and indel components of the loga-

rithmic probability of the resulting MSA, every time when a non-”shift”-type move (or a pair

of such moves) is finished. Regarding the substitution component, this means that ANEX

fully performs the pruning algorithm [20, 21]. 25 As most of the programs and methods,

ANEX uses substitution models in which each site of the sequence evolves independently of

the other sites. 26 Therefore, the probability of each MSA (say A), under a tree (= T ) and a

25But ANEX does not resort to the pulley principle, because ANEX allows for non-equilibrium evolution

processes, which have often been observed in genome data analyses (e.g., [85]).
26Actually, the current version of ANEX uses only space-homogeneous models, in which the substitution

rate and matrix are uniform across the sites in the sequence. However, it should be possible to extend the

program so that it can also use models in which the sites are distributed into discrete classes of substitution

rates [86, 87, 26].
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substitution model (= ΘS) can be factorized into the product of contributions from all sites

(or columns):

P [A | T ,ΘS] =

Nc(A)∏
k=1

P [ck | T ,ΘS] , (1)

where the ck’s (with k = 1, ..., Nc(A)) denote the columns in A. Thus the logarithmic

probability of A is expressed as the summation over all sites (or columns):

log {P [A | T ,ΘS]} =

Nc(A)∑
k=1

log {P [ck | T ,ΘS]} . (2)

This fact, as well as the pruning algorithm [20, 21], enables a fairly fast computation of

the logarithmic probability of each MSA. Thus, the full computation of the substitution

component after each non-”shift”-type move will not become the rate-limiting step.

The current version of ANEX uses Tamura and Nei’s model (TN93) of base substitutions

[88]. This TN93 model, which has 6 degrees of freedom, is quite flexible, and includes, as

its special cases, Jukes and Cantor’s model (JC69) [89], Kimura’s 2-parameter model (K80)

[90], Felsenstein’s 81 model (F81) [20], and Hasegawa, Kishino and Yano’s model (HKY85)

[91]. 27

Regarding the indel component, ANEX basically employs the computational method we

proposed previously to compute the MSA probability under a given genuine sequence evo-

lution model with realistic insertions/deletions (denoted as ΘID) [1, 2], but with a couple of

important modifications. To briefly review our previous method [2] 28 : (1) horizontally chop

27We are aware of some methods to numerically compute the finite-time transition probabilities under the

general time-reversible model [92, 93, 94, 95] (see also section 2.6 of [87]), which has 9 degrees of freedom

and more flexible than TN93. However, we have not had time to incorporate it into the current version of

ANEX. This is left as a future task.
28To apply this method, the genuine sequence evolution model is assumed to satisfy the ”sufficient and

nearly necessary set of conditions” for factorable MSA probabilities [1]. Briefly, the conditions are: (i) the

rate of each indel is independent of the sequence states in regions outside of that affected by the indel; (ii) the

increment of the exit rate due to each indel is independent of the sequence states in regions outside of that
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the input MSA (A) 29 into gapped segments (denoted as C0
K with K = 1, ..., NGS, where

NGS is the number of gapped segments in the MSA 30 ) and gapless segments (denoted as

B0
J with J = 1, ..., NGLS, where NGLS is the number of gapless segments in the MSA); (2)

for each gapped segment (C0
K), enumerate the parsimonious indel histories that can create

the segment, using our ”local multi-path downhill search algorithm” [2]; (3) compute

the 1st-approximate multiplication factor,
˜̆
M
〈1st〉

P [A; sRoot0 ;C0
K | T ,ΘID], contributed from

each gapped segment (C0
K), by summing the contributions from all the parsimonious indel

histories; and (4) compute the 1st-approximate indel component of the MSA probability

as the product of an overall factor and contributions from all the gapped segments, more

specifically:

P 〈1st〉[A | T ,ΘID] = P [(sRoot0 , nRoot)]× exp{−((λI + λD)×NGLC + ∆[ΘID])× |T |} ×

×
NGS∏
K=1

˜̆
M
〈1st〉

P [A; sRoot0 ;C0
K | T ,ΘID] . (3)

Here, the sRoot0 denotes the ”presence”/”absence” state 31 of the ”reference” ancestral se-

quence at the root (nRoot) 32 ; the P [(sRoot0 , nRoot)] is the probability that, at the root, the

ancestral sequence state is sRoot0
33 ; the λI and λD denote the per-site rate of insertion and

deletion, respectively; the NGLC denotes the number of gapless columns in the MSA(, which

equals the number of sites in sRoot0 ); the |T | denotes the ”total tree length”, which is the sum-

mation of all branch lengths in T ; the exponential factor on the right of the P [(sRoot0 , nRoot)]

is the probability that, given the ”presence”/”absence” state sRoot0 at the root, the state is

affected by the indel; and (iii) the probability of the ancestral sequence state at the root is factorable into

the product of an overall factor(, which is the probability of a ”reference” sequence state) and incremental

factors from gapped segments.
29In [2], the MSA (= A) was denoted as α[s1, ..., sNX ], where sk is the k-th sequence in the alignment,

and NX is the number of external nodes (i.e., sequences).
30In [2], the number of gapped segments (= NGS) was denoted as K0

max.
31The ”presence” means that the site (or a cell in the MSA column allotted to the sequence) is occupied

by a residue (or base), and the ”absence” means that the site is occupied by a gap.
32As sRoot

0 , we use the concatenation of all the gapless segments, B0
1 , ..., B

0
NGLS

, as in [2].
33In most of practical situations, we can safely assume that P [(sRoot

0 , nRoot)] ∝ 1, as argued in [2].
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conserved all through the tree (T ); in the exponent, the expression multiplied by the |T | is

the ”exit rate” from the state sRoot0 (to any other states) in the model (ΘID); especially, the

∆[ΘID] denotes the (constant) ”boundary effect” on the exit rate, which depends very much

on the model (ΘID). 34

Because the ”1st-approximation”, Eq. 3, is basically the summation of the contributions

from parsimonious indel histories alone, its accuracy is limited, especially when long indels

are involved [2]. To overcome this problem, we here enhance the ”1st-approximation”, to

define the ”1st-plus approximation,” by summing all the indel histories (including the non-

parsimonious ones) that result in any of the sets of parsimonious ancestral states at all

internal nodes.

To do this, we need to remember the method for computing the probability of an MSA

with a set of fixed ancestral states at all internal nodes (also aligned with extant sequences)

[58, 59]; although the method was originally devised in the context of hidden Markov models

(or transducers), we now know that it is valid also with genuine sequence evolution models

[1]. In short, the method first regards the MSA with a set of ancestral states as a ”stack”

of ancestor-descendant PWAs, one at each branch of the tree. Then, the method computes

the probability of the MSA with fixed ancestral states as the product and the (conditional)

probabilities of ancestor-descendant PWAs over all branches, as well as of the probability of

the root sequence state. Regarding the (conditional) probability of each ancestor-descendant

PWA under a genuine sequence evolution model, it can be computed using the method pro-

posed in [76] under a space-homogeneous model, which we extended later to more general

cases [1]. Briefly, the PWA is horizontally chopped into ”preserved ancestral sites” (PASs),

in each of which an ancestral residue is aligned with a descendant residue, and ”gapped

segments” in between the PASs next to each other. 35 Then, the probability of the PWA is

34As ∆[ΘID], ANEX uses Dawg’s boundary effect [77], ∆Dawg[λI , λD, fD(.), LCO
D ] = λI +λD×{

∑LCO
D

l=1 (l−

1)fD(l)}, where the LCO
D is the cutoff-length for the deletion and the fD(l) (with l = 1, ..., LCO

D ) is the relative

frequency of the deletion of length l.
35We formally regard that a ”gapped segment” exists even in between a pair of adjoining PASs. Such a
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computed as the product of an overall factor, which is the probability that the ancestral se-

quence state is preserved all along the branch, and the multiplication factors from all gapped

segments [1]; the multiplication factor from each gapped segment, in turn, is the summation

of the contributions from all indel histories (including non-parsimonious ones) that can re-

sult in the gapped segment. Our recently developed program package, LASTPIECE( P),

can compute the multiplication factors from these gapped segments quite accurately, taking

account of contributions from non-parsimonious indel histories as well [4]. 36 Therefore, this

package can be used for the problem at hand.

Taking advantage of these previous achievements, we compute the multiplication factor in

the ”1st-plus approximation,”
˜̆
M
〈1st+〉

P [A; sRoot0 ;C0
K | T ,ΘID], as follows: (i) for each gapped

segment (C0
K), enumerate all sets of parsimonious ancestral ”presence”/”absence” states at

internal nodes; (ii) for each set of ancestral states, construct a ”stack” of ancestor-descendant

”gapped segment,” which consists of no ancestral or descendant sites, is categorized as ”case-(i).”
36More precisely, the gapped segments in ancestor-descendant PWAs are categorized into four cases [2]:

case-(i) consists of no sites in between the PASs; case-(ii) consists of ancestral residues aligned with gaps

in the descendant; case-(iii) consists of descendant residues aligned with gaps in the ancestor; and case-(iv)

consists of ancestral residues aligned with gaps in the descendant and descendant residues aligned with gaps

in the ancestor, with no homology between the ancestral and descendant residues. In [2], we devised a pair

of algorithms to compute ”practically exact” multiplication factors of case-(i), (ii) and (iii) gapped segments,

but an accurate computation of case-(iv) multiplication factors was unresolved at that time. Very recently

[4], we have invented a new ”perturbation method” that enables the systematic computation of case-(iv)

multiplication factors to a desired level of accuracy (in principle). And our validation analyses demonstrated

that the case-(iv) multiplication factors computed with this new method were surprisingly accurate even up

to (and including) the 3rd-order ”perturbation” level [4]. [NOTE: Unlike the perturbative formulation in

[1, 2], the ”perturbation level” in this new method is not equal to the number of all indels in each history.

In fact, even the 1st-order ”perturbation” level includes indel histories with any numbers of indels.] This

new ”perturbation method” (up to 3rd order), which computes the case-(iv) multiplication factors quite

accurately, and a pair of algorithms that compute case-(i), (ii), (iii) multiplication factors much faster than,

yet as accurately as, the algorithms proposed in [2], have been implemented in our new program package,

LASTPIECE( P) [4].

37



PWAs out of the input MSA (in each C0
K); (iii) using the outputs of LASTPIECE( P) [4],

which provides quite accurate multiplication factors of PWA gapped segments, compute the

(conditional) probability of the ancestor-descendant PWA along each branch quite accurately,

according to [76, 1] 37 ; (iv) quite accurately compute the probability of the MSA (in each C0
K)

with each set of parsimonious ancestral states as the product of the probabilities of ancestor-

descendant PWAs and the probability of the root sequence state, according to [58, 59, 1];

and (v) sum the results of (iv) over all the sets of parsimonious ancestral states, to provide

the multiplication factor,
˜̆
M
〈1st+〉

P [A; sRoot0 ;C0
K | T ,ΘID].

When defining the ”1st-plus approximation” version of Eq.3, another factor must be

taken into account. Each gapless segment (B0
J with J = 1, ..., NGLS), which consists only of

gapless columns, must now be regarded as containing a case-(i) gapped segment in between

each pair of contiguous PASs along each branch. Thus, let NiGLCp be the number of ”inter-

gapless-column-positions”, each of which is the position in between a pair of contiguous (i.e.,

adjoining) gapless columns, and let NbGLC be the number of ”boundary-gapless-columns,”

each of which is a gapless column on a ”sequence boundary” (i.e., MSA-end). Then, the

”1st-plus approximation” version of Eq.3 is defined as:

P 〈1st+〉[A | T ,ΘID] = P [(sRoot0 , nRoot)]× exp{−((λI + λD)×NGLC + ∆[ΘID])× |T |} ×

×
(

˜̆
M
〈1st+〉

P [iGLCp | T ,ΘID]
)NiGLCp

×
(

˜̆
M
〈1st+〉

P [bGLC | T ,ΘID]
)NbGLC

×

×
NGS∏
K=1

˜̆
M
〈1st+〉

P [A; sRoot0 ;C0
K | T ,ΘID] . (4)

Here, the
˜̆
M
〈1st+〉

P [iGLCp | T ,ΘID] is the multiplication factor (for an MSA) contributed

from an ”inter-gapless-column-position”; it is defined as:

˜̆
M
〈1st+〉

P [iGLCp | T ,ΘID]
def
=

∏
b ∈ {all branches in T }

µ̆P [ case-(i), (bulk) | b,ΘID] . (5)

37LASTPIECE( P) outputs multiplication factors (for ancestor-descendant PWAs) at some fixed (typically

equal-spaced) time-lapses. ANEX( P) takes in such outputs as inputs and interpolates the multiplication

factors in order to well-approximate the factors along each branch of the input tree.
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where the µ̆P [ case-(i), (bulk) | b,ΘID] is the case-(i) multiplication factor that is de-

fined in the bulk, i.e., off the boundary, of the sequence along the branch, b . And the

˜̆
M
〈1st+〉

P [bGLC | T ,ΘID] is the multiplication factor (for an MSA) contributed from a ”boundary-

gapless-column”; it is defined with an equation similar to Eq. 5, but with each factor defined

on the sequence boundary, instead of in the bulk. This Eq. 4(, actually, its logarithm,) is

what ANEX aims to compute for each MSA within each window (including the input one),

using (the interpolation of) the case-(i), (ii), (iii) and (iv) multiplication factors output by

LASTPIECE [4].

[ For the actual implementation of the indel component computation in the ”1st-plus ap-

proximation,” see the subroutine, ”apprx1 wlp tot lnlk gpattern msa2 hs,” in the module,

”MyTreeMap indels ML hs hs wLP.pm,” in ANEX. ]

2.6.2 Substitution components of log-probabilities of MSAs resulting from single-

”shift”s

In contrast to the full computation immediately after each non-”shift”-type move, ANEX

more efficiently computes the substitution components of the alternative MSAs resulting

from single-”shift”s. This is because it needs to compute the log-probabilities of thousands,

or sometimes even millions, of alternative MSAs in a single run of the algorithm for multiple-

”shift”s; with this situation, even the (fairly efficient) pruning algorithm could pose a rate-

limiting step.

The efficient computation is enabled by two technical tricks. The first trick comes from

the ”essence” of the single-”shift” of a gap-block (in sub-subsection 2.5.2) as well as the

column-wise factorability of the substitution component (Eq. 2). As the ”essence” dictates,

the single-”shift” of a gap-block affects only two columns, that at the rear-end of the gap

and that flanking the front-end of the gap (before the ”shift”) (Figure 7). Meanwhile, Eq.

2 indicates that the log-probabilities of the remaining columns are left unchanged, and thus

ignored when you compute the increment, ∆sgl-shift (gb) log {P [A | T ,ΘS]}, due to the single-
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Figure 8: Possible patterns at each column-position caused by ”shift”s of single gap-block.

The ”shift”s of a single gap-block (cyan-shaded) give rise to at most 3 possible (residue & gap) patterns

at each column-position (a representative is red-shaded). The red dotted rectangles enclose the original

”ingredients” of the columns (at the representative position) that resulted from the ”shift”s.

”shift” of a gap-block (denoted as ”gb”). Symbolically, we have:

∆sgl-shift (gb) log {P [A | T ,ΘS]}

=
[
log {P [ck1 | T ,ΘS]}+ log {P [ck2 | T ,ΘS]}

]
|after the ”shift” of gb

−
[
log {P [ck1 | T ,ΘS ]}+ log {P [ck2 | T ,ΘS ]}

]
|before the ”shift” of gb , (6)

where the ck1 and ck2 denote the two columns affected by the single-”shift.” Thus, each time

when a single-”shift” is performed, we need only to perform the (column-wise) pruning algo-

rithm at most four times. This is much faster than the full computation of the substitution

component if the MSA contains dozens of columns.

The second trick comes from the fact that, in general, the number of possible alternative

columns is much smaller than the number of columns in the input MSA times the number

of multiple-”shift”s attempted. This fact could be easily understood if we first consider the

effect of the ”shift”s of a single gap-block (Figure 8). It should be noted that the ”shift”s

of a gap-block are ”rigid” moves, which do neither split nor resize the gap-block. Thus, the

”shift”s of a single gap-block results in at most three (residue & gap) patterns of the column

at each specific position in an MSA (Figure 8). When considering the simultaneous ”shift”s

of two non-interfering gap-blocks, the maximum number of possible resulting patterns at

each specific column position becomes 9 (= 3×3) (Figure 9). When two gap-blocks interfere

with each other, the number never exceeds 9; rather, it could be less. 38 Generalizing this

38The number is less than 9 if the two gap-blocks vertically overlap each other.
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Figure 9: Possible patterns at each column-position caused by simultaneous ”shift”s of two

gap-blocks. The simultaneous ”shift”s of two gap-blocks (cyan- and yellow-shaded) give rise to at most 9

possible (residue & gap) patterns at each column-position (a representative is red-shaded). The red dotted

rectangles enclose the original ”ingredients” of the columns (at the representative position) that resulted

from the ”shift”s.
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argument leads to the following conclusion: The number of possible patterns at each specific column position

via multiple-”shift”s of B gap-blocks

 ≤ 3B . (7)

Thus, if the input MSA (denoted as A) has Nc(A) columns, and if you perform multiple-

”shift”s of B gap-blocks on the MSA, the number of resulting column patterns should be

at most Nc(A)× 3B. This should usually be much less than the total number of all columns

in the alternative MSAs, which is Nc(A) × 20B if each gap-block is ”shift”ed by up to 10

sites to the left and to the right (from the ”origin”). This suggests the second trick:

By storing the results of column-wise pruning algorithms into a hash-table (or some-

thing), and reusing the results when encountering the patterns whose probabilities have al-

ready been computed, we can save a tremendous amount of time!! 39

With these two tricks, computing the substitution components itself will no longer be a

rate-limiting step, even with quite a large number of gap-blocks in a window (e.g., B = 7 or

8), although storing (or outputting) the components of the resulting MSAs may pose some

problems.

Someone might consider that factorizing the effects of the ”shift”s of distinct gap-blocks

will make the computation even more efficient. Actually, this is what we attempted at first;

then, however, we noticed that the factorization is not possible when the ”shift”s of the

gap-blocks affect the same column(s), even if they are non-interfering. We have given the

proof of this fact in appendix J, so that the readers can avoid wandering into the impasse

we were once trapped in. 40

[ For the actual implementation of the computation of substitution components, see the

39This idea of storing and reusing the already-computed column-wise probabilities was first suggested by

Dr. Giddy Landan, a former superviser of mine (see the Acknowledgments). The author truly appreciates his

suggestion. Later, the author himself came up with the argument on the numbers of possible column-patterns

(including Figures 8 & 9).
40It should be noted, however, what we have proven is the impossibility of exact factorization of the effects

of gap-blocks. Approximate factorization may still be possible, especially in forms similar to a Markov chain,
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subroutine, ”shift bl and compt prob incr,” in the module, ”MyANEX Main.pm,” of ANEX.

]

2.6.3 Indel components of log-probabilities of MSAs resulting from single-”shift”s

At least in principle, the effect of a single-”shift” on the indel component of the MSA prob-

ability could also be computed easily if we pay attention to the positional change of the

subject gap-block. To do this, we must store the site-level horizontal positional relation-

ships between interfering gap-blocks, as well as the association of such relationships with

the sets of ancestral states, which are also specified to the site-level. In addition, each set

of ancestral states should be associated with their own current contribution to the indel

component, which should be updated everytime a relevant gap is ”shift”ed. Theoretically,

implementing this should not be so hard, because gap-blocks are generally related to a(n)

(effective-)parsimonious indel history, and because other indel histories should also be ob-

tained by cutting and joining the gap-blocks, at least as far as (effective-)parsimonious (and

also next-to-parsiminious) indel histories are concerned. Once this is implemented, the down-

stream analyses should also be quite easy, because we can easily retrieve ancestral states and

their probabilities.

In the current version of ANEX, however, we were not able to implement the aforemen-

tioned method to compute the effect of single-”shift”s on indel components, mainly due to

the time-shortage. Instead, we have implemented a much simpler method, taking advantage

of the good property possessed by the indel component of the (logarithmic) probability of

the resulting MSA. 41 Here, the good property means the following fact: (provided that the

where the joint probability of two non-overlapping regions, say R1 and R2, mediated by a third region, say R3,

is given as: P [R1, R2, R3] = {P [R1, R3] ·P [R2, R3]}/P [R3] = P [R1, R3] ·P [R2 | R3] = P [R2, R3] ·P [R1 | R3].

This may be somewhat similar to a method to phylogenetically ”partition” an MSA of many sequences [96].

Pursuing this direction, however, is beyond the scope of the current study.
41As explained in sub-subsection 2.6.1, the current version of ANEX computes the indel component of

each MSA in the ”1st-plus approximation”, which sums contributions from all the indel histories (including

43
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Figure 10: Topological changes in positional relationships between gap-blocks caused by

single-”shift”s. A. between vertically complementary gap-blocks. B. between effective-parent & child

gap-blocks. C. between effective-sibling gap-blocks.

indel rates are space-homogeneous (i.e., uniform along each sequence) at least within each

window,) the indel component remains (nearly) unchanged if the topology of the (horizon-

tal) positional relationships does not change between the interfering gap-blocks and if the

bulk/ boundary- status of all gap-blocks does not change. 42 (See appendix K for a proof

(or demonstration) of this good property.) It takes much less time to monitor the change

non-parsimonious ones) with parsimonious sets of ancestral ”presence”/”absence” states.
42The following are the cases of topological changes (concerning parsimonious sets of ancestral states)

(Figure 10): (i) when a pair of vertically complementary gap-blocks horizontally join or get separated (panel

A); (ii) when a pair of effective-parent&child gap-blocks horizontally join or get separated (panel B); (iii) when

a pair of effective-sibling gap-blocks either start or cease to nest each other (panel C). ANEX also monitors

similar changes in the relationships between a single gap-block and a composite gap-block, or between two

composite gap-blocks. Although the topology also changes when a pair of vertically identical gap-blocks

horizontally join or get separated, ANEX does not regard this case as a topological change; instead, it

simply excludes the resulting MSA from the downstream analyses if vertically identical gap-blocks adjoin or

horizontally nest each other.
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in the topology of positional relationships and in the bulk/boundary status than to com-

pute the full indel component of the MSA probability. Thus, the current version of ANEX

employs the strategy of computing the indel components of the log-probabilities of the

MSAs resulting from single-”shift”s only when it detects change(s) in either the topology

of (horizontal) positional relationships between any pair of interfering gap-blocks or the

bulk/boundary -status of any gap-block.

In addition, ANEX employs another time-saving measure, which is similar to the ”2nd

trick” for the fast computation of substitution components (sub-subsection 2.6.2). Specifi-

cally, when ANEX detects a change in the topological relationships or the bulk/boundary-

status, it encodes the combination of them into a single code. 43 Then, it searches a hash

table to see whether the indel component has already been computed for that code; if so,

ANEX reuses the already computed indel component; otherwise, it computes the full indel

component of the current MSA, and stores its association with the code of topology and

bulk/boundary-status into the hash table.

[ For the actual implementation of this strategy, see the subroutine, ”nonrec mlt shifts gapblocks,”

in the module, ”MyANEX Main.pm,” of ANEX. For how the topological changes are moni-

tored, see the subroutines, ”chk chng gptrn topology psm R” and ”chk chng gptrn topology psm L,”

in the module, ”MyGapPatternTopology.pm,” of ANEX. For how the topologies are encoded,

see the subroutine, ”encode gptrn topology psm,” in the module, ”MyGapPatternTopol-

ogy.pm,” of ANEX. ]

2.7 Outputting the results

Currently, ANEX outputs the results as a structured system of text files under a user-specified

top output directory. Most of the files are just for diagnostic purposes, whose outputs could

43The code of each set of topological relationships is a collection of all binary horizontal relationships,

each between a pair of gap-blocks (or a gap-block and a composite gap-block) that are vertically identical,

vertically complementary, effective-siblings, or effective-parent&child, to each other .
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be suppressed to some extent by specifying the global variable, ”$TEST LEVEL MAIN,” in

the main script, ”anex.ver0.7.pl.” However, there are definitely important output files, as a

matter of course. In this subsection, we will focus on these important files.

2.7.1 Overall structure of output

With the user-specified directory (say, ”OUT/,” for example) at the top, the output file

system is structured as follows.

”OUT/Interim Data/” stores some intermediate results. Under this directory, especially

important ones are those under the sub-directories:

• ”Init psm cands parsimonized/,” which stores information on the gapped segments and

their representative (nearly) parsimonious indel histories;

• ”Cmplx error cands/,” which stores information on the regions with likely ”complex’-

errors;

• ”Sliding Windows MaxN/,” which stores information on the ordinary windows with

{maximum number of gap-blocks} = N;

• ”PCC Sliding Windows/,” which stores information on the PCC windows.

”OUT/Output Data/Sliding Window Analysis/Window{window-ID}/” stores the

results of the analyses on the ordinary window with the ID, ”{window-ID},” which are re-

ferred to as the ”main window” in the following list of contents. Under this directory,

especially important files are:

• ”Inputs/msa in wd.txt,” which records the input MSA within the window (in a

CLUSTAL-like format [29], but without the header);

• ”Inputs/set columns0.txt,” which records the set of columns in terms of the horizontal

position (or the column index) each residue is from; in this particular file, the horizontal
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position is given in terms of the whole input MSA; gaps remain gaps; note that each

column is displayed horizontally, instead of normally as usual;

• ”synopsis results mshifts.txt,” which shows the overall results of the MSA neigh-

borhood exploration, especially of the computed MSA probabilities, at a glance 44

;

• ”Outputs/Initial Status/,” which stores information on the ”initial state,” i.e., the

input MSA within the main window; under this subdirectory, the following files are

important:

– ”init features gblocks.txt,” which characterizes the gap-blocks at the ”initial

state”; the horizontal positions are also in terms of the input MSA within the

main window;

– ”init set columns.txt,” which records the set of columns in almost the same for-

mat as that for the ”Inputs/set columns0.txt” above, but the horizontal positions

assigned to the cells are in terms of the input MSA within the main window;

• ”Outputs/I 1.Pure MltShifts/Out/,” which stores the results of multiple-”shift”s

with the input MSA (within the main window) as the ”origin”; under this subdirectory,

the following files are important:

– ”coord frame.txt,” which records the range of the coordinate of each gap-block

(with 0 (zero) corresponding to the ”origin”);

– ”degeneracy.txt.gz,” which records the degrees of degeneracies of the alternative

MSAs resulting from the multiple-”shift”s, in a tabular form;

44In the file, each line gives information on a particular non-”shift”-type move and the subsequent multiple-

”shift”s. Especially, it gives the log-probability of the MSA resulting from the non-”shift”-type move, and

the logarithms of the total and the maximum of the probabilities of all relevant MSAs resulting from the

multiple-”shift”s that follow.
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– ”diff ln prb {msa, indel, sbst}.txt.gz,” which records the differences when

the {log-probability, indel component, substitution component} of the ”origin” is

subtracted from those of the resulting alternative MSAs, in a tabular form;

– ”ln prb plus msa at origin.txt,” which records the quantities, such as the degree

of degeneracy, log-probability, indel component, and substitution component, of

the MSA at the ”origin”;

• ”Outputs/Target Candidates/,” which stores the lists of the gap-blocks, or gap-block

pairs, that are the candidates of the ”targets” (or, more precisely, ”subjects”) of the

non-”shift”-type moves;

• ”Outputs/{non-”shift”-move-identifier}/Out/Origin/,” which stores informa-

tion on the new ”origin,” which is the MSA resulting from the move specified by the

{non-”shift”-move-identifier} 45 ; under this subdirectory, especially important files are

”init features gblocks.txt” and ”init set columns.txt” 46 ;

• ”Outputs/{non-”shift”-move-identifier}/Out/MShifts/,” which stores the re-

sults of multiple-”shift”s starting at the new ”origin”; the contents follow the same

formats as those for the ”Outputs/I 1.Pure MltShifts/Out/” above 47 ;

• ”Sbwd{sub-window-ID}/” stores the results of the analyses on the sub-window with

the ID, ”{sub-window-ID}”; this directory has quite a similar structure as that of its

parent directory (i.e., the ”OUT/Output Data/Sliding Window Analysis/Window{window-

ID}/”); so, we will not detail its contents here.

45In general, a {non-”shift”-move-identifier} is a slash (”/”)-mediated concatenation of: the type of the

move (e.g., ”I 3a.SMerge plus MltShifts”), the target index (e.g., ”Pair 0”), and the size information (if

applicable), etc.
46The horizontal positions in the former are in terms of the new ”origin”, but those assigned to the cells

in the latter are in terms of the old ”origin.”
47The differences here are the results of subtracting the values of the new ”origin.” And the

”ln prb plus msa at origin.txt” records the quantities of the new ”origin.”
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”OUT/Output Data/PCC Sliding Window Analysis/PCC Window{PCC-window-

ID}/” stores the results of the analyses on the PCC window with the ID, ”{PCC-window-

ID}.” This directory has quite a similar structure as that of the

”OUT/Output Data/Sliding Window Analysis/Window{window-ID}/”. So, we will not re-

peat the explanation of most of its contents. But one particular file (”list rlv pcands.tx”)

takes on a particular importance here. Besides, it should be noted that some files and

directories are named differently:

• ”Inputs/list rlv pcands.tx” records information on the ”purge-like-error-candidate,”

which plays a major role here;

• ”Inputs/msa in pcc wd.txt” records the input MSA within the PCC window;

• ”Outputs/III 0.Initial MSA/In/” stores information on the ”initial state,” i.e.,

the input MSA within the PCC window; especially, it contains ”init features gblocks.txt”

and ”init set columns.txt”;

• ”Outputs/III 0.Initial MSA/Out/ln prb plus msa.txt” records the quantities

(including the log-probability) of the MSA at the ”initial state.”

2.7.2 About alternative MSAs resulting from multiple-”shift”s

To avoid wasting the storage space (and memory), ANEX does not output, or store for a

long time, the alternative MSAs that result from the multiple-”shift”s, either the default one

or following a particular non-”shift”-type move.

Instead, we provide a supplementary Perl script, ”coordinate point lcl msa.ver0.7.pl,” to

help understand the alternative MSA at a particular coordinate point (in the multiple-”shift”

space).

The script (”coordinate point lcl msa.ver0.7.pl”) takes the following inputs:

1. (The path to) a top working directory, which the user must specify;
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2. (The path to) a Dawg control file, which should be the same as that fed into the ANEX

main script; (This script uses only the tree);

3. (The path to) an input MSA within a main (ordinary) window (or a PCC window);

4. (The path to) the ”init set columns.txt” made from an MSA used as the ”origin”

of multiple-”shift”s;

5. (The path to) the ”init features gblocks.txt” made from the same MSA at the

”origin”;

6. Coordinates the user wants, in the format: ”X0, X1, X2, ..., XB−1” (B is the number of

gap-blocks in the relevant window).

Then, it outputs the main outputs to the files in the subdirectory, ”Outputs/,” which is

under the user-specified top working directory. The output files are:

• ”lcl msa dstn.txt,” which records the ”destination” MSA, which resulted from the

multiple-”shift”s specified by the input coordinates;

• ”features gblocks dstn.txt,” which characterizes the gap-blocks in the ”destination”

MSA;

• ”set columns dstn.txt,” which records the set of columns in the ”destination” MSA;

the horizontal positions assigned to the cells are in terms of the input MSA fed into

this script.

This script should be useful particularly when performing manual analyses, examining

e.g., MSAs with the maximum (or near-maximum) probabilities, etc. It should also be

helpful when the user needs to examine, or debug, the behavior of ANEX, or when the user

wants to learn about particular (”shift” or non-”shift”) moves of the gap-blocks.
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2.7.3 About tables of differences in log-probabilities, indel components, substi-

tution components

Among the main outputs of ANEX, the tables, ”degeneracy.txt.gz” and ”diff ln prb {msa,

indel, sbst}.txt.gz,” are probably the most important. 48

In each of these tables, each row is specified by the coordinates, X0, X1, ..., XB−2 (B is

the number of gap-blocks in the window), and each column is specified by the coordinate,

XB−1. When a coordinate point was not analyzed for some reason, the corresponding cell

should be occupied by an indicator, such as ’undef’ or ’N/A.’

It should not be so hard to write programs or scripts to examine or process these tables,

as the user desires. Nevertheless, it may sometimes be useful to ”restore” the data struc-

ture that actually stored the values of these quantities while ANEX were performing the

multiple-”shift”s. For such a purpose, we wrote two subroutines, ”readin coord frame” and

”readin sgl qnt on multidim space,” both in the module, ”MyANEX IO2.pm.” This subrou-

tine, as well as the subroutines, ”printout multidim storage” (for outputting the values of

a quantity stored in the data structure into the same table as the original) in the mod-

ule, ”MyANEX Main.pm,” ”find maxvalue in multidim storage” (for finding the maximum

value) in the module, ”MyANEX IO2.pm,” and ”cmpt log total qnt in multidim storage”

(for computing the logarithm of the total of exponentiated values) also in the module

”MyANEX IO2.pm,” may help you write some programs (or scripts) that perform a wide

variety of analyses or processing of these tables. We also included a Perl script,

”test cmpt log total qnt in multidim storage.pl” in ANEX; it will show you how the afore-

mentioned subroutines are actually used in a script.

As a matter of fact, we were planning to write a script (or a subroutine) to retrieve

48To remind the readers, the ”degeneracy.txt.gz” records the degrees of degeneracies of the alternative

MSAs resulting from the multiple-”shift”s, and the ”diff ln prb {msa, indel, sbst}.txt.gz” records the

differences when the {log-probability, indel component, substitution component} of the ”origin” is subtracted

from those of the resulting alternative MSAs.
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all the coordinate points in which the log-probabilities are greater than (or equal

to) a specified value. Such a program will enable us to draw graphs similar to the

”energy vs. entropy plot” or the ”energy vs. free-energy plot” in statistical physics (or

thermodynamics). 49 Such graphs (especially the latter), in turn, will give us a perspective

on the ”probability landscape” on the space of multiple-”shift”s (or even on the space of

all attempted moves). Importantly, such graphs will indicate whether, in each

window, it should be enough to only consider a single most probable MSA, or

we need to take account of a small number of highly probable alternative MSAs,

quite a large number yet a very small percentage of alternative MSAs (with the

probabilities larger than a given value), or all alternative MSAs.

Such a script (or subroutine) should be created by combining the features of the aforemen-

tioned subroutines, ”find maxvalue in multidim storage,” ”cmpt log total qnt in multidim storage”

and ”printout multidim storage.” Unfortunately, however, we ran out of time, and

couldn’t make it. We hope that, in the (hopefully near) future, someone will write such a

program, script, subroutine, library, or whatever, to help improve our understanding of MSA

errors from the viewpoint of the number of alternative MSAs we have to take into account.

2.8 Possible applications of results/outputs

The results or outputs obtained will be applied to a wide variety of analyses on molecular

evolution, such as the predictions of functions, positive selection, 2ndary and tertiary struc-

tures, etc. The output of the program is the approximate probability distribution of possible

49Briefly, in statistical physics, the energy of a state is (a negative number times) the logarithm of its

(un-normalized) probability; the entropy is the logarithm of the number of states; the free-energy is the

logarithm of the total probability (or, actually, the normalization factor). Therefore, in an ”energy vs.

entropy plot” analog, the X-coordinate represents the (log-)probability and the Y -coordinate represents the

number of alternative MSAs with the probability; in an ”energy vs free-energy plot” analog, the X-coordinate

is as above, and the Y -coordinate represents the sub-total of the probabilities of alternative MSAs whose

(log-)probabilities are larger than or equal to X.
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MSAs computed under a genuine sequence evolution model with realistic indels. Therefore,

we can estimate the expected value (average weighted with probability), variance,

confidence intervals, distribution itself, etc., for each property/event (or combination

of properties/events) we want to analyze. Of course, we expect that the expected value thus

obtained will be more accurate than the ”point estimation” of the property obtained from

a single optimum MSA (output by a commonly used aligner). (Of course, this expectation

needs be confirmed by extensive analyses.) In our view, however, ANEX’s most impor-

tant feature is that its output will indicate possible fluctuations on the results, and thus

will honestly tell how accurately we can learn about the subject of our interest from the

input data at hand, which will greatly help us avoid overconfidence on our predictions.

As a ”by-product,” ANEX also indicates regions that likely contain ”complex” errors.

This function itself may also be useful, because such regions are expected to be the hotbeds

of erroneous predictions, especially on some peculiar evolutionary behaviors of sequences,

including excessive positive selection, excessively frequent unconventional events, etc. 50

2.9 Conceivable problems

Similarly to many brand-new methods, ANEX is not free from problems. In appendix L,

we will discuss three major problems, namely, those of (1) how to provide the program with

accurate model parameters (including the tree), (2) autocorrelation, and (3) overfitting, as

well as possible solutions to them.

50On the other hand, the complex errors themselves may be the consequences, and thus the indicators, of

such peculiar behaviors that indeed occurred in the evolutionary history. In any case, it should be dangerous

to blindly believing in the results of näıvely applying a(n) (especially general-use) program to such dubious

regions; careful re-analyses should be in order.
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3 Implementing and ”Validating” ANEX

3.1 Implementation

The method proposed here was implemented into a package of prototype Perl scripts and Perl

packages, named ”ANEX( P),” which abbreviates ”Alignment Neighborhood EXplorer(,

Perl-version).” Currently, it is version 0.7. In short, the current version of the package can

do the following:

1. Given an input MSA, ANEX creates a set of (generally overlapping) ordinary windows,

as well as a set of (also generally overlapping) ”purge-like-error-candidate containing”

(PCC) windows; (each ordinary window may contain one or two sub-windows); in

each ordinary window, ANEX ”explores” the neighborhoods of the input MSA via

pure multiple-”shifts,” as well as via non-”shift”-type moves (except ”reverse-purge”s)

followed by multiple-”shift”s, of gap-blocks; in each PCC window, ANEX ”explores”

the neighborhoods of the input MSA via ”reverse-purge”s followed by multiple-”shift”s

of gap-blocks; (see subsections 2.4 & 2.5 for details);

2. While ”exploring” the neighborhoods of the input MSA within each window, ANEX

computes the probabilities of the alternative MSAs it ”visited” under a (locally) space-

homogeneous genuine stochastic sequence evolution model, and outputs the computed

probabilities in a tabular form per each bunch of multiple-”shift”s; ANEX also out-

puts a file, ”synopsis results mshifts.txt,” which briefly summarizes the results of all

neighborhood explorations within each window; (see subsections 2.6 & 2.7 for details);

3. By default, its main master script, ”anex.ver0.7.pl,” takes the following inputs:

(a) (The path to) an input MSA file;

(b) (The path to) a control file of Dawg, the genuine sequence evolution simulator

[77]; the control file is used to specify a phylogenetic tree, a substitution model
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(including the rate matrix and the base frequencies) 51 , and the total rates of

insertions and deletions;

(c) (The path to) the directory storing the tables of multiplication factors for the

indel components of ancestor-descendant PWAs with a series of time-lapses; ANEX

can make use of the multiplication factors for case-(i), (ii), (iii), and (iv) gapped

segments, with case-(i) optional and the others mandatory; especially, the multi-

plication factors computed via the recently developed LASTPIECE [4] can be

used; if the branch lengths don’t match any of the time-lapses in the table, ANEX

linearly interpolates the multiplication factors;

(d) (The path to) the top output directory, which the user must specify;

(e) The path to the slave script, ”anex for sgl wd.ver0.7.pl,” which explores the MSA

neighborhood within an ordinary window;

(f) The path to the slave script, ”detect purge cands.ver0.5.pl,” which identifies ”purge-

like-error-candidates” in the input MSA;

4. The ”anex.ver0.7.pl” can also take some options; especially important ones are:

(a) ”–PATH REV PURGE SCT={string},” which specifies the path to the slave

script, ”anex rev purge for sgl wd.ver0.7.pl,” which explores the MSA neighbor-

hood (via ”reverse-purge”s followed by multiple-”shift”s) within a PCC window

52 ;

(b) ”–NUM MAX={integer(=NW )},” which specifies the maximum number of gap-

blocks that each ordinary window can contain;

(c) ”–HF WDTH SHIFT={integer(=WM)},” which specifies the maximum number

of sites by which each gap-block can ”shift” in each direction;

51As already mentioned in sub-subsection 2.6.1, the current version of ANEX can take up to Tamura and

Nei’s model [88] but cannot take the general time-reversible model [92, 93, 94, 95].
52By default, the current version of ANEX does not perform any analyses within PCC windows.
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5. the package also contains some supplementary scripts that enable simple analyses on

the input MSA and/or some outputs of ANEX; among them, the scripts, ”coordi-

nate point lcl msa.ver0.7.pl” and ”test cmpt log total qnt in multidim storage.pl,” have

been discussed briefly in sub-subsections 2.7.2 & 2.7.3 above; some other scripts are

discussed elsewhere ([82]).

This package (ANEX( P)) is available as an open-source package at an FTP repository of

Bioinformatics.org (https://www.bioinformatics.org/ftp/pub/anex/). (Currently, the pack-

age runs on the Terminal of Mac OS X; it should run also on some other UNIX platforms,

including Linux, although we have not yet confirmed that it does.)

In the current version (ver. 0.7), the main master script (”anex.ver0.7.pl”) performs all

the computational steps serially; it thus uses only a single CPU (or core) and is considerably

slow. However, because each window analysis is independent of the others, these window

analyses can be easily cast into parallel or distributed computing. Moreover, within each

window, the MSA neighborhood exploration contains multiple bunches of multiple-”shift”s;

once the inputs (including the MSA at its starting point (or ”origin”)) are provided, each

bunch of multiple-”shift”s is also independent of the others; thus, these bunches of multiple-

”shift”s could also be cast into parallel or distributed computing (, albeit requiring some

efforts).

We expect that, if the main scripts are also translated into C, for example, and if only

the window analyses are cast into parallel or distributed computing, the computation could

be much more than 100 times faster.

3.2 ”Validation” using simulated MSAs

In order to see whether the entire method proposed here, i.e., ANEX, really works or not, we

applied ANEX to several artificial MSAs created by a genuine sequence evolution simulator,

Dawg [77]. The simulated MSAs are actually among those used in a previous study of
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ours [3]. In that study, MSAs were simulated along three different phylogenetic trees: (1)

the tree of 12 primates, (2) the tree of 15 mammals, and (3) the tree of 9 fast-evolving

mammals. Among those simulated MSAs, those simulated the evolution of sequences from

9 fast-evolving mammals turned out to cause severe errors in the MSAs reconstructed using

the state-of-the art aligners of the single-optimum-search type 53 ; those errors seemed too

complex to rectify in a straightforward manner. Therefore, in the present study, we only

used several MSAs simulated along the trees of 12 primates and 15 mammals. 54

Regarding details on the parameters used for the simulations, refer to [3]. Briefly, Jukes

and Cantor’s model (JC69) [89] was used for nucleotide substitutions; the total insertion

and deletion rates were both set at 1/16 = 0.0625 (indels/substitution); the frequency of

both insertions and deletions with length l was made proportional to l−1.6 (Zipf power-law);

insertions and deletions exceeding 100 bases were cut off; and each simulation started at the

root of the tree, with a random ancestral sequence that is 1000 bases long.

When applying ANEX to each of these simulated MSAs, we inputted the same Dawg

control file as used for simulations, as well as the indel multiplication factors computed via

LASTPIECE [4] using the same Zipf power-law indel length distributions and the same indel

cut-off lengths as the simulations. Moreover, the maximum number of gap-blocks in each

ordinary window was set to be NW = 4, and the maximum number of sites by which each

gap-block can ”shift” in each direction was set to be WM = 20.

ANEX was run on our Mac Pro (Late 2013) desktop computer (with OS version 10.11.6,

with one 3.5 GHz 6-core Intel Xeon E5 Processor and 16 GB physical memory). Although

ANEX’s window analyses can easily be cast into parallel or distributed computing, current

53In the study (i.e., [3]), we used MAFFT [31, 32, 33] and Prank [36, 37], as representatives of ”similarity-

based” and ”evolution-based” aligners, respectively, as classified by [97].
54We chose either those MSAs that seem to contain more non-”shift”-type errors than average, or those

that revealed some problems in the development stages of our previous program packages ”LOLIPOG” [2]

and ”ComplLiMent” [3]. (Incidentally, the revealed problems of the packages were rectified (i.e., debugged)

after that.)
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version performs the window analyses serially, using only one CPU (or core).

Tables 1 & 2 summarize the results. 55 Each of these tables tells us about at least two

important aspects regarding the ”accuracy” and ”truthfulness” of ANEX: (1) the

accuracy of the ”prediction” of ”complex” errors, and (2) its ability to recover the true MSA

when at least a window encompasses an erroneous segment 56 completely.

First, we discuss ”complex” errors. For this purpose, it should be appropriate to focus on

reconstructed MSAs of 15 simulated mammalian sequences (Table 1), because reconstructed

MSAs of 12 simulated primate sequences (Table 2) contain very few ”complex” errors(, and

very few ”false-positive” ”complex” errors). As table 1 indicates, ”complex” errors were

quite successfully detected and excluded from the main analyses (of neighborhood explo-

ration and probability computation); although a small fraction (about 20% on average) of

”complex” errors were (in a sense) ”erroneously” overlooked and thus included in the main

analyses, the true MSAs were somehow recovered by the downstream neighborhood explo-

ration in about 1/2 of such cases. 57 An apparent downside is that a considerable fraction

of non-”complex” errors (about 36% on average) were also excluded from the main anal-

yses. Actually, this reflects our stance regarding the detection of ”complex” errors; that

is, we deliberately erred on the cautious side, and aimed for a high sensitivity (i.e., a low

55The detailed results (as well as inputs) are available as a tar-gzipped archive accompanying the package

of ANEX( P).
56In [3], each reconstructed MSA (or, more precisely, each pair of reconstructed and true MSAs) was

chopped into ”correct segments”, where the reconstructed MSA and the true MSA are equal (or at least

equivalent) to each other, and ”erroneous segments,” where the reconstructed MSA differs from the true

MSA.
57This seemingly strange behavior of ANEX is actually due to the incomplete nature of the classification

of ”complex” errors; although we used the classifications in our previous work [3] as they are, the classifica-

tion method itself was quite rudimentary, depending on frequently incorrect demarcation of ”position-shift-

blocks.” Thus, once a more improved classification method is developed, a considerable fraction of these

”erroneously” overlooked ”complex” errors are likely to be classified as non-”complex.” We will revisit this

issue elsewhere [82].

58



Table 1: Results of applying ANEX to MSAs created by simulated evolution of sequences

from 15 mammals

MSA ID A B C D

Reconstruction method Prank

(Best-fit)

Prank

(Best-fit)

MAFFT

(E-INS-i)

MAFFT

(E-INS-1)

All erroneous segments 42 24 25 24

Complex

In NO

windows ∗

12 5 11 11

Errors

In some

window(s) †

2 2 2 4

Recovered ‡ 0 1 1 3

Non-complex

In NO

windows ∗

10 6 2 6

Errors [

In some

window(s) †

18 11 10 3

Recovered ‡ 16 10 8 3

Running time (min.) 131.9 216.8 219.4 47.9

(The numbers in each cell (except in the bottom row) is the frequency

of erroneous segments in each class (row) in each MSA (column).)

∗ The erroneous segment was not completely included in any windows.

† The erroneous segment was completely included in at least one window.

‡ The true MSA was recovered by at least one of the (composite) moves attempted.

(NOTE: this category is included in the ”In some window(s)” above.)

[ The erroneous segment contained no complex errors.

In other words, the error was explained by a(n) (combination of) elementary move(s).
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Table 2: Results of applying ANEX to MSAs created by simulated evolution of sequences

from 12 primates

MSA ID E F

Reconstruction method Prank

(Best-fit)

MAFFT

(E-INS-i)

All erroneous segments 17 16

Complex

In NO

windows ∗

0 1

Errors

In some

window(s) †

0 0

Recovered ‡ 0 0

Non-complex

In NO

windows ∗

1 2

Errors [

In some

window(s) †

16 13

Recovered ‡ 15 13

Running time (min.) 650.6 263.5

∗, †, ‡, [ the same notes as in Table 1 apply.

60



false-negative rate) of ”complex” error detection, while sacrificing the high specificity (i.e.,

low false-positive rate). In any case, it should be remembered that ANEX currently uses a

very simple method to detect ”complex” errors, taking advantage only on the gap configu-

rations of the input (reconstructed) MSA. Taking this simpleness of the detection method

into consideration, the ”prediction” of ”complex” errors could be regarded as ”quite good,”

and we can definitely expect that the ”prediction” of ”complex” errors will become much

more accurate if the residue configurations, or the distribution of inferred substitutions,

of the MSA are also incorporated into the ”prediction” method. (See also [82].)

Another thing we should note is that a substantial fraction (and eventually (almost) all)

of ”complex” errors can actually be unraveled into a series (or combination) of a number of

elementary moves, as a couple of examples were shown in [3]. We can easily expect that,

as the number of ”constituent” elementary moves increases, a larger fraction of ”complex”

errors can be unraveled. This means that the true MSAs can be recovered from a higher

fraction of MSA errors if ANEX gets to handle the combinations of a larger number of

elementary moves. (We will discuss this issue again, in section 4.)

Next, we discuss the recovery of the true MSA. As both Tables 1 & 2 indicate, out of

the non-”complex” errors that were completely included in at least a window, a very high

fraction of them (on average, 88% for 15 mammals and 97% for 12 primates) had their true

MSA counterparts recovered by the current neighborhood exploration method. Considering

that the current architecture of the neighborhood exploration (Figure 4) is quite simple (and

could even be considered as ”näıve”), this high recovery rate is quite amazing, and gives

us a hope that a more sophisticated, and smart, exploration architecture should recover

the true MSAs from much more erroneous segments (including those currently classified as

”complex”).

Regarding the running time, it took about 50 minutes (for 15 mammals) to about 650

minutes (for 12 primates) to perform ANEX. The running time seemed to be longer for 12

primates than for 15 mammals, despite the more gaps, and more erroneous segments, for the
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latter. Two factors may contribute to this tendency. One is the higher rate of complex errors

for 15 mammals, leaving only a smaller fraction of MSA regions to be analyzed. And the other

is the higher average density of gap-blocks for 15 mammals, making a larger percentage of

gap-blocks ”shift”able by significantly less than WM (= 20) sites in each direction. Although

the 650 minutes may sound quite a long time, it should be remembered that current ANEX

performs window analyses serially, and that it is currently written in Perl. Once parallel (or

distributed) computing is introduced, and once it is written, e.g., in C, it should be more

than 100 times faster. Then, the 650 minutes should be reduced to 6 minutes or less, which

should not be so stressful.

To summarize, despite the fact that the current version of ANEX employs a quite simple

method to detect ”complex” errors and a fairly simple architecture to explore the MSA

neighborhood, ANEX detected quite a high percentage (80% on average) of ”complex” errors

and excluded them from the main analyses, and it also recovered the true MSAs from quite

a high percentage (92% on average) of non-”complex” errors each of which was included in

at least a window. These results suggest that ANEX should be fairly useful already in the

current form, and should become further useful if the ”complex” error detection method and

the neighborhood exploration architecture get more sophisticated and refined.

4 Discussions

The reconstruction of multiple sequence alignments (MSAs) is central to the advanced studies

of homologous (i.e., ancestor-sharing) biological sequences (e.g., [5, 6, 7, 8, 9, 10]). At the

same time, it also turned out to be highly error-prone [43, 37, 44, 45, 3]. Furthermore,

it was revealed that, in a (near) majority of these errors in MSAs, the true MSAs does

not optimize even the ”golden score” that perfectly predicts the (log-)probability of the

MSA [3]. Thus, to aim for more accurate and truthful sequence analyses, it is essential to

construct a probability distribution of alternative MSAs, instead of reconstructing a
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single optimum MSA.

Although the idea of providing the probability distribution of alignments, often referred

to as ”statistical alignment” [53], has been around for decades [54, 55, 56, 53, 57, 75], the past

studies and methods on statistical MSAs (e.g., [58, 59, 60, 61, 62, 63, 50, 64]) did not use

genuine sequence evolution models with realistic indels, such as those following power-law

length distributions (e.g., [68, 69, 70, 71, 72, 73, 74]) and allowing the overlap and/or nesting

with other indels (e.g., [76, 77, 78, 79]).

To the best of our knowledge, this study represents the first attempt to apply genuine

sequence evolution models (with realistic indels) to the problem of statistical MSA. One

of the major obstacles to applying genuine sequence evolution models is the fact that the

probability computation cannot be completely factorized into site-wise contributions, which

makes the computational burden quite large, and hampers the (near) exhaustive search of

the space of alternative MSAs. We circumvented this obstacle by taking advantage of at

least two features. One feature is our previous result [3] that, as long as the phylogenetic

relationships are not so distant, reconstructed MSAs are in the neighborhood of the true

MSAs in an overwhelming majority of erroneous segments. Thus, we chose to explore only

the neighborhoods of the reconstructed MSA. This choice enabled us to devise the smart

strategy to efficiently compute the increment of the substitution components of the MSA

probabilities (see sub-subsection 2.6.2 for details), as well as the strategy to compute the indel

components only when the topology of the gap-block configuration changes. A fringe benefit

of this strategy of exploring neighborhoods is that the results are intuitively understandable,

thus potentially making the rather esoteric subject of statistical alignment accessible to a

wider audience. And the other feature is the reuse of the multiplication factors in ancestor-

descendant PWAs that were quite accurately computed beforehand via another new program

package of ours, LASTPIECE [98]; this also should have saved an enormous amount of

computational time. 58

58This strategy of pre-computing and re-using the multiplication factors is very similar to the strategy
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We developed a new program package, the ”alignment neighborhood explorer” (ANEX),

to implement our method, and validated it by applying it to a number of reconstructed

MSAs of simulated sequences (that had been prepared before [3]). The result was a moderate

success. As intended, ANEX detected about 80% of ”complex” errors and excluded them

from the downstream analyses. And, in about 88-97% of non-”complex” errors that were

completely included in at least a window, the true MSAs were in the neighborhoods explored

by ANEX. In fact, this was rather surprising, considering the fact that ANEX currently

employs a quite simple architecture of MSA neighborhood exploration (Figure 4).

This gives us a hope that the true MSAs will be recovered from a much higher percentage

of MSA errors if we employ a more sophisticated and refined architecture of neighborhood

exploration. Such a sophisticated MSA neighborhood exploration should involve three or

more non-”shift”-type moves (and the subsequent multiple-”shift”s). As illustrated by a

couple of examples in [3], ”complex” errors can actually be unraveled into a series (or com-

bination) of a number of elementary moves. 59 Therefore, by increasing the number of

non-”shift”-type moves to be combined before the multiple-”shift”s, we should be able to

increase the percentage of ”complex” errors in each of which the explored neighbor includes

the true MSA.

However, we cannot increase the number of non-”shift”-type moves unlimitedly, because

at least two problems should arise. One is the limitation in the number of gap-blocks that

each window can contain. If a window contains B gap-blocks, and if each gap-block are

shifted by WM sites in each direction in the multiple-”shift”s, the memory space required to

store the results of multiple-”shift”s is proportional to (2WM)B. If we use WM = 20 as in the

employed by a recent ”simulation-based” approach to statistical PWA [80]. We are sure, however, that we

have devised the strategy by ourselves. See footnote 12 for more details.
59After all, the category of ”complex” errors means, ”the current classification system cannot automatically

unravel these errors into a series (or combination) of elementary moves.” In other words, the errors classified

as ”complex” in [3] represent the limitation of the error classification program used in that study; as the

program improves, the percentage of ”complex” errors will decrease.
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validation in this paper, the space requirement increases 40-fold if a gap-block is added to the

window. Therefore, if we näıvely grow the hyper-rectangular coordinate space this way, each

window can only contain at most 5 or 6 gap-blocks, even if you can use a quite large memory

(of 10 GB or more). The key to overcome this limitation would be a ”smart” exploration: if

we somehow get to know ”coarse-grained” moves that take us to the regions of the coordinate

space where highly probable alternative MSAs are densely distributed, the necessary WM

may be reduced to, say, 5. 60 Then, we may be able to analyze a window containing up to,

say, 9 gap-blocks, substantially widening the percentages of ”complex” errors that can be

analyzed.

The other limitation comes from the enormous number of possible combinations of non-

”shift”-type moves, which leads to the problem of ”combinatorial explosion.” Again, the key

to overcome this limitation would also be a ”smart” exploration. It’s true that, if we näıvely

attempt every possible combination of non-”shift”-type moves, the number of combinations

will explode exponentially. In many cases, however, we can predict, to some extent, the types

of (combinations) of likely non-”shift”-type moves, by examining the residue configuration,

especially the distribution of expected substitutions inferred from it, as well as the gap-

block configuration. In fact, the current version of ANEX does this in (probably) the most

straightforward manner: it restricts the types of attempted non-”shift”-type moves to only

those that are possible from the gap-blocks in the initial window; especially, it allows a

”split” of a gap-block only when there is a nearby ”purge-like error candidate” to support

the ”split.” Besides, the detection of ”complex-error-candidates” by using gap configurations

may also be regarded as a sort of ”straightforward measure.” And the ”validation” in this

study suggested that these straightforward measures are working fairly well, although there

60One potentially useful measure to narrow down the coordinate space would be to examine the residue

configuration and the gap configuration of the input MSA, as briefly discussed in the next few paragraphs.

Another potentially useful measure would be to set or reset the boundary of ”shift”s in each direction by

monitoring the change in the MSA probability.
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were a few cases requiring some improvements.

We believe that, in order to turn these straightforward measures into more sophisticated

and ”smart” measures to chose the MSA neighborhoods to explore, we need to examine the

combination of the residue configuration and the gap-block configuration. This should be

possible either by conducting studies more meticulous than [3] (and [82]), or by resorting to

machine learning techniques (e.g., [99, 100, 101]), including the deep learning via artificial

intelligence (e.g., [102, 103]). Once these ”smart” exploration is realized and implemented,

the resulting ”smart” version of ANEX will be more powerful and useful. enabling us

to construct very accurate (yet reduced) probability distributions of alternative MSAs that

cover most of MSA errors (including those currently classified as ”complex”).

Although we’ve discussed rather positive aspects of ANEX thus far, we are also aware

that the current version of ANEX also has some downsides and limitations. (Some of them

were already discussed in subsection 2.9 and in appendix L.) First, the current version of

ANEX excludes a small yet considerable fraction (about 36% on average) of non-”complex”

errors from the downstream analyses. This is partly because we deliberately erred on the

cautious side of excluding as many ”complex” errors as possible, and partly because the

current method to detect ”complex” error candidates is too simple, using gap-configurations

alone. We strongly believe that this problem should also be solved, or at least substan-

tially mitigated, by employing a ”smarter” method to detect ”complex” errors that takes

advantage of residue configurations as well.

Second, we are aware that, especially when the phylogenetic relationships are moderately

remote, the true MSAs are far away from the reconstructed ones in a small yet non-negligible

fraction (about 20%) of errors. Definitely, ANEX should be inept at handling such true

MSAs that are not in the neighborhood (of reconstructed ones). Still, we hope that a

considerable percentage of such cases may be successfully handled once the aforementioned

”smart” exploration method is introduced. Regarding those errors that are intractable even

to such ”smart” exploration, one way to handle them may be to reconstruct the MSA from
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scratch, by using a totally different method than that reconstructed the input MSA. 61

Third, ANEX currently takes a phylogenetic tree and some parameters of the evolution

model as integral inputs. In general, these inputs should be unknown at first, and they also

must be estimated from the sequence data. Because current package of ANEX does not

contain programs to estimate these parameters, users must depend on programs outside. In

particular, the indel rates and the indel length distributions can be estimated via, e.g., the

programs provided in [77, 81, 104]. If time permits, it may be better to use several point

estimations, rather than relying solely on a single point estimation of the parameters. From

this viewpoint, a recent program, SpartaABC [104], provides an approximate distribution of

indel model parameters, and thus may be useful.

Although it may be desirable to estimate the joint distribution of the sets of a tree,

evolution parameters, and an MSA (as in [58, 105, 60, 61] , all of which used HMMs), this

remains a formidable goal if you use a genuine sequence evolution model.

Fourth, regarding the limitation on the number of aligned sequences, ANEX’s space- and

time-complexities depend at most linearly on the number of sequences. Therefore, we guess

that ANEX should be able to handle at least 100 sequences, although we have not tested

yet. But there is an important caveat. As the total tree branch length increases, ANEX’s

performance (especially accuracy) deteriorates rapidly (probably more than exponentially),

as the accuracies of almost all state-of-the-art aligners do [3]. Thus, you should take care so

that the total tree branch length does not exceed an upper limit, which probably is less than

2 (expected substitutions/site); if possible, it should be preferable to keep it less than 1.5.

Regarding the number of aligned sequences, there has been a wide-spread myth out there

that an MSA gets more and more accurate as the number of aligned sequences increases(,

probably because the average branch length gets smaller). However, some studies (e.g., [37])

reached the opposite conclusion, demonstrating that the myth is indeed a myth. This may

61Or, an even better way may be to use a more accurate aligner (maybe based on some statistical alignment

methods) to produce a less error-prone input MSA.
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be partly because of the aforementioned severe dependence on the total tree branch length.

In any case, the lessons from studies like these are: you should not increase the number of

aligned sequences blindly; instead, you should carefully select the sequences to be aligned,

taking full account of the purpose of your study; besides, avoid including sequences that

cause long branches, whenever possible. 62

Fifth, by design, ANEX re-uses the multiplication factors of gapped segments that have

been pre-computed by LASTPIECE( P), which computes and tabulates the factors (at var-

ious time-lapses) under a given genuine sequence evolution model [4]. Although the cur-

rent version of LASTPIECE( P) implements only power-law and geometric distributions, its

underlying theory (fully described in [4]) can accommodate any total rates and any length

distributions of insertions and deletions, as long as the rates and distributions are uniform at

least within each gapped segment(, and as long as the entire sequence evolution model satis-

fies the factorability conditions [1]). Thus, only with minor modifications, LASTPIECE( P)

could get much more versatile, and it may get to incorporate some ”genome-specific” or

”region-specific” behaviors of indels, for example, insertions of transposable elements e.g.,

[106, 107]) and the evolution of tandem repeat arrays (e.g., [108, 109, 110]), although we are

not completely sure about incorporating the latter yet. (See [4] for more specific discussions.)

Finally, the current version of ANEX does not handle mutations other than substitu-

tions/insertions/deletions, such as genome rearrangements (including inversions, duplica-

tions and translocations) (e.g., [12, 13, 14, 15]), homologous recombinations (e.g., [111]),

gene conversions (e.g., [112, 113, 114]), and homogenization between the arms of inverted

repeats (e.g., [115, 116, 117]). At least formally, these types of mutations can also be handled

by an extended version of our theoretical formulation of genuine sequence evolution models

[118]. Therefore, it may be possible to extend ANEX to incorporate these types of mutations

62Because ANEX can take almost full account of the effects of multiple indels along each branch [4], the

final lesson may sound unnecessary. However, ANEX depends essentially on the inputs from other aligners,

which generally do not take account of such effects. The users should take this into consideration.
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as well. Especially, genome rearrangements may be handled in a parsimony-based manner, as

insertions/deletions are handled in [2], because they also are expected to be rare in general.

If this is indeed the case, we may utilize some theoretical results on genome rearrangements

(e.g. [119, 120, 121, 122, 123, 124, 125, 126]). For the moment, however, before performing

ANEX on an input MSA, it may be better to confirm that the aligned sequences did not

undergo these types of mutations, for example by performing local alignments among them

and on themselves.

In summary, even though we admit that there are some downsizes and limitations, our

brief validation concluded that the current version of ANEX is a moderately successful and

very promising approach. Thus, it should be worthwhile to develop a ”smarter” version

of ANEX, by making the architecture of neighborhood exploration more sophisticated and

refined, and also by introducing a ”smarter” method to identify candidates of ”complex”

errors more accurately, both possibly with the aid of the machine learning (e.g., [99, 100,

101]), including the deep learning via artificial intelligence (e.g., [102, 103]).

Last but not least, there may have been some people who, either openly or (more likely)

behind our backs, expressed doubts about the practical usefulness of our theoretical formu-

lation of genuine sequence evolution models [1, 2]. The successes of this study and another

recent study of ours [4], both of which are essentially based on that very theoretical for-

mulation, have completely dispelled such doubts. (After all, those who do not properly

understand a theory should not be able to judge or predict, with any certainty, whether

the theory is useful or not.) From now on, you can rest assured and feel free to use our

theoretical formulation [1, 2], augmented by the results of [4] and appendix K of this paper,

to calculate the indel components of MSA probabilities under genuine sequence evolution

models. We sincerely and earnestly hope that these studies of ours will pave the way for a

new era of the homology sequence study, where more accurate and truthful sequence analyses

are commonplace.
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4.1 Final Note

Some of our comments in this paper or other papers may sound like harsh criticisms on

other researchers or their works. We strongly urge the readers to understand that such

comments are our candid expressions of our sincere and pure hope for the advance of the

science in the right direction, and that we have no intension to attack, harm, or hurt anybody

or anybody’s works. It should be kept in mind that we, all hard-working researchers in the

world, are not enemies to each other but actually comrades to each other, who are fighting

against the common enemies, i.e., insufficient understanding of the Mother Nature and the

lack of tools potent enough to uncover the essence of natural phenomena, as well as being

complacent of the status quo like that. We truly hope for the future where we, all researchers,

go hand-in-hand with each other to improve our understanding of the Mother Nature, by

bringing together ones’ own strengths under the common cause instead of competing against

each other or even sabotaging each other’s studies , and by sharing all information with

each otherinstead of keeping crucial information to oneself. Then, our understanding of the

Mother Nature should surely improve much faster than we’ve ever experienced. (If, however,

there are, by any chance, corrupt researchers who are indulging in the complacency and/or

who attempt to deform the scientific truths to their own interests, we wlll resolutely fight

against them.)
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5.1 NOTE on the relationship between this study and a predeces-

sor project

As described in the Acknowledgments above, the project including this study was born partly

inspired by the project of Drs. Dan Graur and Giddy Landan, entitled:

”Error Correction in Multiple Sequence Alignments.” Because of this fact, someone may

wonder about the relationship between their project and this study, because, among other

studies in our current project, this study appears the most similar to their project. We
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sincerely declare that this study is totally distinct from their project. The reasons

are the following:

• The only goal shared by the two studies are ”to improve MSAs”; more precisely, this

is the goal of their project, and the goal of ours is ”to improve the results of analyses

depending on MSAs.”

• Whereas their project aims to construct a single MSA that should be more accurate

than the input reconstructed MSA, this study aims to construct a probability dis-

tribution of MSAs.

• Their project first horizontally chops the input MSA into an alternating array of highly

reliable regions and ”likely erroneous” regions, then, attempts to improve the latter;

in contrast, this study deals with all regions of the input MSA, at least in principle;

although, for convenience, this study first detects regions where ”complex” errors are

highly likely, such regions are then excluded from the main analyses, whereas their

project selectively analyze (or process) the identified ”likely erroneous” regions.

• The methods of providing alternative MSAs (within each window) may appear partic-

ularly similar; actually, however, they are also distinct; their project poses alternative

MSAs, which are basically independent of the input MSA, by trying every possible

horizontal positioning of (the minimum number of) gap-masses so that each sequence

has the same length as in the input MSA; in contrast, this study poses alternative

MSAs from the neighborhood of the input MSA; although the multiple-”shift”s of gap-

blocks that this study performs may somewhat similar to the trial of every possible

positioning of gap-masses in their project, the construction of gap-blocks in this study

depends totally on the input MSA, whereas the construction of gap-masses in their

project does not; moreover, the definitions of the gap-blocks in this study depend on

a phylogenetic tree, whereas the definitions of the gap masses in their project do not;

therefore, the superficial similarity of these two methods is just a coincidence.
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• Besides, the author has never seen, or been told of, the concrete algorithms, or concrete

implementations of the methods, that they developed; therefore, he has never been able

to steal their concrete ideas, even if he wanted to(, and he actually has never want to

do such an unethical thing); all the algorithms and (implementations of) the methods

in this study, except the two mentioned below and the already published ones, are the

author’s own inventions.

• There are only two concrete, albeit rather secondary, ideas (regarding programming)

that the author was suggested by one of the then supervisors, Dr. Giddy Landan;

one is the re-use of the column-wise probabilities already computed (via the pruning

algorithm); and the other is the use of global variables to control the amount of the

diagnostic outputs; even today, the author benefits from these ideas; the author truly

appreciates Dr. Landan for this, in addition to the gratitude toward him & Dr. Graur

the author already expressed in the Acknowledgments above.

For these reasons, it should be obvious that the two studies are distinct.
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Appendixes

A Terminology Used in This Paper

Here, we explain, or define, some terms in this paper that the readers may not be so familiar

with.

A.1 Terms also used by other researchers

First, we briefly explain terms also used by other researchers. (See the references cited for

more detailed descriptions or definitions.)

homology structure A homology structure [128, 105] is a(n) (horizontal) order struc-

ture defined among the residues in a set of homologous sequences. Briefly, it is defined

by two elements: (i) the residue-level homology relationships, which causes the mutu-

ally homologous residues to be vertically aligned, and (ii) the (horizontal) spatial order

relationships among the residues in each individual sequence, which causes the residues

in each sequence ordered in exactly the same way as in the sequence. Although this

structure uniquely determines the order among residues in each sequence, it cannot

specify the order between some residues that are not homologous to each other. 63 In

this sense, a homology structure may be considered an equivalence class of the align-

ments of the same set of homologous sequences. Some researchers (including us, as

well as those defined the term) consider that homology structures are more important

than PWAs or MSAs (e.g., in the matrix format). Some of them impose some rules

63For example, consider a PWA of sequences, say, A and B. And assume that you found a portion of

the PWA where a run of gaps in A immediately follows a run of gaps in B. In this portion, the homology

structure leaves the order unspecified between any residue in A and any residue in B. Therefore, in terms of

the homology structure, the PWA in which the runs of gaps are swapped, and even a PWA in which the run

of gaps in A interrupts that in B, are equivalent to the PWA considered first.
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to specify the order among non-homologous residues as explained above, so that each

homology structure will be represented uniquely by a PWA or an MSA (e.g., [3]).

indel process, indel history First, along a time-interval, an indel process is defined as

a series of insertions/deletions that occurred at specific points of time. Then, an indel

history (e.g., [76]) is defined as a series of insertions/deletions that occurred in a

specific order, regardless of exactly when they occurred. Thus, an indel history can

be considered as an equivalence class of indel processes, consisting of all those indel

processes with the same set of indels that occurred various timings (while keeping

the same order). In a stochastic model of sequence evolution, the indel processes

belonging to each indel history provide a probability density, with an integral element

associated with each time-point. Then, the probability of the indel history is given

by the (multiple) time-integration of such a probability density. The concept of indel

history can be extended to a phylogenetic tree (e.g., [1]). An indel history along a

phylogenetic tree is defined as a set of indel histories, each of which is an indel history

along the time-interval corresponding to each branch of the tree.

A.2 Terms already used in our previous papers

Next are terms we already used in our previous papers (e.g., [1, 2, 3]).

gapped column, gapless column A gapped column is a column in an alignment that

contains at least one gap. A gapless column is an alignment column that contains

no gaps.

preserved ancestral site (PAS) A preserved ancestral site (PAS) is a site that is

preserved throughout the time-interval (for a PWA) or throughout the phylogenetic

tree (for an MSA). The site needs to keep accommodating a residue throughout the

history, but the residue may be replaced with other one(s). In other words, a PAS
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is a site that has not been hit by any indels throughout the history. Consequently,

it always results in a gapless column. (Thus, a PAS may be identified with a gapless

column in most of practical purposes. PAs can be used when you want to stress the

aspect of ”preservation” (i.e., no affecting indels).)

alignment segment, PWA/MSA segment An alignment segment is defined as a sub-

set of an alignment which consists of some contiguous alignment columns. It is thus

delimited by two columns, or a column and an alignment-end(, or two alignment-ends).

It is also referred to as ”PWA/MSA segment” if the alignment is a PWA/MSA.

gapped segment, gapless segment A gapped segment is a maximally spanning align-

ment segment consisting exclusively of gapped columns, never interrupted by a gap-

less column, but always flanked by two gapless columns or a gapless column and an

alignment-end(, or two alignment-ends). On the other hand, a gapless segment is a

(maximally spanning) alignment segment consisting exclusively of gapless columns. 64

gap-pattern block A gap-pattern block is a (maximally spanning) alignment segment

consisting exclusively of alignment columns that show the same ”presence”/”absence”

(i.e., residue/gap) pattern across aligned sequences. It provides an intermediate-level

building block of a gapped segment. (NOTE: It should not be confused with the

”gap-block” below.)

”presence”/”absence” states When a site of a sequence state, or, nearly equivalently, a

cell in an alignment specified by a column and a sequence (in a row), is occupied with

a residue, we say that the site (or a cell) is in a ”presence” state; if it is occupied

with a gap, it is said to be in an ”absence” state.

ancestry index In our quite general model of genuine sequence evolution [1, 2, 118], each

64When accurately computing alignment probabilities, each gapless segment is technically regarded as a

set of gapless columns intercalated with case-(i) ”gapped segment”s [2, 4].
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site of a sequence is assigned its own unique ancestry index, to keep track of the

evolutionary course of the site. Mutually non-homologous sites must have distinct an-

cestry indexes, and homologous (and thus vertically aligned) sites must have the same

ancestry index. And when some sites are inserted, they must be assigned new ances-

try indexes unique to them. As long as the they satisfy these properties, the indexes

may be anything (e.g., integers, alphabetical characters or their combinations, etc.).

Although the indexes have been introduced primarily to keep track of the evolutionary

course of each site, they have a fringe benefit of enabling indel rates to vary across re-

gions (or sites) beyond the mere dependence on the residue state of the (sub-)sequence

[1].

A.3 Terms first used by this paper

Finally, we explain, or define, terms that this paper is (probably) the first to use.

swappable columns, non-swappable columns Two contiguous alignment columns are

regarded as (and indeed are) ”non-swappable” if any sequences have residues in both

columns(, especially when the alignment is merely representing a homology structure).

Otherwise, (i.e., if no sequences have residues in both columns), they are regarded as

(and indeed are) ”swappable”(, especially when considering a homology structure).

gap-block A gap-block is a maximally spanning rectangular block of gaps in an alignment

(Figure 2, panel A); its vertical support is a set of sequences (referred hereafter as ”(gap-

block-)supporting sequences”) that are delimited, i.e., separated from the others, by a

branch of the phylogenetic tree; and its horizontal support is a set of columns (or sites)

(referred hereafter as ”(gap-block-)supporting columns (or sites)”) not interrupted by

any non-swappable columns that contain residues in any of the supporting sequences.

(Typically, the supporting columns make up a contiguous set of columns, but this is

not always the case; they may be interrupted by swappable columns and/or by other
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gap-blocks whose supporting sequences include the supporting sequences of the block

we are considering.) (NOTE: The ”gap-block” defined here should not be confused

with the ”gap-pattern-block” above.)

residue-block A residue-block is an object complementary to a gap-block (Figure 2, panel

E). More precisely, it is a rectangular framework that encompasses a mass of residues;

its vertical support is a set of sequences complementary to the set of sequences sup-

porting the gap-block(, thus delimited by the same tree-branch as the gap-block); and

its horizontal support is identical to that of the gap-block. Unlike each gap-block,

which consists solely of gaps, each residue-block does not necessarily consist solely

of residues; depending on the indel history, each residue-block may accommodate a

number of gap-blocks.

isolated gap-block A gap-block is defined as ”isolated” either if it does not overlap any

other gap-blocks horizontally, or if it is vertically separated from each horizontally

overlapping one by at least three branches in the phylogenetic tree (panels B, C and D

of Figure 2).

swappable blocks, non-swappable blocks The ”swappable/non-swappable” concept

between two contiguous columns (defined above) can be extended also to two contigu-

ous gap-pattern blocks. The concept further extends to two contiguous gap-blocks

and to two residue-blocks as well. First, two contiguous residue-blocks are swappable

if the sets of sequences supporting them share no sequences with each other. Then, at

the same time, the two gap-blocks complementary to such swappable residue-blocks

are also swappable.

effective insertion/deletion (indel) An effective insertion/deletion (indel) is a sin-

gle insertion/deletion that can create a gap-block (and its complementary residue-

block). Typically, it belongs to a parsimonious indel history that can explain a gapped
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segment. 65 It should be noted that such effective indels are not necessarily the in-

dels in the true evolutionary history that created the alignment, because (the indel

component of) such a true history is not necessarily parsimonious.

effective-parent/child/sibling Consider a phylogenetic tree of aligned sequences. Then,

consider a tri-valent node (i.e., a node connecting three branches) in the tree. Remov-

ing this node splits the set of aligned sequences into three sub-sets. Any two of the

three sub-sets are defined as the ”effective-siblings” to each other. Next, consider a

union of a pair of effective-sibling sub-sets(, which actually equals the complement of

the remaining sub-set). This union is defied as the ”effective-parent” of the effective-

sibling sub-sets; conversely, the effective-sibling sub-sets are defined as the ”effective-

children” of the union. These ”effective-parent/child/sibling” relationships translate

into the relationships between gap-blocks and those between residue-blocks, each sup-

ported by the respective sub-set of sequences, as well. Furthermore, the relationships

translates into the relationships between the branches separating these sub-sets of se-

quences. These ”effective-”relationships become actual (parent/child/sibling) relation-

ships if the root is placed on the side of the effective-parent branch opposite to the

effective-child branches.

effective-complementary-sibling Sometimes, two gap-blocks are said to be effective-

complementary-siblings to each other, if their complementary residue-blocks are

effective-siblings to each other.

horizontally equivalent, horizontally identical Two gap-blocks are said to be hori-

zontally equivalent, or horizontally identical, (to each other), if the set of sites

(or columns) supporting one is identical to that supporting the other. This concept

65If there are multiple parsimonious indel history, we choose the one closest to the indel history constructed

by concatenating Dollo parsimonious histories [83] each of which realizes each column’s ”presence/absence”

pattern [2].
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applies also to two residue-blocks.

horizontally include A gap-block, say B1, is said to horizontally include another one,

say B2, if the set of sites (or columns) supporting B1 includes that supporting B2.

Conversely, B2 in this case is said to be horizontally included in B1. These concepts

apply also to two residue-blocks(, although rarely used).

horizontally overlap Two gap-blocks are said to horizontally overlap (or to be hor-

izontally overlapping) each other if the set of sites (or columns) supporting one

overlaps (or is overlapping) that supporting the other. This concept applies also to

two residue-blocks.

vertically equivalent, vertically identical Two gap-blocks are said to be vertically

equivalent, or vertically identical, (to each other), if the set of sequences sup-

porting one is identical to that supporting the other. This concept applies also to two

residue-blocks.

vertically complementary Two gap-blocks are said to be vertically complementary

(to each other) if the set of sequences supporting one is complementary to that sup-

porting the other. This concept applies also to two residue-blocks.

vertically include A gap-block, say B1, is said to vertically include another one, say B2,

if the set of sequences supporting B1 includes that supporting B2. Conversely, B2 in

this case is said to be vertically included in B1. As special cases, a gap-block always

vertically includes its effective-child gap-blocks, and is always vertically included in its

effective-parent gap-block. These concepts apply also to residue-blocks.

vertically overlap Two gap-blocks are said to vertically overlap each other if the set

of sequences supporting one overlaps that supporting the other. This concept applies

also to two residue-blocks.
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(vertically) overlapping yet non-nesting, ONCS, ONN Two vertically overlapping gap-

blocks are said to be (vertically) overlapping yet non-nesting if one neither ver-

tically include nor is vertically included in the other(, i.e., if their sets of support-

ing sequences do not nest). Such cases are sub-classified into two categories: if the

gap-blocks are effective-complementary-siblings to each other (see above), they are

sub-classified as ”overlapping yet non-nesting but effective-complementary-

siblings” (or ”ONCS” for short); otherwise, they are sub-classified as ”overlapping

yet non-nesting nor effective-complementary-siblings” (or ”ONN” for short).

interfering/non-interfering gap-blocks Two gap-blocks are said to be interfering if

they are vertically overlapping, vertically complementary to, or effective-siblings to,

each other. Otherwise, the two blocks are said to be non-interfering. Another way

of defining these terms is to pay attention to the number of branches separating the

gap-blocks: if three or more branches vertically separate the gap-blocks, they are non-

interfering; otherwise, they are interfering. 66

topology In this paper, the ”topology” means a discrete classification of positional relationships

among gap-blocks from the viewpoint of the sets of parsimonious ancestral ”presence”/”absence”

states; the topology is regarded as ”conserved” if the sets of parsimonious ancestor sets

of two compared MSAs are obtained from each other via continuous (i.e., site-by-site)

moves alone; the topology is regarded as ”changed” if the transformation between the

two sets of parsimonious ancestor sets inevitably involve some discrete changes, such

as the changes in: the number of ancestor sets, the number of (effective-)parsimonious

indel histories that can result in the MSA, the sizes of the effective-parsimonious indels

and/or the branches they occur, etc.

66This definition assumes that all internal nodes are trivalent. When the root is bifurcated, the two

branches that it connects is collectively regarded as a single branch. When the gap-blocks are mediated by

a node connecting four or more branches, they are considered as non-interfering even if only two branches

separate them.
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Figure 11: Example case where Dollo-parsimony-based indel history is not truly parsimonious.

A. An example gap-configuration accompanied by the phylogenetic tree of the aligned sequences. B. The

Dollo-parsimony-based indel history demarcates three gap-blocks (yellow, red, and cyan). The red one is

the effective-parent of the yellow and cyan ones, which are effective-siblings to each other. C. A truely

parsimonious indel history demarcates two gap-blocks (yelow and cyan).

B Determining Gap-Blocks

In some procedures of ANEX, especially the creation of windows (subsection 2.4 and ap-

pendix C) and the exploration of MSA neighborhoods (subsection 2.5), gap-blocks play

crucial roles.

As defined in appendix A above, a ”gap-block” is a maximally spanning rectangular block

of gaps in an alignment; it is vertically supported by a clade of sequences, and horizontally

supported by a set of (usually (but not always) contiguous) columns.

Basically, the gap-blocks are determined, or demarcated, based on the indel history that

was created by horizontally concatenating the Dollo parsimonious histories [83] of ”pres-

ence”/”absence” states in individual columns of the input MSA [2]. Such an indel history is

one of the simplest ones that can explain the gap-configuration of the input MSA.

However, in some cases, such Dollo-parsimony-based indel histories does not provide a

truly parsimonious history. Especially the case illustrated in Figure 11 A may be quite

frequent; in such a case, a pair of effective-sibling gap-blocks are mediated by their common

effective-parent gap-block (Figure 11 B). If left as they are, the gap-blocks determined by
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these indel histories may frequently fail to locate the true MSA when the neighborhoods of

the input MSA are explored.

The current version of ANEX addresses this problem by performing a ”branch-and-

merge” operation (see, e.g., SM-5.2 of [2]) on each such Dollo-parsimony-based indel

history (11 B); this operation ”convert”s the Dollo-parsimony-based history into a truly

parsimonious indel history (or at least an indel history closer to the truly parsimonious one),

in which a pair of effective-sibling gap-blocks horizontally overlap (but not nest inside) each

other (Figure 11 C).

[ Construction of Dollo-parsimony-based indel histories is implemented in the subroutine,

”cal init psm cands for sgl msa,” in the module, ”MyTreeMap indels spt odr2.pm,” of ANEX.

Conversion of Dollo-based indel histories to histories closer to truly parsimonious ones is im-

plemented in the subroutine, ”bch br parsimonize dollo indel histories,” in the same module.

Determination of gap-blocks via an indel history (within a gapped segment) is implemented

in the subroutine, ”br list gblocks,” in the same module. ]

C Creating Windows for MSA Neighborhood Explo-

ration: Details

Subsection 2.4 briefly outlined the processes to create windows. This appendix describes

more details on how the two types of windows, ordinary windows and ”purge-like-error-

candidate containing” (PCC) windows, are created.

There are two key parameters that user can specify to indirectly control the sizes of

windows: NW , which is the maximum number of gap-blocks each ordinary window can

contain; and WM , which is the maximum number of sites that each gap-block can ”shift” in

each direction (to the left or to the right) from the ”origin” (i.e., the input MSA).

First, we describe how to create ordinary windows. In short, starting from a gapped
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segment as a ”seed,” ANEX serially incorporates the right-neighboring gapped segment if it

is within 2WM columns from the current right-end of the window, until the total number of

gap-blocks reaches NW . After that, ANEX always attempts to extend the window so that

each gap-block can ”shift” by WM sites in both directions, but it stops the extension if it is

blocked by the flanking gapped segment before finishing the extension, leaving at least one

gapless column in between the window and the flanking gapped segment. This is realized by

the following set of rules.

1. Each window contains the greatest possible number (but not exceeding NW ) of gap-

blocks that come in a horizontal series in the input MSA.

2. Neighboring windows overlap in general, with at least one extra gap-block in each

window.

3. No window extends to, or across, any region with ”likely complex errors”; in other

words, the ”likely complex errors” define the ”prohibited zones,” which are ”off-limits”

to the (both ordinary and PCC) windows.

4. The left-end of each window is whichever is closer to the window center between the

following: (a) the column that is two columns to the right of the right-end of the

left-neighboring gap-block, and (b) the column that is WM columns to the left of the

left-end of the leftmost gap-block in the window.

5. The right-end of the window is defined similarly to (4), with the ”left” and ”right”

swapped.

6. In any case, each end of each window must always be flanked by either a gapless column

or an MSA-end.

7. Whenever the number of (gapless) columns separating a pair of neighboring gap-blocks

is more than 2WM , these columns (excluding the outer WM on both sides) separate
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Figure 12: Rules to create ordinary windows. The parameters used here are NW = 3 and WM = 3.

Each window is horizontally delimited by a colored dashed rectangle. Below the MSA, each both-headed

arrow represents WM columns from each end of each gap-block, which is either the leftmost or rightmost

one in each window. 1. Window 1 has exactly 3 (= NW ) gap-blocks. 2. Gap-blocks in windows 1 and 2

are separated by 8 (> 2WM ) gapless columns. Thus they do not overlap. 3. Gap-blocks in windows 2 and

3 are separated by 7 (> 2WM ). 4. Thus, window 2 consists only of 1 (< NW ) gap-block. 4. Window 3

consists of 3 gap-blocks. 5. Because the 1st and 2nd leftmost gap-blocks in window 3 adjoin each other, they

are inseparable. Therefore, windows 3 and 4 overlap each other only by 1 gap-block. 6. Because window

4 reaches the right-end of the input MSA before incorporating 3 (= NW ) gap-blocks, it consists only of 2

(< NW ) gap-blocks.

two clusters of overlapping windows.

8. For (1) and (6) to be consistent, we must discard every gapped segment containing

more than NW gap-blocks.

As an illustration, Figure 12 gives an example of applying these rules to a small input

MSA.

Depending on its gapped segment contents, each ordinary window may contain one or

two sub-window(s). Sub-windows are created in almost the same way as the full ordinary

windows are, with the NW replaced with (NW −1). Currently, ANEX puts each sub-window

under only one full ordinary window, in order to avoid redundant analyses.

Next, we describe how to create PCC windows. The creation of each PCC window

starts with a ”purge-like-error-candidate” (subsection 2.2) as a ”seed.” Then, the window is

extended in both directions, by incorporating the closest gapped segment if it is within WM

columns from the ”seed” and if the resulting total number of gap-blocks does not exceed

NW − 2. More precisely, the following rules dictate the PCC window creation.
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1. If the ”seed” is not contained in a window-frame completely (i.e., if it overlaps any

”prohibited zones”), dismiss the ”seed.”

2. Search for gapped segments overlapping the ”seed” and the ”neighboring” segments

within WM columns from the ”seed.”

3. If the total number of gap-blocks in the overlapping gapped segments exceeds (NW−2),

dismiss the ”seed.”

4. Otherwise, incorporate the overlapping gapped segments into the PCC window.

5. As long as the total number of gap-blocks is less than NW − 2, attempt to expand

the window by incorporating the then nearest-neighboring gapped segment into the

window.

6. If the total number is expected to exceed NW − 2, stop expanding the window before

incorporating the gapped segment, or, if the ”neighboring” segments run out, stop

expanding the window even if the total number is less than NW − 2.

7. Determine the boundaries of the window so that all constituent gapped segments &

the ”purge-like-error-candidate” (i.e., ”seed”) will be contained, but so that no other

gapped segments will be contained. (The boundaries must always be within WM

columns from the outermost ends among those of the ”seed” and the incorporated

gapped segments.)

8. In any case, each end of each window must always be flanked by either a gapless column

or an MSA-end.

[ For the actual implementation of how ordinary windows are created, see the subroutine,

”prepare sliding windows,” in the module, ”MyANEX Supple.pm,” of ANEX. For the actual

implementation of how PCC windows are created, see the subroutine, ”mk pcc sliding windows,”

in the same module. ]
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C.1 Sorting gap-blocks in each window

Once each window is created, the gap-blocks in it are sorted in an unambiguous manner,

as follows: (1) sort them in descending order of the number of sequences supporting each

of them; (2) when some gap-blocks tie in (1), sort them in the order that their supporting

sequences appear in the rows of the MSA (from top to bottom); (3) when some gap-blocks

tie even in (2), (i.e., when some blocks are vertically identical to one another,) sort them

according to their horizontal positions in the MSA (from left to right).

The coordinates (for ”shift”s) are assigned to the gap-blocks according to this order. And

multiple-”shift”s are performed using the structure based on this order. (See subsection 2.5.)

D Elementary Moves Used for MSA Neighborhood Ex-

ploration

As explained in section 2.5, ANEX explores the neighborhoods of the input MSAs via an

”elementary move” [45, 3] or a combination of a number of elementary moves. Each elemen-

tary move is realized as the move of a gap-block (Figure 2, panel A) or its complementary

residue-block (Figure 2, panel E). 67

Here, we list and describe the elementary moves that current version of ANEX attempts.

(i) A ”shift” of a gap-block. This move just horizontally re-positions a gap-block without

affecting others nearby (if at all) (Figure 3 A). This can be done as long as the gap-block

is ”isolated” from others (panels B, C and D of Figure 2). 68

(ii) A ”purge” of two equal-sized gap-blocks that affect the complementary sets of se-

quences (, which are separated by a single branch) (Figure 3 B). (This move is the

67See appendix A for the definitions of the ”gap-block” and the ”residue-block.”
68See appendix A for the definition of the ”isolated gap-block.”
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reverse of the ”ex-nihilo” of a pair of (spurious) gap-blocks.) (This move is defined

utterly uniquely, and therefore can be processed very quickly.)

(iii-a) An ”s-merge,” i.e., a ”same-type-merge,” which merges two gap-blocks that are

supported by the same set of sequences and that are separated by a number of columns

(Figure 3 C). (This move is the reverse of a(n) (erroneous) ”s-split” of a gap-block.)

(This move is defined uniquely, modulo a shift of the resulting single gap-block. Thus,

it can be processed as quickly as shifts.)

(iii-b) A ”c-merge”, i.e., a ”complementary-merge,” which merges two non-equal-sized

gap-blocks that are supported by the complementary sets of sequences (Figure 3 D).

(This move, too, is defined uniquely, modulo a shift of the resulting single gap-block.

Thus, it also can be processed as quickly as shifts.)

(iv-a) An ”s-split”, i.e., a ”same-type-split,” which splits a single gap-block into two gap-

blocks both of which are supported by the same set of sequences (the reverse of Figure 3

C). There are {the block-length minus one} ways of splitting the gap-block, resulting

in pairs of gap-blocks of different length-combinations. (And each of the two resulting

gap-blocks may shift by some sites. Thus, it can take some time to process this move.)

(iv-b) A ”c-split”, i.e., a ”complementary-split,” which splits a single gap-block into two

gap-blocks, each of which is supported by each of the complementary sets of sequences

(the reverse of Figure 3 D). (Although there are (theoretically) infinite ways of such

moves, which result in different combinations of block-lengths, ANEX restricts the

moves to attempt by setting an upper bound on the shorter block-length. As in the

previous case, each of the two resulting gap-blocks may shift by some sites. Because

of these two factors, processing this move can consume quite an amount of time.)

(v) A ”reverse-purge” (also known as an ”ex-nihilo” [45]) of a pair of gap-blocks, each of

which is supported by each of the complementary sets of sequences (the reverse of Figure
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3 B). (There are many ways of performing this move, with different sets of original

columns affected, and with different branches separating the complementary sets of

sequences. Currently, ANEX attempts this move on only those candidate combinations

of regions and branches which passed two statistical tests; see [82] for more details.)

(vi-a) A ”v-merge”, i.e., a ”vertical-merge” of a pair of equal-sized ”effective-sibling” 69

gap-blocks that are supported by two (”effective-sibling”) sequence sets separated by

two branches (Figure 3 E). 70 (This is the reverse of a (erroneous) vertical-split of a

gap-block.) (This move is defined uniquely, modulo a shift of the resulting gap-block.

Thus, it can be processed as quickly as a shift.)

(vi-b) A ”cv-merge”, i.e., a ”complementary-vertical-merge,” which merges a pair of

equal-sized ”effective-sibling” residue-blocks (each complementary to a gap-block) ,

which iare supported by wo (”effective-sibling”) sequence sets separated by two branches

(Figure 3 F). 71 (This is the reverse of a(n) (erroneous) vertical-split of a sequence-

block.) (This move, too, is defined uniquely, modulo a shift of the resulting gap-block

(complementary to the resulting residue-block). Thus, it can be processed as quickly

as a shift.)

(vii-a) A ”v-split”, i.e., a ”vertical-split,” of a single gap-block into its two ”effective-child”

72 gap-blocks, which are supported by two (”effective-child”) sequence sets separated

by two branches (the reverse of Figure 3 E). As long as the original gap-block affects a

single clade (or the complement of a single clade), we can define a unique vertical-split

(at the top node of the clade). 73 (In such a vertical-split, each of the two resulting

69See appendix A for the definition of the ”effective-sibling.”
70When a pair of non-equal-sized gap-blocks are involved, the move is referred to as an ”iv-merge”, i.e.,

an ”incomplete-vertical-merge.”
71When a pair of non-equal-sized residue-blocks are involved, the move is referred to as an ”icv-merge”,

i.e., an ”incomplete-complementary-vertical-merge.”
72See appendix A for the definition of the ”effective-child.”
73Other ”vertical splits” actually do exist. However, such moves increase the number of indels by two or
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gap-blocks may shift by some sites. Thus, the time-consumption should be on the same

order as that for double-shifts.)

(vii-b) A ”cv-split”, i.e., a ”complementary-vertical-split,” which splits a single residue-block

into its two ”effective-child” residue-blocks (complementary to the resulting two gap-

blocks), which are supported by two (”effective-child”) sequence sets separated by two

branches (the reverse of Figure 3 F). In this case, too, as long as the original residue-

block is supported by a single clade (or the complement of a single clade), we can

define a unique complementary-vertical-split (at the top node of the clade). 74 (In

such a complementary-vertical split, each resulting residue-block may shift. Thus, the

time-consumption should be on the same order as that for double-shifts.)

(viii) A ”revserse-(i)CII”, i.e., a ”reversal of a(n) (incomplete-)collapse of independent

insertions,” which recovers the independent effective-insertions 75 that collapsed when

the input MSA is reconstructed [3] (Figure ...). Usually, this move drastically changes

the set of gap-blocks (and thus the set of effective-indels). Thus, a reliable way to

realize this move is to create a new MSA by actually recovering the independent

effective-insertions, and to re-compute the gap-blocks from scratch. (This is indeed

what ANEX does.)

more each, as if they were CIIs (Figure S1A). Such true MSAs seem very unlikely, though the probability is

not zero.
74Other ”vertical-split”s do exist. However, such moves are actually ”ex-nihilo”s aligned with a gap (Figure

S1B). The true MSAs with such patterns seem very unlikely, because the number of indels increases by two

or more each.
75See appendix A for the definition of the ”effective-insertion.”
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E Performing single ”shift”s of gap-block interfering

with other gap-block(s)

In sub-subsection 2.5.2, single-”shift”s of a gap-block was discussed in the simplest situation

where the gap-block is isolated. When the gap-block to be ”shift”ed interferes with some

gap-blocks around it, however, some complications may arise. Here, we consider what will

happen in such cases, classifying the situations. 76

(1) Interfering with a vertically identical gap-block. In this case, ANEX tentatively applies

the rules for the ”shift”s of vertically including/included gap-blocks (see (3) and (4) below);

the gap-block that is above the other in the list of gap-blocks is regarded as ”vertically

including” the other. Once these gap-blocks horizontally overlap or adjoin (i.e., touch), the

resulting MSAs are destined to be highly redundant. Therefore, ANEX assigns the ”degree

of degeneracy = 0” to these MSAs, and will never use them in the downstream analyses,

including the computation of MSA probabilities (except the substitution component). In

any case, such MSAs will be properly treated when these gap-blocks are ”s-merge”d.

(2) Interfering with a vertically complementary gap-block. In this case, the current version

of ANEX performs the single-”shift”s of the subject gap-block regardless of the vertically

complementary one. However, when these gap-blocks horizontally overlap (but excluding

the cases they adjoin), they are effectively equivalent to the ”c-merge” (or ”c-merge +

c-split”) of the gap-blocks, hence causing some redundancies. Thus, ANEX assigns the

”degree of degeneracy = 0” to the resulting MSAs in these cases, and will never use them

in the downstream analyses; such MSAs will be properly treated when these gap-blocks are

”c-merge”d (or ”c-merge + c-split”ed). Meanwhile, each MSA in which these gap-blocks

adjoin are very likely to occur once again, with the configuration in which the gap-blocks are

swapped horizontally. When this is indeed the case, ANEX assigns the ”degree of degeneracy

76This section frequently uses terms like ”horizontally xxx” and ”vertically yyy,” as well as ”effective-zzz.”

See appendix A for the definitions of these terms.
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Figure 13: Single-”shift”s of gap-block interfering with one that vertically includes it. A.

Single-”shift” immediately after the two gap-blocks adjoin each other. B. Single-”shift” that gets the rear-

end of the subject to reach the rear-end of the vertically-including block. After the ”shift,” the rear-end of the

subject is retracted as shown. In each panel, the subject gap-block is shaded in cyan, the vertically-including

gap-block is shaded in yellow, and the sites flanking the front-end of the subject (before the ”shift”) are

enclosed in a magenta rectangle.

= 2” to both of such MSAs; when computing MSA probabilities, 1/2 will be multiplied to

each of their contributions,

(3) Interfering with a gap-block that vertically includes the subject. In this case, the

single-”shift”s of the subject gap-block proceed as those of an isolated gap-block, except the

two moments (Figure 13), namely, (i) immediately after the gap-blocks adjoin each other

(panel A), and (ii) when the rear-end of the subject reaches the rear-end of the vertically-

including block (panel B). When (i) the subject gap-block ”shift”s even after it adjoins

the vertically-including block (panel A), we must regard the front-end-flanking site of the

vertically-including block as that of the subject as well. Then, the ”essence” given in sub-

subsection 2.5.2 applies as it is. When (ii) the rear-end of the subject is about to reach

the rear-end of the vertically-including block (panel B), the ”shift” itself can be done as in

sub-subsection 2.5.2; however, as post-processing, ANEX retracts the rear-end of the subject

to the front-end-flanking site of the vertically-including block.

(4) Interfering with a gap-block that is vertically included in the subject. In this case,
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Figure 14: Single-”shift”s of gap-block interfering with one that is vertically included in it.

A. Single-”shift” immediately after the two gap-blocks adjoin each other. B. Single-”shift” that gets the

front-end of the subject to reach the front-end of the vertically-included block. After the ”shift,” the front-

end of the latter block is retracted as shown. In each panel, the subject gap-block is shaded in cyan, the

vertically-including gap-block is shaded in yellow, and the sites flanking the front-end of the subject (before

the ”shift”) are enclosed in a magenta rectangle.

the single-”shift”s of the subject gap-block itself completely follows the ”essence” given in

sub-subsection 2.5.2. However, care must be taken of the vertically included gap-block in

two moments (Figure 14), namely, (i) immediately after the gap-blocks adjoin each other,

and (ii) when the front-end of the subject reaches the front-end of the vertically-included

block. When (i) the subject gap-block ”shift”s even after it adjoins the vertically-included

block, the rear-end of the latter extends to the rear-end-flanking site of the subject (after

the ”shift”) naturally, as a ”side-effect” of the ”shift.” When (ii) the front-end of the subject

reaches the front-end of the vertically-included block, the front-end of the latter retracts to

the rear-end-flanking site of the subject (after the ”shift”) naturally, again, as a ”side-effect”

of the ”shift.”

(5) Interfering with a gap-block that is (vertically) overlapping yet non-nesting(, i.e., in

”ONCS” or ”ONN” relation) with the subject. 77 In this case, care must be taken only

immediately after the gap-blocks adjoin each other (Figure 15). When the subject ”shift”s

77See appendix A for the definitions of ”(vertically) overlapping yet non-nesting,” ”ONCS” and ”ONN.”
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Figure 15: Single-”shift” of gap-block interfering with one that is (vertically) overlapping yet

non-nesting(, i.e., in ”ONCS” or ”ONN” relation) with it. Single-”shift” immediately after the two

gap-blocks adjoin each other. Before the ”shift”, the two gap-blocks are horizontally swapped. In the figure,

the subject gap-block is shaded in cyan, the vertically-including gap-block is shaded in yellow, and the sites

flanking the front-end of the subject (before the ”shift”) are enclosed in a magenta rectangle.
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Figure 16: Single-”shift” of gap-block interfering with its effective-sibling. The ”shift”s of

the subject gap-block (the cyan rectangle) are performed in the order: A → B → C → D. The yellow

rectangle represents an effective-sibling gap-block of the subject. The MSA in panel C’, which resulted from

an ”incomplete-v-merge” of the effective-sibling gap-blocks, is identical to the MSA in panel C.

even after it adjoins an ONCS or ONN gap-block, ANEX horizontally swaps the two gap-

blocks first; then, it ”shift”s the subject exactly conforming to the ”essence” in sub-subsection

2.5.2.

(6) Interfering with an effective-sibling gap-block. In this case, the current version of

ANEX performs the ”shift”s of the subject gap-block regardless of its effective-sibling (Fig-

ure 16). When the two gap-blocks are not nesting horizontally (panels A, B, D), there is

no problem. When, however, they do nest horizontally (panel C), the resulting MSA can

also result from a(n) ”(incomplete-)v-merge”(panel C’); hence, some redundancies can oc-

cur. The current version of ANEX avoids this ”redundancy problem” as follows: first, the

”(incomplete-)v-merge”s resulting from the ”shift”s of the effective-sibling gap-blocks are
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kept and used, as they are, for the downstream analyses; second, ANEX does not perform

the single action of ”(incomplete-)v-merge”s of effective-sibling gap-blocks; and, third, if

applicable, ANEX does perform ”s-split + v-merge”s of effective-sibling gap-blocks, and, in

the subsequent multiple-”shift”s, it excludes (from the downstream analyses) those MSAs

in which the ”s-split” gap-blocks are re-”merge”d(, because they should also result from the

multiple-”shift”s of the input MSA). 78

(7) Interfering with a composite-gap-block. Some gap-blocks do not interfere with the

subject as single gap-blocks; but they may form a composite-gap-block when horizontally

overlapping each other, and interfere with the subject, especially as an effective-sibling or

as an effective-child, or rarely as vertically complementary ones. In some cases, a composite

gap-block including the subject may interfere with another composite gap-block. Currently,

ANEX deals with some of these cases, although not necessarily exhaustively.

F Cases where downstream analyses are skipped

The current version of ANEX skips downstream analyses on alternative MSAs it visited

during multiple-”shift”s, if they have particular gap-block configurations. This behavior is

intended to avoid redundancies in the alternative MSAs resulting from the entire neighbor-

hood exploration. (Note that the multiple-”shift”s themselves are continued.) Here, we list

the types of gap-block configurations that make ANEX skip the downstream analyses.

1. When there is at least one null (i.e., gap-only) column; this indicates a ”(partial)

c-merge,” which should be solidly performed as a non-”shift”-type move elsewhere.

2. When a pair of vertically identical gap-blocks adjoin or nest; this effectively results in

78Similarly, when ANEX performs an ”v-split + s-merge” on a pair of effective-parent/child gap-blocks,

then, in the subsequent multiple-”shift”s, it excludes (from the downstream analyses) those MSAs in which

the resulting new gap-blocks horizontally nest, because, again, they should also result from the multiple-

”shift”s of the input MSA.
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an ”s-merge,” which should be solidly performed as a non-”shift”-type move elsewhere.

3. When a pair of vertically identical and equal-sized gap-blocks are in the horizontal order

opposite from the input one; this results in a gap-configuration totally indistinguishable

from that with the same horizontal order as the input, causing redundancy; the simplest

way to remove the redundancy is to ignore the MSA with the opposite horizontal order.

4. When, as specified by an input variable of the subroutine to perform the multiple-

”shift”s, a pair of effective-sibling gap-blocks nest horizontally; this case can occur

during the multiple-”shift”s subsequent to the ”v-split” of a gap-block followed by the

”s-merge” of one of the resulting gap-blocks with a nearby vertically identical one(,

which produces the effective-sibling pair); the specified gap-block configuration should

result in the same MSA as one of those resulting from multiple-”shift”s of the input

MSA, causing the redundancy; to remove the redundancy, the specified gap-block

configuration are ignored.

5. When, as specified by an input variable of the subroutine to perform the multiple-

”shift”s, an effective-parent&child pair adjoin or nest horizontally; this case can occur

during the multiple-”shift”s subsequent to the ”s-split” of a gap-block followed by the

”v-merge” of one of the resulting gap-blocks with a nearby effective-sibling(, which

produces the effective-parent&child pair); then, the same 3rd and 4th sentences as

case 4 apply also here.

6. When a gap-block adjoins a vertically complementary gap-block on each end; this gap-

block configuration is actually equivalent to the configuration where the two (vertically

complementary) gap-blocks are ”s-merge”d; the latter configuration should be solidly

dealt with in the session of ”s-merge” followed by multiple-”shift”s.

To each alternative MSA that belongs to at least one of the above categories, the degree

of degeneracy is infinity, which means that the weight is zero when computing the total
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probability. 79

G Algorithm to detect candidates of CII-containing re-

gions in MSA

As briefly described in sub-subsection 2.5.4, this algorithm pays attention to the residue-

blocks in the input MSA, especially the number of monophyletic residue-blocks that vertically

overlap one another. This is done efficiently if the input MSA is horizontally divided into a

set of gap-pattern-blocks. 80 More precisely, a region is regarded as a candidate of a ”CII-

containing region” if it contains more than one monophyletic residue-block; however, if it

contains too many monophyletic residue-blocks, the region is tentatively skipped as it may

have resulted in two or more non-interfering (effective-)deletions. The following gives the

”essence” of the algorithm(, leaving out some details).

[ Algorithm to detect CII-candidates ]

Input: A set of gap-pattern-blocks in the input MSA (within the window)

(= @Set gpbs = (\@gpb0, \@gpb1, ..., \@gpb$N gpb−1)),

where $N gpb is the number of gap-pattern-blocks in the MSA);

The individual @gpbk follows the format:

@gpbk = ($lend gpb, $rend gpb, \@set ngap seqs) , where

$lend gpb and $rend gpb are the left- and right-end coordinates, respectively,

of the gap-pattern-block,

@set ngap seqs lists (the indexes of) the sequences not occupied by gaps in the gap-pattern-block ;

{ Input variables necessary for dividing a set of sequences into monophyletic groups.

(See appendix H.) } ;

79In the actual implementation of ANEX, the degree of degeneracy = 0 (zero) is assigned, simply because

the infinity cannot be specified as a number.
80See appendix A for the definition of the term, ”gap-pattern-block.”

97



The upper-bound of the permissible count of monophyletic groups (= $MAXCT MPG).

Output: (The reference to) the list of detected CII-candidates, @list CII cands, where

@{$list CII cands[$cc]} = ($lend, $rend, \@set mpgs, \@set br up or lw, \@set ngap seqs core)

gives information on the $cc-th candidate region, where

$lend and $rend are the left- and right-end coordinates, respectively, of the region,

@set mpgs is the set of monophyletic groups characterizing the candidate-region,

@set br up or lw indicates which branch separates each monophyletic group and

on which end (, upper or lower,) of the branch the monophyletic group is,

@set ngap seqs core is @set ngap seqs in the ”core” gap-pattern-block for this region.

Algorithm:

Create @list raw ciicands ← ( ) ;

Create $ct rawcands ← 0 ;

For $k from 0 to $N gpb− 1, do the following:

Create ($lend gpb, $rend gpb, \@set ngap seqs)← @{$Set gpbs[$k]} ;

Create (\@set mpgs, \@set br up or lw)←

{ Outputs of the algorithm in appendix H with @set ngap seqs as an input } ;

Create $ct mpgs = { size of @set mpgs } ;

If ($ctmpgs < 2) or ($ctmpgs > $MAXCT MPG), then:

next ; (Skip the gap-pattern blocks that have too few or too many monophyletic groups.)

EndIf

Search @list raw ciicands backward for a CII-candidate having

the same @set ngap seqs as the current gap-pattern-block ;
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If (NO such candidates exist in @list raw ciicands), then:

@{$list raw ciicands[$ct rawcands]} ←

($lend gpb, $rend gpb, \@set mpgs, \@set br up or lw, \@set ngap seqs) ;

(i.e., Create a new CII-candidate.)

$ct rawcands ← $ct rawcands+ 1 ;

next ;

EndIf

Create $indx last ← { the index of the last such candidate in @list raw ciicands } ;

Create $rend last ← { the right-end of the last such candidate in @list raw ciicands } ;

If (all the gap-pattern-blocks between $rend last and $lend gpb have

their @set ngap seqs’s included in the @set ngap seqs of the present CII-candidate), then:

$list raw ciicands[$indx last]→ [1] ← $rend gpb ;

(i.e., Merge the last such candidate and the current gap-pattern-block.)

Else:

@{$list raw ciicands[$ct rawcands]} ←

($lend gpb, $rend gpb, \@set mpgs, \@set br up or lw, \@set ngap seqs) ;

(i.e., Create a new CII-candidate.)

$ct rawcands ← $ct rawcands+ 1 ;

EndIf

EndFor ($k)

Create @list ext ciicands ← ( ) ;

Create $ct extcands ← 0 ;
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For $i from 0 to $ct rawcands− 1, do the following:

Create ($lend, $rend, \@set mpgs, \@set br up or lw, \@set ngap seqs core)

← @{$list raw ciicands[$i]} ;

Attempt to extend the CII-candidate region to the left and to the right,

by comparing the @set ngap seqs core and

the @set ngap seqs of the then flanking gap-pattern-block, if at all ;

If the former includes the latter (in the previous two lines), then:

Extend the CII-candidate by incorporating the gap-pattern-block into it ;

EndIf

If the CII-candidate has been extended, then:

Let ($lend ext, $rend ext) be the left- and right-ends of the extended candidate ;

@{$list ext ciicands[$ct extcands]} ←

($lend ext, $rend ext, \@set mpgs, \@set br up or lw, \@set ngap seqs) ;

(i.e., Create an extended CII-candidate.)

$ct extcands ← $ct extcands+ 1 ;

Endif

EndFor ($i)

Create @list CII cands ← { Union of @list raw ciicands and @list ext ciicands,

sorted in spatial order (from left to right) } ;

Return \@list CII cands .

EndAlgorithm
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[ For the actual implementation in Perl, see the subroutine, ”list cii candidates”, in the

module, ”MyANEX MainX.pm”, of ANEX. ]

H Algorithm to divide set of sequences into mono-

phyletic groups

This algorithm is an integral part of the algorithm given in appendix G. Verbally, the

algorithm is simple: (1) Pick out a sequence from the input set of sequences; (2) using the

picked-out sequence as a seed, grow a monophyletic group of sequences while traversing the

tree, first from bottom to top, then from top to bottom; (3) stop growing the monophyletic

group immediately before it fails to be included in the input set of sequences; (4) put the

monophyletic group into the output set, and remove all sequences in it from the input set of

sequences; (5) repeat (1) — (4) until the input set is emptied.

This verbal description can be translated into the following ”pseudo-code.”

[ Algorithm to divide sequence set into monophyletic groups ]

Input: A set of sequences (at external nodes) in a phylogenetic tree (= @Sequences) ;

A (rooted) phylogenetic tree (= T ) ;

Output: (The references to) @set mpgs and @set br up or lw, where

@set mpgs is the set of monophyletic groups ;

@set br up or lw indicates which branch separates each monophyletic group and

on which end (, upper or lower,) of the branch the monophyletic group is.

Algorithm:
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Create @set mpgs ← ( ) ;

Create @set br up or lw ← ( ) ;

Create $ct mpgs ← 0 ;

Create @remaining seqs ← ( a copy of @Sequences ) ;

While (0 < { size of @remaining seqs } ), do the following: (Outer While-loop)

Create $seed seq ← $remaining seqs[0] ;

Create @curr mpg ← ($seed seq) ;

Create $curr br ← { the branch that separates $seed seq from all other sequences } ;

Create $curr up or lw ←

{ the side (upper (’U’) or lower (’L’)) of $curr br that the $seed seq is on } ;

While ($curr up or lw =’L’), do the following: (1st Inner While-loop)

If ( the upper-bound of $curr br is the root ), then:

If ( the root is bifurcated ), then:

$curr br ← { the sibling of $curr br } ;

$curr up or lw ← ’U’ ;

last; (Leave the 1st Inner While-loop.)

Else: (If the root has three or more child nodes.)

Create @siblings ← { the set of sibling branches of $curr br } ;

Create $ct siblings ← { the size of @siblings } ;

For $i from 0 to ($ct siblings− 1), do the following:

Create @cmpl mpg sbl ←

{ the complementary set of the monophyletic group under $siblings[$i] } ;
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If (@cmpl mpg sbl is equal to or included in @remaining seqs), then:

$curr br ← $siblings[$i] ;

$curr up or lw ← ’U’ ;

@curr mpg ← @cmpl mpg sbl ;

last; (Leave the For-loop.)

EndIf

EndFor ($i)

last; (Leave the 1st Inner While-loop.)

EndIf

EndIf

Create $curr pa ← { the parent branch of $curr br } ;

Create @mpg pa ← { the monophyletic group under $curr pa } ;

If ( @mpg pa is equal to or included in @remaining seqs), then:

$curr br ← $curr pa ;

@curr mpg ← @mpg pa ;

Else:

last; (Leave the 1st Inner While-loop.)

EndIf

EndWhile (1st Inner)

While ($curr up or lw = ’U’), do the following: (2nd Inner While-loop)

If ($curr br is the external branch), then:

last; (Leave the 2nd Inner While-loop.)

EndIf
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Create @children ← { the set of child-branches of $curr br } ;

Create $ct children ← { the size of @children } ;

If ($ct children = 1), then:

$curr br ← $children[0] ;

next ;

EndIf

Create $if changed ← 0 ;

For $j from 0 to ($ct children− 1), do the following:

Create @cmpl mpg ch ←

{ the complementary set of the monophyletic group under $children[$i] } ;

If (@cmpl mpg ch is equal to or included in @remaining seqs), then:

$curr br ← $children[$i] ;

@curr mpg ← @cmpl mpg ch ;

$if changed ← 1 ;

last; (Leave the For-loop.)

EndIf

EndFor ($j)

If ($if changed = 0), then:

last; (Leave the 2nd Inner While-loop)

EndIf

EndWhile (2nd Inner)

@{$set mpgs[$ct mpgs]} ← @curr mpg ;

@{$set br up or lw[$ct mpgs]} ← ($curr br, $curr up or lw) ;

$ct mpgs ← $ct mpgs+ 1 ;
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Remove all sequences in @curr mpg from @remaining seqs ;

EndWhile (Outer)

Return (\@set mpgs, \@set br up or lw) .

EndAlgorithm

[ For the actual implementation in Perl, see the subroutine, ”partition rowset into monophyl sets”,

in the module, ”MyANEX MainX.pm”, of ANEX. ]

I Algorithm to perform ”reverse-(i)CII”

This algorithm, which has already been described briefly in 2.5.4, is also simple verbally: (1)

Cut the input MSA into three sub-MSAs, namely, the sub-MSA on the left, that in the CII-

candidate region, and that on the right; (2) from the sub-MSA in the CII-candidate region,

create as many sub-sub-MSAs as the monophyletic groups characterizing the CII-candidate,

with each sub-sub-MSA consisting only of sequences in one of the monophyletic groups; (3)

vertically extend each of the sub-sub-MSAs into the whole set of sequences by padding the

remaining sequences with gaps alone; (4) horizontally concatenate the sub-MSA on the left,

all the extended sub-sub-MSAs, and the sub-MSA on the right, to create an output MSA.

This verbal description is translated into the following ”pseudo-code.”

[ Algorithm for ”reverse-(i)CII” ]

Input: An MSA within the window, represented as a set of columns

(= @In A = (\@c0, \@c1, ..., \@c$N clms−1),

where $N clms is the number of columns in the MSA);

The left- and right-end coordinates (within the window) of the CII-candidate region
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(= ($lend cii, $rend cii)) ;

The set of monophyletic groups characterizing the CII-candidate region (= @set mpgs) ;

A null-column, @null clm, which contains as many gap-characters as the aligned sequences ;

Output: (The reference to) an output MSA, @Out A .

Algorithm:

Create @subA left ← ( ) ;

For $i1 from 0 to ($lend cii− 1), do the following:

@{$subA left[$i1]} ← ( a copy of @{$In A[$i1]} ) ;

EndFor ($i1)

Create @subA in cii ← ( ) ;

For $i2 from $lend cii to $rend cii, do the following:

@{$subA in cii[$i2− $lend cii]} ← ( a copy of @{$In A[$i2]} ) ;

EndFor ($i2)

Create @subA right ← ( ) ;

For $i3 from ($rend cii+ 1) to ($N clms− 1), do the following:

@{$subA right[$i3− $rend cii− 1]} ← ( a copy of @{$In A[$i3]} ) ;

EndFor ($i3)

Create $ct mpgs ← { size of @set mpgs } ;

Create @cnct ext subsubA in cii ← ( ) ; ( Concatenated exetnded-subsub-alignments.)

Create $ct new clms ← 0 ;
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For $g from 0 to ($ct mpgs− 1), do the following:

Create @mpg ← @{$set mpgs[$g]} ;

Create $size mpg ← { size of @mpg } ;

For $i2 from $lend cii to $rend cii, do the following:

Create @old clm ← @{$subA in cii[$i2− $lend cii]} ;

Create @new clm ← ( a copy of @null clm ) ;

For $s from 0 to ($size mpg − 1), do the following:

$indx seq ← $mpg[$s] ; (Index of the sequence in MSA.)

$new clm[$indx seq] ← $old clm[$indx seq] ;

EndFor ($s)

If (@new clm is not equal to @null clm), then:

@{$cnct ext subsubA in cii[$ct new clms]} ← @new clm ;

$ct new clms ← $ct new clms+ 1 ;

EndIf

EndFor ($i2)

EndFor ($g)

Create @Out A ← (@subA left,@cnct ext subsubA in cii,@subA right) ;

Return \@Out A .
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EndAlgorithm

The alignment output by this algorithm will go through some post-processing.

[ For the actual implementation in Perl, see the subroutines, ”reverse cii on clmset” and

”reverse spec cii in wd”, in the module, ”MyANEX MainX.pm”, of ANEX. ]

J Non-factorability of effects of ”shift”s of multiple

gap-blocks on substitution component of MSA prob-

ability

Here we attempt to factorize the effects of ”shift”s of multiple gap-blocks on the substitution

component of the MSA probability, and clarify when the effects are factorable and when

they are not. Let ∆sgl-shift (gbk) log {P [A | T ,ΘS]} be the increment of the logarithm of the

substitution component of the probability of the MSA (denoted as A) by a single-”shift”

of a gap-block (gbk, with k = 1 or 2). And let ∆dbl-shifts (gb1,gb2) log {P [A | T ,ΘS]} be the

increment by simultaneous ”shift”s of the gap-blocks, gb1 and gb2. Symbolically, what we

want to see is expressed as:

∆dbl-shifts (gb1,gb2) log {P [A | T ,ΘS]}
?
= ∆sgl-shift (gb1) log {P [A | T ,ΘS]}+ ∆sgl-shift (gb2) log {P [A | T ,ΘS]} . (8)

To discuss further, we consider three typical cases involving two non-interfering gap-

blocks (panels A, B and C of Figure 17). First, when their ”shift”s only affect different

columns independently (as in Figure 17 A), it is almost trivial to show that the change in

the log substitution probability by such two simultaneous shifts is exactly the summation

of two changes, each of which resulted from a single individual ”shift”; thus, in this case,
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Figure 17: Effects of simultaneous ”shift”s of two non-interfering gap-blocks on substitution

component of MSA probability. A. The ”shift”s affect different columns independently. B. The ”shift”s

affect the same single column simultaneously. C. The ”shift”s affect the same pair of columns simultaneously.

In each column, ”shift”s of the gap-blocks shaded in cyan and magenta affect the portions of the columns

shaded in blue and red, respectively. The colored branches in the tree phylogenetically delimit the gap-blocks

shaded in the same color.
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Eq. 17 holds exactly. (Actually, the gap-blocks need not necessarily be non-interfering in

situations like this.)

Thus, we can focus on cases where the same column (or the same pair of columns) is affected

simultaneously by the ”shift”s of two non-interfering gap-blocks (as in Figure 17, pan-

els B and C). By carefully examining the cases as in panels B and C of Figure 17, we

find that the effects of the ”shift”s of two non-interfering gap-blocks can be regarded as

independent of each other (i.e., Eq. 17 is satisfied) if the following equation holds :

log{P [(c′, c′′′, c′′) | T ,ΘS]}+ log{P [(−, c′′′,−) | T ,ΘS]}
?
= log{P [(c′, c′′′,−) | T ,ΘS]}+ log{P [(−, c′′′, c′′) | T ,ΘS]} . (9)

(The proof is given in J.1 below.) Here, the c′ and c′′ are the portions of MSA columns flank-

ing (the front-ends of) the two gap-blocks in question, and the c′′′ is the remaining portion

of the column; the (c′, c′′′, c′′) denotes the MSA column created by aligning these portions;

the (c′, c′′′,−) denotes the column made from the (c′, c′′′, c′′) by replacing the residues in c′′

with gaps; other similar symbols can be interpreted accordingly. Unfortunately, our further

examination revealed that Eq. 9 should fail to hold in general; however, it may approx-

imately hold if at least one of the involved branches is so long that the transition probabilities

nearly saturate. (For details, see J.2 below.)

J.1 Proof of necessary and sufficient condition, Eq. 9, for in-

dependent effects of overlapping ”shift”s of non-interfering

gaps

In this sub-appendix, we prove that Eq. 9 is indeed necessary and sufficient for the in-

dependent effects of the ”shift”s of non-interfering gap-blocks. For this purpose, we here

introduce a symbol, 〈...〉, which is a shorthand notation of log{P [(...) | T ,ΘS]}. (For exam-

ple, 〈c′, c′′′, c′′〉 denotes log{P [(c′, c′′′, c′′) | T ,ΘS]}. )
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We first consider the situation illustrated in Figure 17 B. We here use the following

symbols for the portions of the columns:

• The c′ denotes the shifted portion corresponding to the ’CC’ (vertical) occupying se-

quences 1 and 2;

• The c′′ denotes the shifted portion corresponding to the ’C’ occupying sequence 5;

• The c′′′1 denotes the unmoved portion corresponding to the ’TTT’ (vertical) occupying

sequences 3, 4 and 5;

• The c′′′2 denotes the unmoved portion corresponding to the ’- -CC’ (vertical) occupying

sequences 1, 2, 3 and 4; and

• The c′′′3 denotes the unmoved portion corresponding to the ’CT’ (vertical) occupying

sequences 3 and 4.

We assign the gap-block numbers so that c′ and c′′ flank gb1 and gb2, respectively.

Remember the column-wise factorability of the substitution component (Eq. 2). Thanks

to this, when comparing the substitution component of the MSA after the simultaneous

”shift”s with that before the simultaneous ”shift”s, it is sufficient to compare the contributions from

the columns affected by the ”shift”s, i.e., the columns shaded in blue and/or red in Figure

17. Then, the difference of the substitution component after the double-”shift”s from that

before the double-”shift”s is expressed as:

∆dbl-shifts (gb1,gb2) log {P [A | T ,ΘS]} |17 B

= {〈c′, c′′′1 〉+ 〈c′′′2 , c′′〉+ 〈−, c′′′3 ,−〉} − {〈−, c′′′1 〉+ 〈c′′′2 ,−〉+ 〈c′, c′′′3 , c′′〉} . (10)

On the other hand, when only each of the two ”shift”ed portions (i.e., c′ and c′′) is

”shift”ed from the MSA before the double-”shift”s, we have two possible differences:

∆sgl-shift (gb1) log {P [A | T ,ΘS]} |17 B = {〈c′, c′′′1 〉+ 〈−, c′′′3 , c′′〉} − {〈−, c′′′1 〉+ 〈c′, c′′′3 , c′′〉} ,(11)

∆sgl-shift (gb2) log {P [A | T ,ΘS]} |17 B = {〈c′′′2 , c′′〉+ 〈c′, c′′′3 ,−〉} − {〈c′′′2 ,−〉+ 〈c′, c′′′3 , c′′〉} .(12)
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The independence of the effects of the ”shift”s means that Eq. 10 is equal to the summation

of Eq. 11 and Eq. 12. Thus, we must have:

0 = ∆dbl-shifts (gb1,gb2) log {P [A | T ,ΘS]} |17 B

−
{

∆sgl-shift (gb1) log {P [A | T ,ΘS]} |17 B + ∆sgl-shift (gb2) log {P [A | T ,ΘS]} |17 B

}
= 〈−, c′′′3 ,−〉+ 〈c′, c′′′3 , c′′〉 − 〈−, c′′′3 , c′′〉 − 〈c′, c′′′3 ,−〉 . (13)

This is nothing other than (the affirmation part of) Eq. 9, if we re-name c′′′3 as c′′′.

Next we consider the situation illustrated in Figure 17 C. To represent the portions of

the columns, we use the same symbols as above, but associate them with slightly different

meanings:

• The c′ denotes the shifted portion corresponding to the ’CC’ (vertical) occupying se-

quences 1 and 2;

• The c′′ denotes the shifted portion corresponding to the ’T’ occupying sequence 5;

• The c′′′1 denotes the unmoved portion corresponding to the ’TT’ (vertical) occupying

sequences 3 and 4;

• The c′′′2 denotes the unmoved portion corresponding to the ’CT’ (vertical) occupying

sequences 3 and 4.

In this case, the difference of the substitution component after the double-”shift”s from that

before the double-”shift”s is expressed as:

∆dbl-shifts (gb1,gb2) log {P [A | T ,ΘS]} |17 C

= {〈c′, c′′′1 ,−〉+ 〈−, c′′′3 , c′′〉} − {〈−, c′′′1 , c′′〉+ 〈c′, c′′′3 ,−〉} . (14)

The effects of the single-”shift”s are calculated as:

∆sgl-shift (gb1) log {P [A | T ,ΘS]} |17 C = {〈c′, c′′′1 , c′′〉+ 〈−, c′′′3 ,−〉} − {〈−, c′′′1 , c′′〉+ 〈c′, c′′′3 ,−〉} ,(15)

∆sgl-shift (gb2) log {P [A | T ,ΘS]} |17 C = {〈−, c′′′1 ,−〉+ 〈c′, c′′′3 , c′′〉} − {〈−, c′′′1 , c′′〉+ 〈c′, c′′′3 ,−〉} .(16)
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Using Eqs. 14, 15, and 16, the independence of the effects of the shifts can be expressed as:

0 = ∆dbl-shifts (gb1,gb2) log {P [A | T ,ΘS]} |17 C

−
{

∆sgl-shift (gb1) log {P [A | T ,ΘS]} |17 C + ∆sgl-shift (gb2) log {P [A | T ,ΘS]} |17 C

}
=

{
〈c′, c′′′1 ,−〉+ 〈−, c′′′1 , c′′〉 − 〈c′, c′′′1 , c′′〉 − 〈−, c′′′1 ,−〉

}
+
{
〈−, c′′′3 , c′′〉+ 〈c′, c′′′3 ,−〉 − 〈−, c′′′3 ,−〉 − 〈c′, c′′′3 , c′′〉

}
. (17)

The expression in each pair of braces on the right-hand-side of Eq. 17 vanishes if the

affirmative part of Eq. 9 holds. Thus, in conjunction with Eq. 13, Eq. 17 demonstrates

that the effects of horizontally overlapping ”shift”s of two non-interfering gap-blocks are

independent of each other if Eq. 9 is affirmed. And the arguments in this subsection also

indicates that the affirmation of Eq. 9 is actually the necessary and sufficient condition for

the independence of the effects of horizontally overlapping ”shift”s.

J.2 Non-factorability of change in substitution component into

contributions from ”shift”s of non-interfering gap-blocks

In J.1 above, we proved that (the affirmative part of) Eq. 9 is the necessary and sufficient

condition for the independence of the effects of horizontally overlapping ”shift”s. In order to

examine under what conditions Eq. 9 holds, let us consider a situation illustrated in Figure

18.

To do this, we need to prepare some setting on the probabilities of residue patterns in the

portions of a column (denoted here as c) (in Figure 18). First, let Ω be an ”alphabet,” or a

set of possible residue (or base) states, and ω, ω′ and ωk (k = 1, ..., 8) denote some specific

residue states in Ω. Next, c′ and c′′ denote the portions of the column (c) delimited (from

above) by branches b′ and b′′, respectively. And c′′′ denotes the remaining portion of c, and

branches b′′′i (i = 1, 2, 3) play important roles in defining c′′′ here. Then, the P (ω 7→ ω′; b′′′1 )

denotes the conditional probability that, given ω (∈ Ω) at the upper-end of branch b′′′1 , we
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Figure 18: Model situation to examine whether effects of ”shift”s of two non-interfering

gap-blocks are (nearly) independent or not. Each portion of the tree (shaded in respective color) is

assigned a building-block probability (enclosed by a rectangle of the same color). The column ( c ) was

vertically divided into three parts: c′, c′′ and c′′′. Branches b′ and b′′ delimit c′ and c′′, respectively. And

branches b′′′i ( i = 1, 2, 3) are important factors determining c′′′. The ω and ω′ at both ends of branch b′′′1
are the residue states over which the probabilities are summed. For the explanations of P (...) and P̃ (...), see

text.
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have ω′ (∈ Ω) at its lower-end. And the P̃L(ω; b′′, c), for example, denotes the conditional

probability that, given ω (∈ Ω) at the upper-end of branch b′′, we observe the residues that

are in all the extant sequences under b′′ and in column c. 81

Now that the setting is prepared, we introduce a short-hand notation, P (ω, ω′; c′′′), denot-

ing the joint probability that we have ω and ω′ at the upper-ends of the branches delimiting

c′′ and c′, respectively, and that we also have the residue configuration in c′′′. Under the

situation in Figure 18, it is expressed as:

P (ω, ω′; c′′′) = P (ω;nR) P (ω 7→ ω′; b′′′1 ) P̃L(ω; b′′′2 , c) P̃L(ω′; b′′′3 , c) , (18)

where P (ω;nR) is the probability that the residue state at the root (nR) is ω. Using this

probability, we can calculate the probability P [(c′, c′′′, c′′) | T ,ΘS] as:

P [(c′, c′′′, c′′) | T ,ΘS] =
∑
ω ∈Ω

∑
ω′ ∈Ω

{
P (ω, ω′; c′′′) P̃L(ω; b′′, c) P̃L(ω′; b′, c)

}
. (19)

If, for example, c′′ is occupied solely with gaps, we have P̃L(ω ; b′′, c) = 1 for every ω (∈ Ω).

This and similar facts yield the following:

P [(−, c′′′, c′′) | T ,ΘS] =
∑
ω ∈Ω

{
P (ω, · ; c′′′) P̃L(ω; b′′, c)

}
, (20)

P [(c′, c′′′,−) | T ,ΘS] =
∑
ω′ ∈Ω

{
P ( · , ω′; c′′′) P̃L(ω′; b′, c)

}
, (21)

P [(−, c′′′,−) | T ,ΘS] = P ( · , · ; c′′′) . (22)

Here, we introduced the notations:

P (ω, · ; c′′′)
def
=

∑
ω′ ∈Ω

P (ω, ω′; c′′′) , (23)

P ( · , ω′; c′′′) def
=

∑
ω ∈Ω

P (ω, ω′; c′′′) , (24)

P ( · , · ; c′′′)
def
=

∑
ω ∈Ω

∑
ω′ ∈Ω

P (ω, ω′; c′′′) . (25)

81More detailed definitions and descriptions of these probabilities, as well as a pair of fast algorithms to

compute them, are given in [82].
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Thus, for (the affirmative part of) Eq. 9 to hold as an exact equation for any

residue configurations of c′ and c′′, (and thus for any probability vectors {P̃L(ω; b′′, c)}ω ∈ Ω

and {P̃L(ω′; b′, c)}ω′ ∈ Ω ,) the probabilities {P (ω, ω′; c′′′)}ω,ω′ ∈ Ω must satisfy the fol-

lowing equation:

P (ω, ω′; c′′′) =
P (ω, · ; c′′′) P ( · , ω′; c′′′)

P ( · , · ; c′′′)
for ∀(ω, ω′) ∈ Ω2 . (26)

In other words, their ω-dependence and ω′-dependence must decouple. In the situation

at hand, where {P (ω, ω′; c′′′)}ω,ω′ ∈ Ω is given by Eq. 18, the condition approximately holds

when branch b′′′1 is so long that P (ω 7→ ω′; b′′′1 ) nearly saturates. Or, even if Eq.26 does not

hold even approximately, Eq. 9 could still be satisfied provided that either b′ or b′′ is quite long

(and thus either {P̃L(ω′; b′, c)}ω′ ∈ Ω or {P̃L(ω; b′′, c)}ω ∈ Ω is nearly saturated).

If, however, none of the branches b′, b′′ and b′′′ are quite long, it is unlikely that 9 should

hold even approximately. Thus, in general, it would be safe not to assume (the

affirmative part of) the equation, Eq. 9, even approximately.

K Nearly discrete dependence of indel components of

MSA probability on gap-block configurations

In sub-subsection 2.6.3, we took advantage of the ”good property” exhibited by the

indel component of the MSA probability, which is: (provided that the indel rates are

space-homogeneous (i.e., uniform along each sequence) at least within each window,) the

indel component remains (nearly) unchanged if the topology of the (horizontal) positional

relationships does not change between the interfering gap-blocks and if the bulk/ boundary-

status of all gap-blocks does not change.

In the above statement, the dependence on the bulk/boundary-status is somewhat triv-

ial. Hence, in this section, we will demonstrate, or prove, the good property regarding the

topology of positional relationships between the (interfering) gap-blocks.

116



If the indel evolution model satisfies the ”sufficient and nearly necessary set of condi-

tions,” the indel component is factorable into a product of the overall contribution (deter-

mined by the ”absence”/”presence” state of the root sequence) and multiplication factors

contributed by gapped segments (see [1], which is a generalization/modification of [76]).

Therefore, we can focus on the change in the multiplication factors from the gapped segments

affected by the move in question (and possibly also the change in the overall factor). Espe-

cially, remember that the indel rates are now assumed to be space-homogeneous (i.e., uniform

along the sequence) at least within the MSA portion in question. Then, (1) as long as the

affected gap-block is isolated from all others, the multiplication factor will remain virtu-

ally unchanged under its shift. (See K.1 for a proof.) Besides, (2) under a parameter

setting where the ”first-plus approximation” (by all indel histories with parsimonious an-

cestral states) is quite good, the detailed (site-level) positional relationships between the

non-isolated gap-blocks do not substantially influence the multiplication factor, as long as

their topologies (and the sizes of the parsimonious indels) remain unchanged. (See K.2 for

a demonstration using some typical examples.)

These facts yield the aforementioned ”good property.” Thus, proving (or demonstrating)

the ”good property” boils down to proving (or demonstrating) the ”facts”(1) and (2) above,

which will be done in K.1 and K.2 below.

K.1 Proof that indel multiplication factor(s) of is(are) virtually

independent of relative positions between isolated gap-blocks

In a previous work of ours [1], we proved that the alignment probabilities are factorable into

the overall factor and the contributions from gapped segments (i.e., local MSAs), provided

that the genuine evolution model satisfies the ”sufficient and nearly necessary set of condi-

tions.” ANEX’s computation of indel components is based on an evolution model satisfying

such conditions. Thus it is obvious that the indel component is independent of the rela-
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tive horizontal positions as long as the gap-blocks in question are mutually separated by

at least a gapless column (as in Figure 2 B). 82 We can therefore focus on the cases where

the isolated gap-blocks overlap horizontally (as in Figure 2 C and Figure 24 A (below) ). It

should be recalled here that, by definition, horizontally overlapping yet isolated gap-blocks

(or, more precisely, the clades (i.e. set of phylogenetically clustered sequences) supporting

them) must be separated from each other by at least three branches (see appendix A). This

means that there are at least two intervening nodes, each of which has at least one descen-

dant sequence with residues aligned with the gap-blocks (e.g., Figure 24 A). Then, thanks to

the phylogenetic correctness condition that the ancestral sequence states must satisfy

[129, 130], it follows that, in each column, the two gap-blocks must always be separated

phylogenetically by at least two nodes whose gap-aligned positions are stuffed with residues

(e.g., Figure 24 B). This in turn means that the indel history that resulted in one gap-block

must always be confined in a subtree separated from that confining the other gap-block,

and they must never interact with each other to form a larger indel history (Figure 24 C),

83 as long as no null columns (i.e., gap-only columns) are brought in.

Incidentally, if some null columns are brought in, there could be some non-parsimonious

indel histories that connect the isolated gap-blocks (Figure 25 (below)), However, such indel

histories always require at least two more indels that are exquisitely coordinated in terms

of both the horizontal positions and the indel sizes. Such histories are quite similar (in

the exquisite coordination) to the non-parsimonious indel histories that can yield case (i)

gapped segments in PWAs [2], and thus, in general, their contributions are expected to be

82This is true even if the gap-blocks are vertically interfering with (i.e., non-isolated from) each other.
83In fact, these facts originally motivated the aforementioned definition of the isolated gap-blocks.
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negligible as well. 84

Getting back to the main topic, the multiplication factor contributed from each gapped

segment (i.e., local MSA) is a summation of terms over the sets of ancestral gap-configurations

(Eq. 28 in K.3.1). And each term is a contribution from indel histories with a fixed set of an-

cestral gap-configurations, which could be expressed as a product of factors over the branches

(Eq. 31 in K.3.1). Now, because, in dominantly contributing ancestral state sets, each of the

(at least two) nodes separating the isolated gap-blocks has a virtually fixed gap-configuration

(with all sites occupied by residues), the space of sets of ancestral gap-configurations could

be approximately expressed as a direct product of at least two spaces of partial state sets,

one containing the clade for one gap-block and another containing the clade for the other

gap-block (Eq. 35 in K.3.1; Figure 24 C). Therefore, in this case, the multiplication

factor can be further factorized into the product of contributions: one from

the portion of the tree with (virtually) ”fixed” ancestral states, and the oth-

ers from the isolated gap-blocks. (See Eqs. 37 & 38 in K.3.1, and also Figure 24

D.) The independent horizontal re-locations of these gap-blocks do not change these fac-

tors (as long as they interfere with no neighboring gap-block(s)). Thus, any change in the

relative (horizontal) position between the isolated gap-blocks has virtually no impact on

84Let gb1 and gb2 be the gap-blocks in question, and let b3 and b4 be the branches immediately descended

from the ancestral nodes separating gb1 and gb2 (see, e.g., Figure 24 A). Then, the ratio of total contributions

from such (connecting) histories to the contributions from separated histories is roughly estimated as:

R(C/S) =
{ total contribution (connected) }
{ total contribution (separate) }

< L(gb1 ∩h gb2) · |b3| · |b4| · (λD)2,

where the L(gb1 ∩h gb2) is the number of (non-null) columns in the horizontal overlap between gb1 and gb2,

the |bi| (with i = 3, 4) is the length of branch bi (measured in the expected number of substitutions per site),

and the λD is the total deletion rate. In normal sequence studies, we usually have |bi| < 1 and λD ≤ 0.1.

Thus, we have R(C/S) < 0.01 × L(gb1 ∩h gb2). This means that the contributions from the connected

histories are negligible as long as the horizontal overlap between the isolated gap-blocks is substantially less

than 100 sites(, say, a few dozens sites or less).
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the segment-wise multiplication factor for the indel component of the MSA probability.

See K.3.1 (below) for the mathematical details.

K.2 Demonstration that indel multiplication factor depends only

weakly on detailed (site-level, topology-preserving) positional

relationships between non-isolated gap-blocks

We think it too premature to prove it generally, because the related concepts have not

adequately been developed yet. Instead, we here consider a few typical example cases and

demonstrate what the section title claims.

We already proved in K.1 that the indel multiplication factor is independent of the relative

positional relationships between isolated (i.e., non-interfering) gap-blocks. Thus, in this

section, we will focus only on the relative relationships between non-isolated (i.e., interfering)

gap-blocks. For this purpose, it should be sufficient to consider the gap states of (ancestral)

sequences connected with a 3-OTU 85 tree (as in Figure 19). We consider three typical

patterns: (A) two horizontally nested runs of gaps (Figure 19 A); (B) two horizontally

overlapping yet non-nested runs of gaps (Figure 19 B); and (C) two vertically complementary

gap-blocks that horizontally adjoin each other (Figure 19 C). As will be explained below,

the patterns A and B are topologically different 86; pattern A is topologically equivalent to

the pattern in Figure 19 D, but pattern B is not. And pattern C is topologically different

from the pattern in Figure 19 E, where the gap-blocks are separated via a gapless segment.

(In the following couple of paragraphs, we will see specifically what being ”topologically

different/equivalent” means.)

Pattern A can be created by two parsimonious indel histories (panels A and B of Figure

20), as well as by numerous non-parsimonious ones including some next-to-parsimonious

85The ”OTU” is short for ”operational taxonomical unit.”
86For the definition of the term, ”topology”, used here, see appendix A.
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Figure 19: Typical examples of gap-configurations of 3 sequences connected via 3-OTU tree.

A. A short gap in the 3rd OTU (labeled ”3”) is horizontally nested in a long gap in the 2nd OTU (”2”). B.

Gaps in two OTUs horizontally overlap each other in a non-nested manner. C. Two vertically complementary

gap-blocks that are horizontally adjoining each other. D. This pattern is considered as topologically the

same as in panel A but not as in panel B, because of the (parsimonious) indel histories that can create the

patterns. E. This pattern is considered as topologically different from that in panel C. In each panel, the

”nA” denotes the ”most recent common ancestor (MRCA)” of the three OTUs, and the lower-case letters

above the alignment represent the ancestry indexes of the sites. In each panel, some gap-aligned residues

are colored cyan or magenta, to clarify the positional relationships between gap-blocks (or runs of gaps) in

each MSA.
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Figure 20: Indel histories that can create pattern A in Figure 19. Panels A and B show the

parsimonious histories. Panels C and D show some next-to-parsimonious histories. The ’A’ on the top-left

corner of the alignment indicates the ancestral sequence (at node nA ). The ”-(abc)” in a blue rectangle

indicates that the sites a, b and c were deleted along the branch it points; the ”+(def)” in a red rectangle

indicates that the sites d, e and f were inserted. Some residues and ancestries are colored in order to facilitate

the comparisons among the histories. [NOTE: Here we omitted all next-to-parsimonious histories in each

of which two or more indels occur along a single branch, because they are naturally incorporated in the

”1st-plus approximation.” ]
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Figure 21: Indel histories that can create pattern B in Figure 19. Panel A shows the parsimonious

indel history. Panels B, C and D show some next-to-parsimonious histories. Notations are the same as those

for Figure 20. [NOTE: Here, again, we omitted the next-to-parsimonious histories in each of which two

indels occur along a single branch. ] [NOTE2: Panel B is actually the history created by concatenating

the column-wise Dollo parsimonious indel histories [83, 2]. ]
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ones (e.g., panels C and D of Figure 20). In contrast, pattern B can be created by only one

parsimonious indel history (panel A of Figure 21), as well as by numerous non-parsimonious

ones including some next-to-parsimonious ones (e.g., panels B-D of Figure 21). The in-

del histories that can create the pattern in panel D are nearly the same as those in Fig-

ure 20. The histories show the same trajectories of the sequence lengths and also the

same series of insertions and deletions with particular sizes; they differ only in the

detailed (i.e., site-level) horizontal positions of indels. As can be seen from [1], when the

indel rates are space-homogeneous, the portion of the multiplication factor contributed by

each indel history is determined solely by the trajectory of the sequence lengths and

the series (actually the set) of insertions and deletions with particular sizes, but it

is independent of detailed horizontal positions of indels. (See, e.g., Eq.(SM-2.7) and Eq.(R8-

1.4) in [1].) Therefore, as long as the parsimonious indel histories (or, more precisely, all the

indel histories with parsimonious ancestral state sets) contribute predominantly to the mul-

tiplication factor, the multiplication factor from pattern A is nearly equal to that from the

pattern in Figure 19 D, but the contributions from patterns A and B will differ considerably

from each other.

Patten C can be created by three types of parsimonious histories (panels A, B and C of

Figure 22), as well as by some non-parsimonious histories (e.g., panel D of Figure 22). In

contrast, the pattern in Figure 19 E can be created by two parsimonious histories (panels A

and B of Figure 23), as well as by some non-parsimonious histories (e.g., panel C of Figure

23). Therefore, pattern C should be substantially more likely to occur than the pattern

in Figure 19 E (provided that the number of intervening gapless columns is fixed). On the

other hand, the occurrence probability should remain unchanged even if a different (nonzero)

number of gapless columns separate the two gap-blocks in Figure 19 E (provided that the

entire region encompassing the two gap-blocks has a fixed length).

These examples demonstrate that, at least as long as the contributions by parsimonious

indel histories (or, more precisely, by all indel histories with parsimonious ancestral state
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Figure 22: Indel histories that can create pattern C in Figure 19. Panels A, B, and C show the

three types of parsimonious indel histories. Panel D shows a next-to-parsimonious indel history, which was

derived from panel B via a ”branching” operation [2]. (Note that a different history could be derived from

panel C in a similar way.) The notations are basically the same as in Figure 20. In addition, the sequence

labelled ”i” at the bottom of each MSA (in panels A, B and C) is the ”intermediate” state at the point

marked with a solid circle. [NOTE: The MSA of the extant sequences in panel C is equivalent to that in

panel A (and in panel B). ] [NOTE2: We omitted next-to-parsimonious histories in each of which 3 indels

occur along a single branch. ]
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Figure 23: Indel histories that can create pattern in Figure 19 E. Panels A and B show the

two parsimonious histories. Panel C shows a next-to-parsimonious history. (It was obtained by applying

a ”branching” operation [2] to panel B.) The notations are basically the same as in Figure 20. [NOTE:

We omitted those next-to-parsimonious histories each of which requires more than 2 indels along a single

branch. ]
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sets) predominate, the multiplication factor is determined in most part by the

topologies of (horizontal) positional relationships between gap-blocks, but depends

only weakly on the fine-grained (i.e., site-level, topology-preserving) positional relationships

between them.

K.3 Some mathematical details on vertical (i.e., phylogenetic) ”fac-

torization” of indel multiplication factors

[NOTE: The following contents are quite mathematical yet indispensable for completing

the theoretical aspects of ANEX. Although we are aware of many frowning faces out there,

we nevertheless provide these crucial contents here, hoping that some diligent, serious and

sincere researchers will further develop the theories, and methods beyond ANEX, in the

(hopefully near) future. ]

K.3.1 Practical factorability of indel multiplication factor into contributions

from isolated gap masses

For this purpose, it would be more convenient to use the ancestral-state-based equations

derived in section SM-4 of [1], rather than to use the indel-history-based equations derived

in subsection 4.2 of [131]. Thus, we begin by recalling the key results of the former.

Provided that the indel model satisfies the conditions (i), (ii) and (iii) (see R6 and R7

of [1]), the probability, P [α[s1, s2, ..., sNX ] | T ], that a given MSA (α[s1, s2, ..., sNX ]) (of

sequences, s1, s2, ..., sNX ) result from an indel process along a given tree (T ) is factorized as

in Eq.(SM-4.20) of [1]:

P [α[s1, s2, ..., sNX ] | T ] = P0[sRoot0 | T ]
Kmax∏
K=1

˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot0 ; CK | T

]
. (27)

Here, the sRoot0 denotes a ”reference” root sequence state that is consistent with the MSA,

and the P0[sRoot0 | T ] is the probability that the sequence state remained sRoot0 all across
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the tree (see Eq.(SM-4.21) of [1] for details). And the
˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot0 ; CK | T

]
is the multiplication factor contributed from a local region (CK). It’s specific expression is

given by Eq.(SM-4.22) of [1]:

˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot0 ; CK | T

]
=

∑
{
s(n)− sRoot0

}
NIN

[CK ]

∈ ∆Σ

[
CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN (T )}; T

]
M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; sRoot0 ; CK | T

]
.

(28)

Here, the ∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ] is the space of the sets (each

denoted as {s(n)−sRoot0 }NIN [CK ] in the range of the summation), each over all internal nodes

(n ∈ NIN), of deviations of ancestral states (s(n)) from the ”reference” (sRoot0 ) within CK .

And the summand is given by Eq.(SM-4.18) of [1]:

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; sRoot0 ; CK | T

]
def
= MP

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; CK | T

]
× µP [s(nRoot), sRoot0 , nRoot; CK ]×

× exp
{
−
∑
b∈{b}T

∫ t(nD(b))

t(nA(b))

dτδRID
X (sA(b), sRoot0 , τ)[CK ]

}
, (29)

with Eq.(SM-4.13) of [1]:

MP

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; CK | T

]
def
=

∏
b∈{b}T

{ ∏
γκb (b)⊆CK

µ̃P

[
(Λ̃ID[γκb(b); α(sA(b), sD(b))], b)|(sA(b), nA(b))

]}
. (30)

Here, the µ̃P

[
(Λ̃ID[γκb(b); α(sA(b), sD(b))], b)|(sA(b), nA(b))

]
is the multiplication fac-

tor contributed from the portion of the PWA (α(sA(b), sD(b))) between the ancestral

state (sA(b)) and the descendant state (sD(b)) along the branch (b), confined in a region

(γκb(b), which is within CK). (See Eq.(SM-4.11), Eq.(R6.8). and Eq.(SM-2.14) of [1].) The

µP [s(nRoot), sRoot0 , nRoot; CK ] is the multiplicative ”difference” of the probability of state

s(nRoot) at the root (nRoot) from that of the ”reference” (sRoot0 ) originated from CK (see
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Eq.(SM-4.16) of [1]). And the δRID
X (sA(b), sRoot0 , τ)[CK ] is the increment of the exit rate of

the ancestral state (sA(b)) compared to that of the reference state (sRoot0 ), coming from the

state difference confined in CK (see Eq.(SM-4.14) of [1]).

For the current purpose, it would be more convenient to reorganize Eq.29 accompanied

by Eq. 30 as follows:

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; sRoot0 ; CK | T

]
def
= µP [s(nRoot), sRoot0 , nRoot; CK ]

∏
b∈{b}T

˘̃µP

[
α(sA(b), sD(b)); CK|(sA(b), nA(b))

]
,(31)

with

˘̃µP

[
α(sA(b), sD(b)); CK|(sA(b), nA(b))

]
def
= exp

{
−
∫ t(nD(b))

t(nA(b))

dτδRID
X (sA(b), sRoot0 , τ)[CK ]

}
×

×
∏

γκb (b)⊆CK

µ̃P

[
(Λ̃ID[γκb(b); α(sA(b), sD(b))], b)|(sA(b), nA(b))

]
. (32)

Now, we are ready to discuss the problem at hand, that is, calculating the multiplication

factor, Eq. 28, when the local MSA contains at least two isolated gap-masses, as in Figure

2 C or Figure 24 A. (We will use the latter for illustration.) In such a case, some of the

ancestral nodes (”R” and ”a1” in the current example) have virtually fixed gap states (Figure

24 B). 87 Such ancestral nodes could be used to ”partition” the set of all internal nodes, NIN ,

into three sub-sets:

NIN = NIN
0 ∪ NIN

1 ∪ NIN
2 . (33)

Here, the NIN
0 is the subset consisting of the ”partitioning” nodes with virtually fixed ances-

tral states (like the red-shaded nodes in Figure 24 C); each of the NIN
1 and NIN

2 is the subset

87More precisely, as noted also in K.1, the states at these nodes in some non-parsimonious indel histories

have extra sites that are destined to vanish completely from the extant sequences, leaving null columns in

the MSA (as in Figure 25). Each of such indel histories, however, requires at least two additional indels that

are coordinated exquisitely. Thus, in general, their contributions are negligible. (For a rough estimation of

the effect of such indel histories, see footnote 84.)
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1�� L� ---� ---� ---� ---� ---� ---� ---� R�

2�� L� 1� ---� ---� ---� ---� 6� 7� R�

3�� L� 1� 2� 3� 4� 5� 6� 7� R�

4�� L� 1� 2� 3� 4� 5� 6� 7� R�

5�� L� 1� 2� ---� ---� ---� ---� 7� R�

6�� L� ---� ---� ---� ---� 5� 6� 7� R�

Tree�� MSA��

(B) Dollo parsimonious ancestral states��

R�� L� 1� 2� 3� 4� 5� 6� 7� R�

a1�� L� 1� 2� 3� 4� 5� 6� 7� R�

a2�� L� 1� ---� ---� ---� ---� 6� 7� R�

a3�� L� 1� 2� ---� ---� 5� 6� 7� R�

(C)  Partial indel history zones��

1�
2�
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4�
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6��

R
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a2��

a3��

3
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3
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(D)  Contributions to multiplication factor��
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���P �[s1, s2,..., sNX ]; s0
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���P( )
1

���P( )
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���P( )
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���P( )
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Figure 24: Factorizing effects of horizontally overlapping non-interfering gap-blocks. A. An

example local MSA. It is more complex than Figure 2 A, though the two figures are the same in essence.

Each cell in the MSA is assigned either an ancestry index (L, R, or an Arabic numeral) or a gap (a lump

of triple-dashes). The italicized Arabic numeral on the left indicates the sequence on the external node

labeled with the same numeral in the tree. The masses of gaps isolated from each other are shaded in cyan

and yellow. B. The Dollo parsimonious states obtained from the MSA in panel A. Any ancestral states

consistent with the MSA must keep the occupied sites in the Dollo parsimonious states. Thus, the states ’R’

and ’a1’ here (red-shaded) indicate that the two isolated gap masses must have been created independently

from each other(, as long as no null columns are brought in, as opposed to Figure 25). C. As a result, the

indel history (or the ancestral states) yielding the cyan gap mass (enclosed in blue dashed box) is virtually

independent of the history (or the ancestral states) yielding the yellow gap mass (enclosed in orange dashed

box), as the two gap masses are separated by the red-shaded sequence states. (See, e.g., Eq. 35.) D. The

resulting multiplication factor,
˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot

0 ; CK | T
]
, is approximately the product of the

contributions from different parts of the phylogenetic tree: one from the part with ”fixed” ancestral states

(

(
˜̆
MP

)
0

), and the others from the isolated gap-masses (

(
˜̆
MP

)
1

and

(
˜̆
MP

)
2

). (See Eq. 37.)
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(A)�
1!
2!
3!
4!
5!
6�

R
a1�

a2�

a3�

1� L� ---� ---� ---� ---� ---� ---� ---� ---� R�

2� L� 1� ---� ---� ---� ---� ---� 6� 7� R�

3� L� 1� 2� 3� ---� 4� 5� 6� 7� R�

4� L� 1� 2� 3� ---� 4� 5� 6� 7� R�

5� L� 1� 2� ---� ---� ---� ---� ---� 7� R�

6� L� ---� ---� ---� ---� ---� 5� 6� 7� R�

Tree� MSA (w/ null column)�

(B) Ancestral states�

R� L� 1� 2� 3� x1� 4� 5� 6� 7� R�

a1� L� 1� 2� 3� x1� 4� 5� 6� 7� R�

a2� L� 1� ---� ---� ---� ---� ---� 6� 7� R�

a3� L� 1� 2� ---� ---� ---� 5� 6� 7� R�

Figure 25: Non-parsimonious history that ”connect” non-interfering gap-masses. We will use

the example MSA (and tree) given in Figure 24. In this case, an extra site (grey cell with ancestry ?x1?) in

the ancestral states (R and a1) was deleted in all extant sequences (1-6), resulting in a null column (grey).

(In this case, in addition to the four deletions needed for creating MSA in Figure 24, two more deletions,

along branches a1-3 and R-4, are necessary in order to completely delete the site with ancestry ?x1?.) Such

null columns will not usually be predicted via single-optimum-search aligners.

consisting of internal nodes involved in one of the isolated gap-masses (like the nodes enclosed

in dashed boxes in Figure 24 C). Likewise, we can also decompose each set of ancestral states

at all internal nodes,
{
s(n)

}
n∈NIN

, as:

{
s(n)

}
n∈NIN

=
{
s(n)

}
n∈NIN0

∪
{
s(n)

}
n∈NIN1

∪
{
s(n)

}
n∈NIN2

. (34)

Here, the
{
s(n)

}
n∈NIN0

is virtually fixed. And the
{
s(n)

}
n∈NIN1

and
{
s(n)

}
n∈NIN2

are virtu-

allly independent of each other. Hence, ∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ]

can be approximately expressed as a direct product:

∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ] ≈
(

∆Σ

)
0
×
(

∆Σ

)
1
×
(

∆Σ

)
1
. (35)

Here, the
(

∆Σ

)
k

(k = 0, 1, 2) is a shorthand notation of a ”component” of

∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ], which consists of the sets of local-MSA-

consistent ancestral states at nodes in NIN
k (more precisely, their differences from sRoot0 ).

(Note that
(

∆Σ

)
0

=

{{
s(n)−sRoot0

}
NIN0

}
. ) Another essential element is the decomposition
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of the set of branches:

{b}T = {b}0
T ∪ {b}1

T ∪ {b}2
T . (36)

Here, the {b}kT (k = 1 or 2) is the set of branches that are directly connected with at least

one node in NIN
k (like the branches in the dashed boxes in Figure 24 C); the {b}0

T is the set

of remaining branches (i.e., those connected solely with nodes in NIN
0 ).

Now, substituting Eqs. 35 & 36 into Eq. 28 accompanied by Eqs. 31 & 32, we get an

approximate equation:

˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot0 ; CK | T

]
≈
(

˜̆
MP

)
0

(
˜̆
MP

)
1

(
˜̆
MP

)
2
. (37)

Here, the

(
˜̆
MP

)
k

def
=

∑
{s(n)−sRoot0 }

n∈NINk
[CK ]∈(∆Σ)

k

 θ
(
µP [s(nRoot), sRoot0 , nRoot; CK ]; nRoot; NIN

k

)
×

×
∏

b∈{b}T
˘̃µP

[
α(sA(b), sD(b)); CK|(sA(b), nA(b))

]
(38)

is the collection of contributions from the sub-histories of indels along the branches in {b}kT

(k = 0, 1or2). In this equation, it is tacitly agreed that the sequence states at nodes in{
s(n)

}
n∈NIN0

are fixed as mentioned above. And we also defined the following function:

θ(x; n; N′)
def
=

 x if n ∈ N′ ,

1 otherwise .
(39)

When there are kmax (≤ 2) isolated gap-masses, Eq. 37 can be generalized as:

˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot0 ; CK | T

]
≈
(

˜̆
MP

)
0

kmax∏
k=1

(
˜̆
MP

)
k
, (40)

where the
(

˜̆
MP

)
k

is the total contribution from the k-th gap mass (like Eq. 38), and the(
˜̆
MP

)
0

is the contribution from the remaining, ”fixed,” part of the indel histories.

[NOTE: The vertical (or phylogenetic) partition (or factorization) given above is good enough

for justifying the strategy that the current version of ANEX employs to compute the indel
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components of MSA probabilities. If you attempt to grade up ANEX by aggressively utiliz-

ing the vertical factorization, however, the above partition may not be adequate. For such

a purpose, the method provided in K.3.2 below should be more useful, because it covers

almost all conceivable cases (including those with insertions). ]

K.3.2 More useful phylogenetic factorization of indel multiplication factor

The vertical factorization formulas, Eqs. 37 & 38, in K.3.1 are good enough for justifying

ANEX’s current strategy to compute the indel components of MSA probabilities. When

attempting to grade up ANEX by aggressively utilizing the vertical factorization, however,

the formulas may not be so useful, for the following three reasons:

1. They are not applicable to the gapped segments containing insertion-type gaps, as in

Figure 26 A;

2. They are not so useful when actually calculating the contributions to a given MSA (of

extant sequences), instead of to a given set of states at all nodes (including both extant

and ancestral sequences);

3. They are not so useful, either, when attempting to calculate the increment(s) of

the contributions (or the entire MSA probability) caused by a move in the gap-

configuration(s) of an MSA.

Thus, we hereby attempt to give practically more useful formulas for the phylogenetic

(i.e., vertical) factorization of the contributions.

First, we specify a ”reference” ancestral sequence state, s0(n), at each internal node

(n ∈ NIN). (Thus far, only one ”reference” sequence state (sRoot0 ) was specified in each

gapped segment, only at the root node (nRoot).) A simplest candidate of a set of such

reference states would be the ancestral gap states uniquely (and fairly quickly) given by

the Dollo parsimony principle [83]. (See Figure 26 B for an example; indeed, our program
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Supplementary-Supplementary Figures (with legends) 
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(E) Projection onto the ancestral node, a2 �

P ΓΚ; 0{ } x6 = D, E{ } , P ΓΚ;1{ } x6 = A, B, C{ } , P ΓΚ; 2{ } x6 = F{ } .

P ΓΚ; 0{ } x6 = A, B, D, E{ } , P ΓΚ;1{ } x6 = { } , P ΓΚ; 2{ } x6 = C, F{ } .
 

Figure SS1. Extending notion of purely vertical partitioning of gapped segment. 
Figure 26: Extended vertical partitioning of gapped segment. A. An example of an input data
set, consisting of a tree (T ) and a gapped segment (CK) of a multiple sequence alignment (MSA). (In this
figure, capital roman alphabets label the sites in the MSA.) B. Minimal gap states reconstructed under the
Dollo parsimony principle [83, 2]. The black-filled circles represent the sites filled with residues at the nodes,
and the color-shaded open circles represent the empty sites at the nodes. The colors correspond to the
colors in panel A. And a black branch (edge) indicates that the site remains filled with a residue along the
branch, whereas a colored branch indicates that the site could become (or remain) empty along the branch.
C. Defining a partitioning network (ΓK;0) and indel blocks (ΓK;i, with i = 1, ..., IK). (Here, IK = 2.)
The partitioning network is constructed by connecting all black-filled nodes and black branches. An indel
block is constructed by connecting contiguous open nodes and colored branches. D & E. Projections of
the partitioning network and indel blocks onto the external node, x6 , and onto the ancestral node, a2,
respectively. In these panels, the irrelevant nodes and branches are colored in grey. In each panel, the results
of the projections are shown at the bottom.
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implementation of this ”extended phylogenetic factorization” will use the Dollo parsimonious

gap states as the reference states, {s0(n)}n∈NIN .) Then, using the identity:

δRID
X (sA(b), sRoot0 , τ)[CK ] = δRID

X (sA0 (b), sRoot0 , τ)[CK ] + δRID
X (sA(b), sA0 (b), τ)[CK ] ,

where sA0 (b) = s0(nA(b)), 88 we can rewrite Eq. 29 supplemented with Eq. 30 as follows:

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; sRoot0 ; CK | T

]
≡ MP

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; CK | T

]
× µP [s(nRoot), sRoot0 , nRoot; CK ]×

× exp
{
−Φ0

[
T , {s0(n)}n∈NIN , CK ; {ΘID(b)}b∈T

]}
×

× exp
{
−
∑
b∈{b}T

∫ t(nD(b))

t(nA(b))

dτδRID
X (sA(b), sA0 (b), τ)[CK ]

}
, (41)

Here,

Φ0

[
T , {s0(n)}n∈NIN , CK ; {ΘID(b)}b∈T

]
def
=

∑
b∈{b}T

∫ t(nD(b))

t(nA(b))

dτδRID
X (sA0 (b), sRoot0 , τ)[CK ] (42)

is the ”reference” phase factor determined uniquely by the tree (T ), the gapped segment

(CK) and the reference sequence states ({s0(n)}n∈NIN ) (and the indel model ({ΘID(b)}b∈T );

the factor is independent of any other specific local indel histories that are compatible with

the MSA within CK , hence it can be computed easily (and fairly quickly).

Second, we re-define effectively independent indel blocks (, which were referred to

as ”partial indel history zones” in Figure 24 C (in K.3.1,) so that they can also cover more

complex cases including insertions. For this purpose, let us recall that we are now considering

gap-state configurations within the direct product space, CK×T (as represented by the array

of trees in Figure 26 B), or more simply, CK × NIN(T ). The latter is usually adequate for

the current purpose, because we are now considering all possible sets of ancestral gap-states

compatible with the local MSA, instead of all possible indel histories compatible with the

88Remember that nA(b) denotes the node at the upper (i.e., ”ancestral”) end of branch b. Incidentally,

nD(b) denotes the node at the lowe (i.e., ”descendant”) end of branch b.
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local MSA. (Please remember that gap-states at external nodes (n ∈ NX) are already fixed,

given a local MSA.)

Now, remember that the Dollo parsimonious ancestral state contains the smallest number

of ancestral sites occupied by residues, because the Dollo parsimonious history consists of

the shortest paths (along the tree) connecting residue-occupied sites at external nodes (see,

e.g., Figure 4 (especially panel A) of [131]). In other words, all other MSA-compatible

ancestral gap-states can be made from the Dollo parsimonious state by filling some empty

sites (i.e., gaps) at ancestral nodes with residues in a phylogenetically consistent manner

(e.g., [129, 130]), which is enabled by extending some ”paths” of residue-occupied sites from

the network of such sites representing the Dollo parsimonious states (see, e.g., Figure 4

(especially panel B) of [131]).

This ”minimal” nature of the Dollo parsimonious indel history enables it to partition

each gapped segment (CK × T ) into some ”indel block”s, ΓK;i (i = 1, 2, ..., IK), each of

which can accommodate some indels, and a ”partitioning network” of residue-occupied

sites of the Dollo parsimonious states extended across the tree, denoted as ΓK;0. (Figure

26 C illustrates such a partitioning.) This partitioning can be represented in an abstract

equation using the symbol, ”∪,” for a union of sets:

CK × T = ΓK;0 ∪
{ IK⋃
i=1

ΓK;i

}
. (43)

(Here, it should be noted that the sets involved in the right-hand side are mutually disjoint

from one another.) Importantly, each of ΓK;i (i = 1, 2, ..., IK) defines an ”effectively-

independent indel block” (previously referred to as a ”partial indel history zone”), or

an ”indel block” for short. 89 The following is the reason. First, each point in CK × T

is specified by a site (in CK) and a node (in T ); henceforth, we refer to such a point as a

89We consider that two (site, node)-points belong to the same indel block if they are connected via a path

of (site, node)-points that are empty in the Dollo parsimonious history. Otherwise, that is, if they are clearly

separated by at least a (site, node)-point that is occupied by a residue in the Dollo parsimonious history, we

consider them as belonging to different indel blocks.
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”(site, node)-point”). Now, by definition, every (site, node)-point belonging to ΓK;0 must al-

ways be occupied by a residue, regardless of the indel histories (as long as they are compatible

with the MSA). In contrast, each (site, node)-point belonging to ΓK;i (i = 1, 2, ..., IK) can be

either empty or occupied with a residue depending on the specific MSA-compatible history,

although it should always be empty in the Dollo parsimonious indel history. And it should

also be noted that every indel event in every MSA-compatible parsimonious (or next-to-

parsimonious) indel histories should be completely confined in one of ΓK;i (i = 1, 2, ..., IK);

otherwise, the ”partitioning network,” ΓK;0, is not working as it should, thus it must be

re-defined.

Now, let us extend Eq. 35 (in K.3.1) for the purely vertical partitioning of a gapped

segment, in order to create a formula suitable for the more general partitioning, Eq. 43. For

this purpose, let P{ΓK;i}|n be the projection of an indel block ΓK;i onto a node n(, which

could be either internal or external), which is nothing other than the set of all sites (both

empty and residue-occupied) in the ancestral sequence at n belonging to ΓK;i. Similarly, let

P{ΓK;0}|n be the projection of the partitioning network (ΓK;0) onto n. (Panels D & E of

Figure 26 illustrate these projections.) Then, thanks to Eq. 43, the following decomposition

always holds at every node n in T :

CK = P{ΓK;0}|n ∪
{ IK⋃
i=1

P{ΓK;i}|n
}
. (44)

(Again, the sets involved in the right-hand side are mutually disjoint. It should also be noted

that the P{ΓK;i}|n’s with some i’s may be empty sets.)

Now, each element (denoted as {s(n)−sRoot0 }NIN [CK ]) of ∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈

NIN(T )}; T ], i.e., a set of differences of internal gap states (within the region CK) from

the reference root state (sRoot0 ), could be considered as an |NIN |-tuple 90, each of whose

components is the difference of the gap (or ”presence”/”absence”) state (s(n)) at an in-

ternal node (n) from the ”reference” sRoot0 ; hereafter, the component will be denoted as

90The |NIN | denotes the ”size” of NIN , i.e., the number of all internal nodes.
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(s(n)− sRoot0 )[CK ]. 91 Because differences in distinct indel blocks are effectively independent

of one another, we almost always have:

(s(n)− sRoot0 )[CK ]

= (s0(n)− sRoot0 )[CK ] + (s(n)− s0(n))[P{ΓK;0}|n] +

IK∑
i=1

{
(s(n)− s0(n))[P{ΓK;i}|n]

}
.

(45)

Here, the (s(n) − s0(n))[P{ΓK;i}|n] is the gap-state difference within the indel block, ΓK;i.

Because the gap-state within the partitioning network (ΓK;0) is almost always identical to

that of s0(n), the second term on the right-hand-side almost always vanishes. Hence we have:

(s(n)− sRoot0 )[CK ] = (s0(n)− sRoot0 )[CK ] +

IK∑
i=1

{
(s(n)− s0(n))[P{ΓK;i}|n]

}
. (46)

Now, consider the |NIN |-tuple again. As already noted, its different components are not

independent of one another. Nevertheless, as long as the partitioning network remains intact,

it is sufficient to consider the phylogenetic consistency conditions among the components,{
(s(n) − s0(n))[P{ΓK;i}|n] | n ∈ NIN(T )

}
, within each indel block (ΓK;i). In such cases,

components within different indel blocks can be treated independently of one another. Thus,

the space of ancestral state differences, ∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ],

can be approximately decomposed as follows. First, separate the constant differences between

the reference ancestral states and the reference root state from the remaining variable parts:

∆Σ[CK ; sRoot0 ; α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ]

= {s0(n)− sRoot0 }NIN (T ) + ∆Σ[CK ; {s0(n)}NIN (T ); α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ] .

(47)

On the right-hand side, the first term represents the set of constant differences, and the sec-

ond term represents the remaining variable parts. Then, the second term can be approximately

91The components of each |NIN | -tuple arenot mutually independent of each other, because they have to

satisfy the phylogenetic consistency condition.
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decomposed as follows:

∆Σ[CK ; {s0(n)}NIN (T ); α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ]

≈
IK×
i=1

∆Σ[ΓK;i ; {s0(n)}NIN (T ); α[s1, s2, ..., sNX ]; {n ∈ NIN(T )}; T ] . (48)

Here, each element of the component space, ∆Σ[ΓK;i ; {s0(n)}NIN (T ); α[s1, s2, ..., sNX ]; {n ∈

NIN(T )}; T ], is a phylogenetically consistent set, {s(n) − s0(n)}NIN [ΓK;i]
def
=
{

(s(n) −

s0(n))[P{ΓK;i}|n] | n ∈ NIN(T )
}

, of ancestral gap state differences within the given in-

del block, ΓK;i.

Now, in order to extend the purely vertical factorization of the indel multiplication factor,

Eq. 37 (or Eq. 40) in K.3.1, we need two assumptions, in addition to the approximate

space decomposition given by Eqs. 47 & 48. One is the assumption that the region-wise

increment of the exit rate can also be further decomposed (at least approximately) just as in

Eq. 46:

δRID
X (s(n), s0(n), τ)[CK ] ≈

IK∑
i=1

{
δRID

X (s(n), s0(n), τ)[ΓK;i]
}
. (49)

(Here we omitted the increment confined in ΓK;0, because the ancestral gap states within

the partitioning network are almost always unchanged.) The other is the assumption that

the (multiplicative) increment of the prior probability of the root state confined in CK can

also be further factorized (at least approximately) as:

µP [s(nRoot), sRoot0 , nRoot; CK ]

≈ µP

[
s(nRoot), sRoot0 , nRoot; P{ΓK;0}|nRoot

]
×

IK∏
i=1

µP

[
s(nRoot), sRoot0 , nRoot; P{ΓK;i}|nRoot

]
.

(50)

Whether Eqs. 49 & 50 indeed hold or not is non-trivial in general, especially when the

considered model allows indel variation across sites (or regions). Here, however, we assume

that they hold at least approximately, and go on the mathematical argument.
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Now, let’s use Eqs.(SSA-1.9,10), the fact that different indel blocks (ΓK;i’s) are almost

always independent of each other, and the fact that the partitioning network (ΓK;0) almost

always remains intact. Then, the multiplication factor, Eq. 29 supplemented with Eq. 30

(both in K.3.1), which has been rewritten here as Eq. 41 supplemented with Eq. 42 can be

further factorized (at least approximately) as follows:

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; sRoot0 ; CK | T

]
≈ M̆P

[
α[s1, s2, ..., sNX ]; {s0(n)}NIN ; sRoot0 ; ΓK;0 | T

]
×

×
IK∏
i=1

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; {s0(n)}NIN ; ΓK;i | T

]
. (51)

Here,

M̆P

[
α[s1, s2, ..., sNX ]; {s0(n)}NIN ; sRoot0 ; ΓK;0 | T

]
def
= µP

[
s0(nRoot), sRoot0 , nRoot; P{ΓK;0}|nRoot

]
× exp

{
−Φ0

[
T , {s0(n)}n∈NIN , CK ; {ΘID(b)}b∈T

]}
(52)

is the portion of the multiplication factor associated with the ”reference” ancestral gap states,

{s0(n)}NIN , within the gapped segment (CK) that is contributed from the partitioning network

(ΓK;0) . It should be noted that this portion remains unchanged regardless of the ancestral

gap states, {s(n)}NIN . And

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; {s0(n)}NIN ; ΓK;i | T

]
def
= MP

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; ΓK;i | T

]
× µP

[
s(nRoot), sRoot0 , nRoot; P{ΓK;i}|nRoot

]
×

× exp
{
−
∑
b∈{b}T

∫ t(nD(b))

t(nA(b))

dτδRID
X (sA(b), sA0 (b), τ)[ΓK;i]

}
(53)

is the portion of the multiplication factor contributed from the indel block, ΓK;i, with

MP

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; ΓK;i | T

]
def
=

∏
b∈{b}T

{ ∏
γκb (b)⊆ΓK;i

µ̃P

[
(Λ̃ID[γκb(b); α(sA(b), sD(b))], b)|(sA(b), nA(b))

]}
. (54)
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Then, substituting Eq. 51 into Eq. 28 in K.3.1, and using Eqs. 47 & 48, we get the

approximate factorization of the entire multiplication factor for the local MSA within CK :

˜̆
MP

[
α[s1, s2, ..., sNX ]; sRoot0 ; CK | T

]
≈ M̆P

[
α[s1, s2, ..., sNX ]; {s0(n)}NIN ; sRoot0 ; ΓK;0 | T

]
×

×
IK∏
i=1

˜̆
MP

[
α[s1, s2, ..., sNX ]; {s0(n)}NIN ; ΓK;i | T

]
. (55)

Here, the M̆P

[
α[s1, s2, ..., sNX ]; {s0(n)}NIN ; sRoot0 ; ΓK;0 | T

]
has already been defined in Eq.

52, and

˜̆
MP

[
α[s1, s2, ..., sNX ]; {s0(n)}NIN ; ΓK;i | T

]
def
=

∑
{
s(n)− s0(n)

}
NIN

[ΓK;i]

∈ ∆Σ

[
ΓK;i;

{
s0(n)

}
NIN

; α[s1, s2, ..., sNX ]; {n ∈ NIN (T )}; T
]

M̆P

[
α[s1, s2, ..., sNX ]; {s(n)}NIN ; {s0(n)}NIN ; ΓK;i | T

]

(56)

(with the summands defined in Eq. 53) 92 is the total multiplicative contribution from the

indel block, ΓK;i .

Because each of the multiplicative factors in the approximate factorization formula, Eq.

55, can in principle be calculated independently of one another, this should facilitate the

computation of the entire multiplication factor for each gapped segment, and also the com-

putation of its change in response to a move of the gap-pattern in the gapped segment and

its neighbors. Thus, this extension of the vertical partitioning (Eqs. 37 & 38 in K.3.1) will

resolve the three drawbacks of its predecessor mentioned at the top of this sub-subsection.

[ NOTE: Some of the computations based on the results of this sub-subsection are imple-

mented in the subroutines in the modules, ”MyTreeMap indels spt odr finer.pm” &

”MyTreeMap indels ML hs finer.pm,” in ANEX, in an incomplete manner, in the sense that

92The range of summation, ∆Σ

[
ΓK;i;

{
s0(n)

}
NIN ; α[s1, s2, ..., sNX ]; {n ∈ NIN (T )}; T

]
, is ”defined”

below Eq. 48.
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they cannot yet fully utilize the outputs of LASTPIECE [4]; the subroutines do not incorpo-

rate the case-(i) multiplication factors into the computation of MSA multiplication factors;

another problem is that these subroutines does not fully resolve the problem of homology

structures when inferring the parsimonious ancestral states. (These incomplete features must

be rectified, by using similar subroutines in the modules, ”MyTreeMap indels spt odr hs.pm”

and ”MyTreeMap indels ML hs hs wLP.pm,” as a guide.) ]

K.3.3 Toward finer phylogenetic partitioning of gapped segment

The ”extended” phylogenetic partitioning derived in K.3.2 is expected to be quite useful

for computing indel multiplication factors, as well as their changes caused by the moves

of gap-blocks. Actually, we could, and should, go further, by separately dealing with

the gap-blocks that, physically, vertically overlap (and horizontally adjoin or overlap) each

other but that are effectively non-interfering with each other.

There are two typical cases of such physically overlapping (or adjoining) yet effectively

non-interfering (composite) gap-blocks. In the first case, a pair of ”ONN” gap-blocks 93 are

horizontally adjoining (Figure 27 A). In this case, each (effective-)indel history formed by the

interaction of the two gap-blocks has at least two more (effective-)indels than the parsimo-

nious (effective-)indel histories, and such additional (effective-)indels must be exquisitely

coordinated (Figure 27 B & C). And, in the second case, a pair of gap-blocks, one of

which vertically includes the other, and whose delimiting branches are separated by at least

two branches (or three trivalent nodes), are horizontally adjoining or nesting (Figure 27 D).

In this case, too, you need at least two more exquisitely coordinated (effective-)indels, if you

want a(n) (effective-)indel history in which the two gap-blocks interact (Figure 27 E).

Therefore, generally in these cases (Figure 27 A & D), independently handling these gap-

blocks could be a good approximation; hence, an approximate factorization, like Eq.55 in

K.3.2, should hold also for these cases.

93See appendix A for the definition of the ”ONN” gap-blocks.
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1 NN-----NNNN

2 NN-------NN

3 NN-------NN

4 NNNNNNN--NN

5 NNNNNNN--NN

(A) 1 NN-------NN

2 NNNNNN--NNN

3 NNNNNN--NNN

4 NNNNNN--NNN

5 NNNNNNNNNNN

(D)

1 NN-----NNNN

2 NN-------NN

3 NN-------NN

4 NNNNNNN--NN

5 NNNNNNN--NN

(B)

1 NN-----NNNN

2 NN-------NN

3 NN-------NN

4 NNNNNNN--NN

5 NNNNNNN--NN

(C)

1 NN-------NN

2 NNNNNN--NNN

3 NNNNNN--NNN

4 NNNNNN--NNN

5 NNNNNNNNNNN

(E)

Figure 27: Physically overlapping (or adjoining) yet effectively non-interfering gap-blocks. A.

A pair of horizontally adjoining ”ONN” gap-blocks, and the parsimonious (effective-)indel history. B &

C. The simplest (effective-)indel histories where the gap-blocks in panel A interact. (Actually, there is

yet another history, which is similar to B but the deletion spanning the two gap-blocks is along branch 3

instead of 2.) D. A pair of horizontally nesting gap-blocks, one of which is vertically including the other,

with their delimiting branches separated by two branches; accompanied by the parsimonious (effective-)indel

history. E. The simplest (effective-)indel history where the gap-blocks in panel D interact. In each panel,

an (effective-)indel history is shown on the tree on the left, with red and blue arrows represent (effective-

)insertions and (effective-)deletions, respectively; in the MSA on the right, each colored rectangle represents

the effect of an (effective-)indel, which occurred along the branch with the same hue (or color). [ NOTE:

The colored rectangles coincide with the gap-blocks only in panels A and D. ]
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However, we may have to consider more carefully whether such an approximate factorization

indeed holds or not even if the gap-block configuration is more complex (for example, cases

like Figures 27 A & D, but with each gap-block replaced with a composite gap-block). Once

we confirm that this is indeed the case, extending the derivation of the (approximate) fac-

torization formula, Eq. 55 in K.3.2, should be relatively easy.

[ NOTE: We have not implemented this ”finer phylogenetic partitioning” yet. Once the

theory (as briefly described above) is established, however, you should be able to implement

it by extending the implementation described at the bottom of K.3.2. ]

L Conceivable problems

As with any brand-new method, there could be a number of problems that ANEX suffers

from. Here we discuss three major problems, namely, those of (1) how to provide the program

with accurate model parameters (including the tree), (3) autocorrelation, and (3) overfitting,

as well as possible solutions to them.

L.1 Model parameters (including phylogenetic tree)

Currently, ANEX requires a fixed set of model parameters, including the phylogenetic tree.

Usually, however, we do not know the correct parameters before conducting an analysis, and

thus we have to estimate the parameters from the input data at hand. Theoretically, an

ideal way would be to estimate the joint probability distribution of MSAs and model

parameters including phylogenetic trees (e.g., [58, 105, 60, 61] ). At present, however, this

is generally very time-consuming and impractical even if we use unrealistically simplistic

probabilistic models of indels (, most of which are not even evolutionary models, rigorously

speaking). 94

94Especially, the ML inference of the phylogenetic tree(s) is one of the most time-consuming problems in

the study of molecular evolution, although such methods have been advanced greatly also in speed (e.g.,
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Therefore, at least for the moment, it would be inevitable to first obtain a point estimation

of the set of model parameters (including the tree), maybe using the input MSA, and to ob-

tain the approximate MSA distribution under such a point-estimation. If, however, the

aligned sequences are known to be the orthologous ones collected from organisms with

known phylogenetic relationships, we could safely use (at least the topology of) the phyloge-

netic tree of the organisms. Moreover, if it is almost certain that the aligned sequences have

undergone neutral evolution, we could borrow evolutionary parameters, such as the branch

lengths and the indel rates, that were already estimated in the past (hopefully genome-wide)

analyses. These cases will surely mitigate the problems caused by mis-estimated parameters,

and thus they should be sought for.

Or, in the future, we may develop a more sophisticated method that alternately (and

iteratively) estimates (1) the set of model parameters (or their approximate distributions,

maybe via bootstrapping) and (2) the approximate MSA distribution, where the estimation

of one uses (the previous estimate of) the other as input. This may improve the accuracy of

the parameter estimation. Actually, a similar method was developed for the reconstruction

of a single-optimum MSA, and was indeed shown to improve the accuracy (e.g., [134]).

L.2 Autocorrelations

It would be virtually impractical, in terms of both computational time and memory space, to

perform an analysis by using the (approximate) probability distribution of MSAs of entire

sequences, because the number of alternative MSAs would be super-astronomical. Therefore,

it would be inevitable to perform a window analysis, using the approximate probability

distribution of MSAs obtained for each window created as in subsection 2.4 (and in appendix

C), and to integrate the results of all windows to obtain the ”summary” result for the

MSAs of entire sequences. Here comes the potential problem of autocorrelations, because

each window is fairly likely to overlap the neighboring ones. Solving this problem will be

[132, 133]).

145



very important for obtaining accurate results of the analyses.

A simplest solution would be to tile the entire sequence with a set of non-overlapping

windows. Such a set should be devoid of auto-correlations, although using such a set may not

exploit the merit of overlapping windows. A next simplest solution would be to compute the

MSA probabilities in regions larger than single windows using a Markov-chain-like approxi-

mation, as explained in footnote 40 in a different context. Regarding the latter solution, we

need to examine whether it actually works or not, e.g., via thorough in silico ”experiments.”

L.3 Overfitting

At least in principle, our theoretical formulation of sequence evolution via indels [1, 2] can

incorporate regional variation of indel rates to some extent. When actually incorporating

this feature, however, we will need to be careful about the problem of overfitting, because,

in general, sequences in an MSA experienced much fewer indels than substitutions during

the evolution that created the true MSA. Thus, it is very likely that, if we simply employ a

single optimum set of indel parameters for each MSA region, the stochastic fluctuation

of an indel process should be misinterpreted as an indel rate variation.

A possible way to mitigate this problem would be to give an approximate distribution

of the sets of indel parameters, giving a discrete number of typical sets (or classes) and

their relative probabilities in the entire MSA. The relative probabilities may be based on

some well-known (continuous) distribution, such as a gamma-distribution. Such a method

has been developed for substitution models [86, 87] and it is commonly used for molecular

evolution analyses these days (e.g., [26]). And we expect that the method, possibly with

some modifications, will also be applicable to the problem of sequence evolution via indels.

95

95A recent program, SpartaABC [104], provides an approximate distribution of indel model parameters,

via an approximate Bayesian computation method. Thus, it may be useful when pursuing this direction.
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