Likelihood theory of DNA insertions／deletions and truthful Multiple Sequence Alignment（MSA）
 －－background and outline－－

DNA 挿入／欠失の尤度理論と正しい Multiple Sequence Alignment（MSA）
－－背景と概要－－

> 矢田研セミナー (2014/06/18)
> 担当: 江澤 製
© 2014 Kiyoshi Ezawa．［Open Access］This file is distributed under the terms of the
Creative Commons Attribution 4．0 International License（http：／／creativecommons．org／licenses／by／4．0／）， which permits unrestricted use，distribution，and reproduction in any medium， provided you give appropriate credit to the original author（K．Ezawa）and the source
（https：／／www．bioinformatics．org／ftp／pub／anex／Documents／Presentations／Ezawa2014．YLseminar20140618＿CC4．pdf），
provide a link to the Creative Commons license（above），and indicate if changes were made．
© 2014 江澤 潔［オープンアクセス］このファイルはクリエイティブ．コモンズ 表示 4.0 国際ライセンス の条項の下で配布されます。
条項は，このファイルの無制限の使用，配布，そしていかなる媒体への複製を許可します，が， その為には，あなたは以下のことを守らねばなりません：
（1）このファイル（あるいはその中身）が原著者（江澤）および出元
 によるものであることを公に認め，そのことを明確に示す；
クリエイティブコモンズライセンスヘのリンク（上記）を与える； そして（3）もし変更が施されたらそれを明確に示す。

プロジェクトの目的

1．MSA（multiple sequence alignment）から過去 のDNA 挿入／欠失（insertions／deletions）を推定 する尤度理論（likelihood theory）を構築し，

このセミナーでは，プロジェクトの背景と全体像について説明する。

DNA変異は分子進化の駆動力

分子進化は（集団に固定した）DNA変異が蓄積した結果と考えること ができる。

DNA変異のタイプ

＊組み換えは通常，同一集団内で起こり，種間配列解析で検出するのは難しい。 ［が，異所性組み換え（ectopic recombination）や水平伝搬（horizontal transfer）等は種間配列解析でも検出し得る。］
＊その他，重複（duplication），逆位（inversion）等の genome rearrangements も重要な変異であるが，（global）alignment では（広い意味で）挿入／欠失とみなされる（こ ともある）。

挿入／欠失はDNA変化の大部分を占める

例）ヒト（human）とチンパンジー（chimpanzee）のゲノム比較 （e．g．，Britten，2002；
The international Chimpanzee Chromosome 22 Consortium，2004； The Chimpanzee Sequencing and Analysis Consortium，2005）

塩基置換による違いは 1．2－1．5\％挿入／欠失も加えると $4-5 \%$
．．．挿入／欠失はゲノム間の違い（塩基数） の約70\％を占める！

他の種の近縁ゲノム比較でも挿入／欠失が塩基の違いの大部分 （75－98\％）を占める（Britten et al．，2003）

（問題点1）現在の分子進化解析は点変異中心

（Extracted from Fig． 6 of Kellis et al．（2003）．）
Scer
Spar
Smik
Sbay

（理由1）データの入手しやすさ。
… 多少質の悪いMSAでも「良質な」領域を選んで解析できる。 （理由2）（尤度に基づく）理論の確立と便利な解析ツ一ルの存在。
（e．g．，Felsenstein，2004；Yang，2006）
しかし，，ゲノム変化の大多数を知るには，DNA 挿入／欠失も まじめに調べなければならない。
＝＞正しい multiple sequence alignment（MSA）と，
DNA 挿入／欠失を推定する理論 が必須になる。

MSAは（相同）配列解析の Holy Grail（Gusfield，1997）

Holy Grail：

Jesus の最後の晩餐で使われた丼（bowl），杯（cup），皿（plate）。 （Arthur 王伝説等に登場し，騎士達が追い求めたらしい。）

＝＞（比喩）大いなる欲望と追求の対象。
（Image from http：／／home．messiah．edu／
\sim tp1180／page\％204．html）

MSAは（相同）配列解析の Holy Grail（Gusfield，1997）

Holy Grail：

Jesus の最後の晩餐で使われた井（bowl），杯（cup），皿（plate）。 （Arthur 王伝説等に登場し，騎士達が追い求めたらしい。）
＝＞（比喩）大いなる欲望と追求の対象。
（Image from http：／／home．messiah．edu／ ～tp1180／page\％204．html）

MSAは（相同）配列解析の Holy Grail（Gusfield，1997）

Holy Grail：

Jesus の最後の晩餐で使われた井（bowl），杯（cup），皿（plate）。 （Arthur 王伝説等に登場し，騎士達が追い求めたらしい。）
＝＞（比喩）大いなる欲望と追求の対象。

正しいMSA は分子進化 events の推定に使える（1／2）

（枝長：すべて 0.05 置換／塩基；挿入頻度 $=$ 欠失頻度 $=0.005$ event／site）
anc CTG－－－－－－GTATGCTTAAACA－－－－－－－－－AGTACGCCCAACCCCTACA 001 CTG－－－－－－GTATGCTTAGACA－－－－－－－－－AGTACG－CCACCCCCTACA 002 CTG－－－－－－GTATGATTAAACAGTATCCTCAAGTACGCCCAACCCCTACA 003 CTGGGGCGAGTATGCTTAAACA－－－－－－－－－AGTACGCCCAACCCCTACA

正しいMSA は分子進化 events の推定に使える（2／2）

（枝長：すべて 0.05 置換／塩基；挿入頻度 $=$ 欠失頻度 $=0.005$ event／site）

＊枝が短いときは再節約法（maximum parsimony）が充分良く近似する。 （枝が長いときは events／祖先状態の確率分布を用いた方が安全。）

（問題点2）現存のMSA 復元プログラムは十分に正確ではない（ $1 / 3$ ）

例 ：2つの異なるMSA復元プログ ラム（A．ClustalW；B．PRANK +F ） が示唆するHIV \＆SIV の envelope 糖タンパク，gp120， の全く異なる進化シナリオ。

（From Figure 1 of Löytynoja and Goldman（2008）．）
－－－MSA errors は分子進化機構の推定 errors に直接つながる！！

（問題点2）現存のMSA 復元プログラムは十分に正確ではない $(2 / 3)$

間違った MSA columns（列）の割合：
5\％－50\％（Loytynoja and Goldman，2008）
50\％－90\％（Landan and Graur，2009）
（条件によってかなり異なるが，一般的には無視できない。）

64 taxa
32 taxa
～primates
\sim primates

+ rodents
（Extracted from Figure 3 of Löytynoja and Goldman（2008））

（問題点2）現存のMSA 復元プログラムは十分に正確ではない（3／3）

MSA 復元 errors の主な要因：
（要因1）MSA空間探索は本質的に不完全；
（要因2）score 計算がDNA挿入／欠失の歴史には無頓着；
（要因3）Affine gap－penalty は実際の挿入／欠失の長さ分布に fit しない；
（要因4）そもそも，分子進化は確率過程，従って，（真の）最適解が本当のMSAとは限らない。

（要因1）MSA空間探索は本質的に不完全（1／2）

綱羅的なMSA空間探索は実質的には不可能である。
（ N 個の長さ L の配列をalign するには，少なくとも $O\left(L^{N}\right)$ の時間 を要する）
＝＞現在のほぼすべてのMSA復元は
（group 対 group）pairwise alignment（PWA）の繰り返しによる：

Progressive alignment

Iterative refinement

時間はかなり節約できる（典型的には $O\left(N \times L^{2}\right)$ ）が，局所的最適解（local optimum）に trap される恐れがある。

（要因1）MSA空間探索は本質的に不完全（2／2）

不完全なMSA空間探索による「悲劇」の例：

（Extracted from Figure 2 of Katoh and Standley（2013）．）
（要因2）現在主流の score 計算はDNA挿入／欠失 の歴史には無頓着（1／2）
－現在主流のMSAプログラムは（特にタンパク質や構造RNA等 の）保存領域の同定に重点を置いている。 ．．．多くの heuristics（それが適用できない問題には無力）を導入。
－MSA errors の一因は，（特に progressive alignment での）gap penalties の計算法にもある（例：下図）。

種特異的なDNA挿入 $\begin{array}{lll} & \text { MSA } & \text { Tree } \\ 1 & \text { ACTG } \\ 2 & A--G & 2 \\ 3 & A--G & 3 \\ 4 & A--G & 4\end{array}$

Progressive alignmentは繰り返し gap penalties を課す

（要因2）現在主流の score 計算はDNA挿入／欠失

 の歴史には無頓着（ $2 / 2$ ）実際，現存のMSA復元プログラムのほとんど（PRANK以外）は， DNA挿入の頻度を過小評価し，DNA欠失の頻度を過大評価する。
\square CLUSTAL ■MUSCLE ■MAFFT ■T－COFFEE ロPRANK ${ }_{+}$F

（Extracted from Figure 3 of Löytynoja and Goldman（2008））
（過去のデータ解析でしばしば観測された「DNA欠失の優勢」 も実はこの estimation bias によるのかも知れない，，，）

（要因3）Affine gap－penalty（幾何分布）は実際の挿入／欠失の長さ分布に fit しない（ $1 / 3$ ）

I．現在の alignment 復元で常用されているのはAffine gap－penalty

（要因3）Affine gap－penalty（幾何分布）は実際 の挿入／欠失の長さ分布に fit しない（ $2 / 3$ ）

II．実際の挿入／欠失長は power－law に従う

過去の大規模解析では，挿入／欠失された DNA／アミノ酸配列の長さは
power－law：$\quad \mathbf{P}_{\mathrm{I} / \mathrm{D}}[l]=C l^{-\gamma} \quad(\gamma=1 \sim 2)$

に従うことか権測された。
［タンパク質：Gonnet et al．1992；Benner et al．1993；Chang and Benner 2004.
DNA：Gu and Li 1995；Zhang and Gerstein 2003；The International Chimpanzee Chromosome 22 Consortium 2004；Yamane et al．2006；Fan et al．2007．］

（Extracted from figure 3 of Zhang and Gerstein 2003）

（Figure 3 of Chimp Chr． 22 Consortium 2004）

（要因3）Affine gap－penalty（幾何分布）は実際 の挿入／欠失の長さ分布に fit しない（ $3 / 3$ ）

III．幾何分布（geometric distribution）は power－law に fit しない

最小二乗（LS）fitの結果（線型表示）

最小二乗（LS）fitの結果（対数表示）

実際，power－law を用いると PWA や（PW）配列比較解析の精度や整合性が向上する（Cartwright 2006，2009）。

（要因4）そもそも，分子進化は確率過程

仮に「完譬な」MSA scoreを用いて「完全な」MSA空間探索をして，「（真の）最適MSA」が得られたとしても，
それが本当のMSAであるとは限らない。

例）

最適 MSA

Seq1 ATCG Seq2 ATCG
Seq3 AT－G

実際，ある大規模 simulation 解析（Lunter et al．2008）によると， PWA errors の大半はこのような分子進化の偶然性（stochasticity）が原因であると見積もられた。

問題点のまとめ（1）

（問題点1）現在の解析は点変異中心
．．．進化上ののDNA変化の約 30% しか扱えない。
＝＞残り 70% を扱うには，
DNA 挿入／欠失に着目する必要。その為に，
＊挿入／欠失を解析する理論
と
＊正しいMSA
が必要。

問題点のまとめ（1）と解決策

（問題点1）現在の解析は点変異中心
．．．進化上ののDNA変化の約30\％しか扱えない。
＝＞残り 70% を扱うには，
DNA 挿入／欠失に着目する必要。その為に，
＊挿入／欠失を解析する理論く＝挿入／欠失の尤度理論の構築
と
＊正しいMSA
が必要。しかし，，

問題点のまとめ（2）

（問題点2）現在のMSA復元は十分に正確ではない
（要因1）MSA空間探索は本質的に不完全；
（要因2）score 計算がDNA挿入／欠失の歴史には無頓着；
（要因3）Affine gap－penalty（幾何分布）は実際の挿入／欠失の長 さ分布（power－law）に fit しない；
（要因4）そもそも，分子進化は確率過程，従って，（真の）最適解が本当のMSAとは限らない。

問題点（2）の解決策（案）（1）

（問題点2）現在のMSA復元は十分に正確ではない

（要因1）MSA空間探索は本質的に不完全；
（要因2）score 計算がDNA挿入／欠失の歴史には無頓着；
（要因3）Affine gap－penalty（幾何分布）は実際の挿入／欠失の長
さ分布（power－law）に fit しない；
（要因4）そもそも，分子進化は確率過程，従って，（真の）最適
解が本当のMSAとは限らない。
共／準最適解の含包
挿入／欠失の尤度理論 \times 塩基置換の尤度理論

挿入／欠失の尤度理論 \times 塩基置換の尤度理論 を用いた MSA score（1／2）

（基本的考え）
MSA の尤度（正確には，MSA の条件付き確率）：

Pr［MSAI進化モデル］

は，理想的な MSA score として使える䇢である。
（理由1）原則として，尤度が高ければ高い程，そのMSA は実現しやすい；
（理由2）尤度は，分子進化過程（置換，挿入／欠失）の歴史をきちんと考慮して計算される（次のスライド）
＝＞問題点2の要因2は自然に克服できる；
（理由3）実際の挿入／欠失長の分布（e．g．，power－law）を考慮に入れれば更に精度が向上する䇢である。

挿入／欠失の尤度理論 \times 塩基置換の尤度理論 を用いた MSA score（2／2）

（第一近似では，）MSA の尤度は挿入／欠失部分と塩基置換部分 に分解できる。

例）

（問題点A）計算時間が余計にかかる（PWA でも最低 $\left.O\left(L^{3}\right)\right)$ 。

共／準最適解の含包

共／準最適解（co－／sub－optimum solution）：

最適解（optimum solution）と同じ，もしくは少しだけ低い尤度を持つ MSA。
（案）これらは少なからぬ実現可能性があるので，尤度で重み付けして
「選択肢」に含めることにより，本当のMSAを見逃す可能性を減らす。
以前の例）

$$
\begin{aligned}
& \left\lceil\text { 推定 MSA」 }=\begin{array}{l}
1 \text { ATCG } \\
2 \text { ATCG } \\
3 \text { AT-G }
\end{array} \quad+\begin{array}{l}
1 \text { ATCG } \\
2 \text { ATCG } \\
3 \text { A-TG }
\end{array} 12 \%+\ldots\right.
\end{aligned}
$$

問題点（2）の解決策（案）（1＇）

（問題点2）現在のMSA復元は十分に正確ではない

（要因1）MSA空間探索は本質的に不完全；
（要因2）score 計算がDNA挿入／欠失の歴史には無頓着；
（要因3）Affine gap－penalty（幾何分布）は実際の挿入／欠失の長
さ分布（power－law）に fit しない；
（要因4）そもそも，分子進化は確率過程，従って，（真の）最適
解が本当のMSAとは限らない。
共 $/$ 準最適解の含包

挿入／欠失の尤度理論 \times 塩基置換の尤度理論

－－－（問題点A）計算時間が余計にかかる

問題点（2）の解決策（案）（2）

局所的相同性を利用した効率的な MSA 空間探索
（問題点2）現在のMSA復元は十分に正確ではない
（要因1）MSA空間探索は本質的に不完全；
\rightarrow（要因2）score 計算がDNA挿入／欠失の歴史には無頓着；
（要因3）Affine gap－penalty（幾何分布）は実際の挿入／欠失の長 さ分布（power－law）に fit しない；
（要因4）そもそも，分子進化は確率過程，従って，（真の）最適解が本当のMSAとは限らない。

共／準最適解の含包

挿入／欠失の尤度理論 \times 塩基置換の尤度理論

－－－（問題点A）計算時間が余計にかかる

局所的相同性を利用した効率的な MSA 空間探索（1／3）

（問題点2；要因1）従来の（大局的）progressive alignment や iterative refinement では局所的最適解にtrapされる危険がある。
（問題点A）（現実的な挿入／欠失長分布を用いた）尤度計算は時間がかかる。
（案）まず，配列間の局所的 PWA を行い，
明らかに相同な領域のペア（ほぼgapなし）はそのまま align したままにして おいて，残った領域（普通 gap の近辺）のみ改めて調べる。

局所的相同性を利用した効率的な MSA 空間探索（2／3）

．．．この戦略により，探索空間は著しく縮小する！！

＊この戦略は，MLAGAN（Brudno et al．2003）やMISHIMA（Kryukov and Saitou 2010）等で導入された divide－and－conquer 戦略の発展版と考えることができる。 ＊また，この戦略は，TBA（（B）LASTZ の結果から直接（断片的）MSAを構築）
（Blanchette et al．2003）等で使われる algorithm の洗練版と見なすこともできる。

局所的相同性を利用した効率的な MSA 空間探索（3／3）

（余談）この戦略は現存の（global）MSA プログラムでは扱うのが難しいゲノム再編成（genome rearrangements）
（e．g．，indels，duplications，inversions，translocations，transpositions） の頻発する，不安定ゲノム領域の alignment にも応用できるかも しれない。

逆位（inversion）

重複
（duplication）

問題は，，，どうに結果を表現（表示）するか，，，

まとめ（背景）

1．DNA挿入／欠失はゲノム変化の約70\％を占める。
．．．しかし，これまでは点変異の解析が中心だった。

2．MSAは配列解析の Holy Grail。

．．．しかし，正しいMSAの復元は容易ではなかった。

まとめ（概要）

1．DNA挿入／欠失はゲノム変化の約70\％を占める。
．．．しかし，これまでは点変異の解析が中心だった。

ゲノム変化（塩基数） に占める割合

点変異
DNA
挿入／欠失
＝＞我々は，DNA 挿入／欠失の尤度理論で
「無視されてきた 70% 」の研究への突破口を開く！

2．MSAは配列解析の Holy Grail。

．．．しかし，正しいMSAの復元は容易ではなかった。
＝＞我々は，上記尤度理論と効率的MSA空間探索戦略で MSAの「正しい復元」（truthful reconstruction）に迫る！

謝辞（Acknowledgements）

入門（initiation）：
斎藤 成也 教授（遺伝研）
Dr．Kryukov，Kirill（遺伝研－＞東海大学）
祖先プロジェクト\＆共同研究（ancestral project \＆collaboration）：
Prof．Graur，Dan（University of Houston）
Dr．Landan，Giddy（UH－＞Heinrich－Heine University）
創造的刺激（inspiration）：
Dr．Cartwright，Reed A．（UH－＞Arizona State University）
支援 \＆共同研究（見込み）（support \＆（prospective）collaboration）：
矢田 哲志 教授（九州工業大学）
恩師 \＆その他の恩人（mentors \＆saviors）：
吉川圭二博士（故：元大阪大学教授），二宮正雄博士（元基研教授），垣谷俊昭博士（元名古屋大学教授），五條堀孝博士（元遺伝研教授），池尾一穗博士（遺伝研准教授），印南秀樹博士（総研大葉山准教授）

参考文献（1／4）

－S．A．Benner，M．A．Cohen，G．H．Gonnet（1993），＂Empirical and structural model for insertions and deletions in the divergent evolution of proteins．＂J．Mol．Biol． 229：1065－1082．
－M．Blanchette，W．J．Kent，C．Riemer，L．Elnitski，A．F．A．Smit，K．M．Roskin，R． Baertsch，K．Rosenbloom，H．Clawson，E．D．Green，D．Haussler，W．Miller（2003）， ＂Aligning multiple genomic sequences with the threaded blockset aligner．＂Genome Res．14：708－715．
－R．J．Britten（2002），＂Divergence between samples of chimpanzee and human DNA sequences is 5\％，counting indels．＂PNAS 99：13633－13635．
－R．J．Britten et al．（2003），＂Majority of divergence between closely related DNA samples is due to indels．＂PNAS 100：4661－4665．
－M．Brudno，C．B．Do，G．M．Cooper，M．F．Kim，E．Davydov，NISC Comparative Sequencing Program，E．D．Green，A．Sidow，S．Batzoglou（2003），＂LAGAN and multi－LAGAN：Efficient tools for large－scale multiple alignment of genomic DNA．＂Genome Res．13：721－731．
－R．A．Cartwright（2006），＂Logarithmic gap costs decrease alignment accuracy．＂ BMC Bioinformatics 7：527．
－R．A．Cartwright（2009），＂Problems and solutions for estimating indel rates and length distributions．＂Mol．Biol．Evol．26：473－480．

参考文献（2／4）

－M．S．S．Chang，S．A．Benner（2004），＂Empirical analysis of protein insertions and deletions determining parameters for the correct placement of gaps in protein sequence alignments．＂J．Mol．Biol．341：617－631．
－Y．Fan，W．Wang，G．Ma，L．Liang，Q．Shi，S．Tao（2007），＂Patterns of insertions and deletion in mammalian genomes．＂Curr．Genomics 8：370－378．
－G．H．Gonnet，M．A．Cohen，S．A．Benner（1992），＂Exhaustive matching of the entire protein sequence database．＂Science 256：1443－1445．
－O．Gotoh（1982），＂An improved algorithm for matching biological sequences．＂J ． Mol．Biol．162：705－708．
－X．Gu，W．－H．Li（1995），＂The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment．＂J．Mol．Evol．40：464－473．
－D．Gusfield（1997），＂Algorithms on Strings，Trees，and Sequences：Computer Science and Computational Biology．＂（Cambridge Univ．Press，Cambridge，NY）．
－K．Katoh and D．M．Standley（2013），＂MAFTT multiple sequence alignment software version 7：improvements in performance and usability．＂Mol．Biol．Evol． 30：772－780．
－M．Kellis et al．（2003），＂Sequencing and comparison of yeast species to identify genes and regulatory elements．＂Nature 2003：241－254．

参考文献（3／4）

－W．J．Kent et al．（2003），＂Evolution＇s cauldron：Duplication，deletion，and rearrangement in the mouse and human genomes．＂PNAS 100：11484－11489．
－K．Kryukov，N．Saitou（2010），＂MISHIMA－a new method for high speed multiple alignment of nucleotide sequences of bacterial genome scale data．＂BMC Bioinformatics 11：142．
－G．Landan and D．Graur（2009），＂Characterization of pairwise and multiple sequence alignment errors．＂Gene 441：141－147．
－A．Löytynoja and N．Goldnam（2008），＂Phylogeny－aware gap placement prevents errors in sequence alignment and evolutionary analysis．＂Science 320：1632－1635．
－G．Lunter，A．Rocco，N．Mimouni，A．Heger，A．Caldeira，J．Hein（2008）， ＂Uncertainty in homology inferences：Assessing and improving genomic sequence alignment．＂Genome Res．18：298－309．
－S．B．Needleman and C．D．Wunsch（1970），＂A general method applicable to the search for similarities in the amino acid sequence of two proteins．＂J．Mol．Biol． 48：443－453．

参考文献（4／4）

－The Chimpanzee Sequencing and Analysis Consortium（2005），＂Initial sequence of the chimpanzee genome and comparison with the human genome．＂Nature 437：69－87．
－The International Chimpanzee Chromosome 22 Consortium（2004），＂DNA sequence and comparative analysis of chimpanzee chromosome 22．＂Nature 429：382－388．
－Y．Yamane，K．Yano，T．Kawahara（2006），＂Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane，maize，and rice．＂ DNA Res．13：197－204．
－Z．Zhang，M．Gerstein（2003），＂Patterns of nucleotide substitution，insertion，and deletion in the human genome inferred from pseudogenes．＂Nucl．Acids Res． 31：5338－5348．

