Instructions of how to use PGEToolbox

Installation and Getting Started

PGEToolbox can be downloaded from http://bioinformatics.org/pgetoolbox/

Step by step instruction:

- 1. Download 'PGEToolbox.zip' or 'PGEToolbox.tar.gz' file;
- 2. Unzip the files in a local directory keeping the structure of sub-directories. A
- 3. directory called pgetoolbox will be created;
- 4. Start up Matlab;
- 5. Add the local directory . /pgetoolbox to the Matlab path;
- 6. From Matlab run command PGEGUI. This should bring up the main menu GUI of the toolbox.

Tutorial and Help System

PGEToolbox provides a comprehensive tutorial and help system. Command PGEDEMO brings up slideshow-style demos for sequence-based and SNP-related analysis. Command help pgetoolbox lists the name of functions and brief introduction of those functions in the command line window. Command help or edit followed by a function name gives the usage description or the source code of the function. PGEToolbox website contains a step-by-step tutorial and documentation of functions. PGEGUI contains a help menu, in which user can bring up Matlab build-in help browser. The version checker under the same menu allows user to check for the latest updates. Supplementary Figures

Figure S1 - PGEToolbox GUI (A) File submenu; (B) Data submenu; (C) Analysis submenu; and (D) Tools submenu

(A)		
Population Genetics & Evolution	ı Toolbox (PGEToolbox)	
File Data Analysis Tools Help		لا د
Open Data File Close Data File		
Save / Export Data As 🕨 🕨	FASTA Format File	
Sequence Text Editor	PHYLIP Format File	
Generate Random Sequences	PAML Format File	
Exit	MAT Format File	
	Workspace Variable (ALN)	

(B)

📣 Pe	opulation Genetics & Evolution Toolbox	(PGEToolbox)
File	Data Analysis Tools Help	۲
	View Sequences	
	View Sequences Info	
	Assign Population	
	Assign Locus	
	Remove Gaps in Sequences	
	Ploymorphic (Segregating) Sites Only	
	Parsimony Informative Sites Only	
	Include / Exclude Sequences	
	Include / Exclude Sites	
	Restore Sequences	

(C)

📣 Popula	tion Genetics & Evolution Toolbox (PGEToo	box)	
File Data	Analysis Tools Help	¥د ا	
	Polymorphic Sites		
	Nucleotide Diversity (Pi)		
	Estimate Theta (4Nµ)		
	Site-Freq Spectrum (sfs)		
	Tajima's Test (D)		
	Fu & Li's Tests (D*, F*)		
	Fay & Wu's Test (H)		
	Sliding Windows Analysis	Tajima's D	
	Haplotype Diversity (Hd)	Fu's D* & F*	
	Ewens-Watterson's Homozygosity Test	Fu's Fs	
	Fu's (Fs) & Strobeck's (S) Tests		
	Ramos-Onsins & Rozas Test (R2)		
	McDonald-Kreitman Test (command line)		
	McDonald-Kreitman Test (GUI)		
	Hudson, Kreitman and Aguadé Test		
	Linkage Disequilibrium		
	Wall's Tests (B, Q)		

(D)

A Population Genetics & Evolution Toolbox (PGEToolbox)								
File	Data	Analysis	Tools	Help				2
			Co	alescent Simulations				
			Tes	st of Independence: 2×2 Table				
			Ra	tio of Adaptive Nonsyn, Sub, (alpha) 🕨	Fay, Wycoff & Wu (01)			
			MK	MKRPF Test		Smith & Eyre-Walker (02)		
			SNP Tool Fay, Wycoff & Wu (01), Sample Data			ample Data		
					Smit	:h & Eyre-Wa	ilker (02), :	Sample Data

Figure 2 - Example output from function estimatetheta

The polymorphism sequences were randomly generated. The results are consistent with those from DnaSP.

Figure 3 - Relationship among calculation, simulation and testing functions Using functions tajima89d, tajima89d_simu and tajima89d_test as example.

Figure 4 - Coalescent simulation dialog and histogram of result

(A) Dialog of parameter input for coalescent simulation. Simulated data will be generated by using 30, the observed number of segregating sites in the sample and under the conservative assumption of no recombination. (B) Histogram of estimated statistics (here, Tajima's *D*) from simulated replicates.

Figure 5 - Example results from SNP-related functions

(A) Visual genotype (VG) view. In each panel, a graphical representation of genotypes is shown for the CHB (Chinese individuals from Beijing) and CEU (CEPH trios from Utah) samples. Rows correspond to individuals and columns denote SNPs. For each SNP, blue, yellow, and red boxes indicate whether the individual is homozygous for the common allele, heterozygous, or homozygous for the rare allele, respectively. Cyan boxes indicate missing data. The SNPs are from human locus EDAR, in which strong signature of positive selection has been identified in the CHB sample [32]. (B) Plot of EHH for two core haplotypes of the single SNP, rs9819197, with haplotype data for HapMap CEU population. Red dash line indicates the position of the core SNP.

(B)

