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anc  CTG------GTATGCTTAAACA---------AGTACGCCCAACCCCTACA!
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I.  alignment Affine gap-penalty"
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(Needlesman and Wunsch, 1970)  DP  (Gotoh, 1982)

Linear gap penalty:   PG(l) = α l�

/  model
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(Extracted from figure 3 of Zhang and Gerstein 2003)

Lineage-specific insertions and deletions
Through alignment of the high-quality chromosomal sequences of
HSA21q and PTR22q we identified about 68,000 indels in total.
Greater than 99% of the indels are shorter than 300 bp, but there is a
clear abundance of those around 300 bp in size (Fig. 2). These sites
are probably produced either through human insertions/chimpanzee
deletions or vice versa. Thus the precise identification of these
molecular events in the two genomes is essential to understand the
processes underlying human and chimpanzee evolution. For this
purpose, we tested 567 indels larger than 300 bp using DNA samples
from five human, five chimpanzee, one gorilla and two orang-utan
individuals by polymerase chain reaction (PCR) amplification
using the same primer sets to classify in which lineage these indels
arose (see Methods and Supplementary Information). We com-
pared the size of the successfully amplifiedDNA fragments from 219
indels, of which 193 showed lineage-specific changes in size. Thus, we
were able to distinguish insertion from deletion events independently
in human and chimpanzee lineages, and to estimate the original
state of these regions in the genome of the last common ancestor.
We then classified the indels based on their contents (Fig. 1b).

Insertions were mostly produced by the integration of Alu and L1
elements, whereas deletions were not related to particular repetitive
structures except in a few cases. We observed different distributions
of newly integrated Alu elements between HSA21q and PTR22q:
56% of new Alu elements in HSA21q are inserted in the half of the
chromosome with high GþC content, whereas 70% in PTR22q are
in the half with low GþC content; new LINEs are more frequent in
the half with low GþC content of both chromosomes.
The plots of human insertions and chimpanzee insertions show

different multimodal curves (Fig. 3). On the basis of the positions of
the insertion sites on HSA21q and PTR22q, we found that most (41
and 13, respectively) of the insertions (300–350 bp in length) were
members of the AluY family in both chromosomes. In contrast, only
a smaller number of insertions, mostly L1 and LTR elements, were
found in the 370–1,000-bp size range. Notably, human and chim-
panzee deletion plots form a similar linear line, suggesting a
relationship between logarithmic size of deletions and the cumu-
lative frequency in both species (Fig. 3).
We also identified integration of L1PA2 elements after human–

chimpanzee speciation, indicating that L1PA2 has been active in
both human and chimpanzee lineages, although the activity seems
to be lower in the human lineage. Two L1PA2 elements reside in
different strands but overlap in a single inserted region in PTR22q,
suggesting a single L1PA2 integration event followed by an inversion
event within the same region.We also found that some insertions in
PTR22q lie within Alu elements (mostly AluSx) on the same strand.

Unlike the insertions, deletions do not correspond exactly to any
ISR elements, indicating that deletion events are independent of
ISRs. However, one of the deleted regions in HSA21q corresponds
perfectly to a single AluYelement in PTR22q, and a deleted region in
PTR22q corresponds almost perfectly to a single AluYb8 element in
HSA21q. In the former case, there are two identical 10-mer
segments around the deleted AluY element, and in the latter case,
the AluYb8 element is embedded within a single AluSx element at a
site in the 14-bp A-rich region in the middle of the Alu element,
generating 14–15-bp poly-A/T stretches around AluYb8. Thus, the
deletion of these elements may also have been generated by
homologous recombination between these relatively short identical
or similar flanking segments.

Calculations from the indels in the 300–5,000-bp range indicate
that both chromosomes have undergone a net loss in size since
speciation despite frequent insertion events: HSA21q has gained
32 kb but lost 39 kb, whereas PTR22q has gained 25 kb and lost
53 kb. This suggests that the ancestral chromosome was larger than
both HSA21q and PTR22q, and that PTR22q has suffered more
losses than HSA21q since speciation. The large indels (.5 kb)
detected in the sequences, which were experimentally confirmed,
are found in the pericentromeric, 10Mb, 17Mb and 29Mb regions.
HSA21q has more indels greater than 10 kb than PTR22q.

With the knowledge of which Alu family element was inserted
after speciation, we carried out an evolutionary analysis of the AluY
families that have been inserted into HSA21q and PTR22q. A
neighbour-joining analysis revealed that such AluY elements can
be largely separated into chimpanzee and human groups and
suggesting contribution from a few active elements (Fig. 4). Taken
as a whole, these results indicate that the expansion of particular
elements was repeated several times during the course of evolution.
Humans seem to have experienced such expansionsmore frequently
and more recently than chimpanzees. If we could determine the
oldest expansion event through genomic comparison, we might be
able to identify whether such an Alu burst was the driving force for
speciation between the two species from the common ancestor.
Amplification of Alu elements during the evolution of primates and
alteration of gene functions through the insertion of repetitive
elements has been discussed inmany previous studies25–34. However,
further wide-ranging analyses comparing the chimpanzee and other
primate genomes is necessary to clarify these points.

Chimpanzee and human single nucleotide polymorphisms
Single nucleotide polymorphisms (SNPs) provide important clues
for detecting ancestral and mutant alleles within the human

Figure 2 Size distribution of indels. All of the indels are calculated as insertions either in
HSA21q (blue) or PTR22q (red). The first two bins are off the scale.

Figure 3 Size-dependency of indel frequency. Cumulative counts of experimentally

determined lineage-specific insertions and deletions. The x axis represents the log-scaled

size of indels (bp), whereas the y axis represents the cumulative counts of lineage-specific

insertions and deletions.
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DNA  Gu and Li 1995; Zhang and Gerstein 2003; The International Chimpanzee 
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(Figure 3 of Chimp Chr. 22 Consortium 2004)
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