
KEZW-BI-ME/00007

August 13, 2020

Substitutional Residue-Difference Map (SRD Map)

to help locate mis-alignments in

Multiple Sequence Alignment (MSA):

toward Artificial-Intelligence-assisted

probability distribution of alternative MSAs.

Kiyoshi Ezawa

Independent (ORCID: 0000-0003-4906-8578)

Current address: 3-1-33 Nakamura-machi, Chichibu 368-0051, JAPAN;

Phone & Fax: +81-494-22-5501; E-mail: kezawa.ezawa3@gmail.com

c© 2020 Kiyoshi Ezawa. Open Access This article is distributed under the terms of the Creative Com-

mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the

original author (K. Ezawa) and the source

(https://www.bioinformatics.org/ftp/pub/anex/Documents/Preprints/KEZW BI ME00007.srdmap.pdf), pro-

vide a link to the Creative Commons license (above), and indicate if changes were made. The Creative Com-

mons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to

the data made available in this article, unless otherwise stated.

Abstract

Although reconstruction of multiple sequence alignments (MSAs) is central to the advanced

study of homologous (i.e., ancestor-sharing) biological sequences, such as DNA and protein

sequences, this process is also known to be error-prone. In order to correct errors, an impor-

tant step is to accurately locate the mis-alignment, i.e., the portion where the alignment is

erroneous.

Here, we propose a new method, named ”substitutional residue-difference map” (or SRD

map for short). It maps ”observed” SRDs along tree branches, which are computed from the

residue configuration of each column using the likelihood method, onto the direct product

of the set of sites (or column positions) and the set of branches. If this ”observed” SRD

is significantly larger than the SRD expected from the substitution model, that position

(specified by the column-position and the tree branch) is suspected to be involved in a mis-

alignment. To examine whether this hypothesis is true, we used 10,000 reconstructed MSAs

of DNA sequences simulated along the phylogenetic tree of 15 mammals, and found that

the average SRDs on the mis-alignments (along individual branches) are indeed significantly

larger than those off the mis-alignments.

To take advantage of this finding, we wrote a Perl module and a script that performs

the sliding window analysis to find candidates of mis-alignments in an input reconstructed

MSA. By tuning several parameters, it captured as much as 66-71% of mis-alignments with

the false-positive rate of 1.8-0.8%.

As a somewhat related subject, we also developed a tool (Perl script) that attempts

to detect (or rather exclude) MSA regions containing ”complex” errors using the gap-

configurations alone. Despite depending on this limited information, tool successfully ex-

cluded about 65% of gapped segments in ”complex” errors while keeping 80% of other seg-

ments.

These results imply that combining the SRD map and the gap-configuration will enable

us to locate, and possibly characterize, mis-alignments more accurately. Because such a

combination contains a rich amount and variety of information, it should be necessary to

resort to a machine learning technique, especially the deep learning of artificial-intelligence

(AI), to take advantage of the combination. If such an AI-assisted method is incorporated

into our new program package, ANEX (standing for ”alignment neighborhood explorer”),

which constructs a probability distribution of alternative MSAs in each window, we may be

able to construct much more accurate probability distributions of alternative MSAs.

Meanwhile, if you combine the SRD map and the ”Position-Shift map” we previously

developed [1], you may be able to conduct more meticulous simulation studies to characterize

MSA errors in more details; such studies will also help improve more accurate location of

mis-alignments in the future.

The tools developed in this study are available as modules and supplementary scripts

of the ANEX(P) open-source package [2], at an FTP repository of Bioinformatics.org

(https://www.bioinformatics.org/ftp/pub/anex/).

[Keywords: sequence alignment, multiple sequence alignment (MSA), error, mis-alignment,

artificial intelligence (AI), deep learning, machine learning, substitutions, insertion/deletion

(indel), probability distribution, accuracy, DNA sequence, biological sequence]

[Abbreviations: alignment neighborhood explorer (ANEX), multiple sequence alignment

(MSA), pairwise sequence alignment (PWA) substitutional residue-difference (SRD)]

2

Contents

1 Introduction 4

1.1 Background . 4

1.2 Structure of this paper . 6

2 Principles and Theories on the New Methods 7

2.1 Substitutional Residue-Difference Map (SRD Map) to help locate mis-alignments

in MSA . 7

2.2 Sliding-window analysis to identify MSA portions where mis-alignments (or

”purge”-like errors) are likely . 11

2.2.1 Additional filtering based on random-matching model 15

2.3 Exploiting gap-configurations to detect ”complex” errors 17

2.3.1 Characterization of ”complex” errors 18

2.3.2 Artificially clustering gapped segments 19

3 Implementing and Validating Ideas and Methods 20

3.1 Implementation . 20

3.2 Validations . 21

3.2.1 Validating SRD Map . 21

3.2.2 Validating method to identify likely mis-alignments (or ”purge”-like

errors) . 24

3.2.3 Validating method to detect ”complex” errors 26

4 Discussions 28

4.1 Final Note . 31

5 Acknowledgments 32

A Extending Pruning Algorithm to Provide Ingredients of SRDs 34

3

A.1 Identities among Ingredients . 38

B Creating ”Alignment-Shear Map” from ”Position-Shift Map” 39

C Simple Sliding Window Analysis Taking Account of Rate Variation 42

D Artificially Clustering Gapped Segments: Definitions of Methods 43

E Attempting to Detect as Many ”Complex” Errors as Possible out of Arti-

ficial Clusters 44

1 Introduction

1.1 Background

The reconstruction of multiple sequence alignments (MSAs) is central to the advanced studies

of homologous (i.e., ancestor-sharing) biological sequences, such as DNA, RNA and protein

sequences (e.g., [3, 4, 5, 6, 7, 8]). Hence, the development of an aligner that accurately and/or

quickly reconstructs MSAs has been the subject of vigorous and diligent efforts during the

recent decades (�e.g., [3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).

As it has turned out, however, this crucial step of MSA reconstruction is highly error-prone

[25, 19, 26, 27, 1]. And the errors, or mis-alignments, in MSAs influence the results, and

even the conclusions, of the downstream analyses (e.g., [28, 29, 30, 4, 26, 31]), in particular

the inference of insertions/deletions [19, 32].

For these reasons, a number of methods have been developed that attempt to identify

and correct errors, or mis-alignments, (or, more precisely, low reliability regions) in MSAs

(e.g., [33, 34, 35, 36, 37, 38, 39]). On the other hand, as some studies on sequence alignments

suggest (e.g., [40, 41, 1]), a (near-)majority of such mis-alignments are due to the stochastic

nature of sequence evolution processes, and thus it is inevitable to construct a probability

4

distribution of alternative sequence alignments (e.g., [42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 32, 53, 54, 55, 56, 2]), instead of merely reconstructing a single optimum alignment.

Whether you aim to detect and correct mis-alignments in an MSA reconstructed by

an aligner of single-optimum type, or to construct a probability distribution of alternative

MSAs, it should be greatly useful and beneficial to understand more about the nature of mis-

alignments. With such a philosophy in mind, some studies were conducted to characterize

mis-alignments (e.g., [27, 1]). Especially, in [1], we proposed the concept of ”Position-

Shift Map,” which maps position-shifts (the difference in residue-positions between true and

reconstructed MSAs) onto either true or reconstructed MSAs. The ”Position-Shift Map” is

useful because it can identify mis-alignments at the level of single-site resolution. It has,

however, an obvious drawback: it depends essentially on the true MSAs, which usually is

not available in the real-life sequence study. Therefore, its use is inevitably limited to, e.g.,

simulation studies, where the true MSAs are available.

Aiming to overcome this drawback of the ”Position-Shift Map” while keeping its useful-

ness, we came up with the concept of ”substitutional residue-difference map” (or ”SRD Map”

for short), which maps the SRD (the difference in residue states on the two sites of each

branch) onto the MSA extended to include internal branches, as a sort of surrogate for the

”Position-Shift Map.” Our hypothesis was that mist-alignments tend to make SRDs higher

than usual, and thus the positions in the extended MSAs with high SRDs will highlight the

boundaries between regions of different position-shifts. To see whether this hypothesis is

correct or not, we developed a tool to construct the SRD Map, as well as some other tools,

and conducted simulation analyses. Irrespective of the results, it should be worth while to

characterize mis-alignments in terms of SRDs.

In addition, we also developed a tool to identify regions with ”complex” errors [27, 1] using

gap-configurations alone, in order to examine the power of gap-configurations to identify, or

characterize, mis-alignments.

This paper reports the principles and theories behind these tools, as well as the results

5

True MSATree

1 ATC---CA---GAC--GA

2 AGCGTTCA---CAGT-GC

3 ATAGA--A---GAGTATC

4 ATC-A--ATTC---TATC

(A)

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

Tree Reconstructed MSA

(B)

Figure 1: Typical mis-alignment. This example shows a ”purge.” A. The tree of aligned sequences (on

the left) and the true MSA (on the right). The rectangles shaded in red and blue are the blocks of residues,

each of which is aligned with a block of gaps. The residue-blocks are vertically supported by complementary

sets of sequences, which are separated from each other by the thick red branch in the tree. B. An example

reconstructed MSA, in which the red and blue blocks in panel A are erroneously aligned, causing the removal

(i.e., ”purge”) of the gaps that actually existed.

of the analyses.

1.2 Structure of this paper

This article is structured as follows. In Section 2, we explain the basic principles and theories

underlying the method proposed here. More specifically, we describe: the SRD Map (in

subsection 2.1), the sliding-window analysis to identify likely mis-alignments (in subsection

2.2), and using gap-configurations to detect ”complex” errors (in subsection 2.3). Then, in

Section 3, we describe how the methods have been implemented (in subsection 3.1), and

the results of their validations (in subsection 3.2). Finally, in Section 4, we discuss the

implications of this study and some of possible further developments.

We also provided a number of appendixes, in which we discuss some important yet

detailed subjects.

6

2 Principles and Theories on the New Methods

2.1 Substitutional Residue-Difference Map (SRD Map) to help

locate mis-alignments in MSA

Typically, a mis-alignment occurs when an aligner attempts to optimize the MSA score

by decreasing the number (or sizes) of gaps. (See e.g., Figure 1, which shows a typical case

of ”purge.”) In consequence, a typical mis-alignment tends to create a small-scale ”shear,”

where mutually aligned residue blocks exhibit a nearly random residue match/mismatch

pattern against each other. Taking advantage of this tendency, we may be able to identify,

and visualize, MSA portions that likely harbor mis-alignments.

In the following, we describe a possible method. For this purpose, we define a quantity,

”substitutional residue-difference,” or ”SRD” for short. Let us consider a branch (re-

ferred to as b here) in a phylogenetic tree of aligned sequences (for example, the thick red

branch in Figure 1 A), and pay attention to the residue states at both ends of b in an MSA

column. If the residue states are identical, the SRD along the branch and in the column is

defined as 0 (zero); if they are different, the SRD there is defined as 1 (one).

Usually, however, we do not know the residue states at the internal nodes. Therefore,

SRDs in an MSA must be estimated, in some way, from the residue configurations of the

MSA. Here, we propose a method to estimate SRDs, which is the most natural from the

viewpoint of the theory to calculate the likelihood of a tree (and a substitution model)

given (the residue configuration of) an MSA(, in other words, the probability of (the residue

configuration of) an MSA, given a tree (and a substitution model)) (see, e.g., [57, 58, 59]).

Here, for convenience, we consider that a tree (T) and a substitution model (ΘS) is given.

We also assume that the substitution model (ΘS) is such that the evolution (via substi-

tutions) of each site (or column) is independent of the other sites (or columns). Therefore,

we can focus on the calculation in each column (referred to as c).

7

Now, let P [c] be the probability of observing the residue configuration of column c, and

let P(U,L)[ω, ω
′, c | b] be the joint probability of observing the residues ω and ω′ at the

upper- and lower-ends, respectively, of branch b in column c, in addition to observing the

residue configuration of c. 1 Then, let Dobs(b, c) be the expected value of the SRD ”observed”

along b, estimated from the residue configuration of c. It is most naturally calculated as:

Dobs(b, c) =

∑
ω ∈Ω

∑
ω′(6=ω) ∈Ω

P(U,L)[ω, ω
′, c | b]

/P [c]

= 1−

{∑
ω ∈Ω

P(U,L)[ω, ω
′ = ω, c | b]

}
/P [c] . (1)

Here the Ω is the set of all possible residue states. Therefore, if we know the values of P [c]

and P(U,L)[ω, ω
′, c | b] for all c’s and b’s, we can calculate the ”observed” SRDs in all

c’s and along all b’s. Incidentally, to obtain the 2nd equality in Eq. 1 we used the identity:

P [c] ≡
∑
ω ∈Ω

∑
ω′ ∈Ω

P(U,L)[ω, ω
′, c | b] . (2)

Actually, the P [c] can be calculated by the standard pruning algorithm [57, 58]. To

calculate the P(U,L)[ω, ω
′, c | b], we further introduce the following probabilities:

(i) P (ω 7→ ω′; b) denotes the conditional probability that, given residue ω (∈ Ω) at the

upper-end of branch b, we have residue ω′ (∈ Ω) at its lower-end;

(ii) PL(ω; b, c) denotes the conditional probability that, given residue ω (∈ Ω) at the lower-

end of branch b, we observe the residues of all its descendant extant sequences present

in column c; (see Figure 12 A for illustration);

(iii) PU(ω; b, c) denotes the joint probability that, in column c, we observe ω (∈ Ω) at the

upper-end of branch b and the residues of all extant sequences on the upper-end-side

of branch b; (see Figure 12 A for illustration).

1Here, for clarity, we omit the dependence on the substitution model (ΘS) from the notation, considering

that calculations are done under a single, fixed model. Extension to the case where we have a distribution

of models should be obvious, though.

8

The P (ω 7→ ω′; b)’s actually correspond to the components of the finite-time transition

probability matrix calculated under ΘS. Thus we assume that we can calculate all of them.

The PL(ω; b, c)’s are actually by-products of the pruning algorithm [57, 58]. Thus, if we

modify the algorithm so that they will be kept to the end and output along with the P [c], they

also can be calculated easily. The PU(ω; b, c)’s are somewhat new, and they can be calculated

via a top-down recursion algorithm that is somewhat similar to the pruning algorithm. In

appendix A, we have provided the concrete algorithm(s) to calculate the PL(ω; b, c)’s and

PU(ω; b, c)’s. The time complexities of both these algorithms are O(|Ω|2 · NS · Nc), where

the |Ω| is the size of the alphabet (Ω) (i.e., the number of all possible residue states (at a

site)), the NS is the number of aligned sequences, and the Nc is the number of columns in

the MSA.

Now, using the probabilities introduced above, the desired P(U,L)[ω, ω
′, c | b]’s are easily

calculated as follows:

P(U,L)[ω, ω
′, c | b] = PU(ω; b, c) P (ω 7→ ω′; b) PL(ω′; b, c) . (3)

This calculation (for all ω, ω′, c and b) has the time complexity of O(|Ω|2 · NS · Nc), and

calculating the Dobs(b, c)’s alone should take the time complexity of O(|Ω| ·NS ·Nc)(, if the

2nd equality in Eq. 1 is used). Thus, by substituting Eq. 3 into (the 2nd equality of) Eq.

1, we can easily estimate the ”observed” SRDs along all branches in all MSA columns.

By mapping the ”observed” SRDs calculated as above onto the direct product of the

set of all MSA columns and the set of all branches, we can create an SRD Map (Figure

2 E). The SRD Map visualizes, especially, some horizontal segments in the direct product

space where the ”observed” SRDs are higher than the surrounding (or higher than expected

from the branch lengths) (Figure 2 E). In a previous study [1], we proposed the concept of

a ”position-shift map,” which visualizes how mis-alignments occurred in the reconstructed

MSA at the level of site-wise resolution (Figure 2 C). If desired, we could extend the ”position-

shift map” to the direct product space on which the SRD Map is created, by mapping the

9

(A) True MSA (B) Reconstructed MSA (C) Position-Shift Map

(D) Alignment-Shear Map (E) SRD Map

Figure 2: Alignment-Shear Map and SRD Map. A. The true MSA of 15 simulated mammalian

sequences. B. A reconstructed MSA of the same sequences. C. The position-shift map, based on the

reconstructed MSA (in B). The colored rectangles represent position-shift-blocks. D. The alignment-shear

map, based on the position-shift map (in C). The colored rectangles represent the ”alignment-shear”s. The ’.’

(dot) indicates the position (specified by a site and a branch) has no alignment-shear. E. The substitutional-

residue-difference (SRD) map, based on the reconstructed MSA (in B). The SRDs shown are rounded to the

nearest hundredth. The positions (specified by a site and a branch) at which SRD ≥ 0.9 are highlighted in

yellow. In each panel, the ’-’ (dash) represents a gap. In panels D and E, if even one end of the branch has

an ”absence” state (i.e., a gap), the position is assigned an ”absence” state. Again, in panels D and E, each

row represents a branch: the external branches are identified by the corresponding sequence IDs, and the

internal branches are identified by integer IDs. Here are the key to the integer IDs (the left-hand-side is the

branch ID, and the right-hand-side is a set of indexes (from 0 through 14) of MSA rows under the branch):

3 = {0, 1}; 7 = {3, 4}; 8 = {2, 3, 4}; 9 = {0, 1, 2, 3, 4}; 13 = {6, 7}; 14 = {5, 6, 7}; 15 = {0, 1, 2, 3, 4, 5,

6, 7}; 18 = {8, 9}; 19 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; 22 = {10, 11}; 24 = {10, 11, 12}; 25 = {0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12}; 27 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

10

vertical boundary of each block of position-shifts onto the branch that delimits the block

(times its horizontal support) (Figire 2 D). In some typical reconstructed MSAs of simulated

sequences (taken from [1]), the (horizontal) lines of ”observed” SRDs in the SRD Map seem

well correlated with the ”alignment-shear”s, which are the (horizontal) lines delimiting the

position-shift blocks (as in Figure 2 D). 2

These sample cases give us a hope that the SRD Map may, to some extent, serve as a

surrogate for the ”Position-Shift Map.” To confirm this idea (or hope), we used simulated

MSAs (in [1]) and computed the averages and distributions of SRDs on the delimiting lines

of position-shift blocks and those off the delimiting lines, and compared them. See sub-

subsection 3.2.1 below for details on this validation analysis.

2.2 Sliding-window analysis to identify MSA portions where mis-

alignments (or ”purge”-like errors) are likely

Another possible usage of the ”observed” SRDs calculated with Eq. 1 (& Eq. 3) is to attempt

to directly locate the mis-alignments using the SRDs, regardless of the visualization. This

should be more suitable for massive MSA data analyses, or automated processing of SRDs.

For this usage, we also developed a method for the sliding-window analysis.

To conduct a sliding-window analysis, we need to compare the ”observed” SRD (in each

column along each branch) with a value of SRD theoretically expected from the substitution

model (ΘS) and possibly from the residue configuration of the column. Depending on the

substitution model, the substitution rates can vary substantially among the initial residue

states. Therefore, the theoretical expectation (in column c along branch b)), denoted as

2 We have created a new Perl script, ”map aln shear clm based.ver0.6.pl” and a few related scripts (,

all in the ANEX(P) package [2]), which automatically map the ”alignment-shear”s onto the ”extended

MSA” (i.e., the direct product of the set of sites times the set of branches), given an input ”position-shift

map.” The ”core” of these scripts is the new subroutine, ”list minicls shift respos clm based” (in the module,

”MyPosShiftMap.pm”). Appendix B describes the algorithmic aspect of the subroutine.

11

Dexp(b, c), should be the average, over initial residue states, of the SRDs predicted by the

finite-time transition matrix, weighted by the expected frequencies of the residue states at

the branch-ends. Because each branch has an upper-end and a lower-end, we calculate such

an average from each end, and take their arithmetic mean.

Mathematically, the aforementioned recipe can be expressed as follows. Let Dexp(U)(b, c)

and Dexp(L)(b, c) be the aforementioned average theoretical expectations from the upper-end

and the lower-end, respectively. Then, they are calculated in the following steps. First, the

”theoretical expectation” from the upper-end is given as:

Dexp(U)(b, c) = 1−
∑
ω ∈Ω

{
P(U)[ω | nU(b), c] P (ω 7→ ω′ = ω; b)

}
. (4)

Here, the P(U)[ω | nU(b), c] is the frequency of ω (∈ Ω) at the upper-end of branch b (denoted

as nU(b)), expected from the residue configuration of the sequences on the upper-end-side of

b in column c. It is defined as:

P(U)[ω | nU(b), c]
def
= PU(ω; b, c)/

{∑
ω′ ∈Ω

PU(ω′; b, c)

}
. (5)

The ”theoretical expectation” from the lower-end is somewhat difficult:

Dexp(L)(b, c) = 1−
∑
ω ∈Ω

{
P(L)[ω | nL(b), c] P T (ω 7→ ω′ = ω; b)

}
. (6)

Here, the P(L)[ω | nL(b), c] is the frequency of ω (∈ Ω) at the lower-end of branch b (denoted

as nL(b)), expected from the residue configuration of the sequences on the lower-end-side of

b in column c. It is defined as:

P(L)[ω | nL(b), c]
def
= P (ω;nL(b)) PL(ω; b, c)/

{∑
ω′ ∈Ω

P (ω′;nL(b)) PL(ω′; b, c)

}
. (7)

Here, the P (ω;nL(b)) denotes the frequency of ω (∈ Ω) at the lower-end of b, purely expected

by the substitution model (and the residue frequencies at the root (nR)); such frequencies

can be obtained by evolving the residue frequencies at the root (denoted as
{
P (ω;nR)

}
ω ∈Ω

)

according to P (ω′ 7→ ω′′; b′) along the branches (b′’s) from the root to nL(b). Back to Eq.

12

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

 Input MSATree

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

(A)

1 ATC---CAGAC--GA

2 AGCGTTCACAGT-GC

3 ATAGA--AGAGTATC

4 ATC-A--ATTCTATC

(B) (C)

Figure 3: Sliding-window analysis to identify mis-alignments (or ”purge”-likee errors). A. In

this example, we search for possible mis-alignments (or ”purge”-like errors) between the two sub-alignments

enclosed by dashed rectangles, which are mutually separated by the red thick branch. B. The window

(shaded gray) contains a user-specified number (3 here) of residue pairs, and slides from left to right (the

right-headed arrow). C. This red-and-blue-shaded window shows more predicted substitutions than expected

from the branch length. Thus, the program suspects that a mis-alignment (or a ”purge”-like error) is likely

in this region.

6, the P T (ω 7→ ω′; b) is the ”time-reversed transition probability” (from ω at nL(b) to ω′ at

nU(b)); it is defined as:

P T (ω 7→ ω′; b)
def
= P (ω′;nU(b)) P (ω′ 7→ ω; b)/P (ω;nL(b)) . (8)

Taking the arithmetic mean of Eqs. 4 & 6, we get the final value of the ”theoretically

expected SRD” (along branch b in column c):

Dexp(b, c) =
{
Dexp(U)(b, c) +Dexp(L)(b, c)

}
/2 . (9)

Now, we set the sliding windows (Figure 3). Because each mis-alignment (or ”purge”-

like error) typically causes a ”shear” (or displacement) between the upper- and lower-end-

sides of a branch (Figure 1), it should be better to perform a series of sliding window analyses

(along the input MSA) on each fixed branch, and repeat such analyses to cover all branches.

On each branch (b), the window (denoted as W) is set so that it will contain a user-specified

number (say, NW) of columns in which the upper- and lower-ends of b are both in the

13

”presence” state (i.e., occupied by some residues). 3 , 4 Then, the ”observed” and ”expected”

SRDs in the window (W), denoted as Dobs(b,W) and Dexp(b,W), respectively, are simply

the summations of the corresponding column-wise values over the columns constituting W :

Dobs(b,W) =
∑
c ∈W

Dobs(b, c) , (10)

Dexp(b,W) =
∑
c ∈W

Dexp(b, c) . (11)

Then, we compare Dobs(b,W) to Dexp(b,W); if the former is significantly larger than the

latter, we conclude that a mis-alignment (or a ”purge”-like error) is likely in the window

(W) along the branch b. Probably, a simplest way to assess the significance should be to

calculate the P-value of the ”observation” under the binomial distribution with the number

of ”trials”, NW , and with the probability of ”difference” per trial, pD
def
= Dexp(b,W)/NW :

P [Dobs ≥ Dobs(b,W)] =

NW∑
x=Dobs(b,W)

(NW)!

x!(NW − x)!
(pD)x(1− pD)NW−x , (12)

where n! (= n · (n − 1) · · · 1 denotes the factorial of n. 5 We can set a threshold P-value

3Here, the ”presence”/”absence” states (i.e., residue/gap states) at internal nodes are determined by the

Dollo parsimony principle [60]. This is because the ”presence” states in the Dollo parsimonious indel

history are certain to be ”present” in any of the indel histories that satisfy the phylogenetic correctness

condition [61, 62]. Thus, if both ends of a branch are in the ”presence” state in the Dollo parsimonious

history, we can be sure that, on each side of the branch, at least one sequence has a residue in the column

in question; hence examining the SRDs in that column will make sense.
4Those columns in each of which either end (of b) has an ”absence” state are excluded from the analysis.

At least theoretically, however, they can be just physically encompassed by the window(s) (Figure 3 B).

(Nevertheless, the current version of ANEX does not allow each window even to physically encompass these

columns; in other words, ANEX currently prohibits these columns from mediating the constituent columns

of each window. This means that windows as shown in Figure 3 B are actually excluded from the downstream

analyses in the current ANEX. This is not for technical reasons, but rather to avoid conceptual complications.

In the future, this restriction may be loosened.)
5 When the Dobs(b,W) is not an integer, we could either interpolate Eq. 12 (with integers) or resort to

the analytic continuation of the corresponding formula using an incomplete beta-function (e.g., [63]).

14

(PThrsh), and regard the window as potentially harboring a mis-alignment (or a ”purge”-like

error) along b if Eq. 12 is less than PThrsh.

The aforementioned method should be very useful if the substitution rate is (nearly)

uniform along the sequence. If, however, the substitution rate is expected to vary across sites,

due to, e.g., selection and/or mutation hotspots, it may be better to take account of such

rate variation. One way would be to use a model that explicitly incorporates rate variation

across sites (e.g., [64, 65, 66, 59, 67]), and reformulate the above series of calculations. In

appendix C, we devise a more heuristic method.

2.2.1 Additional filtering based on random-matching model

The aforementioned method works well when applying to the branch that is not very short.

When the branch is very short, however, it could regard each true substitution as a candidate

of mis-alignment (or ”purge”-like error), resulting in lots of ”false-positive”s.

Hence, it would be desirable if we have a method to filter a substantial fraction of such

”false positive”s while keeping most of true positives. One way would be to filter the win-

dows via another P-value (again regarding the SRDs), which is defined under a random-

matching model. The rationale for this is as follows. First, the ”purge” errors are expected

to occur in general by falsely eliminating a pair of neighboring complementary indels at the

expense of generating false substitutions. Thus, roughly speaking, the ”false-homologous

blocks” caused by a ”purge” should be like an alignment of two random segments (or two

non-homologous sub-alignments). The original P-value (calculated, e.g., via Eq. 12) at-

tempts to identify ”likely false-homologous pairs” that show significantly more SRDs than

expected under a given substitution model. Along a short branch, however, this measure

is likely to pick even a window showing only one (or two) substitution(s). In contrast, the

new P-value attempts to identify ”likely true-homologous pairs” that show significantly

less SRDs than expected under the random matching model, like BLAST does (see, e.g.,

[68]).

15

To be more mathematically specific, the SRD ”expected” from a random matching model,

denoted as Dexp (rand)(b,W), is given by:

Dexp (rand)(b,W) = NW

{
1−

∑
ω ∈Ω

pexp(ω;nL(b),W) pexp(ω;nU(b),W)

}
. (13)

Here, pexp(ω;n,W) denotes the expected probability (or relative frequency) of residue ω in

window W at node n. (Remember that nL(b) and nU(b) denote the lower- and upper-ends,

respectively, of branch b.) There are a number of possibilities for the pexp(ω;n,W)’s. The

two simplest options among them would be: (1) the residue frequencies, P (ω;n)’s, expected

from the substitution model (ΘS) and the frequencies at the root (P (ω;nR)’s); and (2) the

”observed” residue frequencies, P(L)[ω | nL(b), c]’s (in Eq. 7) and P(U)[ω | nU(b), c]’s (in Eq.

5), averaged over the columns (c’s) in the window (W). The current version of ANEX [2] uses

the former, i.e., pexp(ω;n,W) = P (ω;n). Then, the P-value employed for this additional

filtering is the probability:

P [Dobs ≤ Dobs(b,W)] =

Dobs(b,W)∑
x=0

(NW)!

x!(NW − x)!
(pD(rand))

x(1− pD(rand))
NW−x , (14)

where pD(rand)
def
= Dexp (rand)(b,W)/NW . (Footnote 5 applies also here.) In this additional

filtering, if Eq. 14 is less than a given threshold (denoted, e.g., as PThres (rand)), the window

is considered to be ”significantly better-matching than random” (in other words, ”likely

correctly aligned”), and is excluded from the mis-alignment candidates.

Because the random-matching model is nearly independent of the branch length, the new

P-value is expected to give filtering that is effectively ”orthogonal” to that via the original

P-value, even though both of them are defined in terms of the same measure, i.e., the SRD.

We validated the original and this additional screening methods. The results are described

in sub-subsection 3.2.2 below.

16

2.3 Exploiting gap-configurations to detect ”complex” errors

In the previous subsection, we devised methods to detect mis-alignments (or ”purge”-

like errors) by taking advantage of the residue-configurations of input MSAs. In this

subsection, we attempt to detect ”complex” errors (explained below) by exploiting the

gap-configurations of input MSAs. This is an extremely heuristic endeavor, because currently

there are no established theories, or models, to deal with (or describe) the ”complex errors”;

this is not so surprising because of the elusive nature of the ”complex” errors; as the method

to classify MSA errors advances, the definition of ”complex” errors will change, too. This

means that the specific method, especially parameters, etc, that we found to be useful in this

study may not apply in the (maybe near) future. Still, we believe that it’s worth recording

this endeavor here, because some principles or philosophy itself (especially of exploiting gap-

configurations) may continue to be useful.

In a previous simulation study [1], we attempted to classify errors (or mis-alignments) in

reconstructed MSAs into various types, such as ”shift”s, ”merge”s, ”split”s, ”purge”s, etc.,

by extending the past attempt on PWA errors [27]. And those MSA errors that could not

be classified into fixed types, or combinations of fixed types, in that study were put into the

category of ”complex” errors. Therefore, by definition, the category of ”complex” errors

is a mixture of various types of errors, with the only shared nature being ”too complex to

be unraveled into a combination of definite classes by the current method.” 6 Moreover, the

erroneous segments that are ”too long” 7 were also put into the category of ”complex” errors.

6The ”current method” here means the classification method used in [1].
7In [1], if each gapped segment is longer than 150 bases or if it contains a run of gaps longer than 120

bases, it was considered ”too long” and was excluded from the analyses. The erroneous segments(, in which

the reconstructed MSA is not equal (or equivalent) to the true MSA,) were classified as ”too long” if each

of them contains at least one such ”too long” gapped segment.

17

2.3.1 Characterization of ”complex” errors

Before devising any concrete method for detecting ”complex” errors, we characterized them

via meticulous analyses, in which the ”complex” errors were compared with a set of ”com-

posite” controls, which consists of correctly reconstructed segments and non-”complex”

errors. 8

Briefly, we found the following broad tendencies:

(i) the properties (e.g., size, number of gap-blocks, total horizontal length of gap-blocks,

number of insertions minus the number of deletions) of individual gapped segments in-

cluded in ”complex” errors are slightly different from the properties of those included in

the ”composite” controls, but not clearly enough to sharply separate the two categories;

(ii) in contrast, the properties (e.g., the number of gapped segments, total number of

columns, maximum number of indels, etc.) of each ”complex” error as a whole showed

marked differences from the properties of each control segment as a whole.

These results implied that, once correctly partitioned, the properties of the entire segments

can be exploited to detect the ”complex” errors. The question is: how can we (quite)

accurately cluster the gapped segments into the ”erroneous” and correctly aligned segments?

Therefore, we next examined the sizes of spacers, which are gapless segments that mediate

neighboring gapped segments. We found that the spacer size distributions differ notably be-

tween the spacers lying within individual (erroneous or correct) segments and those mediating

different (erroneous or correct) segments. However, within each of the above two categories,

the distributions did not conspicuously depend on whether the flanking gapped segments are

in ”complex” errors or not. These results indicated that the spacer size difference could

be exploited at least to artificially cluster the gapped segments into likely erroneous and

correct segments, with some (moderate) accuracy.

8For details on these meticulous analyses, see ”suppl2 blueprint1 ANEX.pdf,” which is among the docu-

ments accompanying the ”ANEX(P)” program package [2].

18

A. Input�� 1 .NNNNNNNN-NNNNNNNNNNNNNNNNNN-NNNN--N--N-N-NNNN.�
2 .NNNNNNNNNN-N-NNNNNNNNNNNNNN-NNNNNNNNNN-N-NNNN.�
3 .NNNNNNNNNNNNNNNN-NNNNNN--NNNNNNNNNN--N-N-N--N.�
4 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--NNN-NNNN.�
5 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--N-NNNNNN.�

B. Method I��
1 .NNNNNNNN-NNNNNNNNNNNNNNNNNN-NNNN--N--N-N-NNNN.�
2 .NNNNNNNNNN-N-NNNNNNNNNNNNNN-NNNNNNNNNN-N-NNNN.�
3 .NNNNNNNNNNNNNNNN-NNNNNN--NNNNNNNNNN--N-N-N--N.�
4 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--NNN-NNNN.�
5 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--N-NNNNNN.�

C. Method III��
1 .NNNNNNNN-NNNNNNNNNNNNNNNNNN-NNNN--N--N-N-NNNN.�
2 .NNNNNNNNNN-N-NNNNNNNNNNNNNN-NNNNNNNNNN-N-NNNN.�
3 .NNNNNNNNNNNNNNNN-NNNNNN--NNNNNNNNNN--N-N-N--N.�
4 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--NNN-NNNN.�
5 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--N-NNNNNN.�

D. Method II��
1 .NNNNNNNN-NNNNNNNNNNNNNNNNNN-NNNN--N--N-N-NNNN.�
2 .NNNNNNNNNN-N-NNNNNNNNNNNNNN-NNNNNNNNNN-N-NNNN.�
3 .NNNNNNNNNNNNNNNN-NNNNNN--NNNNNNNNNN--N-N-N--N.�
4 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--NNN-NNNN.�
5 .N-NN--NNNNNNNNNN-NN---NNNNNNNNNNNNN--N-NNNNNN.�

Figure 4: Methods to artificially cluster gapped segments. This figure illustrates the results of

different clustering methods applied to the same fictitious MSA (panel A, on the right), which resulted from

an indel history along a given tree (panel A, on the left). B. Result of Method I. C. Result of Method III. D.

Result of Method II. See the text and appendix D for details on these methods. To focus on the topological

issue, we assume that {spacer-size threshold} = {spacer-size upper-bound}. Then, the 2nd half of condition

(a) for Methods II & III can be ignored, hence the condition on the spacer-size becomes identical to that for

Method I. Here, for illustration, the {spacer-size threshold} is assumed to be 2. In each panel, the spacers

(i.e., gapless segments) are colored; red indicates that the spacer-size is larger than the threshold, and green

indicates otherwise. Each blue rectangular box encloses an artificial cluster of gapped segments.

2.3.2 Artificially clustering gapped segments

In the real-life sequence studies, no true MSAs are available. Therefore, nobody can tell, with

absolute certainty, how to partition each reconstructed MSA into correct and ”erroneous”

segments. The only thing we can do is to devise a method to artificially cluster the gapped

segments, to approximate, as accurately as possible, the true partitioning of the input MSA

into correct and ”erroneous” segments. If a good method is invented, it will enhance the

accuracy of detecting ”complex” errors, as the results in sub-subsection 2.3.1 indicates.

We tried three different methods (see Figure 4 for schematic illustration). In a simple

19

clustering method (Method I), two nearest-neighboring gapped segments are clustered if the

spacer between them is shorter than a threshold value, regardless of the gap patterns of the

gapped segments (Figure 4 B). Methods II and III take account of gap patterns in addition

to spacer sizes. Method III clusters two quite close gapped segments if they undergo

(effective-)indels along the same branch or along two phylogenetically nearest-neighboring

branches (Figure 4 C). Method II is similar to Method III, but the requirement on the gap

pattern is stricter and more complex; more precisely, Method II clusters two (not necessarily

nearest-neighboring) gapped segments, as well as all segments in between them, if they are

quite close to each other and, additionally, either if they undergo indels along the same

branch or if all three branches connected at an internal node undergo (effective-)indels in

these gapped segments and yet another neighboring segment (Figure 4 D). For details, see

appendix D.

After artificially clustering the gapped segments with each of these three methods, we

attempted to detect ”complex” errors as accurately as possible, using the number of insertions

and the number of deletions. See appendix E for details on this attempt.

The results of validating these methods are described in sub-subsection 3.2.3 below.

3 Implementing and Validating Ideas and Methods

3.1 Implementation

Most of the methods described in section 2 have been implemented as supplementary Perl

scripts and/or subroutines in the ANEX(P) program package [2]. For example:

• The methods described in subsection 2.1 have been implemented into a main Perl

script, ”detect purge cands.ver0.5.pl,” as well as a couple of its supplementary Perl

scripts including ”srd map.ver0.6.pl.”

• The methods described in subsection 2.2 have been implemented as the subroutine,

20

”detect purge cands2,” in the module, ”MyDetect purge cands.pm”; actually, the sub-

routine is incorporated into the main script, ”detect purge cands.ver0.5.pl.”

• The methods described in subsection 2.3 have been implemented into subroutines in

the module, ”MyDetect cmplx error cands.pm”; see especially those lumped together

into the subroutine, ”wrapper detect cmplx error cand acls0.”

ANEX(P) is an open-source package available at an FTP repository of Bioinformatics.org

(https://www.bioinformatics.org/ftp/pub/anex/).

3.2 Validations

3.2.1 Validating SRD Map

To test the potential usefulness of substitutional-residue-difference maps (SRD Maps) in-

troduced in subsection 2.1, we compared the SRDs on the mis-alignments with those off

the mis-alignments, using the reconstructed MSAs (via Prank [18, 19]) of simulated 15

mammalian sequences and those of simulated 12 primate sequences that we created pre-

viously [1]. (See the sited paper for details on these reconstructed MSAs.) Each set has

10, 000× 1, 000 = 10, 000, 000 bases in the ancestral sequences at the root. For this purpose,

we divided the points in ”extended” MSAs, each of which is specified by an MSA column and

a branch, into three categories: (1) the points in the correctly aligned segments (or ”correct

segments” for short), (2) those in the erroneous segments and off any ”alignment-shear”s,

and (3) those in the erroneous segments and on some ”alignment-shear”s. 9

The tables in Figures 5 & 6 show the mean values and the standard-deviations of SRDs

along individual branches, as well as those for all relevant points. 10 (The former fig-

ure is for simulated 12 primates and the latter is for simulated 15 mammals.) As both

9The ”alignment-shear”s were inferred by using the method described in appendix B (and in footnote 2).

When an erroneous segment of a reconstructed MSA has multiple ”optimum” ”alignment-shear map”s, we

took the arithmetic mean of the results of using all such maps.
10 More detailed data, including the distributions of the SRDs (on and off the ”alignment-shear”s) along

21

[Results Summed Over All Successfully Processed Segments in All MSAs:]

Branch_ID Ave{Sum(weights)}_on_as Ave{Sum(weights)}_off_as Sum(weights)_corr

Total 246681 19808631 197785312

[Means and Standard Deviations of SRDs over ALL effective sites:]

Branch_ID Mean[SRD/site]_on_as Std_Dev[SRD/site]_on_as Mean[SRD/site]_off_as Std_Dev[SRD/site]_off_as Mean[SRD/site]_corr Std_Dev[SRD/site]_corr

seq0000 0.0585719039602963 0.228770072748974 0.00542430352669682 0.0717411293829225 0.00537687469637146 0.0723451813009779
seq0001 0.0692438210165759 0.250209094771225 0.00796286462828743 0.0875013607329981 0.00800520907867604 0.0885016002763661
seq0002 0.142523225461632 0.344499739508978 0.0216285040717586 0.143863609991046 0.0211740534644934 0.143165725559794
seq0003 0.146583731413101 0.348616938920735 0.0265971560199577 0.158779998035732 0.0262955141791694 0.15894633590205
seq0004 0.116434317614634 0.31559343200115 0.0189752809882638 0.132978364985406 0.0185399188598393 0.133214419197694
seq0005 0.112006918320023 0.311124240912249 0.0188826078815485 0.135240611216385 0.0186324569955062 0.134756745003324
seq0006 0.101439056821394 0.2973571690166 0.0125286958569454 0.110159309454928 0.0122053516490609 0.109300487572008
seq0007 0.090505184989129 0.280867099858024 0.0109719059385247 0.102984321229293 0.0106670897584447 0.102185512282284
seq0008 0.169736905906418 0.367177965566591 0.0363589572060993 0.17956705266836 0.0354592234643679 0.181446219987537
seq0009 0.168113670116898 0.362928124574012 0.0282371590382203 0.161999081043853 0.0278971318215356 0.163333844020512
seq0010 0.211721321065521 0.394827106797261 0.0344700452533934 0.17721588054206 0.0322649394002035 0.17471905875793
seq0011 0.234114941232742 0.410311529085333 0.0381842055827389 0.186947342455297 0.0362533861666477 0.185073284426626
3 0.110002957757475 0.301187274321632 0.00994204159147204 0.0954221959970022 0.00959581173748922 0.0958457823524223
5 0.0613555146815926 0.215746822097747 0.00314211474717747 0.047307602995157 0.00268477816977931 0.0475876274445924
7 0.103581775467927 0.277510803552823 0.0114224604041327 0.0895147783649182 0.010650874197863 0.0947813912223342
12 0.0515624276085036 0.204122164469496 0.00193332687199403 0.0393821675638031 0.00156442283533109 0.0372931626826542
13 0.0820722382550376 0.257534795239161 0.00553195615977463 0.0663194131977624 0.00530830992385186 0.0688663629286928
14 0.149509583618087 0.343457320080124 0.0276884543063232 0.152691321475366 0.0263546150419185 0.155023908254562
15 0.0732881185141797 0.142652230063373 0.0224872791926701 0.0832231018380719 0.0199640711985266 0.0803323153286055
20 0.0677152246167858 0.216219233437354 0.00522770985745852 0.0575209582993755 0.00265466950915737 0.0439615636518321
21 0.0795952905304279 0.236674031098415 0.00724587115328852 0.0654725376792165 0.00639598144226506 0.0702221397453032
22 0.132486839130837 0.256102787531447 0.0398181161848339 0.148357172567637 0.0354504928998687 0.143457377062973

Total 0.148119380051356 0.333625631790149 0.0174631174338563 0.121209370028309 0.016941356269237 0.122185775517233

Figure 5: SRDs along individual branches, on and off misalignments (12 primates). This table

shows the results of the analysis on 10,000 reconstructed MSAs of simulated 12 primate sequences (created

in [1]). It shows the mean values (’Mean’) and the standard deviations (’Std Dev’) of SRDs (per site) along

individual branches (row), at the points that are on some ”alignment-shear”s (’ on as’), off any ”alignment-

shear”s (’ off as’), and in the correctly aligned segments (’ corr’). The branches are identified in the same

way as in Figure 2. However, the key to the integer IDs is somewhat different (again, the left-hand-side

is the branch ID, and the right-hand-side is a set of indexes (from 0 through 11) of MSA rows under the

branch): 3 = {0, 1}; 5 = {0, 1, 2}; 7 = {0, 1, 2, 3}; 12 = {6, 7}; 13 = {5, 6, 7}; 14 = {4, 5, 6, 7}; 15 = {0,

1, 2, 3, 4, 5, 6, 7}; 20 = {10, 11}; 21 = {9, 10, 11}; 22 = {8, 9, 10, 11}.
[Results Summed Over All Successfully Processed Segments in All MSAs:]

Branch_ID Ave{Sum(weights)}_on_as Ave{Sum(weights)}_off_as Sum(weights)_corr

Total 3675867 138283951 116652429

[Means and Standard Deviations of SRDs over ALL effective sites:]

Branch_ID Mean[SRD/site]_on_as Std_Dev[SRD/site]_on_as Mean[SRD/site]_off_as Std_Dev[SRD/site]_off_as Mean[SRD/site]_corr Std_Dev[SRD/site]_corr

seq0000 0.0582477475453448 0.225055618020865 0.0053095297810697 0.0704752650662919 0.00535726856664855 0.0712516960889862
seq0001 0.0701829917340279 0.248185051885182 0.00811394752676058 0.0879733408133466 0.00802897177716349 0.0878512689024305
seq0002 0.121342305350953 0.317542104971307 0.0187425962244411 0.133001330219085 0.0185200519573262 0.132680334125069
seq0003 0.103231160978931 0.297837486321298 0.0123828042247729 0.10921574812478 0.0122718633576091 0.10899735529213
seq0004 0.082873610980697 0.26661975787341 0.0106598208968812 0.101194498060334 0.0106005903998308 0.101214175707303
seq0005 0.188148587390586 0.375961557310863 0.0357383739842089 0.180965036518533 0.035457699287038 0.18123355946405
seq0006 0.187728325847169 0.375107940226726 0.0277102861212536 0.159929421935166 0.0275965733747627 0.160555613885123
seq0007 0.214809493277032 0.399361620038201 0.0351098703433248 0.180437272216037 0.0348921045050796 0.180670121399388
seq0008 0.279608572893604 0.406752117531249 0.0786631908845502 0.243547566784618 0.0772070794197505 0.249912152379377
seq0009 0.328750610690611 0.441245031189215 0.114162590373745 0.298036774252126 0.112361068536955 0.302376237274599
seq0013 0.398489333079716 0.450018000778644 0.155640900767366 0.337362080643522 0.148073015012369 0.342813872154747
seq0014 0.380824660621264 0.441799892615947 0.142445469695497 0.32295982986385 0.135298996432066 0.329062472036722
seq0015 0.36707831846223 0.4470928923962 0.131769576379536 0.316058580646306 0.128962041728101 0.324575182295388
seq0018 0.336665359867295 0.438929643425626 0.150805784448118 0.328740684800703 0.147328181264902 0.33530002234094
seq0020 0.285671069517751 0.393725488022331 0.144445406161442 0.308091779103276 0.132419123776591 0.305129662303974
3 0.151171415431121 0.339946332523945 0.0227577680547509 0.142202745130944 0.0225970082471617 0.143426039854482
7 0.0761142645945805 0.246454145673592 0.00703150124037856 0.0783974187082907 0.00688629426690577 0.0786755637759065
8 0.169879911963646 0.357649562426633 0.0267270366231989 0.154009180203397 0.0261940048633716 0.15418319586069
9 0.139554204637226 0.305216859762018 0.0203459900549309 0.1222170391994 0.0197277000371691 0.125294000819899
13 0.084788929586549 0.239038979781985 0.00680904763090217 0.0692536551948053 0.00643084442476664 0.0698201928750626
14 0.177768541229595 0.350475574045665 0.0360695602850378 0.171270086303879 0.0353638162723446 0.173433356780599
15 0.260724678021851 0.393156099933647 0.0672489855766178 0.224792477112653 0.0649840194224802 0.229934592303994
18 0.15625239568091 0.285863393909065 0.0376988801721454 0.145349197042199 0.0316539993971713 0.143144271939311
19 0.166465399177065 0.303801527465928 0.0413837678672779 0.156265248490749 0.0362803695918429 0.16038614221252
22 0.0310240634198185 0.0729100931706894 0.00924475169960332 0.0397726061617495 0.00460245310745152 0.0279397197880864
24 0.134488931842884 0.263611370822548 0.0382086295992386 0.139751151189003 0.0280048378286076 0.133878249393964
25 0.109255151004534 0.21422282444632 0.0326981215404141 0.114027860484179 0.0288689035811588 0.120068327534517
27 0.026354391219146 0.0354302297476264 0.0134771228573646 0.0273135906383073 0.0123651702124714 0.0270265107288709

Total 0.30298637109731 0.419612736798676 0.0482173328564271 0.193552883733746 0.0482950494732039 0.200699340763208

Figure 6: SRDs along individual branches, on and off misalignments (15 mammals). This table

shows the results of the analysis on 10,000 reconstructed MSAs of simulated 15 mamalian sequences (created

in [1]). The same notes as in Figure 5 apply, except that the key to the integer IDs must be the same as in

Figure 2.

22

tables indicate, the SRDs off the ”alignment-shear”s are very similar to those in the cor-

rect segments, and the SRDs on the ”alignment-shear”s are substantially larger than those

off the ”alignment-shear”s (or in the correct segments). Actually, because the number of ex-

amined points are quite large, these differences are highly significant. 11 This indicates that

it should be somewhat promising to use the SRDs to identify mis-alignments (or ”purge”-like

errors).

There is, however, a caveat, derived from two observations. First, although the mean

SRDs significantly differ between points on and off ”alignment-shear”s, the standard deviations

of SRDs are much larger than the means (Figures 5 & 6). Second, although the mean SRDs

on ”alignment-shear”s are significantly larger than those off ”alignment-shear”s, their values

are much smaller than 0.75, which is the average SRD expected from the random align-

ment of two sequences (under Jukes and Cantor’s base substitution model [69] used in the

simulations [1]). These observations implies that the things may not be so simple as we

theoretically expected (in subsections 2.1 and 2.2). Inspecting the distributions of SRDs (on

and off ”alignment-shear”s) (available elsewhere, see footnote 10), we noticed that most of

the SRDs are distributed in two regions: (1) near zero (e.g., SRD ¡ 0.005) and (2) near one

(e.g., SRD ≥ 0.9, and that, even on ”alignment-shear”s, the fraction of SRDs near zero is

much larger than 1/4. For example, in the total distribution of SRDs for simulated 15 mam-

mals, about 50% and about 22.4% of SRDs on ”alignment-shear”s are near zero and near

one, respectively; in contrast, about 85% and about 3.2% of SRDs off ”alignment-shear”s

are near zero and near one, respectively. 12 Therefore, the significant differences in the

mean SRDs between on and off ”alignment-shear”s seem to have come from the substantial

individual branches, are available as a tar-gzipped archive accompanying the ”ANEX(P)” package [2].
11For example, when the SRDs on and off the ”alignment-shear”s are compared (using the normalized

Z-value), the P-values of the differences are less than 10−10 for all comparisons (along the branches).
12In the total distribution for simulated 12 primates, about 80% and about 11.6% of SRDs on ”alignment-

shear”s are near zero and near one, respectively; in contrast, about 96.8% and about 1.2% of SRDs off

”alignment-shear”s are near zero and near one, respectively.

23

differences in the fractions of SRDs near one, which should guarantee that the SRD Map

(devised in subsection 2.1) and the sliding-window analysis based on SRDs (devised in sub-

section 2.2) should work to some extent. On the other hand, the fairly large fraction of SRDs

near zero even on ”algnment-shear”s implies that these SRD-dependent methods should not

be perfect, because a considerable fraction of mis-alignments should have SRDs nearly

equal to, or even smaller than, those in the correct alignments.

Therefore, in order to detect the latter type of mis-alignments, we need to examine

different features than SRDs. One promising feature is the repeat of sub-sequences (or

a single- or oligo-nucleotide) near the ends of gaps; in short, if a single- or oligo-nucleotide

that flanks a run of gaps occur also near the end of the run of gaps, the chances are high that

the single- or oligo-nucleotide is mis-aligned with the other one. Thus, by examining this

feature, some fraction of mis-alignments are likely to be detected. Although current version

of ANEX [2] does not exploit this feature, taking account of it may somewhat improve the

performance of ANEX, or other software that (implicitly or explicitly) attempts to correct

alignments. 13

3.2.2 Validating method to identify likely mis-alignments (or ”purge”-like er-

rors)

To validate the method to identify likely mis-alignments (or ”purge”-like errors via sliding-

window analyses (described in subsection 2.2), we applied the two filtering methods (de-

scribed around Eq. 12 and around Eq. 14), with various P-value thresholds, to the true

”purge”-errors (subjects) and the correctly aligned segments (controls) in the 10,000 recon-

structed MSAs (via Prank) of simulated 15 mammalian sequences.

The 2D tables in Figures 7 & 8 summarize the results. 14 Let us first consider the

13The author discovered that these ”repeat”-caused mis-alignments are quite frequent, when he was par-

ticipating in the project led by Dr. Graur and Dr. Landan (see Acknowledgements). The author is very

grateful to them for having given him an opportunity to make such a discovery.
14More detailed results of the analyses, as well as the characterization of the true ”purge”-errors,

24

 4

Supplementary-Supplementary Tables SSS1-SSS3

Table SSS1. Effects of additional filtering via the new P-value (on all subjects &
controls).

 Subjects Controls

 P(sbst) < 0.05 P(sbst) < 0.20 P(sbst) < 0.05 P(sbst) < 0.20

(No further condition) 0.495 0.780 0.0088 0.057

P(rand) ≥ 0.05 0.478 0.747 0.0061 0.031

P(rand) ≥ 0.20 0.433 0.664 0.0042 0.018

NOTE: Shown in each cell is the relative frequency of “purge”-involved blocks (in the
subjects) or windows (in the controls) satisfying the specified condiiton, in the set of
reconstructed MSAs of 15 simulated mammalian sequences. The “P(sbst)” and “P(rand)”

stand for, respectively, the (old) P-value defined with a given base substitution model and the
(new) P-value defined with the random matching model.

Table SSS2. Effects of additional filtering via the new P-value (on subjects & controls
with block size ≥ 2).

 Subjects Controls

 P(sbst) < 0.05 P(sbst) < 0.20 P(sbst) < 0.05 P(sbst) < 0.20

(No further condition) 0.590 0.812 0.0092 0.060

P(rand) ≥ 0.05 0.569 0.773 0.0059 0.028

P(rand) ≥ 0.20 0.515 0.673 0.0035 0.013

NOTE: The same note applies as that for Table SSS1. The only difference with Table SSS1 is
that the statistics here exclude subjects and controls with block size 1.

Figure 7: Effects of two filtering methods to identify ”purge”-like errors: on all subjects and

controls (with block size = 1, 2, ..., 10 (siets)). NOTEs: Shown in each cell is the relative frequency of

”purge”-involved blocks (in the subjects) or windows (in the controls) satisfying the specified condition, in

the set of 10,000 reconstructed MSAs of simulated 15 mammalian sequences. The ”P(sbst)” and ”P(rand)”

denote, respectively, the (old) P-value (Eq. 12), which is defined with a given base substitution model, and

the (new) P-value (Eq. 14), which is defined with a random matching model.

 5

Table SSS3. Effects of additional filtering via the new P-value (on subjects & controls
with block size ≥ 3).

 Subjects Controls

 P(sbst) < 0.05 P(sbst) < 0.20 P(sbst) < 0.05 P(sbst) < 0.20

(No further condition) 0.649 0.895 0.0094 0.065

P(rand) ≥ 0.05 0.623 0.844 0.0054 0.027

P(rand) ≥ 0.20 0.552 0.713 0.0025 0.0076

NOTE: The same note applies as that for Table SSS1 (& Table SSS2). The only difference
with Table SSS1 (& Table SSS2) is that the statistics here concerns only those subjects and

controls with block size 3 or greater.

Figure 8: Effects of two filtering methods to identify ”purge”-like errors: on subjects and

controls with block size ≥ 3 (sites). The same notes as in Figure 7 apply.

results on all subjects and controls (Figure 7), which include those windows with sizes 1

through 10 (sites). When we used the old P-value (”P(sbst)”, calculated with Eq. 12)

alone, 49.5% and 78.0% of the true ”purge”-errors were detected when the false-positive

rate was 0.88% and 5.7%, respectively. Then, the additional filtering using the new P-value

(”P(rand)”, calculated with 14) did refine the (mixed) set of ”positive” windows; that is, the

additional filtering successfully shed a substantial fraction (31-68%) of the false-positives,

while keeping most (85-97%) of the true-positives. Thus, the additional filtering based

on the random-matching model (in sub-subsection 2.2.1) did indeed work as we originally

intended.

When we restricted the analysis to the windows greater than or equal to 3 (sites) (Figure

8), the filtering with the old P-value alone had the true-positive rate enhanced to 64.9% and

are described in ”suppl2 blueprint1 ANEX.draft5.pdf,” which is among the documents accompanying the

ANEX(P) package [2].

25

89.5% when the false-positive rate remained nearly the same (0.94% and 6.5%, respectively).

Moreover, the additional filtering using the new P-value became more effective.

3.2.3 Validating method to detect ”complex” errors

To validate the methods to detect (or rather exclude) ”complex” errors, which has been

described in subsection 2.3 and appendixes C & E, we applied the detection method, with

each of the artificial clustering methods, Methods I, II, and III (appendix C), to the 10,000

reconstructed MSAs (via Prank) of simulated 15 mammalian sequences, while changing the

values of the two parameters, {spacer-size threshold} and {spacer-size upper-bound}

(in appendix D). Regardless of the artificial clustering methods, the total number of gapped

segments in category B (i.e., control) is 589,021, the total number of gapped segments in

category A (i.e., ”complex” errors) is 416,766, and the ratio of the latter to the former is

0.707557. (Before this analysis, a ”complex?”erroneous segment was re-classified as ”non-

complex” if only less than 4 (effective-)indels were inferred from each of the reconstructed

and reference MSAs.)

The tables in Figures 9 & 10 & 11 summarize the results of the analysis. 15 In our

analyses, Method III performed the best (Figure 11), Method I performed the worst (Fig-

ure 9), and Method II performed slightly less efficiently than Method III (Figure 10), under

the respective optimum combinations of the two parameters. Following this result, we set

Method III as the default artificial clustering method in ANEX(P).

It should be worth mentioning, however, that, even with the best method (Method III),

the accuracy of detecting (or excluding) complex errors is not pleasantly high, though decent

(or barely acceptable): when only about 80% of control gapped segments are kept, the

”optimum” method excluded about 62-63% of segments in ”complex’ errors; and when about

90% of control gapped segments are kept, the ”optimum” method excluded only about

15For more details on this validation (or parameter tuning), see ”suppl2 blueprint1 ANEX.draft5.pdf,” as

well as some Excel spreadsheets, all of which accompany the ANEX(P) package.

26

Table SS17A. Performances of methods to artifcially cluster gapped segments (Method I)

Spacer-size
upper-bound

Spacer-size
threshold

Tot#
{pure-B}

Tot#
{pure-A}

Tot#
{mixed}

Target
%{in B}

Target
%{in A}

Target#{in A} /
Target#{in B}

--- 2 558793 378425 68389 76.25%
82.03%
88.42%
90.22%

41.31%
47.25%
56.74%
60.59%

0.3833
0.4076
0.4540
0.4752

--- 3 534389 343086 128312 78.36%
81.15%
89.53%
90.49%

41.23%
45.27%
60.46%
62.73%

0.3723
0.3947
0.4778
0.4905

Figure 9: Performance of Method I to artificially cluster gapped segments, followed by method

to exclude ”complex” errors. [NOTE: For each of the three methods (Methods I, II, and III), only the

results with the optimum and the near-optimum combinations of the parameters ({spacer-size threshold}
and {spacer-size upper-bound}) are shown here.] The best-performing results are highlighted in red,

and relatively well-performing results are highlighted in yellow. In this and the subsequent two figures, the

category A consists of gapped segments in ”complex” errors, and the category B consists of ”control”

gapped segments (, which are correct segments and segments in non-”comlex” errors). KEY: Tot#{pure-

A/B} = the total number of gapped segments belonging to the artificial clusters consisting only of gapped

segments of category A/B; Tot#{mixed} = the total number of gapped segments belonging to the

artificial clusters each of which is a mixture of gapped segments of categories A and B; Target%{in A}
= the cumulative percentages of category-A gapped segments (compared to their total number) that are

the closest to the target percentage (80% and 90% in this analysis), on each of the upper- and lower-

side; Target%{in B} = the cumulative percentages of category-B gapped segments (compared to their

total number) corresponding the Target%{in A}; Target#{in A/B} = the total number of category-A/B

gapped segments corresponding to the above Target%{in A/B}.

Table SS17B. Performances of methods to artifcially cluster gapped segments (Method II)

Spacer-size
upper-bound

Spacer-size
threshold

Tot#
{pure-B}

Tot#
{pure-A}

Tot#
{mixed}

Target
%{in B}

Target
%{in A}

Target#{in A} /
Target#{in B}

10 5 74.97%
81.01%
89.51%
90.16%

38.97%
43.63%
53.39%
54.61%

0.3678
0.3811
0.4220
0.4286

10 6 78.79%
82.01%
89.95%
90.54%

40.63%
43.50%
54.38%
55.74%

0.3649
0.3753
0.4278
0.4356

15 7 78.48%
80.49%
89.78%
90.09%

38.61%
40.45%
55.94%
56.79%

0.3481
0.3556
0.4409
0.4460

20 7 79.70%
80.50%
89.93%
90.08%

39.57%
40.34%
57.72%
58.19%

0.3513
0.3546
0.4541
0.4571

The same notes as in Table SS17A apply also here.Figure 10: Performance of Method II to artificially cluster gapped segments, followed by

method to exclude ”complex” errors. The same notes as in Figure 9 apply.

27

Table SS17C. Performances of methods to artifcially cluster gapped segments (Method III)

Spacer-size
upper-bound

Spacer-size
threshold

Tot#
{pure-B}

Tot#
{pure-A}

Tot#
{mixed}

Target
%{in B}

Target
%{in A}

Target#{in A} /
Target#{in B}

10 2 556980 369788 79019 73.51%
80.14%
89.44%
90.30%

36.07%
40.76%
52.61%
54.60%

0.3472
0.3599
0.4162
0.4278

10 3 553751 364853 87183 77.81%
81.15%
89.44%
90.06%

37.74%
40.78%
52.65%
54.08%

0.3432
0.3556
0.4165
0.4249

10 6 533101 333460 139226 79.84%
81.01%
89.68%
90.04%

36.92%
38.42%
56.10%
57.12%

0.3272
0.3356
0.4426
0.4489

15 5 533538 333275 138974 77.50%
80.28%
89.90%
90.26%

35.10%
37.66%
51.11%
58.16%

0.3205
0.3319
0.4495
0.4559

15 6 524762 320232 160793 79.65%
81.28%
89.82%
90.08%

36.73%
39.05%
58.17%
58.98%

0.3263
0.3399
0.4582
0.4633

20 5 526973 323550 155264 79.32%
80.34%
89.64%
90.00%

36.78%
38.02%
58.31%
59.47%

0.3280
0.3348
0.4603
0.4675

The same notes as in Table SS17A apply also here.Figure 11: Performance of Method III to artificially cluster gapped segments, followed by

method to exclude ”complex” errors. The same notes as in Figure 9 apply.

45-47% of segments in ”complex” errors. This suppressed accuracy may be because the

methods here use the gap-configurations alone, and the accuracy is expected to improve

greatly if some information on residue-configurations are incorporated smartly. (This will

be discussed further in section 4.)

4 Discussions

Because multiple sequence alignments (MSAs) play central roles in advanced studies of ho-

mologous biological sequences (e.g., [3, 4, 5, 6, 7, 8]), it is essential to reconstruct MSAs

as accurately as possible. However, even if reconstructed by state-of-the-art aligners (�e.g.,

[3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]), reconstructed MSAs are

not free from errors, i.e., mis-alignments (e.g., [28, 25, 29, 30, 4, 19, 26, 27, 31, 32, 1]).

With this unwelcome fact as a backdrop, a number of methods have been developed that

attempt to identify and correct errors, or mis-alignments, (or, more precisely, low relia-

bility regions) in MSAs (e.g., [33, 34, 35, 36, 37, 38, 39]). On the other hand, as some

28

studies on sequence alignments suggest (e.g., [40, 41, 1]), a (near-)majority of such mis-

alignments are due to the stochastic nature of sequence evolution processes, and thus it

is inevitable to construct a probability distribution of alternative sequence alignments (e.g.,

[42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 32, 53, 54, 55, 56, 2]), instead of merely reconstructing

a single optimum alignment.

Whether you aim to detect and correct mis-alignments in an MSA reconstructed by

an aligner of single-optimum type, or to construct a probability distribution of alternative

MSAs, it should be greatly useful and beneficial to understand more about the nature of

mis-alignments. As a successor to the previous studies conducted under such a philosophy

[27, 1], this study developed a couple of tools to help better understand the nature of mis-

alignments.

The first tool, the ”substitutional residue-difference map” (SRD Map), maps SRDs, which

are inferred from the residue pattern of an input MSA via an extension of the widely used

likelihood method (e.g., [57, 58, 59, 67]), onto the MSA extended to include internal branches.

Applying this SRD Map, along with another new tool, the ”alignment-shear map” (see

appendix B), to the reconstructed MSAs of simulated sequences, we found that SRDs on

mis-alignments are on average significantly larger than those off mis-alignments. But, at

the same time, we also found that, even on mis-alignments, the points with SRDs near zero

account for a substantially larger fraction than expected from random matching. These two

results imply that attempts to detect mis-alignments using SRDs will be successful to some

extent but not to the level of absolute satisfaction. Thus, to better detect mis-alignments,

examining some other features, such as the presence of repeats near the ends of runs of gaps,

are suggested to be useful.

Next, focusing on ”purge”-errors [27, 1], we performed a sliding-window analysis using

two different P-values defined with SRDs in each window. For this particular type of errors,

SRDs seemed to be quite useful: our simulation study suggested that as much as 66-71% of

”purge”-errors can be captured while keeping the false-positive rate as low as 1.8-0.8%.

29

And, finally, we also examined the usefulness of gap-configurations for the purpose of

detecting mis-alignments. Specifically, we developed a method to detect ”complex” errors

using only gap-configurations. Application of the tool to reconstructed MSAs of simulated

sequences indicated that the tool can exclude about 65% of gapped segments in ”complex”

errors while keeping 80% of other segments. This suggests that even gap-configuration

alone should be somewhat, but not so greatly, useful for detecting mis-alignments, which is

understandable considering that insertions/deletions are about an order of magnitude sparser

than substitutions in general (e.g. [70]).

These results in conjunction suggest that we may be able to detect (or infer) mis-

alignments much more accurately if we combine SRDs with gap-configurations, as well as

with some other features (such as repeats near the ends of gaps) in a smart manner. But how

can we know the ”smart manner”? One way would be through meticulous analyses, as we did

in the previous study [1] and this study. The tools we developed, such as the ”position-shift

map” [1], the SRD map (subsection 2.1), and the ”Alignment-Shear Map” (appendix B),

will help understand more about the mis-alignments. That said, meticulous analyses are

time-consuming, labor-intensive, and tiring. Thus, another, more recommended, way should

be to resort to machine learning techniques (e.g., [71, 72, 73]), especially deep learning

via artificial intelligence (AI) (e.g., [74, 75]). It should be more suitable for handling the

aforementioned combination of information. Besides, the category of ”complex” errors ac-

tually means, ”the current error classification method cannot unravel this error into a series

(or a combination) of elementary errors”, and thus this category should keep evolving as the

methods to classify mis-alignments keep improving. This makes resorting to the machine

learning techniques more advantageous. Still, because the human beings are the creatures

of reasoning, meticulous analyses need also be continued.

Recently, we have developed a new method, the ”alignment neighborhood explorer” (or

”ANEX” for short), that attempts to construct probability distributions of alternative align-

ments in the neighborhoods of an input reconstructed MSA [2]. To the best of our knowledge,

30

this ANEX is the first method to apply genuine sequence evolution models to the problem of

MSA reconstruction as a whole, including the problem of statistical MSAs. Currently, ANEX

rests on the simple method to detect (and exclude) ”complex’” errors (described in subsec-

tion 2.3 in this paper), as well as a simple architecture of MSA neighborhood exploration

(Figure 4 of [2]). When deciding how to explore the MSA neighborhood, ANEX currently

combines the information on the ”purge”-like error candidates, which was derived via the

sliding-window analysis using the SRD map (subsection 2.2), with the gap-configuration, to

loosely restrict the types of elementary moves it attempts. Using this simple architecture as

a ”starting point,” ANEX’s architecture of MSA neighborhood exploration may get to evolve

further into a more sophisticated yet smart architecture, in which a combination of three

or more elementary moves may be attempted while avoiding the problem of combinatorial

explosion, if aided by machine learning techniques (e.g., [71, 72, 73]) including deep learning

via AI (e.g., [74, 75]).

Therefore, ANEX’s development may be benefited from machine learning (including deep

learning) in a dual manner, one in developing a method for more accurate detection (and

exclusion) of ”complex’ errors, and the other in realizing more sophisticated and smart

architecture of MSA neighborhood exploration. In each of the ways, the lessons learned

from this study should help navigate your further endeavors. In any case, we are now about

to enter a new era in which it is commonplace to construct MSA probability distributions

(under genuine sequence evolution models) with the assistance of artificial-intelligence (AI).

4.1 Final Note

Some of our comments in this paper or other papers may sound like harsh criticisms on

other researchers or their works. We strongly urge the readers to understand that such

comments are our candid expressions of our sincere and pure hope for the advance of the

science in the right direction, and that we have no intension to attack, harm, or hurt anybody

31

or anybody’s works. It should be kept in mind that we, all hard-working researchers in the

world, are not enemies to each other but actually comrades to each other, who are fighting

against the common enemies, i.e., insufficient understanding of the Mother Nature and the

lack of tools potent enough to uncover the essence of natural phenomena, as well as being

complacent of the status quo like that. We truly hope for the future where we, all researchers,

go hand-in-hand with each other to improve our understanding of the Mother Nature, by

bringing together ones’ own strengths under the common cause instead of competing against

each other or even sabotaging each other’s studies , and by sharing all information with

each otherinstead of keeping crucial information to oneself. Then, our understanding of the

Mother Nature should surely improve much faster than we’ve ever experienced. (If, however,

there are, by any chance, corrupt researchers who are indulging in the complacency and/or

who attempt to deform the scientific truths to their own interests, we wlll resolutely fight

against them.)

5 Acknowledgments

The author (K.E.) greatly thanks Prof. Tetsushi Yada at Kyushu Institute of Techonology,

Japan for the logistic support and encouragements during the middle third of this project,

which includes this study and some others [76, 77, 1, 78, 79, 2, 80], and which was conducted

first in the author’s home in Yokosuka, Kanagawa, Japan, second in Kyushu Institute of

Technology, Japan, and last in the author’s home in Chichibu, Saitama, Japan. He is also

grateful to Prof. Dan Graur at University of Houston, TX, US and Dr. Giddy Landan at

Christian-Albrechts-University of Kiel, Germany for letting me participate in their project,

”Error Correction in Multiple Sequence Alignments”, which was funded by US National

Library of Medicine (grand number: LM010009-01 to Dan Graur and Giddy Landan, then

32

at the University of Houston), from September 2009 till June 2011; partly inspired by their

project, the author came up with this project. The author appreciates the inspiring dis-

cussions with Dr. Reed A Cartwright at Arizona State University, US and with Dr. Ian

Holmes at University of California, Berkeley, US. He is also grateful to Prof. Naruya Saitou

at National Institute of Genetics (NIG), Japan, and Dr. Kirill Kryukov at Tokai University,

Japan for helping his interest in sequence alignment methods originate and grow, while he

was studying with them at NIG. Last but not least, the author appreciates all of his fam-

ily members, relatives, mentors, (ex-)friends, (ex-)supervisors, and (ex-)colleagues, for their

support since his infancy, which enabled him to tread (or wander?) the scientific path and

to manage to ”finish” this project through all those difficulties and tough times.

The project including this study was in part supported by the Ministry of Education,

Culture, Sports, Science and Technology (MEXT) of Japan (grant numbers: KAKENHI

Grant numbers 221S0002, 15H01358, both to Tetsushi Yada).

33

1 A�
2 G�
3 A�
4 A�
5 T�
6 T�

(A)��

b��

c��

�
��

1
2
3
4
5
6

PL (�; b, c)

PU (�� ; b, c)

1 A�
2 G�
3 A�
4 A�
5 T�
6 T�

(B)��

b��

c��

�

1
2
3

�PL (�; b, c) 1 A�
2 G�
3 A�
4 A�
5 T�
6 T�

(C)��

b��

c��

�

4
5
6 �PU (�; b, c)

Figure 12: Four sets of probabilities important for calculation of SRDs. A. Probabilities,

PL(ω; b, c) and PU (ω′; b, c), regarding the residue configurations of two complementary sequence sets in a

column (c). The branch b (thick) separates the sequence sets. The portions of the tree yielding PL(ω; b, c)

and PU (ω′; b, c) are shared in red and blue, respectively. And, in column c , the color of each residue indicates

which of the probabilities it contributes to. B. The extension of PL(ω; b, c) to the upper-end of b, to give

P̃L(ω; b, c). C. The extension of PU (ω; b, c) to the lower-end of b, to give P̃U (ω; b, c). In each panel, the

numbers assigned to the external nodes also specify the sequences in the MSA.

Appendixes

A Extending Pruning Algorithm to Provide Ingredi-

ents of SRDs

In subsection 2.1, in order to compute ”substitutional residue-differences” (or SRDs for

short) along a branch (b) in an MSA column (c), we introduced two types of probabilities

(besides the finite-time transition probabilities), that is: (ii) the conditional probability,

PL(ω; b, c), that, given residue ω (∈ Ω) at the lower-end of branch b, we observe the residues

of all its descendant extant sequences present in column c (Figure 12 A); and (iii) the joint

probability, PU(ω; b, c), that, in column c, we observe ω (∈ Ω) at the upper-end of branch

b and the residues of all extant sequences on the upper-end-side of branch b (Figure 12 A).

Here, we describe a pair of algorithms to compute and output these types of probabilities.

Before going on to the algorithms, we additionally introduce the ”extensions” of the

aforementioned two kinds of probabilities:

(ii’) the conditional probability, P̃L(ω; b, c), hat, given residue ω (∈ Ω) at the upper-end

34

of branch b, we observe the residues of all its descendant extant sequences present in

column c;

(iii’) the joint probability, P̃U(ω; b, c), that, in column c, we observe ω (∈ Ω) at the lower-end

of branch b and the residues of all extant sequences on the upper-end-side of branch b.

The P̃L(ω; b, c)’s are obtained by ”extend”ing the defining sub-tree of PL(ω; b, c)’s by the

branch b (illustrated by Figure 12 B):

P̃L(ω; b, c) =
∑
ω′ ∈Ω

P (ω 7→ ω′; b) PL(ω′; b, c) . (15)

The P̃U(ω; b, c)’s are obtained by ”extending” the defining sub-tree of PU(ω; b, c)’s by b

(illustrated by Figure 12 C):

P̃U(ω; b, c) =
∑
ω′ ∈Ω

PU(ω′; b, c) P (ω′ 7→ ω; b) . (16)

These ”extended” probabilities somewhat simplify the algorithm, at least in terms of no-

tation. Besides, they also simplify the computations of some probabilities regarding the

residue-configuration of a column. (See, e.g., Figure 18, or appendix J.2 in [2].) Therefore,

if there is enough memory space, it may be better to keep these ”extended” probabilities

even after the end of the algorithm(s).

Now, we describe the pair of algorithms: a ”bottom-up” algorithm, which proceeds

from the leaves (i.e., external nodes) to the root of the tree, and a ”top-down” algorithm,

which proceeds from the root to the leaves.

The ”bottom-up” algorithm is a slightly modified version of Felsenstein’s pruning

algorithm [57, 58], and efficiently calculates the PL(ω; b, c)’s and the P̃L(ω; b, c)’s. It starts

with an ”initialization” step, where each external branch (denoted as bX here) is associated

with the following probabilities:

PL(ω; bX , c) = δ
(
ω, ω(c, nX)

)
, (17)

P̃L(ω; bX , c) = P (ω 7→ ω(c, nX); bX) . (18)

35

Here, the ω(c, nX) denotes the residue that the sequence at the external node nX has in

column c. (The nX is the lower-end of bX .) The δ(ω, ω′) denotes Kronecker’s delta: δ(ω, ω′) =

1 if ω = ω′, = 0 otherwise.

[NOTE: when the sequence has no residues in the column c, we assign PL(ω; bX , c) =

P̃L(ω; bX , c) = 1 for all ω ∈ Ω.]

And remember that the P (ω 7→ ω′; b) is the probability that the lower-end of branch b has

residue ω′, conditioned on that the upper-end of b has ω.

After the initialization, as the algorithm climbs up the tree, each branch (denoted as b)

is provided with the probabilities via the following recursion relations:

PL(ω; b, c) =
∏

b′ ∈Ch(b)

P̃L(ω; b′, c) , (19)

P̃L(ω; b, c) =
∑
ω′ ∈Ω

P (ω 7→ ω′; b) PL(ω′; b, c) . (20)

Here, the Ch(b) denotes the set of ”child” branches of branch b. Eq. 19 follows easily from

what these probabilities mean (see Figure 12, panels A and B), and Eq. 20 is nothing other

than the definition of P̃L(ω; b, c) (i.e., Eq. 15).

Next, the ”top-down” algorithm calculates the PU(ω; b, c)’s and the P̃U(ω; b, c)’s effi-

ciently. In its ”initialization” step, it associates each child branch of the root (b ∈ Ch(nR))

with the probabilities:

PU(ω; b, c) = P (ω, nR)
∏

b′(6=b) ∈Ch(nR)

P̃L(ω; b′, c) , (21)

P̃U(ω; b, c) =
∑
ω′ ∈Ω

PU(ω′; b, c) P (ω′ 7→ ω; b) . (22)

Here, the P (ω, nR) is the probability (or the relative frequency) of residue ω at the root node

(nR). Eq. 21 easily follows from what the PU(ω; b, c) and the P̃L(ω; b′, c)’s mean (Figure 12,

panels A and B), and Eq. 22 is nothing other than the definition of P̃U(ω; b, c) (i.e., Eq. 16).

After the initialization, as the algorithm goes down the tree, each branch (again, denoted

36

as b) is provided with the probabilities via the following recursion relations:

PU(ω; b, c) = P̃U(ω; p(b), c)
∏

b′(6=b) ∈Ch(p(b))

P̃L(ω; b′, c) , (23)

P̃U(ω; b, c) =
∑
ω′ ∈Ω

PU(ω′; b, c) P (ω′ 7→ ω; b) . (24)

Here, the p(b) denotes the ”parent” branch of b, and Eq. 24 is, again, exactly the defining

equation, Eq. 16.

The pair of algorithms (on a single column) has the time complexity of O
(
|ET | × |Ω| ×

(|Ω|+ 〈|n|〉T)
)

, where the |ET | is the number of branches (edges) in the tree (T), the |Ω| is

the size of the alphabet (Ω), i.e., the number of single-residue states, and the 〈|n|〉T is the

average connectivity over the nodes in the tree. Because 〈|n|〉T is always less than 2, 16 the

time complexity could be approximated as O
(
|ET | × |Ω|2

)
, if desired.

[NOTE: The author came up with this pair of algorithms by himself(, of course based on

the pruning algorithm [57, 58]). However, because of its simpleness and elegance, we suspect

that this pair of algorithms may have already been invented (and published) by someone

else. If this is indeed the case, we sincerely apologize for our failure to credit its authentic

inventor(s); because we’ve run out of time, we could not search for the past related literature

exhaustively.]

16Let |n| be the connectivity of the node n, which means the number of edges connected at n. Because

each edge always connects with two nodes, each edge is counted exactly twice when calculating the total

connectivity over all nodes. Hence we have:

∑
n ∈N [T]

|n| = 2|ET | ,

where the N [T] denotes the set of all nodes in the tree (T). Meanwhile, in a tree, we always have |ET | =

|N [T]| − 1, where the |N [T]| is the number of all nodes in T . Therefore, we have:

〈|n|〉T
def
=

 ∑
n ∈N [T]

|n|

/|N [T]| = 2|ET | / |N [T]| = 2(1− 1/|N [T]|) < 2 .

37

A.1 Identities among Ingredients

The ingredients calculated via the aforementioned pair of algorithms satisfy a number of

equations (or identities). Here, we will provide some, for possible later convenience.

First, the probability of the residue configuration of a column (c), P [c], can be calculated

in many ways on branch b:

P [c] =
∑
ω ∈Ω

∑
ω′∈Ω

PU(ω; b, c) P (ω 7→ ω′; b) PL(ω′, b, c) (25)

=
∑
ω ∈Ω

P̃U(ω; b, c) PL(ω, b, c) (26)

=
∑
ω ∈Ω

PU(ω; b, c) P̃L(ω, b, c) . (27)

At each bifurcated internal node n (other than the root nR), the following ”three-way

equation” holds:

P [c] =
∑
ω ∈Ω

P̃U(ω; bP (n), c) P̃L(ω, bC1(n), c) P̃L(ω, bC2(n), c) . (28)

Here, the bP (n) is the ”parent” branch that is immediately above n, and the bC1(n) and the

bC2(n) are the ”child” branches that are immediately below n. (It is easy to generalize Eq.

28 to a multi-furcated node.) Its counterpart at the root (nR) is simply the final equation

of the recursion for the pruning algorithm:

P [c] =
∑
ω ∈Ω

P [(ω;nR)
∏

b ∈Ch(nR)

P̃L(ω, b, c)

 . (29)

Here, the P [(ω;nR) is the probability (or the frequency) of residue ω (∈ Ω) at the root (nR),

and the Ch(nR) denotes the set of all child branches of nR.

These equations provided in this subsection, or their further extensions, may be exploited

when you need to upgrade the ANEX [2] in the future, so that it can compute the substitution

components of the probabilities of alternative MSAs much more quickly, particularly when

the number of aligned sequences is large.

38

B Creating ”Alignment-Shear Map” from ”Position-

Shift Map”

As briefly explained in footnote 2, we have created a new subroutine, ”list minicls shift respos clm based”

(in the module, ”MyPosShiftMap.pm,” of ANEX(P)), which is the core of a couple of Perl

scripts that automatically map the ”alignment-shear”s onto the MSA (vertically extended

to include internal branches), given an input ”position-shift-map.” (The ”extended

MSA” is regarded as the direct product of the set of sites (or column-positions) times

the set of branches.) Here, each ”alignment-shear” is a horizontal line in the ”extended

MSA” that vertically (or phylogenetically) separates regions with different ”position-shift”s.

In this appendix, we describe the main algorithm underlying the subroutine, in a some-

what verbal manner (not using pseudo-code(s)).

The main inputs are: (1) a ”position-shift-map,” which is based on a reconstructed

MSA, and in which the residues are replaced with the corresponding position-shifts; and (2)

a phylogenetic tree of the aligned sequences.

1. Horizontally chop the ”position-shift-map” into ”position-shift-pattern-block”s (or ”PSP-

blocks” for short), each of which consists of contiguous columns sharing the same

pattern of position-shifts.

2. For each position-shift-pattern that was found, enumerate parsimonious clusterings of

position shifts, as follows:

(a) Determine uniquely the ancestral ”presence”/”absence” (or residue/gap) states

according to the Dollo parsimonious principle [60];

(b) Enumerate all the parsimonious sets of ”position-shift-states” assigned only to the

ancestral nodes with ”presence” states, so that they are consistent with the fixed

”position-shift-states” of the aligned sequences; this is done according to Sankoff’s

39

parsimony algorithm [81], using the cost matrix with the diagonal elements = 0,

and all others = 1;

(c) For each parsimonious set thus obtained, the set of branches along which the

”position-shift”s change dictates a (parsimonious) clustering of position-shifts.

3. Select the ”optimum” combination(s) of parsimonious clusterings, each of which is

assigned to each PSP-block, as follows:

(a) For the PSP-blocks each of which has only one way of parsimonious clustering,

choose that unique clustering;

(b) For those PSP-blocks flanked by (a) block(s) with unique clustering(s), choose

the clustering(s) with the largest number of changes consistent with the flanking

unique clusterings;

(c) Repeat (b) until the clusterings cannot be narrowed down any longer;

(d) If some remaining PSP-blocks are contiguous to each other, examine, from left

to right, the consistency of the changes, and chose most consistent pairs of the

clusterings; do this selection until such contiguous remaining blocks are exhausted;

(e) If there are still more than one combinations of the clusterings, further select the

combination(s) according to the following criteria (in this order);

i. those with the largest sum, over all PSP-blocks, of the total depths of the

branches along which changes occur;

ii. those with the largest sum, over all PSP-blocks, of the minimum depths of

the branches along which changes occur;

(f) If there are still more than one combination of the clusterings, keep all of them

as equally optimum choices.

4. For each ”optimum” combination of parsimonious clusterings assigned to the PSP-

blocks, there should be mini-blocks of position-shifts; each mini-block horizontally

40

spans the PSP-block it belongs to, and is delimited by one branch or more along which

the position-shift changes;

5. For each ”optimum” combination of parsimonious clusterings assigned to the PSP-

blocks, merge the effectively adjoining mini-blocks 17 that share the identical position-

shift and the identical set of affected sequences; the resulting merged blocks are referred

to as ”MINI-classes” of position-shifts.

Each ”MINI-class” thus created should be assigned a unique set of delimiting branches, which

in turn should provide the ”alignment-shear”s to be mapped onto the extended MSA,

via a downstream subroutine (”mk map alnshear clmbased” in the module, ”MyMapAlnS-

hear.pm”).

[NOTE: In a previous study [1], we created a similar program,

”classify msa errors via mblks.alpha2.pl” in the ”ComplLiMment(P)” package, albeit for a

somewhat different purpose of creating ”position-shift-blocks.” This old program, however,

employed an algorithm that substantially differs from the new algorithm described here.

The biggest difference is in the strategy. The old algorithm first horizontally chops

each sequence into segments, each of which consists of contiguous sites with the same

position-shift; then, it attempts to vertically (or phylogenetically) cluster (or merge) the

segments sharing both ends and having the same position-shift. In contrast, the new algo-

rithm first vertically (or phylogenetically) cluster the sequences with the same position-shifts

in each MSA column, forming ”position-shift cluster”s; then, it attempts to horizontally

merge the neighboring ”position-shift” clusters with the same position-shift.

Using dozens of typical erroneous segments (created in [1]), we compared, by manual

inspection, the ”alignment-shear”s predicted by these two algorithms. We found that the

17The ”effectively adjoining” means either actually adjoining or separated solely by columns in which all

the affected sequences are occupied by gaps.

41

”alignment-shear”s predicted by the new algorithm reflects the true boundaries (between

different ”position-shift”s) better than those predicted by the old algorithm.

Thus, if you incorporate the results of this new algorithm into the construction of

”position-shift-block”s, as well as the subsequent classification of alignment errors (as at-

tempted in [1]), the results may be improved considerably.]

C Simple Sliding Window Analysis Taking Account of

Rate Variation

The method for the sliding window analysis described in subsection 2.2 does not take account

of rate variation across sites (like, e.g., [64, 65, 66, 59, 67]), due to some biological factors

such as selection and mutation hot-spots. To incorporate such factors, a useful way would be

to take advantage of the ”observations” along different branches (yet in the same window).

There would be a variety of ways to implement this idea. Here, we propose a simple method

of re-scaling the ”expected” SRD (in window W and along branch b), Dexp(b,W) (given by

Eq. 11), by the ratio of the total ?observed? number across the branches (except b) to the

total ?expected? number. Then, the ”rescaled” ”expected” SRD, denoted as D∗exp(b,W), is

calculated as:

D∗exp(b,W) = RD(b,W) Dexp(b,W) , (30)

(31)

with

RD(b,W)
def
=

 ∑
b′(6=b) ∈ET

Dobs(b
′,W)

/
 ∑

b′(6=b) ∈ET

Dexp(b
′,W)

 . (32)

Here, the ET denotes the set of all branches (i.e., edges) in the tree (T). Then, we can

compare the ”observation”, Dobs(b,W), to this ”rescaled” ”expectation”, D∗exp(b,W). For

42

example, when performing a binomial test, we can use the formula, Eq. 12, with the proba-

bility of ”difference” per trial, pD, replaced by its ”rescaled” version: p∗D
def
= D∗exp(b,W)/NW .

D Artificially Clustering Gapped Segments: Defini-

tions of Methods

In order to artificially cluster the gapped segments, we tried three different methods.

Method I: Two nearest-neighboring gapped segments are clustered if the spacer between

them is shorter than {spacer-size threshold} (Figure 4, panel B).

Method III: Two (not necessarily nearest-neighboring) gapped segments, as well as all

segments in between them, are artificially clustered if the following conditions are satisfied:

(a) EITHER [the (composite-)spacer between them is ≤ {spacer-size threshold}], OR

[the (composite-)spacer is ≤ {spacer-size upper-bound}, AND {size of smaller

gapped segment} ≥ {size of (composite-)spacer} /2, AND {size of larger gapped seg-

ment} ≥ 2 {size of (composite-)spacer}];

(b [the two gapped segments undergo at least one indel each along the same branch] OR

[the two gapped segments undergo (effective-)indels along branches that are mutually

phylogenetically nearest-neighboring] (Figure 4, panel C).

Method II: Similar to Method III, but the latter half of condition (b) is replaced by the

following: [the two gapped segments, and yet another neighboring gapped segment undergo

(effective-)indels along three branches connected at an internal node] (Figure 4, panel D).

In verbal description, Method I does not care about phylogenetic positioning of gap-

blocks. Method III examines the phylogenetic positioning of gap-blocks in neighboring

gapped segments. More precisely, it examines whether or not the neighboring gapped seg-

ments undergo (effective-)indels along the same branch or along phylogenetically neighboring

43

branches. Method II also examines the phylogenetic positioning of gap-blocks in neighbor-

ing gapped segments, in a more complex manner. More precisely, it examines whether or

not there is a ”trio” of branches that are connected at an internal node and each of which

undergoes (effective-)indels in each of three neighboring gapped segments.

E Attempting to Detect as Many ”Complex” Errors

as Possible out of Artificial Clusters

After artificially clustering the gapped segments with each of the three methods described in

appendix D, we attempted to detect ”complex” errors as accurately as possible, by conducting

the following analysis.

(NOTE: The goal of this analysis is to exclude as much ”complex” errors as possible, while

keeping a specified fraction (80% or 90%) of control gapped segments.)

First, the artificial clusters were classified according to the number of insertions and the

number of deletions. Second, in each of the resulting classes, we counted the total number

of gapped segments involved in ”complex” errors and the total number of control gapped

segments. Third, the classes were sorted in ascending order of the ratio:

#{gapped segments in ”complex” errors} / #{control gapped segments}.

Finally, from the class with the smallest ratio, the classes were chosen until the number of

control gapped segments reaches a specified fraction (80% or 90%) of the total number of

the control gapped segments.

We tried various combinations of the two parameters, namely, the {spacer-size thresh-

old} and the {spacer-size upper-bound}, both used in appendix D.

Before this analysis, each ”complex” error was re-classified as ”non-complex” if each of

the reconstructed and reference MSAs in it is inferred to have resulted from only less than 4

indels. This is in anticipation of an error-classification method better than that used in [1].

44

References

[1] K Ezawa. Characterization of multiple sequence alignment errors using complete-

likelihood score and position-shift map. BMC Bioinformatics., 17:133, 2016.

[2] K Ezawa. Alingment Neighborhood EXplorer (ANEX): First attempt to apply gen-

uine sequence evolution model with realistic insertions/deletions to Multiple Sequence

Alignment reconstruction problem. preprint (KEZW BI ME00006.anex.pdf) available

at: https://www.bioinformatics.org/ftp/pub/anex/Documents/Preprints/., 2020.

[3] D Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press, Cambridge, UK, 1997.

[4] S Kumar and A Filipski. Multiple sequence alignment: in pursuit of homologous DNA

positions. Genome Res., 17:127–135, 2007.

[5] MR Aniba, O Poch, and JD Thompson. Issues in bioinformatics benchmarking: the

case study of multiple sequence alignment. Nucleic Acids Res., 38:7353–7363, 2010.

[6] A Löytynoja. Alignment methods: strategies, challenges, benchmarking, and compara-

tive overview. In M Anisimova, editor, Evolutionary Genomics. Methods in Molecular

Biology (Methods and Protocols), vol. 855, pages 203–235. Humana Press, Totowa, NJ,

2012.

[7] S Iantorno, K Gori, N Goldman, M Gil, and C Dessimoz. Who watches the watch-

men? an appraisal of benchmarks for multiple sequence alignment. In D Russell, edi-

tor, Multiple Sequence Alignment Methods. Methods in Molecular Biology (Methods and

Protocols), vol. 1079, pages 59–73. Humana Press, Totowa, NJ, 2014.

[8] T Warnow. Computational Phylogenetics: An introduction to designing methods for

phylogeny estimation, chapter 9. Cambridge University Press, 2017.

45

[9] JD Thompson, F Plewniak, and O Poch. A comprehensive comparison of multiple

sequence alignment programs. Nucleic Acids Res., 27:2682–2690, 1999.

[10] C Notredame. Recent evolutions of multiple sequence alignment algorithms. PLoS

Comput Biol., 3:e123, 2007.

[11] JD Thompson, DG Higgins, and TJ Gibson. CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific

gap penalties and weight matrix choice. Nucleic Acids Res., 22:4673–4680, 1994.

[12] C Notredame, DG Higgins, and J Heringa. T-coffee: a novel method for fast and

accurate multiple sequence alignment. J Mol Biol., 302:205–217, 2000.

[13] K Katoh, K Misawa, K Kuma, and T Miyata. MAFFT: a novel method for rapid mul-

tiple sequence alignment based on fast fourier transform. Nucleic Acids Res., 30:3059–

3066, 2002.

[14] K Katoh, K Kuma, H Toh, and T Miyata. MAFFT version 5: implevement in accuracy

of multiple sequence alignment. Nucleic Acids Res., 33:511–518, 2005.

[15] K Katoh and H Toh. Recent developments in the MAFFT multiple sequence alignment

program. Brief Bioinform., 9:286–298, 2008.

[16] RC Edgar. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res., 32:1792–1797, 2004.

[17] CB Do, MS Mahabhashyam, M Brudno, and S Batzoglou. ProbCons: probabilistic

consistency-based multiple sequence alignment. Genome Res., 15:330–340, 2005.

[18] A Löytynoja and N Goldman. An algorithm for progressive multiple alignment of

sequences with insertions. Proc Natl Acad Sci USA., 102:10557–10562, 2005.

46

[19] A Löytynoja and N Goldman. Phylogeny-aware gap placement prevents errors in se-

quence alignment and evolutionary analysis. Science., 320:1632–1635, 2008.

[20] J Pei and NV Grishin. MUMMALS: multiple sequence alignment improved by using

hidden Markov models with local structural information. Nucleic Acids Res., 34:364–

374, 2006.

[21] U Roshan and DR Livesay. Probalign: multiple sequence alignment using partition

function posterior probabilities. Bioinformatics., 22:2715–2721, 2006.

[22] LM Wallace, O O’Sullivan, DG Higgins, and C Notredame. M-Coffee: combining mul-

tiple sequence alignment methods with T-Coffee. Nucleic Acids Res., 34:1692–1699,

2006.

[23] AR Subramanian, M Kaufumann, and B Morgenstern. DIALIGN-TX: greedy and

progressive approaches for segment-based multiple sequence alignment. Algorithms Mol

Biol., 3:6, 2008.

[24] K Kryukov and N Saitou. MISHIMA–a new method for high speed multiple alignment

of nucleotide sequences of bacterial genome scale data. BMC Bioinformatics., 11:142,

2010.

[25] EA O’Brien and DG Higgins. Empirical estimation of the reliability of ribosomal rna

alignments. Bioinformatics., 14:830–838, 1998.

[26] KM Wong, MA Suchard, and JP Huelsenbeck. Alignment uncertainty and genome

analysis. Science., 319:473–476, 2008.

[27] G Landan and D Graur. Characterization of pairwise and multiple sequence alignment

errors. Gene., 441:141–147, 2009.

47

[28] DA Morrison and JT Ellis. Effects of nucleotide sequence alignment on phylogeny

estimation: a case study of 18S rDNAs of apicomplexa. Mol Biol Evol., 14:428–441,

1997.

[29] RE Hickson, C Simon, and SW Perry. The performance of several multiple sequence

alignment programs in relation to secondary-structure features for an rrna sequence.

Mol Biol Evol., 17:530–539, 2000.

[30] TH Ogden and MS Rosenberg. Multiple sequence alignment accuracy and phylogenetic

inference. Syst Biol., 55:314–318, 2006.

[31] P Markova-Raina and D Petrov. High sensitivity to aligner and high rate of false

positives in the estimates of positive selection in the 12 Dorosophila genomes. Genome

Res., 21:863–874, 2011.

[32] O Westesson, G Lunter, B Paten, and I Holmes. Accurate reconstruction of insertion-

deletion histories by statistical phylogenetics. PLoS One., 7:e34572, 2012.

[33] T Lassmann and ELL Sonnhammer. Automatic assessment of alignment quality. Nucleic

Acids Res., 33:7120–7128, 2005.

[34] G Landan and D Graur. Heads or tails: a simple reliability check for multiple sequence

alignments. Mol Biol Evol., 24:1380–1383, 2007.

[35] G Landan and D Graur. Local reliability measures from sets of co-optimum multiple

sequence alignments. Pac Symp Biocomput., 13:15–24, 2008.

[36] O Penn, E Privman, G Landan, D Graur, and T Pupko. An alignment confidence score

capturing robustness to guide tree uncertanty. Mol Biol Evol., 27:1759–1767, 2010.

[37] J Kim and J Ma. PSAR: measuring multiple sequence alignment reliability by proba-

bilistic sampling. Nucl Acids Res., 39:6359–6368, 2011.

48

[38] JM Chang, PD Tommaso, and C Notredame. TCS: a new multiple sequence alignment

reliability measure to estimate alignment accuracy and improved phylogenetic tree re-

construction. Mol Biol Evol., 31:1625–1637, 2014.

[39] I Sela, H Ashkenazy, K Katoh, and T Pupko. GUIDANCE2: accurate detection of

unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucl

Acids Res., 43:W7–W14, 2015.

[40] G Lunter, A Rocco, N Mimouni, A Heger, A Caldeira, and J Hein. Uncertainty in

homology inferences: assessing and improving genomic sequence alignment. Genome

Res., 18:298–309, 2008.

[41] RA Cartwright. Problems and solutions for estimating indel rates and length distribu-

tions. Mol Biol Evol., 26:473–480, 2009.

[42] MJ Bishop and EA Thompson. Maximum likelihood alignment of DNA sequences. J

Mol Biol., 190:159–165, 1986.

[43] JL Thorne, H Kishino, and J Felsenstein. An evolutionary model for maximum likeli-

hood alignment of DNA sequences. J Mol Biol., 33:114–124, 1991.

[44] JL Thorne, H Kishino, and J Felsenstein. Inching toward reality: An improved likelihood

model of sequence evolution. J Mol Biol., 34:3–16, 1992.

[45] J Hein, C Wiuf, B Knudsen, MB Møller, and G Wibling. Statistical alignment: com-

putational properties, homology testing and goodness-of-fit. J Mol Biol., 302:265–279,

2000.

[46] B Knudsen and MM Miyamoto. Sequence alignments and pair hidden Markov models

using evolutionary history. J Mol Biol., 333:453–460, 2003.

[47] I Miklós and Z Toroczkai. An improved model for statistical alignment. WABI 2001.,

LNCS 2149:1–10, 2001.

49

[48] I Holmes. Using guide trees to construct multiple-sequence evolutionary HMMs. Bioin-

formatics., 19(Suppl 1):i147–i157, 2003.

[49] MA Suchard and BD Redelings. BAli-Phy: simultaneous Bayesian inference of align-

ment and phylogeny. Bioinformatics., 22:2047–2048, 2006.

[50] Á Novák, I Miklós, R Lyngsø, and J Hein. StatAlign: an extendable software package

for joint Bayesian estimation of alignments and evolutionary trees. Bioinformatics.,

24:2403–2404, 2008.

[51] B Paten, J Herrero, S Fitzgerald, K Beal, P Flicek, I Holmes, and E Birney. Genome-

wide nucleotide-level mammalian ancestor reconstruction. Genome Res., 18:1829–1843,

2008.

[52] RK Bradley, A Roberts, M Smoot, S Juvekar, J Do, C Dewey, I Holmes, and I Pachter.

Fast statistical alignment. PLoS Comput Biol., 5:e1000392, 2009.

[53] JL Herman, Á Novák, R Lyngsø, A Szabó, I Miklós, and J Hein. Efficient representation

of uncertainty in multiple sequence alignments using directed acyclic graphs. BMC

Bioinformatics., 16:108, 2015.

[54] E Levy Karin, H Ashkenazy, J Hein, and T Pupko. A simulation-based approach to

statistical alignment. Syst Biol., 68:252–266, 2019.

[55] N De Maio. The cumulative indel model: fast and accurate statistical evolutionary

alignment. Syst Biol., 2020. (available as E-pub).

[56] I Holmes. Application of indel evolution by differential calculus of finite state automata.

available in bioRxiv with doi: 10.1101/2020.06.29.178764., 2020.

[57] J Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach.

J Mol Evol., 17:368–376, 1981.

50

[58] J. Felsenstein. Inferring Phylogenetics. Sinauer, Sunderland, Massachusetts, 2004.

[59] Z. Yang. Computational Molecular Evolution. Oxford Univ. Press, Oxford, UK, 2006.

[60] JS Farris. Phylogenetic analysis under dollo’s law. Syst Zool., 26:77–88, 1977.

[61] L Chindelevitch, Z Li, E Blais, and M Blanchette. On the inference of parsimonious

evolutionary scenarios. J Bioinform Comput Biol., 4:721–744, 2006.

[62] AB Diallo, V Makarenkov, and M Blanchette. Exact and heuristic algorithms for the

indel maximum likelihood problem. J Comput Biol., 14:446–461, 2007.

[63] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numecial Recipes in

C: The Art of Scientific Computing (2nd Ed.). Cambridge Univ. Press, Cambridge,

UK, 1992.

[64] Z Yang. A space-time process model for the evolution of DNA sequences. Genetics.,

139:993–1005, 1995.

[65] X Gu and WH Li. A general additive distance with time-reversibility and rate variation

among nucleotide sites. Proc Natl Acad Sci. USA., 93:4671–4676, 1996.

[66] Z Yang and S Kumar. Approximate methods for estimating the pattern of nucleotide

substitution and the variation of substitution rates among sites. Mol Biol Evol., 13:650–

659, 1996.

[67] Z Yang. PAML: a program package for phylogenetic analysis by maximum likelihood.

Mol Biol Evol., 24:1586–1591, 2007.

[68] S Karlin and SF Altschul. Methods for assessing the statistical significance of molecular

sequence features by using general scoring schemes. Proc Natl Acad Sci USA., 87:2264–

2268, 1990.

51

[69] TH Jukes and CR Cantor. Evolution of protein molecules. In HN Munro, editor,

Mammalian protein metabolism, pages 21–123. Academic Press, New York, US, 1969.

[70] G Lunter. Probabilistic whole-genome alignments reveal high indel rates in the human

and mouse genomes. Bioinformatics., 23:i289–i296, 2007.

[71] Christopher M Bishop. Pattern recognition and machine learning. Springer, New York,

NY, 2006. ISBN: 9780387310732, 9781493938438.

[72] Ameet Talwalkar Mehryar Mohri, Afshin Rostamizadeh. Foundations of Machine Learn-

ing, 2nd edition. MIT Press, Cambridge, MA, 2018. ISBN: 0262351366, 9780262351362.

[73] Ethern Alpaydin. Introduction to Machine Learning, 4th edition (Adaptive Computation

and Machine Learning series). MIT Press, Cambridge, MA, 2020. ISBN: 0262043793,

9780262043793.

[74] Y Lecun, Y Bengio, and G Hinton. Deep Learning. Nature., 521:436–444, 2015.

[75] Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep Learning (Adaptive computation

and machine learning series). MIT Press, Cambridge, MA, 2016. ISBN: 0262337371,

9780262337373.

[76] K Ezawa. General continuous-time Markov model of sequence evolution via inser-

tions/deletions: are alignment probabilities factorable? BMC Bioinformatics., 17:304,

2016. Erratum in: BMC Bioinformatics (2016) 17:457.

[77] K Ezawa. General continuous-time Markov model of sequence evolution via inser-

tions/deletions: local alignment probability computation. BMC Bioinformatics., 17:397,

2016.

[78] K Ezawa, D Graur, and G Landan. Perturbative formulation of general continuous-time

Markov model of sequence evolution via insertions/deletions, Part IV: incorporation of

52

substitutions and other mutations. available in bioRxiv with doi: 10.1101/023622.,

2015.

[79] K Ezawa. New perturbation method to compute probabilities of mutually adjoining

insertion-type and deletion-type gaps in ancestor-descendant pairwise sequence align-

ment under genuine sequence evolution model with realistic insertions/deletions: the

”last piece of the puzzle.”. preprint (KEZW BI ME00005.lastpiece.pdf) available at:

https://www.bioinformatics.org/ftp/pub/anex/Documents/Preprints/., 2020.

[80] K Ezawa. (Approximate) Solutions to some technical issues on alignment probability

calculation under genuine sequence evolution model with realistic insertions/deletions.

(in preparation.).

[81] D Sankoff. Minimal mutation trees of sequences. SIAM J of Applied Math., 28:35–42,

1975.

53

