From bioclusters@bioinformatics.org Thu Jul 1 14:31:26 2004 From: bioclusters@bioinformatics.org (Doug Shubert) Date: Thu, 01 Jul 2004 09:31:26 -0400 Subject: [Bioclusters] updated NCBI 2.2.9 RPMs In-Reply-To: <1088533045.16839.553.camel@protein.scalableinformatics.com> References: <1088533045.16839.553.camel@protein.scalableinformatics.com> Message-ID: <40E4122E.8080606@accessgate.net> This is a multi-part message in MIME format. --------------020304090509080005080001 Content-Type: text/plain; charset=us-ascii; format=flowed Content-Transfer-Encoding: 7bit Hello Joe, Ran your static 2.9.9.-5 build against a dynamic build from src. results are bellow. Please elaborate on the static compile flags you used. Doug SI-Static build 2.2.9-5 1,1,1564 2,2,1543 2,1,1572 3,4,3095 3,2,3097 3,3,3114 3,1,3117 4,1,796 5,1,1554 5,2,1558 6,1,789 2.2.9 src compiled dynamic 1,1,1660 2,1,1661 2,2,1665 3,2,3300 3,4,3311 3,1,3329 3,3,3329 4,1,855 5,1,1680 5,2,1682 6,1,851 Joe Landman wrote: >Folks: > > Fixed a number of problems with the spec file and with the build. >Also set up a working static build, so you won't need the same libraries >as I have. Makes the binaries quite a bit larger though. We are >working on getting the source RPM for this and the dynamic build out >later on today. You can pull the latest build from >http://downloads.scalableinformatics.com/downloads/ncbi/ (as usual). >These use the tarball as released from NCBI on 15-June. > >Note that this build corrects the performance problem on Opteron that >some people had reported to us. > >Joe > > > --------------020304090509080005080001 Content-Type: text/html; charset=us-ascii Content-Transfer-Encoding: 7bit Hello Joe,
Ran your static 2.9.9.-5 build against a dynamic build from src.
results are bellow.

Please elaborate on the static compile flags you used.
Doug

SI-Static build 2.2.9-5
1,1,1564
2,2,1543
2,1,1572
3,4,3095
3,2,3097
3,3,3114
3,1,3117
4,1,796
5,1,1554
5,2,1558
6,1,789

2.2.9 src compiled dynamic
1,1,1660
2,1,1661
2,2,1665
3,2,3300
3,4,3311
3,1,3329
3,3,3329
4,1,855
5,1,1680
5,2,1682
6,1,851


Joe Landman wrote:
Folks:

  Fixed a number of problems with the spec file and with the build. 
Also set up a working static build, so you won't need the same libraries
as I have.  Makes the binaries quite a bit larger though.  We are
working on getting the source RPM for this and the dynamic build out
later on today.  You can pull the latest build from 
http://downloads.scalableinformatics.com/downloads/ncbi/ (as usual). 
These use the tarball as released from NCBI on 15-June.  

Note that this build corrects the performance problem on Opteron that
some people had reported to us.

Joe

  
--------------020304090509080005080001-- From bioclusters@bioinformatics.org Thu Jul 1 14:49:23 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Thu, 01 Jul 2004 09:49:23 -0400 Subject: [Bioclusters] updated NCBI 2.2.9 RPMs In-Reply-To: <40E4122E.8080606@accessgate.net> References: <1088533045.16839.553.camel@protein.scalableinformatics.com> <40E4122E.8080606@accessgate.net> Message-ID: <1088689762.2787.30.camel@protein.scalableinformatics.com> On Thu, 2004-07-01 at 09:31, Doug Shubert wrote: > Hello Joe, > Ran your static 2.9.9.-5 build against a dynamic build from src. > results are bellow. > > Please elaborate on the static compile flags you used. Hi Doug: You should be able to pull the compilation options from the patches on the site. Depending upon the target, We tried to use the best performing options that resulted in correct execution. We have some unit tests in place, and this is why when users have indicated some problems we are quite interested to get their tests to see if we can uncover the problems (or if they are problems with our build). If you are doing an Opteron run, I believe we are using -O3 -msse2 -m64 as our compilation options. On our machines, the static and dynamic RPMs give within a few percent of each other in terms of performance on BBS. By default, NCBI uses -mpentiumpro on x86 class machines, including Opteron. Our patches fix this, and have worked well since 2.2.6. What is interesting is that our 64 bit binary is about 20-30% faster than a similarly compiled 32 bit binary (built on same hardware, with same compilers, but using the -m32 option and no -msse2). The moral of this anecdote (which has some significant amount of analysis behind it, as will be seen in a few weeks) is that the 64 bit binaries seem to be better on average, and in number of cases, significantly better. We are getting on average about 28% improvement in various BLAST cases, about 30% in HMMer, and about 30-40% in a number of chemistry applications. You can run the 32 bit versions, but the 64 bit seem to be (with few exceptions) better performing. Note: all the tests were done using GCC. We are going to try other compilers as well, and report on them. All RPMs, including the source are available from http://downloads.scalableinformatics.com/downloads/ncbi/ . The patches should be there as well, though you can always pull down the source RPM, install it, and run rpmbuild -bp --target=x86_64 ncbi-toolkit.spec (or ncbi-toolkit-static.spec if you wish to use that). Joe > Doug > > SI-Static build 2.2.9-5 > 1,1,1564 > 2,2,1543 > 2,1,1572 > 3,4,3095 > 3,2,3097 > 3,3,3114 > 3,1,3117 > 4,1,796 > 5,1,1554 > 5,2,1558 > 6,1,789 > > 2.2.9 src compiled dynamic > 1,1,1660 > 2,1,1661 > 2,2,1665 > 3,2,3300 > 3,4,3311 > 3,1,3329 > 3,3,3329 > 4,1,855 > 5,1,1680 > 5,2,1682 > 6,1,851 > > > Joe Landman wrote: > > Folks: > > > > Fixed a number of problems with the spec file and with the build. > > Also set up a working static build, so you won't need the same libraries > > as I have. Makes the binaries quite a bit larger though. We are > > working on getting the source RPM for this and the dynamic build out > > later on today. You can pull the latest build from > > http://downloads.scalableinformatics.com/downloads/ncbi/ (as usual). > > These use the tarball as released from NCBI on 15-June. > > > > Note that this build corrects the performance problem on Opteron that > > some people had reported to us. > > > > Joe > > > > -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Fri Jul 2 22:38:30 2004 From: bioclusters@bioinformatics.org (Malcolm Sole) Date: Fri, 02 Jul 2004 17:38:30 -0400 Subject: [Bioclusters] Oscar installation Message-ID: <40E5D5D6.5010304@broadleafservices.com> Hi Chris I am also trying to get systemimager to work with a 3Ware controller (and shortly with a SATA drive) I have been through the manual but cant find what you are referring to (I am somewhat new at this kernel stuff). Any pointer you could give me would be most well received. Even to pointing me to the right piece of documentation. TIA Malcolm In the above message you mention The systemimager 3.x autoinstall kernel that comes down via the PXE netboot did not see the drives so it bombed out with lots of errors. Teaching systemimager to download and 'insmod' the 3ware driver was pretty darn easy. From bioclusters@bioinformatics.org Tue Jul 6 16:35:15 2004 From: bioclusters@bioinformatics.org (Ognen Duzlevski) Date: Tue, 6 Jul 2004 15:35:15 +0000 (UTC) Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: <20040628162432.GE73468@iib.unsam.edu.ar> References: <1088435619.3470.58.camel@protein.scalableinformatics.com> <20040628162432.GE73468@iib.unsam.edu.ar> Message-ID: Hi, we are looking at a quad-cpu server for our bioinformatics apps like multithreaded clustalw, blast and some in-house multithreaded application I developed over time. I noticed that I can get a basic 8GB RAM 4xOpteron 848 with a RAID controller and a couple of hdds for close to $17,000. At the same time it looks like I can get a 4xXeon MP 2.7Ghz with the same ram/hdd configuration for close to the same price. Any insights on the performance of the Opteron quad boxes? How do they compare to their 32-bit counterparts like Xeon MPs? Have they proven suitable for your bioinformatics environment? Any advice would be valuable! Thanks, Ognen -- Ognen Duzlevski Digital Biology Laboratory 302 North Engineering Building University of Missouri-Columbia (573) 882-5978 From bioclusters@bioinformatics.org Tue Jul 6 17:13:25 2004 From: bioclusters@bioinformatics.org (Guy Coates) Date: Tue, 6 Jul 2004 17:13:25 +0100 (BST) Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: <20040706160122.53852D1F19@www.bioinformatics.org> References: <20040706160122.53852D1F19@www.bioinformatics.org> Message-ID: > Any insights on the performance of the Opteron quad boxes? How do they > compare to their 32-bit counterparts like Xeon MPs? Have they proven > suitable for your bioinformatics environment? Short answer; the opterons blow away the Xeons. We've exaustively benchmarked both sorts of systems, and the opterons consistently come out ahead on both 32 and 64 bit versions of wublast, ncbi-blast, exonerate, repeatmasker and genewise. Cheers, Guy -- Dr. Guy Coates, Informatics System Group The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK Tel: +44 (0)1223 834244 ex 7199 From bioclusters@bioinformatics.org Tue Jul 6 17:30:45 2004 From: bioclusters@bioinformatics.org (Dow Hurst) Date: Tue, 06 Jul 2004 12:30:45 -0400 Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: References: <1088435619.3470.58.camel@protein.scalableinformatics.com> <20040628162432.GE73468@iib.unsam.edu.ar> Message-ID: <40EAD3B5.7070904@kennesaw.edu> From benchmarks I have seen done with dual Opterons and Xeons, the quad Opterons should benefit greatly from the onboard Hypertransport bus, so would blow the quad Xeons servers away. The Xeons are bandwidth limited beyond two processors due to bus design so can only compete with dual Opteron boxes. I'd love to see blast benchmarks comparing quad Xeons versus quad Opterons. Or, even the Russian 8way Opteron boards would be cool to see some benchmarks for in a clustered situation. Reducing the cost of the needed interconnects is a another benefit of having more CPUs per node, just as long as the onboard CPUs can trade info as fast as needed between each other. Dow Ognen Duzlevski wrote: > Hi, > > we are looking at a quad-cpu server for our bioinformatics apps like > multithreaded clustalw, blast and some in-house multithreaded > application I developed over time. > > I noticed that I can get a basic 8GB RAM 4xOpteron 848 with a RAID > controller and a couple of hdds for close to $17,000. At the same time > it looks like I can get a 4xXeon MP 2.7Ghz with the same ram/hdd > configuration for close to the same price. > > Any insights on the performance of the Opteron quad boxes? How do they > compare to their 32-bit counterparts like Xeon MPs? Have they proven > suitable for your bioinformatics environment? > > Any advice would be valuable! > > Thanks, > Ognen > > -- > Ognen Duzlevski > Digital Biology Laboratory > 302 North Engineering Building > University of Missouri-Columbia > (573) 882-5978 > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > -- __________________________________________________________ Dow Hurst Office: 770-499-3428 * Systems Support Specialist Fax: 770-423-6744 * 1000 Chastain Rd. Bldg. 12 * Chemistry Department SC428 Email: dhurst@kennesaw.edu * Kennesaw State University Dow.Hurst@mindspring.com * Kennesaw, GA 30144 * ************************************************************ This message (including any attachments) contains * confidential information intended for a specific individual* and purpose, and is protected by law. If you are not the * intended recipient, you should delete this message and are * hereby notified that any disclosure, copying, distribution * of this message, or the taking of any action based on it, * is strictly prohibited. * ************************************************************ From bioclusters@bioinformatics.org Tue Jul 6 18:45:26 2004 From: bioclusters@bioinformatics.org (Bernard Li) Date: Tue, 6 Jul 2004 10:45:26 -0700 Subject: [Bioclusters] Oscar installation Message-ID: <36BEEFA2DF192944BF71E072F7A5F4650A4036@xchange1.phage.bcgsc.ca> Hi Malcolm: If you do a search in the oscar-users list for the keyword '3ware', you may find some useful information. Cheers, Bernard=20 > -----Original Message----- > From: bioclusters-admin@bioinformatics.org=20 > [mailto:bioclusters-admin@bioinformatics.org] On Behalf Of=20 > Malcolm Sole > Sent: Friday, July 02, 2004 14:39 > To: bioclusters@bioinformatics.org > Subject: [Bioclusters] Oscar installation >=20 > Hi Chris > I am also trying to get systemimager to work with a 3Ware=20 > controller (and shortly with a SATA drive) >=20 > I have been through the manual but cant find what you are=20 > referring to (I am somewhat new at this kernel stuff). Any=20 > pointer you could give me would be most well received. Even=20 > to pointing me to the right piece of documentation. >=20 > TIA >=20 > Malcolm >=20 > In the above message you mention >=20 > The systemimager 3.x autoinstall kernel that comes down via=20 > the PXE netboot did not see the drives so it bombed out with=20 > lots of errors. Teaching systemimager to download and=20 > 'insmod' the 3ware driver was pretty darn easy. >=20 >=20 >=20 >=20 >=20 >=20 > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org=20 > https://bioinformatics.org/mailman/listinfo/bioclusters >=20 >=20 From bioclusters@bioinformatics.org Tue Jul 6 20:30:51 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Tue, 6 Jul 2004 15:30:51 -0400 Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: References: <1088435619.3470.58.camel@protein.scalableinformatics.com> <20040628162432.GE73468@iib.unsam.edu.ar> Message-ID: <20040706192257.M65602@scalableinformatics.com> On Tue, 6 Jul 2004 15:35:15 +0000 (UTC), Ognen Duzlevski wrote > Hi, > > we are looking at a quad-cpu server for our bioinformatics apps like > multithreaded clustalw, blast and some in-house multithreaded > application I developed over time. > > I noticed that I can get a basic 8GB RAM 4xOpteron 848 with a RAID > controller and a couple of hdds for close to $17,000. At the same time > it looks like I can get a 4xXeon MP 2.7Ghz with the same ram/hdd > configuration for close to the same price. Really (quad opteron price)? Parts alone for those units in that config will be pretty close to $16000. We have built a few custom units for various customers. The problem is memory pricing. Keeps fluctating. Check the actual config pricing with the vendor and get a quote. > > Any insights on the performance of the Opteron quad boxes? How do they > compare to their 32-bit counterparts like Xeon MPs? Have they proven > suitable for your bioinformatics environment? In general, yes, the Opterons should be better than the quad Xeon (though I have not run on a quad Xeon, so I cannot really compare). This is due to the quad Xeon's sharing a memory bus, and thus having a highly limited bandwidth to RAM, and the Opterons getting one 128 bit path and independent memory controller per CPU. CPU to CPU, the Opterons are somewhat faster (running in 64 bit mode) even with a 1 GHz clock difference on BLAST, HMMer, and a few others. The intel should be faster on some codes which depend only upon the core CPU instruction issue rate and do not touch RAM all that much. There are few of those, though they tend to be Monte Carlo type codes. > > Any advice would be valuable! We would be happy to talk to you about this (offline so as not to spam everyone). Joe > > Thanks, > Ognen > > -- > Ognen Duzlevski > Digital Biology Laboratory > 302 North Engineering Building > University of Missouri-Columbia > (573) 882-5978 > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Tue Jul 6 21:23:43 2004 From: bioclusters@bioinformatics.org (Kevin Carr) Date: Tue, 06 Jul 2004 16:23:43 -0400 Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: <20040706192257.M65602@scalableinformatics.com> Message-ID: > From: "Joe Landman" > Reply-To: bioclusters@bioinformatics.org > Date: Tue, 6 Jul 2004 15:30:51 -0400 > To: bioclusters@bioinformatics.org, biodevelopers > > Cc: Ognen Duzlevski > Subject: Re: [Bioclusters] opteron vs xeon quad cpu boxes > > On Tue, 6 Jul 2004 15:35:15 +0000 (UTC), Ognen Duzlevski wrote >> Hi, >> >> we are looking at a quad-cpu server for our bioinformatics apps like >> multithreaded clustalw, blast and some in-house multithreaded >> application I developed over time. >> >> I noticed that I can get a basic 8GB RAM 4xOpteron 848 with a RAID >> controller and a couple of hdds for close to $17,000. At the same time >> it looks like I can get a 4xXeon MP 2.7Ghz with the same ram/hdd >> configuration for close to the same price. > > Really (quad opteron price)? Parts alone for those units in that config will > be > pretty close to $16000. We have built a few custom units for various > customers. The problem is memory pricing. Keeps fluctating. Check the > actual > config pricing with the vendor and get a quote. Joe, That price seems right to me. We just purchased a Quad Opteron (although it was with 846, not 848 cpus). It is a Newisys 4300; we purchased through Colfax International. 4 X Opteron 846 (2.0 GHz) 16 GB (8 X 2GB) PC2700 DDR ECC 4 X 73.5 GB 10K SCSI w/ Ultra320 SCSI RAID (space for 2 more hot swap drives) N+1 Power 3U Enclosure 3 Yr. NBD Parts/Depot Return Labor No OS installed $16,750 + S&H We had this exact same system (Newisys 4300) bid by 3 different vendors. Vendor #2 was only slightly higher while vendor #3 was $4,000 more. Kevin M. Carr ************************** Systems Administrator Genomics Technology Support Facility 202-D Biochemistry Bldg. Michigan State University East Lansing, MI 48824 Ph: (517) 353-6794 Fax:(517) 353-8638 ************************** From bioclusters@bioinformatics.org Tue Jul 6 21:26:22 2004 From: bioclusters@bioinformatics.org (Chris Dagdigian) Date: Tue, 06 Jul 2004 16:26:22 -0400 Subject: [Bioclusters] Oscar installation In-Reply-To: <40E5D5D6.5010304@broadleafservices.com> References: <40E5D5D6.5010304@broadleafservices.com> Message-ID: <40EB0AEE.6090106@sonsorol.org> Hi Malcolm, Sorry for the delay in responding. I'm swamped with a different project right now and have not been using SystemImager for quite some time although that is going to change next week. I can't be more specific because I don't have a systemimager setup handy. If you look under the hood at how systemimager operates through the PXE boot process the 'final' result is that the node learns its own hostname by doing a DNS lookup on the IP it was assigned and then makes a rsync call to the image server to download a "autoinstall script" called .sh The file is actually just a symlink to the "master" installer script that was created by SystemImager when you ran the "getimage" command. There is one "master" script for each systemimager image your imageserver is hosting. The scripts live in your systemimager scripts/ directory. If you don't know where that is check the /etc/systemimager/rsyncd.conf file systemimager is running as it will have the full unix paths to the systemimager directories. The way that I got systemimager to work with a 3ware controller was by hand-editing the master to perform 2 additional steps for me: #1 -- Download the 3ware kernel module #2 -- Load the 3Ware driver into the systemimager autoinstall kernel using the /sbin/insmod command Once the 3ware driver is downloaded your disks will appear as normal /dev/sd* scsi devices and the script can proceed as normal as it creates partitions and fills them up with data. If you are even partially familiar with shell scripting you should be able to make sense of the systemimager installer script -- you want to find the section of the script where the boel_binaries.tgz and other files are being downloaded and insert your additional rsync/download command there. Once you have the 3ware module downloaded, you will (obviously) need to stick your "insmod" command in the script well before there are any attempts by the script to do anything to a /dev/sd* device. *** Note *** FYI this is all a terribly hacked way to do this, newer versions of systemimager use a modern kernel with loadable modules and there are even config files you can edit to control (via insmod) which modules are used by the autoinstaller process. It is highly likely that the current version of systemimager may already have the 3ware module present and you just need to edit the insmod config parameter to ensure that the module is loaded at install time. A quick query to the systemimager mailing list may save you a bunch of time and script hacking *** Note *** Regards, Chris Malcolm Sole wrote: > Hi Chris > I am also trying to get systemimager to work with a 3Ware controller > (and shortly with a SATA drive) > > I have been through the manual but cant find what you are referring to > (I am somewhat new at this kernel stuff). Any pointer you could give me > would be most well received. Even to pointing me to the right piece of > documentation. > > TIA > > Malcolm > > In the above message you mention > > The systemimager 3.x autoinstall kernel that comes down via the PXE > netboot did not see the drives so it bombed out with lots of errors. > Teaching systemimager to download and 'insmod' the 3ware driver was > pretty darn easy. -- Chris Dagdigian, BioTeam - Independent life science IT & informatics consulting Office: 617-665-6088, Mobile: 617-877-5498, Fax: 425-699-0193 PGP KeyID: 83D4310E iChat/AIM: bioteamdag Web: http://bioteam.net From bioclusters@bioinformatics.org Tue Jul 6 23:14:25 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Tue, 6 Jul 2004 18:14:25 -0400 (EDT) Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: References: Message-ID: On Tue, 6 Jul 2004, Kevin Carr wrote: > Joe, > > That price seems right to me. We just purchased a Quad Opteron (although it > was with 846, not 848 cpus). It is a Newisys 4300; we purchased through > Colfax International. Cool. I checked up on the parts pricing last week for someone else and it came in much higher. Then again, I used 850's. Joe From bioclusters@bioinformatics.org Wed Jul 7 04:00:03 2004 From: bioclusters@bioinformatics.org (Ognen Duzlevski) Date: Wed, 7 Jul 2004 03:00:03 +0000 (UTC) Subject: [Bioclusters] opteron vs xeon quad cpu boxes In-Reply-To: References: Message-ID: Hi, thank you all who answered my question. This list is always cool since people on it always know what they are talking about. Cheers, Ognen On Tue, 6 Jul 2004, Kevin Carr wrote: > Date: Tue, 06 Jul 2004 16:23:43 -0400 > From: Kevin Carr > Reply-To: bioclusters@bioinformatics.org > To: bioclusters@bioinformatics.org > Subject: Re: [Bioclusters] opteron vs xeon quad cpu boxes > >> From: "Joe Landman" >> Reply-To: bioclusters@bioinformatics.org >> Date: Tue, 6 Jul 2004 15:30:51 -0400 >> To: bioclusters@bioinformatics.org, biodevelopers >> >> Cc: Ognen Duzlevski >> Subject: Re: [Bioclusters] opteron vs xeon quad cpu boxes >> >> On Tue, 6 Jul 2004 15:35:15 +0000 (UTC), Ognen Duzlevski wrote >>> Hi, >>> >>> we are looking at a quad-cpu server for our bioinformatics apps like >>> multithreaded clustalw, blast and some in-house multithreaded >>> application I developed over time. >>> >>> I noticed that I can get a basic 8GB RAM 4xOpteron 848 with a RAID >>> controller and a couple of hdds for close to $17,000. At the same time >>> it looks like I can get a 4xXeon MP 2.7Ghz with the same ram/hdd >>> configuration for close to the same price. >> >> Really (quad opteron price)? Parts alone for those units in that config will >> be >> pretty close to $16000. We have built a few custom units for various >> customers. The problem is memory pricing. Keeps fluctating. Check the >> actual >> config pricing with the vendor and get a quote. > > Joe, > > That price seems right to me. We just purchased a Quad Opteron (although it > was with 846, not 848 cpus). It is a Newisys 4300; we purchased through > Colfax International. > > 4 X Opteron 846 (2.0 GHz) > 16 GB (8 X 2GB) PC2700 DDR ECC > 4 X 73.5 GB 10K SCSI w/ Ultra320 SCSI RAID (space for 2 more hot swap > drives) > N+1 Power > 3U Enclosure > 3 Yr. NBD Parts/Depot Return Labor > No OS installed > > $16,750 + S&H > > We had this exact same system (Newisys 4300) bid by 3 different vendors. > Vendor #2 was only slightly higher while vendor #3 was $4,000 more. > > Kevin M. Carr > > ************************** > Systems Administrator > Genomics Technology > Support Facility > 202-D Biochemistry Bldg. > Michigan State University > East Lansing, MI 48824 > > Ph: (517) 353-6794 > Fax:(517) 353-8638 > ************************** > > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > -- Ognen Duzlevski Digital Biology Laboratory 302 North Engineering Building University of Missouri-Columbia (573) 882-5978 From bioclusters@bioinformatics.org Fri Jul 9 10:41:42 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Fri, 9 Jul 2004 17:41:42 +0800 Subject: [Bioclusters] gigabit ethernet performance Message-ID: <2EF4F583-D18C-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> --Apple-Mail-3--610247557 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Hi, We are runing a Xserve G4 cluster with SMC gigabit switch. I found the network performance is not satisfactory that file transmission speed is always limited to 12MB/s to 13 MB/s. To copy a 800MB file from one host (192.168.101.161) to another one (192.168.101.162) using FTP, it takes almost 70 seconds when the entire network is almost idle. I have verified all NIC and ports on the switch, all of them appear to be "1000base TX". And the disk IO speed is guaranteed to be over 40MB/s. We expect the average speed in gigabit ethernet should be around 30MB/s. Does any one know what might be the problem? Thank you. -- Chen Peng --Apple-Mail-3--610247557 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII Hi, We are runing a Xserve G4 cluster with SMC gigabit switch. I found the network performance is not satisfactory that file transmission speed is always limited to 12MB/s to 13 MB/s. To copy a 800MB file from one host (192.168.101.161) to another one (192.168.101.162) using FTP, it takes almost 70 seconds when the entire network is almost idle. I have verified all NIC and ports on the switch, all of them appear to be "1000base TX". And the disk IO speed is guaranteed to be over 40MB/s. We expect the average speed in gigabit ethernet should be around 30MB/s. Does any one know what might be the problem? Thank you. -- Chen Peng < --Apple-Mail-3--610247557-- From bioclusters@bioinformatics.org Fri Jul 9 14:10:11 2004 From: bioclusters@bioinformatics.org (Chris Dwan) Date: Fri, 9 Jul 2004 09:10:11 -0400 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <2EF4F583-D18C-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> References: <2EF4F583-D18C-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> Message-ID: <4F500809-D1A9-11D8-AB67-000A95CE2714@mail.ahc.umn.edu> Chen, More than likely, the bottleneck in your data transfer is the speed at which bits are read from the physical disk in your Xserve. You can measure data rates off the disk in a variety of ways. The one I prefer is "iostat." 12 to 13 MB/sec sounds almost exactly like a single IDE drive. You can improve the speed of a data storage device by striping data across several drives (in a RAID set), or in a variety of other ways. Good luck with this. Data motion is a bottleneck for many of us. -Chris Dwan The BioTeam On Jul 9, 2004, at 5:41 AM, Chen Peng wrote: > Hi, > > We are runing a Xserve G4 cluster with SMC gigabit switch. I found the > network performance is not satisfactory that file transmission speed > is always limited to 12MB/s to 13 MB/s. > > To copy a 800MB file from one host (192.168.101.161) to another one > (192.168.101.162) using FTP, it takes almost 70 seconds when the > entire network is almost idle. I have verified all NIC and ports on > the switch, all of them appear to be "1000base TX". And the disk IO > speed is guaranteed to be over 40MB/s. > > We expect the average speed in gigabit ethernet should be around > 30MB/s. Does any one know what might be the problem? > > Thank you. > > -- > Chen Peng > > From bioclusters@bioinformatics.org Fri Jul 9 14:57:19 2004 From: bioclusters@bioinformatics.org (Justin Powell) Date: Fri, 9 Jul 2004 14:57:19 +0100 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <4F500809-D1A9-11D8-AB67-000A95CE2714@mail.ahc.umn.edu> Message-ID: I can move a 1 Gb file between one dell dual xeon box and another in 44 secs on my network (23MB/sec) using scp, but if I move from a dell to a dual G4 xserve local drive it takes 83 secs (12 MB/sec). Strangely though if I move it from the dell to the Xraid attached to the G4 it also only goes at 12 MB/sec - and in that case the mac drive speed should not be the limiting factor. Dr Justin Powell On Fri, 9 Jul 2004, Chris Dwan wrote: > > Chen, > > More than likely, the bottleneck in your data transfer is the speed at > which bits are read from the physical disk in your Xserve. You can > measure data rates off the disk in a variety of ways. The one I prefer > is "iostat." 12 to 13 MB/sec sounds almost exactly like a single IDE > drive. > > You can improve the speed of a data storage device by striping data > across several drives (in a RAID set), or in a variety of other ways. > > Good luck with this. Data motion is a bottleneck for many of us. > > -Chris Dwan > The BioTeam > > On Jul 9, 2004, at 5:41 AM, Chen Peng wrote: > > > Hi, > > > > We are runing a Xserve G4 cluster with SMC gigabit switch. I found the > > network performance is not satisfactory that file transmission speed > > is always limited to 12MB/s to 13 MB/s. > > > > To copy a 800MB file from one host (192.168.101.161) to another one > > (192.168.101.162) using FTP, it takes almost 70 seconds when the > > entire network is almost idle. I have verified all NIC and ports on > > the switch, all of them appear to be "1000base TX". And the disk IO > > speed is guaranteed to be over 40MB/s. > > > > We expect the average speed in gigabit ethernet should be around > > 30MB/s. Does any one know what might be the problem? > > > > Thank you. > > > > -- > > Chen Peng > > > > > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > From bioclusters@bioinformatics.org Fri Jul 9 16:35:31 2004 From: bioclusters@bioinformatics.org (Tim Cutts) Date: Fri, 9 Jul 2004 16:35:31 +0100 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: References: Message-ID: <9C9DB4E4-D1BD-11D8-B85E-000A95B2B140@sanger.ac.uk> On 9 Jul 2004, at 2:57 pm, Justin Powell wrote: > > I can move a 1 Gb file between one dell dual xeon box and another in 44 > secs on my network (23MB/sec) using scp, but if I move from a dell to a > dual G4 xserve local drive it takes 83 secs (12 MB/sec). Try some protocol other than scp. scp's limiting factor tends to be CPU, because of the encryption overhead. > Strangely though > if I move it from the dell to the Xraid attached to the G4 it also only > goes at 12 MB/sec - and in that case the mac drive speed should not be > the > limiting factor. No, the CPU probably is. The G4 is not that quick, and is having to do all that ssh decryption. Try FTP instead. Having said that, I have a sneaky feeling that the HFS+ filesystem is not the fastest in the world. There is a SourceForge project to provide ext3 support to MacOS X. I have not been brave enough to try it yet. I downloaded it, and then chickened out. :-) Tim -- Dr Tim Cutts Informatics Systems Group, Wellcome Trust Sanger Institute GPG: 1024D/E3134233 FE3D 6C73 BBD6 726A A3F5 860B 3CDD 3F56 E313 4233 From bioclusters@bioinformatics.org Fri Jul 9 17:57:56 2004 From: bioclusters@bioinformatics.org (Borries Demeler) Date: Fri, 9 Jul 2004 11:57:56 -0500 (CDT) Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <9C9DB4E4-D1BD-11D8-B85E-000A95B2B140@sanger.ac.uk> from "Tim Cutts" at Jul 09, 2004 04:35:31 PM Message-ID: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> Just another benchmark for gigabit: In copying from a dual Xeon with dual IDE RAID0 to a quad Xeon with RAID5 SCSI over gigabit I get 31 MB/sec (this was measured using the Linux "time" command on a 41 MB file). This is using rcp without compression/encryption. The filesystem on both ends is reiserfs. I think this is pretty typical. Most likely the transfer speed will be greater when there is no disk overhead involved. -Borries --- Borries Demeler, Ph.D. Assistant Professor The University of Texas Health Science Center at San Antonio Dept. of Biochemistry, MC 7760 7703 Floyd Curl Drive, San Antonio, Texas 78229-3901 Voice: 210-567-6592, Fax: 210-567-1136, Email: demeler@biochem.uthscsa.edu From bioclusters@bioinformatics.org Fri Jul 9 20:13:09 2004 From: bioclusters@bioinformatics.org (Dow Hurst) Date: Fri, 09 Jul 2004 15:13:09 -0400 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> Message-ID: <40EEEE45.2070006@kennesaw.edu> Setting up RAM disks and moving data between them would be better. Dow Borries Demeler wrote: > Just another benchmark for gigabit: > > In copying from a dual Xeon with dual IDE RAID0 to a quad Xeon with > RAID5 SCSI over gigabit I get 31 MB/sec (this was measured using > the Linux "time" command on a 41 MB file). This is using rcp without > compression/encryption. The filesystem on both ends is reiserfs. I think > this is pretty typical. Most likely the transfer speed will be greater > when there is no disk overhead involved. > > -Borries > --- > Borries Demeler, Ph.D. > Assistant Professor > The University of Texas Health Science Center at San Antonio > Dept. of Biochemistry, MC 7760 > 7703 Floyd Curl Drive, San Antonio, Texas 78229-3901 > Voice: 210-567-6592, Fax: 210-567-1136, Email: demeler@biochem.uthscsa.edu > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > -- __________________________________________________________ Dow Hurst Office: 770-499-3428 * Systems Support Specialist Fax: 770-423-6744 * 1000 Chastain Rd. Bldg. 12 * Chemistry Department SC428 Email: dhurst@kennesaw.edu * Kennesaw State University Dow.Hurst@mindspring.com * Kennesaw, GA 30144 * ************************************************************ This message (including any attachments) contains * confidential information intended for a specific individual* and purpose, and is protected by law. If you are not the * intended recipient, you should delete this message and are * hereby notified that any disclosure, copying, distribution * of this message, or the taking of any action based on it, * is strictly prohibited. * ************************************************************ From bioclusters@bioinformatics.org Fri Jul 9 21:15:35 2004 From: bioclusters@bioinformatics.org (Tim Cutts) Date: Fri, 9 Jul 2004 21:15:35 +0100 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> Message-ID: On 9 Jul 2004, at 5:57 pm, Borries Demeler wrote: > Just another benchmark for gigabit: > > In copying from a dual Xeon with dual IDE RAID0 to a quad Xeon with > RAID5 SCSI over gigabit I get 31 MB/sec (this was measured using > the Linux "time" command on a 41 MB file). This is using rcp without > compression/encryption. The filesystem on both ends is reiserfs. I > think > this is pretty typical. Most likely the transfer speed will be greater > when there is no disk overhead involved. ~30 MB/sec sounds about right to me. We get 36 MB/sec between our AlphaServer ES45 boxes; that's GBit ethernet, and HP StorageWorks HSV RAID controllers; there's no way the disk is the limiting factor in our set up - we can get about 200 MB/sec on the HSV controllers. I think the low 30's is about what GBit can sustain. Tim -- Dr Tim Cutts Informatics Systems Group, Wellcome Trust Sanger Institute GPG: 1024D/E3134233 FE3D 6C73 BBD6 726A A3F5 860B 3CDD 3F56 E313 4233 From bioclusters@bioinformatics.org Sat Jul 10 02:46:28 2004 From: bioclusters@bioinformatics.org (Farul M. Ghazali) Date: Sat, 10 Jul 2004 09:46:28 +0800 (MYT) Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> Message-ID: <20040710094039.T49319@ns1.aldrich.com.my> On Fri, 9 Jul 2004, Tim Cutts wrote: > ~30 MB/sec sounds about right to me. We get 36 MB/sec between our > AlphaServer ES45 boxes; that's GBit ethernet, and HP StorageWorks HSV > RAID controllers; there's no way the disk is the limiting factor in our > set up - we can get about 200 MB/sec on the HSV controllers. I think > the low 30's is about what GBit can sustain. 30MB/sec is pretty bad for gigabit if that's the case. I've used netperf and gotten 70-80MB/sec on my IBM x325s, but I don't have fast enough disks to really test the system. Does the switch come into play in this? I've used el-cheapo Netgear switches and we are looking into geting some demo Foundry swtches to test out. From bioclusters@bioinformatics.org Sat Jul 10 03:33:35 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Fri, 09 Jul 2004 22:33:35 -0400 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <20040710094039.T49319@ns1.aldrich.com.my> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> Message-ID: <1089426814.4561.31.camel@protein.scalableinformatics.com> I have also seen in the 60 - 80 MB/s for real applications on e325's using the bcm5700 drivers (the tg3's don't work so well). Generally there are many reasons why gigabit performance can be bad. Switch performance is one of them. Network settings are another. The original query was on NFS, and how the Xserves were getting 12ish MB/s on GB. This sounds suspiciously like someone somewhere is locked into 100 Mb/s mode on a port they think is 1000 Mb/s. When running at full tilt, a good NFS server implementation on 100 Mb links can source about 11.7 - 12 MB/s. You would see similar performance from rcp in this case. If this is not the problem (and I recommend sanity checks, as in checking what both sides of the connection report, as many switches are known to autonegotiate incorrectly), start looking at things like MTU (can you use jumbo packets?), TCP based NFS, larger read/write sizes, ... Some of the IDE RAID systems we have set up have been able to sink/source upwards of 60 MB/s without working hard at tuning, and we have seen a sustained 70+/- MB/s for over a 2 day run at a customer site. We cannot speak to the Xserve as we don't normally use or spec it. Look in the usual spots, and make sure that you leave nothing to an assumption. It is possible that you will run into driver issues, network stack implementation, bad switches... Joe On Fri, 2004-07-09 at 21:46, Farul M. Ghazali wrote: > On Fri, 9 Jul 2004, Tim Cutts wrote: > > > ~30 MB/sec sounds about right to me. We get 36 MB/sec between our > > AlphaServer ES45 boxes; that's GBit ethernet, and HP StorageWorks HSV > > RAID controllers; there's no way the disk is the limiting factor in our > > set up - we can get about 200 MB/sec on the HSV controllers. I think > > the low 30's is about what GBit can sustain. > > 30MB/sec is pretty bad for gigabit if that's the case. I've used netperf > and gotten 70-80MB/sec on my IBM x325s, but I don't have fast enough disks > to really test the system. > > Does the switch come into play in this? I've used el-cheapo Netgear > switches and we are looking into geting some demo Foundry swtches to test > out. > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Sat Jul 10 08:55:17 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Sat, 10 Jul 2004 15:55:17 +0800 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <1089426814.4561.31.camel@protein.scalableinformatics.com> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> Message-ID: <7C110953-D246-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> --Apple-Mail-4--530231797 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Thank all of you for the discussion. We have double checked the link status of each port been connected and all show up as "1000base TX full". The disk IO speed has been tested to over 45MB/s by copying file in between two internal drives. So most of the feedback is with gigabit ethernet in other hardware, does any one using Xserve and gigabit ethernet but achieve 30+ mb/s? Cheers -- Chen Peng On Jul 10, 2004, at 10:33 AM, Joe Landman wrote: > I have also seen in the 60 - 80 MB/s for real applications on e325's > using the bcm5700 drivers (the tg3's don't work so well). > > Generally there are many reasons why gigabit performance can be bad. > Switch performance is one of them. Network settings are another. > > The original query was on NFS, and how the Xserves were getting 12ish > MB/s on GB. This sounds suspiciously like someone somewhere is locked > into 100 Mb/s mode on a port they think is 1000 Mb/s. When running at > full tilt, a good NFS server implementation on 100 Mb links can source > about 11.7 - 12 MB/s. You would see similar performance from rcp in > this case. > > If this is not the problem (and I recommend sanity checks, as in > checking what both sides of the connection report, as many switches are > known to autonegotiate incorrectly), start looking at things like MTU > (can you use jumbo packets?), TCP based NFS, larger read/write sizes, > ... > > Some of the IDE RAID systems we have set up have been able to > sink/source upwards of 60 MB/s without working hard at tuning, and we > have seen a sustained 70+/- MB/s for over a 2 day run at a customer > site. We cannot speak to the Xserve as we don't normally use or spec > it. > > Look in the usual spots, and make sure that you leave nothing to an > assumption. It is possible that you will run into driver issues, > network stack implementation, bad switches... > > Joe > > On Fri, 2004-07-09 at 21:46, Farul M. Ghazali wrote: >> On Fri, 9 Jul 2004, Tim Cutts wrote: >> >>> ~30 MB/sec sounds about right to me. We get 36 MB/sec between our >>> AlphaServer ES45 boxes; that's GBit ethernet, and HP StorageWorks HSV >>> RAID controllers; there's no way the disk is the limiting factor in >>> our >>> set up - we can get about 200 MB/sec on the HSV controllers. I think >>> the low 30's is about what GBit can sustain. >> >> 30MB/sec is pretty bad for gigabit if that's the case. I've used >> netperf >> and gotten 70-80MB/sec on my IBM x325s, but I don't have fast enough >> disks >> to really test the system. >> >> Does the switch come into play in this? I've used el-cheapo Netgear >> switches and we are looking into geting some demo Foundry swtches to >> test >> out. >> >> _______________________________________________ >> Bioclusters maillist - Bioclusters@bioinformatics.org >> https://bioinformatics.org/mailman/listinfo/bioclusters > -- > Joseph Landman, Ph.D > Scalable Informatics LLC, > email: landman@scalableinformatics.com > web : http://scalableinformatics.com > phone: +1 734 612 4615 > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > -- > This message has been scanned for viruses and > dangerous content by MailScanner, and is > believed to be clean. > --Apple-Mail-4--530231797 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII Thank all of you for the discussion. We have double checked the link status of each port been connected and all show up as "1000base TX full". The disk IO speed has been tested to over 45MB/s by copying file in between two internal drives. So most of the feedback is with gigabit ethernet in other hardware, does any one using Xserve and gigabit ethernet but achieve 30+ mb/s? Cheers -- Chen Peng < On Jul 10, 2004, at 10:33 AM, Joe Landman wrote: I have also seen in the 60 - 80 MB/s for real applications on e325's using the bcm5700 drivers (the tg3's don't work so well). Generally there are many reasons why gigabit performance can be bad. Switch performance is one of them. Network settings are another. The original query was on NFS, and how the Xserves were getting 12ish MB/s on GB. This sounds suspiciously like someone somewhere is locked into 100 Mb/s mode on a port they think is 1000 Mb/s. When running at full tilt, a good NFS server implementation on 100 Mb links can source about 11.7 - 12 MB/s. You would see similar performance from rcp in this case. If this is not the problem (and I recommend sanity checks, as in checking what both sides of the connection report, as many switches are known to autonegotiate incorrectly), start looking at things like MTU (can you use jumbo packets?), TCP based NFS, larger read/write sizes, ... Some of the IDE RAID systems we have set up have been able to sink/source upwards of 60 MB/s without working hard at tuning, and we have seen a sustained 70+/- MB/s for over a 2 day run at a customer site. We cannot speak to the Xserve as we don't normally use or spec it. Look in the usual spots, and make sure that you leave nothing to an assumption. It is possible that you will run into driver issues, network stack implementation, bad switches... Joe On Fri, 2004-07-09 at 21:46, Farul M. Ghazali wrote: On Fri, 9 Jul 2004, Tim Cutts wrote: ~30 MB/sec sounds about right to me. We get 36 MB/sec between our AlphaServer ES45 boxes; that's GBit ethernet, and HP StorageWorks HSV RAID controllers; there's no way the disk is the limiting factor in our set up - we can get about 200 MB/sec on the HSV controllers. I think the low 30's is about what GBit can sustain. 30MB/sec is pretty bad for gigabit if that's the case. I've used netperf and gotten 70-80MB/sec on my IBM x325s, but I don't have fast enough disks to really test the system. Does the switch come into play in this? I've used el-cheapo Netgear switches and we are looking into geting some demo Foundry swtches to test out. _______________________________________________ Bioclusters maillist - Bioclusters@bioinformatics.org https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 _______________________________________________ Bioclusters maillist - Bioclusters@bioinformatics.org https://bioinformatics.org/mailman/listinfo/bioclusters -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean. --Apple-Mail-4--530231797-- From bioclusters@bioinformatics.org Sat Jul 10 09:24:27 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Sat, 10 Jul 2004 16:24:27 +0800 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <1089426814.4561.31.camel@protein.scalableinformatics.com> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> Message-ID: <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> --Apple-Mail-5--528481803 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Hi all, One article on gigabit ethernet performance is from macslash. It looks there is some undocuemented problem on Mac's gigabit network. http://macslash.org/article.pl?sid=02/03/07/2110255&mode=thread -- Chen Peng Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-5--528481803 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII Hi all, One article on gigabit ethernet performance is from macslash. It looks there is some undocuemented problem on Mac's gigabit network. http://macslash.org/article.pl?sid=02/03/07/2110255&mode=thread -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-5--528481803-- From bioclusters@bioinformatics.org Sat Jul 10 15:20:09 2004 From: bioclusters@bioinformatics.org (Chris Iacovella) Date: Sat, 10 Jul 2004 10:20:09 -0400 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> Message-ID: <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> --Apple-Mail-6--507140357 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed This sounds familiar....we were getting really bad network performance on one of our opteron based clusters over the force10 gigabit switch. I think the technical people ended up pinpointing the problem to the driver for the Broadcom chip that was powering the NIC. I think the xserves use the same (or similar) broadcom chipset for the gigabit ethernet (at least the G5 Xserves do). I don't have any G4 Xserves to test with, but I will be over the next few days doing some tests on the G5 Xserves we've just installed to see if this is a problem. You might want to investigate this aspect. Chris Iacovella cri@umich.edu On Jul 10, 2004, at 4:24 AM, Chen Peng wrote: > Hi all, > > One article on gigabit ethernet performance is from macslash. It looks > there is some undocuemented problem on Mac's gigabit network. > > http://macslash.org/article.pl?sid=02/03/07/2110255&mode=thread > > > -- > Chen Peng > Senior System Engineer > Temasek Life Sciences Laboratory --Apple-Mail-6--507140357 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII This sounds familiar....we were getting really bad network performance on one of our opteron based clusters over the force10 gigabit switch. I think the technical people ended up pinpointing the problem to the driver for the Broadcom chip that was powering the NIC. I think the xserves use the same (or similar) broadcom chipset for the gigabit ethernet (at least the G5 Xserves do). I don't have any G4 Xserves to test with, but I will be over the next few days doing some tests on the G5 Xserves we've just installed to see if this is a problem. You might want to investigate this aspect. Chris Iacovella cri@umich.edu On Jul 10, 2004, at 4:24 AM, Chen Peng wrote: Hi all, One article on gigabit ethernet performance is from macslash. It looks there is some undocuemented problem on Mac's gigabit network. http://macslash.org/article.pl?sid=02/03/07/2110255&mode=thread -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-6--507140357-- From bioclusters@bioinformatics.org Sat Jul 10 18:38:55 2004 From: bioclusters@bioinformatics.org (Fiona Burgess) Date: Sat, 10 Jul 2004 18:38:55 +0100 Subject: [Bioclusters] RE: For Peter Oledzki from ClearSpeed Message-ID: <200407101738.i6AHcvxc008025@pixel.clearspeed.com> This is a multi-part message in MIME format. ------=_NextPart_000_001B_01C466AD.29DB9BD0 Content-Type: multipart/alternative; boundary="----=_NextPart_001_001C_01C466AD.29DB9BD0" ------=_NextPart_001_001C_01C466AD.29DB9BD0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Apologies Peter I forgot the attachments I offered so here they are. Regards Fiona _____ From: Fiona Burgess [mailto:fiona@clearspeed.com] Sent: 10 July 2004 17:22 To: 'bioclusters@bioinformatics.org' Subject: For Peter Oledzki from ClearSpeed Hello Peter I came across your query on the internet about ClearSpeed and wondered if you would like to know more? We are actually Bristol based, with a small sales arm in the USA. We launched the CS301 last Autumn after 6 years of development and it has met all its design criteria. I have attached a data sheet and a white paper for your perusal and if you'd like to know more please get in touch. Of particular relevance to you would be Bristol University - Richard Sessions in Biochemistry is very familiar with us and helped to port a drug docking application (DockIT) onto the chip. We have recently ported GROMACS and we are already seeing good results. We are working on the next generation chip now and a new compiler as well as many software applications. Kind regards, Fiona Fiona Burgess Director of Strategic Partnerships ClearSpeed Technology Ltd Telephone: +44 (0)117 317 2000 x2089 Mobile: +44 (0)7730 660207 Website: www.clearspeed.com 3110 Great Western Court Hunts Ground Road Stoke Gifford Bristol BS34 8HP ------=_NextPart_001_001C_01C466AD.29DB9BD0 Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable
Apologies Peter
 
I forgot the attachments I offered so here they = are.
 
Regards Fiona


From: Fiona Burgess=20 [mailto:fiona@clearspeed.com]
Sent: 10 July 2004 = 17:22
To:=20 'bioclusters@bioinformatics.org'
Subject: For Peter Oledzki = from=20 ClearSpeed

Hello=20 Peter
 
I came=20 across your query on the internet about ClearSpeed and wondered if you = would=20 like to know more? We are actually Bristol based, with a small sales arm = in the=20 USA. We launched the CS301 last Autumn after 6 years of development and = it has=20 met all its design criteria. I have attached a data sheet and a white = paper for=20 your perusal and if you'd like to know more please get in=20 touch.
 
Of=20 particular relevance to you would be Bristol University - Richard = Sessions in=20 Biochemistry is very familiar with us and helped to port a drug docking=20 application (DockIT) onto the chip. We have recently ported GROMACS and = we are=20 already seeing good results.
 
We are=20 working on the next generation chip now and a new compiler as well as = many=20 software applications.
 
Kind=20 regards, Fiona
 
Fiona Burgess
Director of Strategic=20 Partnerships
ClearSpeed Technology = Ltd
 
Telephone: +44 (0)117 317 = 2000=20 x2089
Mobile: +44 (0)7730 = 660207
Website: www.clearspeed.com
 
3110 Great Western = Court
Hunts Ground = Road
Stoke Gifford
Bristol
BS34 8HP
 
 
------=_NextPart_001_001C_01C466AD.29DB9BD0-- ------=_NextPart_000_001B_01C466AD.29DB9BD0 Content-Type: application/pdf; name="wp_architecture.pdf" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="wp_architecture.pdf" JVBERi0xLjMNJeLjz9MNCjU1MCAwIG9iag08PCANL0xpbmVhcml6ZWQgMSANL08gNTUzIA0vSCBb IDIyNzMgNzU5IF0gDS9MIDM0OTIxMSANL0UgMTAzNjY1IA0vTiAxMyANL1QgMzM4MDkyIA0+PiAN ZW5kb2JqDSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICB4cmVmDTU1MCA4NCANMDAwMDAwMDAxNiAwMDAwMCBuDQowMDAwMDAyMDMxIDAwMDAwIG4NCjAw MDAwMDIyMzIgMDAwMDAgbg0KMDAwMDAwMzAzMiAwMDAwMCBuDQowMDAwMDAzMTkwIDAwMDAwIG4N CjAwMDAwMDMyNTYgMDAwMDAgbg0KMDAwMDAwMzQxMSAwMDAwMCBuDQowMDAwMDAzNTA5IDAwMDAw IG4NCjAwMDAwMDM2MDUgMDAwMDAgbg0KMDAwMDAwMzcxNiAwMDAwMCBuDQowMDAwMDAzODgzIDAw MDAwIG4NCjAwMDAwMDQwNDYgMDAwMDAgbg0KMDAwMDAwNDE0OCAwMDAwMCBuDQowMDAwMDA0Mjg0 IDAwMDAwIG4NCjAwMDAwMDQzODIgMDAwMDAgbg0KMDAwMDAwNDU0MiAwMDAwMCBuDQowMDAwMDA0 NjQ2IDAwMDAwIG4NCjAwMDAwMDQ3NDcgMDAwMDAgbg0KMDAwMDAwNDkxMCAwMDAwMCBuDQowMDAw MDA1MDU2IDAwMDAwIG4NCjAwMDAwMDUxNTYgMDAwMDAgbg0KMDAwMDAwNTI1NyAwMDAwMCBuDQow MDAwMDA1NDIxIDAwMDAwIG4NCjAwMDAwMDU1NDYgMDAwMDAgbg0KMDAwMDAwNTY4OCAwMDAwMCBu DQowMDAwMDA1ODQ1IDAwMDAwIG4NCjAwMDAwMDU5NDUgMDAwMDAgbg0KMDAwMDAwNjA0MCAwMDAw MCBuDQowMDAwMDA2MTU0IDAwMDAwIG4NCjAwMDAwMDYzMTYgMDAwMDAgbg0KMDAwMDAwNjQxOCAw MDAwMCBuDQowMDAwMDA2NTExIDAwMDAwIG4NCjAwMDAwMDY2MzMgMDAwMDAgbg0KMDAwMDAwNjc1 NiAwMDAwMCBuDQowMDAwMDA2OTE4IDAwMDAwIG4NCjAwMDAwMDcwMDcgMDAwMDAgbg0KMDAwMDAw NzExNiAwMDAwMCBuDQowMDAwMDA3MjI5IDAwMDAwIG4NCjAwMDAwMDczNDIgMDAwMDAgbg0KMDAw MDAwNzQ2MyAwMDAwMCBuDQowMDAwMDA3NjIxIDAwMDAwIG4NCjAwMDAwMDc3MjggMDAwMDAgbg0K MDAwMDAwNzgzOCAwMDAwMCBuDQowMDAwMDA3OTUxIDAwMDAwIG4NCjAwMDAwMDgwNTEgMDAwMDAg bg0KMDAwMDAwODE1MyAwMDAwMCBuDQowMDAwMDA4MjcwIDAwMDAwIG4NCjAwMDAwMDgzODAgMDAw MDAgbg0KMDAwMDAwODQ5NiAwMDAwMCBuDQowMDAwMDA4NjEyIDAwMDAwIG4NCjAwMDAwMDg3MjMg MDAwMDAgbg0KMDAwMDAwODgzNyAwMDAwMCBuDQowMDAwMDA4OTc2IDAwMDAwIG4NCjAwMDAwMDkx MjYgMDAwMDAgbg0KMDAwMDAwOTI0MiAwMDAwMCBuDQowMDAwMDA5MzY5IDAwMDAwIG4NCjAwMDAw MDk1MjkgMDAwMDAgbg0KMDAwMDAwOTYzNyAwMDAwMCBuDQowMDAwMDA5NzUyIDAwMDAwIG4NCjAw MDAwMDk4NTMgMDAwMDAgbg0KMDAwMDAxMDAxMSAwMDAwMCBuDQowMDAwMDEwMTI0IDAwMDAwIG4N CjAwMDAwMTAyMjggMDAwMDAgbg0KMDAwMDAxMDQyMCAwMDAwMCBuDQowMDAwMDEwODMyIDAwMDAw IG4NCjAwMDAwMTEwNjIgMDAwMDAgbg0KMDAwMDAxMTI5MCAwMDAwMCBuDQowMDAwMDExNTE0IDAw MDAwIG4NCjAwMDAwMTIxNjAgMDAwMDAgbg0KMDAwMDAxMjYzNCAwMDAwMCBuDQowMDAwMDEyNjc1 IDAwMDAwIG4NCjAwMDAwMTQyMzIgMDAwMDAgbg0KMDAwMDAxNDQ2OSAwMDAwMCBuDQowMDAwMDE1 MDEwIDAwMDAwIG4NCjAwMDAwMTUyNTAgMDAwMDAgbg0KMDAwMDAxNTcwNiAwMDAwMCBuDQowMDAw MDIwMTAxIDAwMDAwIG4NCjAwMDAwNDQ0MzQgMDAwMDAgbg0KMDAwMDA0NDUxMyAwMDAwMCBuDQow MDAwMDQ3MTkxIDAwMDAwIG4NCjAwMDAwNjUxNTggMDAwMDAgbg0KMDAwMDA4Mzg5MiAwMDAwMCBu DQowMDAwMDAyMjczIDAwMDAwIG4NCjAwMDAwMDMwMTAgMDAwMDAgbg0KdHJhaWxlcg08PA0vU2l6 ZSA2MzQNL0luZm8gNTQ1IDAgUiANL1Jvb3QgNTUxIDAgUiANL1ByZXYgMzM4MDgxIA0vSURbPDc5 OGM0NTRlYmVlOWZkZjFjMGE0OTlkY2I0NTQzNmNjPjwzMTQ4MzY4MDM4MDQ3OGM3MDBkOGUxNjlm NDc0MzM4YT5dDT4+DXN0YXJ0eHJlZg0wDSUlRU9GDSAgICANNTUxIDAgb2JqDTw8IA0vVHlwZSAv Q2F0YWxvZyANL1BhZ2VzIDU0OCAwIFIgDS9NZXRhZGF0YSA1NDYgMCBSIA0vT3V0bGluZXMgNTU0 IDAgUiANL05hbWVzIDU1MiAwIFIgDS9PcGVuQWN0aW9uIFsgNTUzIDAgUiAvWFlaIG51bGwgbnVs bCBudWxsIF0gDS9QYWdlTW9kZSAvVXNlT3V0bGluZXMgDS9QYWdlTGFiZWxzIDU0NCAwIFIgDT4+ IA1lbmRvYmoNNTUyIDAgb2JqDTw8IA0vRGVzdHMgNTQyIDAgUiANPj4gDWVuZG9iag02MzIgMCBv YmoNPDwgL1MgNDk1IC9PIDcwNCAvRSA3MjAgL0wgNzM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9M ZW5ndGggNjMzIDAgUiA+PiANc3RyZWFtDQpIiWJgYGBmYOB4yMDOwMDOzyDIgACCDKxAURYGjhks AgwHgQIsEgIMB9Y3+xx2eejU8O1DfoecjpA2ZzJLf/dfzRgHBoYpm8/UBR1Zq97AgAqYdNzXP3Bs Tap+Pump50SrMyc2LLJt+vj5h+DjwLVBLZ3Gy8KXhuWsLEw4UvGP+fmGxe4b7ZZyma46uV4p57Tx 0ktTPtVE6CdFbPX9w35hsftEPd+dwWmRc9lMIt4n2NV9UtH88jZipdNWqa1Pzk71it15SedMteTj H/wLjrSK2ew0UvObavr4+nmg7UI6GZ9UT041ynk++dHBaqHDPwLkg7dK2XQGpd6ebXTmeX+8fSOb iMfGxSemq4Wc3DzPrenXUg7+e4e6hWxmhaaemG0UAlVScVHp7FQ1l5eT7jnW/GO+EZjkAdJwAOhN RkGJjo4OIIM1LAPCYGBScfEAMjvAISLo4hLaAecB+Qi2kpKxC1gKrIuBA8JgUtKAiTAKaUBlISwG uDoQk9nEAyoGFGnAF0VAYM7APMMcSPsDcQxYRJOBn+EVQwrzBOYJbA8EG+wZqhiqGGsYT7AXsD/g Z7BlyGQoY/jAfIPVgWeBLINsgxnDJMYnjC+YHbgURBpsGgwYOhgVmBxYGfgWCDQoNXgAFX9hSmAJ 4EwQOqDM4MlwhHELUwRrAt8DgQOqDDYMrxgVGH9wFugl6DvENmxn2cV2hIEh7oBEQy1DcuN8Jdbq CYwGS24cuOSYZtJ4gtmL9QijguQFrSd/D5S332BsPKXBenfiBLTUpcXAwAlKnlYMDNJ/gLQLA0uP HDCgbjMwTDoDlJdnYJV7BVIIxH4AAQYAKb7wbA1lbmRzdHJlYW0NZW5kb2JqDTYzMyAwIG9iag02 MjkgDWVuZG9iag01NTMgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDU0NyAwIFIgDS9S ZXNvdXJjZXMgNjEyIDAgUiANL0NvbnRlbnRzIDYyMCAwIFIgDS9Dcm9wQm94IFsgMCAwIDYxMSA3 OTIgXSANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTU1 NCAwIG9iag08PCANL0NvdW50IDkgDS9GaXJzdCA1NTUgMCBSIA0vTGFzdCA1NTUgMCBSIA0+PiAN ZW5kb2JqDTU1NSAwIG9iag08PCANL1RpdGxlIChNdWx0aS1UaHJlYWRlZCBBcnJheSBQcm9jZXNz b3IgQXJjaGl0ZWN0dXJlKQ0vRGVzdCAoRzEuMTA4OTI5OCkNL1BhcmVudCA1NTQgMCBSIA0vRmly c3QgNTU2IDAgUiANL0xhc3QgNTU3IDAgUiANL0NvdW50IDggDT4+IA1lbmRvYmoNNTU2IDAgb2Jq DTw8IA0vVGl0bGUgKEludHJvZHVjdGlvbikNL0Rlc3QgKEcyLjExMDcwNTMpDS9QYXJlbnQgNTU1 IDAgUiANL05leHQgNTcxIDAgUiANPj4gDWVuZG9iag01NTcgMCBvYmoNPDwgDS9UaXRsZSAoUmVm ZXJlbmNlcykNL0Rlc3QgKEcyLjExMDE0MDMpDS9QYXJlbnQgNTU1IDAgUiANL1ByZXYgNTU4IDAg UiANPj4gDWVuZG9iag01NTggMCBvYmoNPDwgDS9UaXRsZSAoQ29uY2x1c2lvbikNL0Rlc3QgKEcy LjExMTczMzcpDS9QYXJlbnQgNTU1IDAgUiANL1ByZXYgNTU5IDAgUiANL05leHQgNTU3IDAgUiAN Pj4gDWVuZG9iag01NTkgMCBvYmoNPDwgDS9UaXRsZSAoU29mdHdhcmUgRGV2ZWxvcG1lbnQgS2l0 KQ0vRGVzdCAoRzIuMTExNzMzMykNL1BhcmVudCA1NTUgMCBSIA0vUHJldiA1NjAgMCBSIA0vTmV4 dCA1NTggMCBSIA0vRmlyc3QgNTYxIDAgUiANL0xhc3QgNTYyIDAgUiANL0NvdW50IC0yIA0+PiAN ZW5kb2JqDTU2MCAwIG9iag08PCANL1RpdGxlIChFeGFtcGxlIEFwcGxpY2F0aW9ucykNL0Rlc3Qg KEcyLjExMTc3MjQpDS9QYXJlbnQgNTU1IDAgUiANL1ByZXYgNTY0IDAgUiANL05leHQgNTU5IDAg UiANL0ZpcnN0IDU2NSAwIFIgDS9MYXN0IDU2NiAwIFIgDS9Db3VudCAtMiANPj4gDWVuZG9iag01 NjEgMCBvYmoNPDwgDS9UaXRsZSAoU2ltdWxhdGlvbiB0b29scykNL0Rlc3QgKEcyLjExMTc0MzYp DS9QYXJlbnQgNTU5IDAgUiANL05leHQgNTYyIDAgUiANPj4gDWVuZG9iag01NjIgMCBvYmoNPDwg DS9UaXRsZSAoRGVidWdnZXIpDS9EZXN0IChHMi4xMTE3NDQwKQ0vUGFyZW50IDU1OSAwIFIgDS9Q cmV2IDU2MSAwIFIgDS9GaXJzdCA1NjMgMCBSIA0vTGFzdCA1NjMgMCBSIA0vQ291bnQgLTEgDT4+ IA1lbmRvYmoNNTYzIDAgb2JqDTw8IA0vVGl0bGUgKEZpZ3VyZSA4IEdyYXBoaWNhbCBkZWJ1Z2dl cikNL0Rlc3QgKEcyLjExMjA1MDEpDS9QYXJlbnQgNTYyIDAgUiANPj4gDWVuZG9iag01NjQgMCBv YmoNPDwgDS9UaXRsZSAoQ2FzZSBTdHVkeTogQ1MzMDEpDS9EZXN0IChHMi4xMTE3MzE2KQ0vUGFy ZW50IDU1NSAwIFIgDS9QcmV2IDU2NyAwIFIgDS9OZXh0IDU2MCAwIFIgDS9GaXJzdCA1NjggMCBS IA0vTGFzdCA1NjkgMCBSIA0vQ291bnQgLTIgDT4+IA1lbmRvYmoNNTY1IDAgb2JqDTw8IA0vVGl0 bGUgKE5ldHdvcmsgcHJvY2Vzc2luZykNL0Rlc3QgKEcyLjExMTk2NjkpDS9QYXJlbnQgNTYwIDAg UiANL05leHQgNTY2IDAgUiANPj4gDWVuZG9iag01NjYgMCBvYmoNPDwgDS9UaXRsZSAoQmlvLWlu Zm9ybWF0aWNzKQ0vRGVzdCAoRzIuMTExOTY3NCkNL1BhcmVudCA1NjAgMCBSIA0vUHJldiA1NjUg MCBSIA0+PiANZW5kb2JqDTU2NyAwIG9iag08PCANL1RpdGxlIChBcmNoaXRlY3R1cmUgRGV0YWls cykNL0Rlc3QgKEcyLjExMTk0ODQpDS9QYXJlbnQgNTU1IDAgUiANL1ByZXYgNTcxIDAgUiANL05l eHQgNTY0IDAgUiANL0ZpcnN0IDU3MiAwIFIgDS9MYXN0IDU3MyAwIFIgDS9Db3VudCAtOSANPj4g DWVuZG9iag01NjggMCBvYmoNPDwgDS9UaXRsZSAoQ1MzMDEgYXJjaGl0ZWN0dXJlKQ0vRGVzdCAo RzIuMTExNzMxOCkNL1BhcmVudCA1NjQgMCBSIA0vTmV4dCA1NjkgMCBSIA0vRmlyc3QgNTcwIDAg UiANL0xhc3QgNTcwIDAgUiANL0NvdW50IC0xIA0+PiANZW5kb2JqDTU2OSAwIG9iag08PCANL1Rp dGxlIChQcm9jZXNzb3IgY29yZSkNL0Rlc3QgKEcyLjExMTc2NzIpDS9QYXJlbnQgNTY0IDAgUiAN L1ByZXYgNTY4IDAgUiANPj4gDWVuZG9iag01NzAgMCBvYmoNPDwgDS9UaXRsZSAoRmlndXJlIDcg QXJjaGl0ZWN0dXJlIG9mIENTMzAxKQ0vRGVzdCAoRzIuMTEyMDQ2NikNL1BhcmVudCA1NjggMCBS IA0+PiANZW5kb2JqDTU3MSAwIG9iag08PCANL1RpdGxlIChBcmNoaXRlY3R1cmUgT3ZlcnZpZXcp DS9EZXN0IChHMi4xMTI0MTM3KQ0vUGFyZW50IDU1NSAwIFIgDS9QcmV2IDU1NiAwIFIgDS9OZXh0 IDU2NyAwIFIgDS9GaXJzdCA2MDAgMCBSIA0vTGFzdCA2MDEgMCBSIA0vQ291bnQgLTcgDT4+IA1l bmRvYmoNNTcyIDAgb2JqDTw8IA0vVGl0bGUgKEZpZ3VyZSA2IE11bHRpLVRocmVhZGVkIEFycmF5 IFByb2Nlc3NvcikNL0Rlc3QgKEcyLjExMTk0ODMpDS9QYXJlbnQgNTY3IDAgUiANL05leHQgNTk5 IDAgUiANPj4gDWVuZG9iag01NzMgMCBvYmoNPDwgDS9UaXRsZSAoSG9zdCBpbnRlcmZhY2UpDS9E ZXN0IChHMi4xMTE3NzI5KQ0vUGFyZW50IDU2NyAwIFIgDS9QcmV2IDU3NCAwIFIgDS9GaXJzdCA1 NzUgMCBSIA0vTGFzdCA1NzYgMCBSIA0vQ291bnQgLTMgDT4+IA1lbmRvYmoNNTc0IDAgb2JqDTw8 IA0vVGl0bGUgKEkvTyBtZWNoYW5pc21zKQ0vRGVzdCAoRzIuMTExNjYwMSkNL1BhcmVudCA1Njcg MCBSIA0vUHJldiA1NzggMCBSIA0vTmV4dCA1NzMgMCBSIA0vRmlyc3QgNTc5IDAgUiANL0xhc3Qg NTgwIDAgUiANL0NvdW50IC00IA0+PiANZW5kb2JqDTU3NSAwIG9iag08PCANL1RpdGxlIChJbml0 aWFsaXphdGlvbikNL0Rlc3QgKEcyLjExMTgxNDkpDS9QYXJlbnQgNTczIDAgUiANL05leHQgNTc3 IDAgUiANPj4gDWVuZG9iag01NzYgMCBvYmoNPDwgDS9UaXRsZSAoRGVidWdnaW5nKQ0vRGVzdCAo RzIuMTExODE2MCkNL1BhcmVudCA1NzMgMCBSIA0vUHJldiA1NzcgMCBSIA0+PiANZW5kb2JqDTU3 NyAwIG9iag08PCANL1RpdGxlIChIb3N0IHNlcnZpY2VzKQ0vRGVzdCAoRzIuMTExODE0MCkNL1Bh cmVudCA1NzMgMCBSIA0vUHJldiA1NzUgMCBSIA0vTmV4dCA1NzYgMCBSIA0+PiANZW5kb2JqDTU3 OCAwIG9iag08PCANL1RpdGxlIChQb2x5IGV4ZWN1dGlvbiB1bml0KQ0vRGVzdCAoRzIuMTExNjU2 MikNL1BhcmVudCA1NjcgMCBSIA0vUHJldiA1ODMgMCBSIA0vTmV4dCA1NzQgMCBSIA0vRmlyc3Qg NTg0IDAgUiANL0xhc3QgNTg1IDAgUiANL0NvdW50IC01IA0+PiANZW5kb2JqDTU3OSAwIG9iag08 PCANL1RpdGxlIChJL08gYXJjaGl0ZWN0dXJlKQ0vRGVzdCAoRzIuMTExODcxMSkNL1BhcmVudCA1 NzQgMCBSIA0vTmV4dCA1ODIgMCBSIA0+PiANZW5kb2JqDTU4MCAwIG9iag08PCANL1RpdGxlIChT d2F6emxlKQ0vRGVzdCAoRzIuMTExNjYwOSkNL1BhcmVudCA1NzQgMCBSIA0vUHJldiA1ODEgMCBS IA0+PiANZW5kb2JqDTU4MSAwIG9iag08PCANL1RpdGxlIChTdHJlYW1pbmcgSS9PIFwoU0lPXCkp DS9EZXN0IChHMi4xMTE3NTA1KQ0vUGFyZW50IDU3NCAwIFIgDS9QcmV2IDU4MiAwIFIgDS9OZXh0 IDU4MCAwIFIgDT4+IA1lbmRvYmoNNTgyIDAgb2JqDTw8IA0vVGl0bGUgKFByb2dyYW1tZWQgSS9P IFwoUElPXCkpDS9EZXN0IChHMi4xMTE4NzU5KQ0vUGFyZW50IDU3NCAwIFIgDS9QcmV2IDU3OSAw IFIgDS9OZXh0IDU4MSAwIFIgDT4+IA1lbmRvYmoNNTgzIDAgb2JqDTw8IA0vVGl0bGUgKE1vbm8g ZXhlY3V0aW9uIHVuaXQpDS9EZXN0IChHMi4xMTE2NTM4KQ0vUGFyZW50IDU2NyAwIFIgDS9QcmV2 IDU4OSAwIFIgDS9OZXh0IDU3OCAwIFIgDS9GaXJzdCA1OTAgMCBSIA0vTGFzdCA1OTEgMCBSIA0v Q291bnQgLTIgDT4+IA1lbmRvYmoNNTg0IDAgb2JqDTw8IA0vVGl0bGUgKEFMVSkNL0Rlc3QgKEcy LjExMTY1ODIpDS9QYXJlbnQgNTc4IDAgUiANL05leHQgNTg4IDAgUiANPj4gDWVuZG9iag01ODUg MCBvYmoNPDwgDS9UaXRsZSAoRm9yY2VkIGxvYWRzIGFuZCBzdG9yZXMpDS9EZXN0IChHMi4xMTE2 NTk4KQ0vUGFyZW50IDU3OCAwIFIgDS9QcmV2IDU4NiAwIFIgDT4+IA1lbmRvYmoNNTg2IDAgb2Jq DTw8IA0vVGl0bGUgKEluc3RydWN0aW9ucykNL0Rlc3QgKEcyLjExMTY1OTYpDS9QYXJlbnQgNTc4 IDAgUiANL1ByZXYgNTg3IDAgUiANL05leHQgNTg1IDAgUiANPj4gDWVuZG9iag01ODcgMCBvYmoN PDwgDS9UaXRsZSAoRW5hYmxlIHN0YXRlKQ0vRGVzdCAoRzIuMTExNjU5MikNL1BhcmVudCA1Nzgg MCBSIA0vUHJldiA1ODggMCBSIA0vTmV4dCA1ODYgMCBSIA0+PiANZW5kb2JqDTU4OCAwIG9iag08 PCANL1RpdGxlIChDb25kaXRpb25hbCBiZWhhdmlvcikNL0Rlc3QgKEcyLjExMTY1ODYpDS9QYXJl bnQgNTc4IDAgUiANL1ByZXYgNTg0IDAgUiANL05leHQgNTg3IDAgUiANPj4gDWVuZG9iag01ODkg MCBvYmoNPDwgDS9UaXRsZSAoRXhlY3V0aW9uIHVuaXRzKQ0vRGVzdCAoRzIuMTExNjQ4NCkNL1Bh cmVudCA1NjcgMCBSIA0vUHJldiA1OTIgMCBSIA0vTmV4dCA1ODMgMCBSIA0vRmlyc3QgNTkzIDAg UiANL0xhc3QgNTk0IDAgUiANL0NvdW50IC01IA0+PiANZW5kb2JqDTU5MCAwIG9iag08PCANL1Rp dGxlIChDb25kaXRpb25hbCBleGVjdXRpb24pDS9EZXN0IChHMi4xMTE2NTQ4KQ0vUGFyZW50IDU4 MyAwIFIgDS9OZXh0IDU5MSAwIFIgDT4+IA1lbmRvYmoNNTkxIDAgb2JqDTw8IA0vVGl0bGUgKE11 bHRpLXRocmVhZGVkIGV4ZWN1dGlvbikNL0Rlc3QgKEcyLjExMTY1NTEpDS9QYXJlbnQgNTgzIDAg UiANL1ByZXYgNTkwIDAgUiANPj4gDWVuZG9iag01OTIgMCBvYmoNPDwgDS9UaXRsZSAoQ29udHJv bCB1bml0KQ0vRGVzdCAoRzIuMTExOTkxMykNL1BhcmVudCA1NjcgMCBSIA0vUHJldiA1OTggMCBS IA0vTmV4dCA1ODkgMCBSIA0+PiANZW5kb2JqDTU5MyAwIG9iag08PCANL1RpdGxlIChBTFUgb3Bl cmF0aW9ucykNL0Rlc3QgKEcyLjExMTY0ODcpDS9QYXJlbnQgNTg5IDAgUiANL05leHQgNTk3IDAg UiANPj4gDWVuZG9iag01OTQgMCBvYmoNPDwgDS9UaXRsZSAoQ29uZGl0aW9uYWwgY29kZSkNL0Rl c3QgKEcyLjExMTY1MjUpDS9QYXJlbnQgNTg5IDAgUiANL1ByZXYgNTk1IDAgUiANPj4gDWVuZG9i ag01OTUgMCBvYmoNPDwgDS9UaXRsZSAoQWRkcmVzc2luZyBtb2RlcykNL0Rlc3QgKEcyLjExMTY1 MDgpDS9QYXJlbnQgNTg5IDAgUiANL1ByZXYgNTk2IDAgUiANL05leHQgNTk0IDAgUiANPj4gDWVu ZG9iag01OTYgMCBvYmoNPDwgDS9UaXRsZSAoUmVnaXN0ZXJzKQ0vRGVzdCAoRzIuMTExNjUwNSkN L1BhcmVudCA1ODkgMCBSIA0vUHJldiA1OTcgMCBSIA0vTmV4dCA1OTUgMCBSIA0+PiANZW5kb2Jq DTU5NyAwIG9iag08PCANL1RpdGxlIChTdGF0dXMgcmVnaXN0ZXIpDS9EZXN0IChHMi4xMTE2NDkz KQ0vUGFyZW50IDU4OSAwIFIgDS9QcmV2IDU5MyAwIFIgDS9OZXh0IDU5NiAwIFIgDT4+IA1lbmRv YmoNNTk4IDAgb2JqDTw8IA0vVGl0bGUgKEluc3RydWN0aW9uIHNldCkNL0Rlc3QgKEcyLjExMTY0 NjApDS9QYXJlbnQgNTY3IDAgUiANL1ByZXYgNTk5IDAgUiANL05leHQgNTkyIDAgUiANPj4gDWVu ZG9iag01OTkgMCBvYmoNPDwgDS9UaXRsZSAoSW50ZXJmYWNlcykNL0Rlc3QgKEcyLjExMTgwMzEp DS9QYXJlbnQgNTY3IDAgUiANL1ByZXYgNTcyIDAgUiANL05leHQgNTk4IDAgUiANPj4gDWVuZG9i ag02MDAgMCBvYmoNPDwgDS9UaXRsZSAoRmlndXJlIDEgUHJvY2Vzc29yIEV2b2x1dGlvbikNL0Rl c3QgKEcyLjExMjA0NzgpDS9QYXJlbnQgNTcxIDAgUiANL05leHQgNjEwIDAgUiANPj4gDWVuZG9i ag02MDEgMCBvYmoNPDwgDS9UaXRsZSAoUGVyZm9ybWFuY2UpDS9EZXN0IChHMi4xMTE5NTc1KQ0v UGFyZW50IDU3MSAwIFIgDS9QcmV2IDYwMiAwIFIgDS9GaXJzdCA2MDMgMCBSIA0vTGFzdCA2MDQg MCBSIA0vQ291bnQgLTIgDT4+IA1lbmRvYmoNNjAyIDAgb2JqDTw8IA0vVGl0bGUgKEV4YW1wbGUp DS9EZXN0IChHMi4xMTE1OTU3KQ0vUGFyZW50IDU3MSAwIFIgDS9QcmV2IDYwNSAwIFIgDS9OZXh0 IDYwMSAwIFIgDS9GaXJzdCA2MDYgMCBSIA0vTGFzdCA2MDYgMCBSIA0vQ291bnQgLTEgDT4+IA1l bmRvYmoNNjAzIDAgb2JqDTw8IA0vVGl0bGUgKFRhYmxlIDEgUGVyZm9ybWFuY2UgQ29tcGFyaXNv bikNL0Rlc3QgKEcyLjExMjExODkpDS9QYXJlbnQgNjAxIDAgUiANL05leHQgNjA0IDAgUiANPj4g DWVuZG9iag02MDQgMCBvYmoNPDwgDS9UaXRsZSAoRmlndXJlIDUgUG93ZXIgZWZmaWNpZW5jeSBv ZiBhcmNoaXRlY3R1cmUpDS9EZXN0IChHMi4xMTE5NTg2KQ0vUGFyZW50IDYwMSAwIFIgDS9QcmV2 IDYwMyAwIFIgDT4+IA1lbmRvYmoNNjA1IDAgb2JqDTw8IA0vVGl0bGUgKFByb2dyYW1taW5nIG1v ZGVsKQ0vRGVzdCAoRzIuMTExNzc4MSkNL1BhcmVudCA1NzEgMCBSIA0vUHJldiA2MDcgMCBSIA0v TmV4dCA2MDIgMCBSIA0vRmlyc3QgNjA4IDAgUiANL0xhc3QgNjA4IDAgUiANL0NvdW50IC0xIA0+ PiANZW5kb2JqDTYwNiAwIG9iag08PCANL1RpdGxlIChGaWd1cmUgNCBSZXN1bHRzIGZyb20gZXhh bXBsZSBwcm9ncmFtKQ0vRGVzdCAoRzIuMTExOTU0NCkNL1BhcmVudCA2MDIgMCBSIA0+PiANZW5k b2JqDTYwNyAwIG9iag08PCANL1RpdGxlIChJbnB1dCAvIG91dHB1dCkNL0Rlc3QgKEcyLjExMTcy MjIpDS9QYXJlbnQgNTcxIDAgUiANL1ByZXYgNjA5IDAgUiANL05leHQgNjA1IDAgUiANPj4gDWVu ZG9iag02MDggMCBvYmoNPDwgDS9UaXRsZSAoRmlndXJlIDMgSW5zdHJ1Y3Rpb24gRXhlY3V0aW9u KQ0vRGVzdCAoRzIuMTExOTU5NykNL1BhcmVudCA2MDUgMCBSIA0+PiANZW5kb2JqDTYwOSAwIG9i ag08PCANL1RpdGxlIChFeGVjdXRpb24gdW5pdHMpDS9EZXN0IChHMi4xMTE1MDk1KQ0vUGFyZW50 IDU3MSAwIFIgDS9QcmV2IDYxMCAwIFIgDS9OZXh0IDYwNyAwIFIgDS9GaXJzdCA2MTEgMCBSIA0v TGFzdCA2MTEgMCBSIA0vQ291bnQgLTEgDT4+IA1lbmRvYmoNNjEwIDAgb2JqDTw8IA0vVGl0bGUg KENvbnRyb2wgdW5pdCkNL0Rlc3QgKEcyLjExMTgwMjUpDS9QYXJlbnQgNTcxIDAgUiANL1ByZXYg NjAwIDAgUiANL05leHQgNjA5IDAgUiANPj4gDWVuZG9iag02MTEgMCBvYmoNPDwgDS9UaXRsZSAo RmlndXJlIDIgUGFyYWxsZWwgRXhlY3V0aW9uIFVuaXRzKQ0vRGVzdCAoRzIuMTEyMDQ5MCkNL1Bh cmVudCA2MDkgMCBSIA0+PiANZW5kb2JqDTYxMiAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9U ZXh0IF0gDS9Gb250IDw8IC9UVDIgNjE3IDAgUiAvVFQ0IDYxMyAwIFIgL1RUNiA2MTggMCBSIC9U VDggNjI0IDAgUiAvVFQxMCA2MjIgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgNjI3IDAgUiA+ PiANL0NvbG9yU3BhY2UgPDwgL0NzNiA2MTkgMCBSID4+IA0+PiANZW5kb2JqDTYxMyAwIG9iag08 PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UcnVlVHlwZSANL0ZpcnN0Q2hhciAzMiANL0xhc3RD aGFyIDEyMSANL1dpZHRocyBbIDI3OSAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg MCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIA0wIDAgMCA3MjAgMCAwIDAgMCAwIDAgMCAwIDAg MCAwIDAgMCAwIDAgNTkzIDU1MiAwIDAgMCAwIDAgMCAwIDAgDTAgMCAwIDAgNTU4IDAgNTY0IDU5 OCA1NjYgMCA1OTggNTc4IDAgMCAwIDI0OCAwIDU3MyA1OTIgNTk4IDAgMzQ4IA0wIDAgMCAwIDAg MCA0ODMgXSANL0VuY29kaW5nIC9XaW5BbnNpRW5jb2RpbmcgDS9CYXNlRm9udCAvSktPREZGK1N3 aXNzNzIxQlQtTWVkaXVtSXRhbGljIA0vRm9udERlc2NyaXB0b3IgNjE1IDAgUiANPj4gDWVuZG9i ag02MTQgMCBvYmoNPDwgDS9UeXBlIC9Gb250RGVzY3JpcHRvciANL0FzY2VudCA5MDUgDS9DYXBI ZWlnaHQgNzE4IA0vRGVzY2VudCAtMjExIA0vRmxhZ3MgMzIgDS9Gb250QkJveCBbIC02MjggLTM3 NiAyMDM0IDEwNDggXSANL0ZvbnROYW1lIC9KS09ETEIrQXJpYWwsQm9sZCANL0l0YWxpY0FuZ2xl IDAgDS9TdGVtViAxNDQgDS9YSGVpZ2h0IDUxNSANL0ZvbnRGaWxlMiA2MzEgMCBSIA0+PiANZW5k b2JqDTYxNSAwIG9iag08PCANL1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0vQXNjZW50IDk2MiANL0Nh cEhlaWdodCA3MTggDS9EZXNjZW50IC0yMzUgDS9GbGFncyA5NiANL0ZvbnRCQm94IFsgLTE2OCAt MjM2IDEyMzkgOTYzIF0gDS9Gb250TmFtZSAvSktPREZGK1N3aXNzNzIxQlQtTWVkaXVtSXRhbGlj IA0vSXRhbGljQW5nbGUgLTE1IA0vU3RlbVYgMCANL0ZvbnRGaWxlMiA2MjUgMCBSIA0+PiANZW5k b2JqDTYxNiAwIG9iag08PCANL1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0vQXNjZW50IDkwNSANL0Nh cEhlaWdodCA3MTggDS9EZXNjZW50IC0yMTEgDS9GbGFncyAzMiANL0ZvbnRCQm94IFsgLTY2NSAt MzI1IDIwMjggMTAzNyBdIA0vRm9udE5hbWUgL0pLT0RDTCtBcmlhbCANL0l0YWxpY0FuZ2xlIDAg DS9TdGVtViA5NCANL1hIZWlnaHQgNTE1IA0vRm9udEZpbGUyIDYyNiAwIFIgDT4+IA1lbmRvYmoN NjE3IDAgb2JqDTw8IA0vVHlwZSAvRm9udCANL1N1YnR5cGUgL1RydWVUeXBlIA0vRmlyc3RDaGFy IDMyIA0vTGFzdENoYXIgMTgxIA0vV2lkdGhzIFsgMjc4IDAgMCAwIDAgMCA2NjcgMTkxIDMzMyAz MzMgMCA1ODQgMjc4IDMzMyAyNzggMjc4IDU1NiA1NTYgNTU2IDU1NiANNTU2IDU1NiA1NTYgNTU2 IDU1NiA1NTYgMjc4IDI3OCAwIDAgMCAwIDAgNjY3IDY2NyA3MjIgNzIyIDY2NyA2MTEgDTc3OCA3 MjIgMjc4IDAgNjY3IDU1NiA4MzMgNzIyIDc3OCA2NjcgNzc4IDcyMiA2NjcgNjExIDcyMiA2Njcg OTQ0IA0wIDY2NyA2MTEgMjc4IDAgMjc4IDAgMCAwIDU1NiA1NTYgNTAwIDU1NiA1NTYgMjc4IDU1 NiA1NTYgMjIyIDIyMiANNTAwIDIyMiA4MzMgNTU2IDU1NiA1NTYgNTU2IDMzMyA1MDAgMjc4IDU1 NiA1MDAgNzIyIDUwMCA1MDAgNTAwIA0wIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg MCAwIDAgMCAwIDIyMiAyMjIgMCAwIDM1MCA1NTYgDTAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg MCAwIDAgMCAwIDczNyAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgNTc2IA1dIA0vRW5jb2RpbmcgL1dp bkFuc2lFbmNvZGluZyANL0Jhc2VGb250IC9KS09EQ0wrQXJpYWwgDS9Gb250RGVzY3JpcHRvciA2 MTYgMCBSIA0+PiANZW5kb2JqDTYxOCAwIG9iag08PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9U cnVlVHlwZSANL0ZpcnN0Q2hhciAzMiANL0xhc3RDaGFyIDEyMiANL1dpZHRocyBbIDI3OCAwIDAg MCAwIDAgNzIyIDAgMzMzIDMzMyAwIDAgMCAzMzMgMCAyNzggNTU2IDU1NiAwIDU1NiAwIDAgMCAw IA01NTYgMCAzMzMgMCAwIDAgMCAwIDAgNzIyIDcyMiA3MjIgNzIyIDY2NyA2MTEgMCA3MjIgMjc4 IDAgNzIyIDYxMSANODMzIDcyMiA3NzggNjY3IDAgNzIyIDY2NyA2MTEgNzIyIDAgMCAwIDAgMCAw IDAgMCAwIDAgMCA1NTYgNjExIA01NTYgNjExIDU1NiAzMzMgNjExIDYxMSAyNzggMCAwIDI3OCA4 ODkgNjExIDYxMSA2MTEgMCAzODkgNTU2IDMzMyANNjExIDU1NiA3NzggNTU2IDU1NiA1MDAgXSAN L0VuY29kaW5nIC9XaW5BbnNpRW5jb2RpbmcgDS9CYXNlRm9udCAvSktPRExCK0FyaWFsLEJvbGQg DS9Gb250RGVzY3JpcHRvciA2MTQgMCBSIA0+PiANZW5kb2JqDTYxOSAwIG9iag1bIA0vSUNDQmFz ZWQgNjI4IDAgUiANXQ1lbmRvYmoNNjIwIDAgb2JqDTw8IC9MZW5ndGggMTQ4MSAvRmlsdGVyIC9G bGF0ZURlY29kZSA+PiANc3RyZWFtDQpIiXxWyY7jNhC9+yt4GypocSRqP84SBAiQoIEWZg5BDmyJ tpnRBknujvMZ+eLUQtnununAgMliFatereLHeve+rrWIRb3fVarKRQQ/2mS5KkSqVZ6Lut+9/7Tk olmIHYmlGXbvf3mIxWHZRSqKNMg0uxC3SSLq590fMgpSlUkdhDEsIRCJ/BqEmUrlPVNxTBJxJL5o pYM/618RSspQErYDC8Eo0kolKeKIVJxWIlI6TeA/qTRhidA8Wo81WpefOmvmh8naVtS2OQ5jNx7O Qf3X7ucaxLI8E7f/qAHMpDnYAc0lqRfgTVqK2e72O4+BeGmVq0S/4sJ5kRSqyEWsqlKEqYq0Z5YK guOZaZUpQHjLJrOk/4dGOQnfmfxIacs5VnANYwVLXBYqE3kWq+TtWFGWooQiRsH67dStLqyPszUt BOzDPJuzuJ/Hxi7LOGPUIPiJzhAA1EX92avIUIX8MDdHt9pmPc0WZQFXybjiknDBkqalKkVWUaAQ 2KWIWFN8qZ44JkhfUaW4N5P19m8LU8dQNwLcUfH/VIQvhs3JD4/LOptm9RCh6gjjFQmWAmQFyjWP yvTqZbWVVqS5sOsgxLo9QjFLt4gJV4N/UxBLi5s5iFQpRRDmcpqx5rW0C1CqknZAgXUhJlQpXfYy D6TK0ln7r78gemaeQHm34pmWLlzJ+mwvttvNdot/YlM5E/P8AsrYeCjeAuaYGIJ6MMIQ6AgqDUJA vV1cezvlEBjIOTRvLiFLtILKBFoaagDIFJHEsNwJMxCb7BvazsjKpWUKBNqrxETbkS8/W9ZFHLay DxI42LvGWda73kHqWFMXaGkeOxa8C0KNSvsT81YXlDCDyPJ69BgNW7Y3AHhrGMBqQgpI/ROHIbuG wVfCZFAV2O3Ibiq7ixspO1qCN0hQfDLJUgsTC7Pmu4tpH7hcLu4wMN2KZ7cehRHvHg2dDO2zY9n1 SEvYWJZdGYxr3l3CfUFBLXqLhDOlN4OcqFS24oXL1dXl3Ls8I+pSHvAe1Nc1YFr2vQ+ocIP4pLZq 0iqNeGxsDb71esk6P2P5YY4T+YS9VdG2GyfS5FYH8T0zQ+zHmcNleygdNxzE75YMxTAi0wQn4aVz i61zPfb1OQgLcJLqXX4TQS7vaTui8hJDE6nC90UBSRj4/BCgd8JMTE6da1jCYD9KN3q5he/fCexO PLAczXDD9mZjxVl2G17sJ01IFiZn8aJ5LgP3ttlEYwbxyBnwJ3xpAsCXGMUaxna0IUjiK4KKEbRi HUVvgkwOZ3F0h4AmXSzFZGE7Q/wp/yzRWNGM/QTb03rjLBl57eyWjO19gJ2fYEp5MdiyMTQdpsUN KxQ1HkNMU+mCQnFtYGXgHUMLetbwduUB5EaihkWhmoexB7LAeKBuPLJ/G8CLMh1kNYEQ4+m4h5x5 1U+scPaqTnx3Ec/mvLzsjvJSyZVPX+v2e2yzgjPFDV/IAQmYjmKa6ckz8pwqZM9SoiVqZLHeEOWG RTS85bwWnNdEitU03zpoDj49o+s4vXOM35ElhWFTN99mPN+OrZhuYY5EPLEix2hs+0YHJ/rqty+a GoKXYYR7ekoACKTgPUFri32BTX1DMJAKP1B4egY8dAXxxIAHiQZDX/p7S4DYFubMgi0YVrbAfFxc P3UexcS6xwOvpqelh2nhUY4tbSxf73D6Eba3voDfz0H48C+naaJeGHkK0oAtQcnjGfDsT0R1HcjR znk+jS8eont0EPp0Gffrs6GjeWtUneCj5oIg29pH+6HJ01y8+Gw82Y6/KVPP7MF/8qCnmYFFD4Pq Dov+8URHrluR8p+y8eS/Mqze3Kq5NjiBexWk5BqjgiGO0+p69w+GnWY3Ot6MnIvJUQtUONoG2rSC 0gVTdTrSgaPqx0bVWPStfSTydGB1lqW5SOlZ/6NnIL4VYfYkZabwtQ9wQxh11zd2BnO2fJN9cxte 9UlSvXqie77WGb5Lv+f/NwCx3SMpCmVuZHN0cmVhbQ1lbmRvYmoNNjIxIDAgb2JqDTw8IA0vVHlw ZSAvRm9udERlc2NyaXB0b3IgDS9Bc2NlbnQgOTA1IA0vQ2FwSGVpZ2h0IDcxOCANL0Rlc2NlbnQg LTIxMSANL0ZsYWdzIDk2IA0vRm9udEJCb3ggWyAtNTE3IC0zMjUgMTA4MiAxMDI1IF0gDS9Gb250 TmFtZSAvSktPRFBCK0FyaWFsLEl0YWxpYyANL0l0YWxpY0FuZ2xlIC0xNSANL1N0ZW1WIDkzLjg1 NiANL1hIZWlnaHQgNTE1IA0vRm9udEZpbGUyIDYyOSAwIFIgDT4+IA1lbmRvYmoNNjIyIDAgb2Jq DTw8IA0vVHlwZSAvRm9udCANL1N1YnR5cGUgL1RydWVUeXBlIA0vRmlyc3RDaGFyIDMyIA0vTGFz dENoYXIgMTQ2IA0vV2lkdGhzIFsgMjc4IDAgMCAwIDAgMCAwIDE5MSAwIDAgMCAwIDI3OCAzMzMg Mjc4IDI3OCA1NTYgNTU2IDU1NiA1NTYgNTU2IDU1NiANNTU2IDU1NiA1NTYgMCAwIDAgMCAwIDAg MCAwIDY2NyA2NjcgNzIyIDcyMiA2NjcgNjExIDc3OCA3MjIgMjc4IA0wIDY2NyA1NTYgODMzIDcy MiA3NzggNjY3IDAgNzIyIDY2NyA2MTEgNzIyIDY2NyAwIDAgMCAwIDAgMCAwIDAgDTAgMCA1NTYg NTU2IDUwMCA1NTYgNTU2IDI3OCA1NTYgNTU2IDIyMiAwIDUwMCAyMjIgODMzIDU1NiA1NTYgNTU2 IA0wIDMzMyA1MDAgMjc4IDU1NiA1MDAgNzIyIDUwMCA1MDAgNTAwIDAgMCAwIDAgMCAwIDAgMCAw IDAgMCAwIDAgDTAgMCAwIDAgMCAwIDAgMCAwIDAgMjIyIF0gDS9FbmNvZGluZyAvV2luQW5zaUVu Y29kaW5nIA0vQmFzZUZvbnQgL0pLT0RQQitBcmlhbCxJdGFsaWMgDS9Gb250RGVzY3JpcHRvciA2 MjEgMCBSIA0+PiANZW5kb2JqDTYyMyAwIG9iag08PCANL1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0v QXNjZW50IDkwNSANL0NhcEhlaWdodCAwIA0vRGVzY2VudCAtMjExIA0vRmxhZ3MgOTYgDS9Gb250 QkJveCBbIC01NjAgLTM3NiAxMTU3IDEwMzEgXSANL0ZvbnROYW1lIC9KS09ETkwrQXJpYWwsQm9s ZEl0YWxpYyANL0l0YWxpY0FuZ2xlIC0xNSANL1N0ZW1WIDE0My44NDkgDS9YSGVpZ2h0IDUxNSAN L0ZvbnRGaWxlMiA2MzAgMCBSIA0+PiANZW5kb2JqDTYyNCAwIG9iag08PCANL1R5cGUgL0ZvbnQg DS9TdWJ0eXBlIC9UcnVlVHlwZSANL0ZpcnN0Q2hhciAzMiANL0xhc3RDaGFyIDEyMSANL1dpZHRo cyBbIDI3OCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAzMzMgMCAyNzggNTU2IDU1NiAwIDU1NiAw IDAgMCAwIDAgMCAwIA0wIDAgMCAwIDAgMCA3MjIgNzIyIDcyMiA3MjIgNjY3IDAgMCA3MjIgMjc4 IDAgMCAwIDgzMyA3MjIgNzc4IDY2NyANMCAwIDY2NyAwIDAgMCA5NDQgMCAwIDAgMCAwIDAgMCAw IDAgNTU2IDYxMSA1NTYgNjExIDU1NiAzMzMgNjExIA02MTEgMjc4IDAgNTU2IDI3OCA4ODkgNjEx IDYxMSA2MTEgMCAzODkgNTU2IDMzMyA2MTEgMCA3NzggNTU2IDU1NiANXSANL0VuY29kaW5nIC9X aW5BbnNpRW5jb2RpbmcgDS9CYXNlRm9udCAvSktPRE5MK0FyaWFsLEJvbGRJdGFsaWMgDS9Gb250 RGVzY3JpcHRvciA2MjMgMCBSIA0+PiANZW5kb2JqDTYyNSAwIG9iag08PCAvRmlsdGVyIC9GbGF0 ZURlY29kZSAvTGVuZ3RoIDQzMDUgL0xlbmd0aDEgNjc4MCA+PiANc3RyZWFtDQpIiaxWf1BVxxU+ u9/uew+C+mJeVDQIjIK1iFRJwjgmlFAEIwYppARsbQCREPAFFAwSfZUOMWqF8WeeSow1hCh1HEvw R1/FWqmxLUksscQ2rW0SkkkYZxymsQzjvKF7ey5gap32P++d753ds7vnfOfbcxlIENE4qidQ9rLc hPm7C56Zzp6/MbJWeouqjv2sZifRJJ6Ll1e+WBP1z0f/9S6P5zA+LK16ztt/+Kt3iA/zs/251XWl 8cWJHxPdFyAKmVS2qqjksjq6iWhqGq8/WsYO92JnkPc38nxmmbdmfUv2Y7E8bydSntWVK4s6Tp72 E3k+IJJh3qL1VSpC9fH5mbw/6oUi76rFJV2/JJpSz/lbqyqra6xBO/WUQnu9au2qqo2TQnYTOW1O XzGOiZ2kyaEz1PtEZsWolfPooCx1aXmfA1LKEKnorif1+ZpqEhT1D+nwGI9odp4Sn3PGJGrlxRvU Rx2yl25RP12lT2RALJGSjohaiqZEXrXXeYSLqlmdoFs4wueaqFXHUI4uVOfVNAzp7ZQDF++6gV7e z1aMV/MoWkyky3RdndCLqU5cZV5emcXr78lsaqBKOqO76Qy1UTVVi3DOMkj5IpL6RRPvGaKg/LY4 IWpFj3BznAEh1Y+5MKO79EEZT8fZVtovneMa4vjlGuSf2csvzaZe5xLnclbDzZUMyzQRoB7HEd57 ic7ZJ9FN51Q0Jagy0c+5ermiJiQggUckFlKrc4k+JRNYpc10nONHqgWjL8/4PHt66bhawJGuUCSz PCtOcOzjKtRZTFtGa5Xp1KL36FPkpUqZxRVvYIbZFEqVXHWDiGEF+nCTziCSxstTIotqcYgiqUu0 06BzCWvR5QgT4U4f38lV/FAMOSLonAiIYTLUItxUIiazYgHmHU0DcoiZVXOf0RmHVpCC5kS522XM kyXtKd/Nj/p9QXT8nLumUW5nVDtlt4+riwpYVna+mqYL2vVD7YhxtauYGX3/b7Evfk5mdn5U+/VF aWNRFxWmsS83n4f2jN3sX5QWz0Jy554yEUSh8abNHAu5bnvufIRWl6nUHsmFY2imVNlAeY5ZlK5q KcLRQ+k6n8JYnzzZQ+WyxyrmLmh2HCMjF1jX5DbyyAWMWpK8P5HRzwhjhKv/+LIYuxgLGHGynOJl uXXDcUy47Di2VTm0xUVUrIYtr66jMH2R8vmewpSNQgpj9fN0B4XJVHJj0OpWQXIrL7kd13gv+x2J /DVMHrHZupTPnCePKqc63Ualqo6WOi7SNpVuNah0SlLHrV45QIo5b5cDVrOLRIv9ySoSy5nfRNVt GdVAszh3tNpCMdxJbvbdVIctI4LWsCQrVbl5PEzS0WvdUn7GOd7bbZ3gMzNktzWMISsoN3AuP81G F8XpYUrCEWsT/m5dxO+sM5yPc4o2tvtZgw677pHauW675q9rsvnbnP4XbI7M707Y/O7E19zuBvP6 LxCVyhaK47jzGOk8n6YCIpEt12ANM8c1Y+hj3pcYxfbdObOtJczzcR5fHbtLZUN1sF4Bq1Ul0g80 fyOOOGrmPprIdzkPy2k8mijcEU3pTocVVOesQb5/h917dgwdR6lqnRW0ddHVrOUOisAOq5/74ynm Rre1svVxNVGOs5nrIeuyi4FK6maclaHUzThrx8MgOWzd7bsXeaZN1VrXxABFiAGrXz3Od7uQQdYX 3P9+GWrHsC6HxrMGdh67/27b7tH+uxM2hxHksDZj93UbI/qTiGNkMwoZtYok/xkWu1jXpWyb2W5j W82cOuRE65Ldt3bv2D062ieiTV/h+XmukfmP1DFM4+1eG9M7Ut6kZoaL4XYM0a4xuJ2zR78bu3dt rrdjj/QY985tq3opeuQ75vptbQKyPsXdb/DlfHxh8Lkfn03DZwHryxRL9X3q0X0Gn3rwicHHBtdW 4K8Gf0nGR83J+qMK/MngqsGHBr0+/DGIK0F8EESPwR8M3s/FewbvZqJ7b4bu7sRvDS4ZvGNw0eA3 QXQZ/LoT5w1+lYlAEL8wOHPa6NMGp04afdKg4+1I/XYk2g1+btCWhqOc8Ggujhi81Zqr3/KhNRdv cuQ3c9HyRrJuMXgjGYcNfhrEoddd+lAoXnfhoMFrfO41H5qTcWD/Xn3A4MAFtX9fkd6/F/vr1T7/ XL2vCPtSlH8uXuVwr/qxNwN7dk/VewxSZu6eil0GOw12GDRud+rGUGx34icrsG3rBL3NYOsEbA1Y gynFassKvBLE5mS8bNBgUG+wqQI/MvBtjNU+PzbGYkMyXqrz6Zf8qPNhvUGtwYsG62o8ep1BjQfV nVi7JkOvNViTgarKZF2ZjBf88JY8ob0G3oB1hS9kdUWjXm2w+oKqKC/QFY2oqFflz8bq8gKUp6jn y4K6LIhSPlLqwyo2q/woeQIrfSguatTFBsUXVFFhgS5qRFG9KuSDhQUoTFHPxuL7Bsv9KDDIN3gm b77Om4/vPW300wY5s7EsK6iXGWQF8VQnlhpk+vCkweKMJJ2RhPQgFhmkVeA7BqkrkGLwWCcWynF6 oQ+PPOzRjxg87MG30pBgMNcg3mBOJ+J8+KbB7Ap8owKzDGIzMdNghkG0QVQQkQbTI+L1dIOIeDyU hmkGU+cgPIXZTPFjssGkB5P0JIMHk+B5IFN7fHggExP9uN+dpO83cCdhgsH4ToS4wnWID65wOH1Q yNTKBzAzZPIvZIqiICggSjY3ibh7+NC9DHbPn4iRfwCo9N/sV3tUFOcVv9/M7MwCu+wMu7CwvHZ2 YQ1dEGRhySpHtz6QgI8THudQ4ymi+AABFaQqRI1GqwIaeyg2dD0Ek0hqHzQ1STUnOU00qNUjWoVg bTQtB1BJCVHEU4vLbO8+UPNo7TlN+1fnssydb16/+7u/e79vpAPMCtnruPjmQGdXMDeBvUnksjnY rxI7uoemAN891D2UpBZEIVYUxBUMOKvocOeAdIALvD9Sycbh6qLAdUVWL+vFddRkexjfoKzQQANT EVmmKdfz/gLhwJ/T6vW8Ex9kE2z4yH6ns5+X+pOI0WQyGliOZYM1IZZka5qFAlEPQkpQmjXGogdZ /R3mzZ9W/262fdaHbzV2J9+2Ss3S36Wb0plVRaVEPEoIMdBdTW1rypaPbO+8/ubr0gPpj2QRSTtC pm/ZUy8Nu1dDGtcVpk02APEw1x4Tog7zj9bEM6AJq+CBqYgr48sT/KMjOAIRnJLjTMHqBP7aeXfM 3eeFIJsX7VAHP3waj/BYsNkmYCNmbUhIsIYxGmJSUy3eEFJTTJM8ZkpNibEkM8FM2yC178V1uxYf uPFrqWf0tjT42WsNG5oXLI2wvp8xcxYJ6/uc+DHhNTtW5mWtyqw419DpdF4xql/48balc4qTVeFL bNb93zt268YFdyybcB7E1TbmKsrOs1QFPMd4lp7AEk7Od3doEW+icyg5SS1yIm1Ui68yqXFS1djo fWmB7MTFB4HMCOY8yNVHD+DcGwBPQ7l9WrAtWulHKxJjI8JD6Wg/iKXjHRY6MVbt54husjTbFBo1 r5RZE4ENtkaExyUZ2Diz9TtsnOEpGz86NDo0QQxSI7gB8DiW3H3+PD+MZ4Qgrc2zc/8lEfZRsgnt 9Sw4YjSYUlO9uxRrGhrS6BaG0Wq1JCPFLHVp7mDM3KyC+XWvkogcljGYgiJ1Uw25+faWpS8fPfHb 5PyxRcWVq9XXwwcunbnAUpqIYH9NgX1ubgf5gbRUjFGaYprkcvuMoIXzj7zkeF/LyrUv2lIy8o4c rt8ZMRWZneT6M34lFkCYW8PKFn+HAC2MQ9ssNOmUXCAxA2fWxOsw3q9r2A2VmhAwy7iD4AFhM5H9 VcV7T9VWfb8xut8kDZ795DOSPX72L9SZpeukoXM/3F9bevqGNEzCSeVlzIqICC5hbgOwjlLtkdE0 7+dQ046IZsVBdVOgKlABDB/NKllzCH5GjA51IN2edPejPvnhZAHZfYQkSG0hxjQfo1hNbhq1dEbt mv0dNRWNH7Vfl/o6wzPeKHn3ck529odlG96YTO3ZUifd7Hm+joQwqrEZB4sW3+2pI1BYWLx6FaKL fciPEWbYRc4R6K97BfQOTXNgU4zOCJFawvgbAyLNWsZsFOJj+NEOL1Xe3PvqqHsIVZFExEcF7+aL 8vKFaZ5kncg8o3C6KLK1etHOyC/ipNsnrw6T9L91jcj7CalcvqlFTz5RalUv1C3O+/kpAreISNbe 64ktWMcJqvXbf9SAnc01ImUwuxBxADwFufYEo0lUhKtCWTA5oliHqAJHcHPUYdVrYa1xYX6h4Qpa RxvMoo42B8WLcXzHqLvm3eL1tgAPyZ3DXknbvFqeoBoRq71Me8LQpllorwp8LYFa3PhuTWXTO7Wx U18pfK+HpPRvbouddPXjeMn1+dnrfWuWNDbSjdJY19ZdhL1au9PpnLdw9CqJIpuqKk4++KD/wm8O Bcxa0A7EJWH1J6BCwmC6XdQGKihZgELjkDXDwVBFqDZQSYDVKQLkVJiQIA/T8d3dQ4+KMjEdIxC8 VZpELPREYXHYJR6SThuJ2Fua275s/yGO2zewh2PnZew5Lpb3yU6MD+Y/u3tj+GzTeCp13DBZmDbj +C/HL7l7EoVkM4iKBvUxOEhRQGgGW5HNo018FTESY6/Ui88Ym4HXu+5jFLHYfcJgqj1aQQMR/FBF qlYl4VVKBU2xOgJaIZBN0AZ+UwwodHcEX4attnATATEhexG4bN6cumNieW/XRTH/veU/aeWoc+NW 6nh0gnrad93AGVtb4ZK67brp4Km8XiaHWYRK0YLRjm0viHYomoOaQsGsSmTNwfGhnj7nlbBbv4/V GY0v5UH0JJ9esWNjU+e26pZzf732QGqX7l97QPKoxs0NUv8ftu0lWurQ+KfSn6Td45+SGFLj1mi7 hO9l8kCNNW+zR8tAG+kQtA55M2kTmuhWvY6hCaOXAaUxB1B6Lxu+JuuV5LA7nbGYt0cEeNvp4xgJ VF8nYmf0zCMlxy4vzMw+WbGujbJvWL3v9zUVL504Ot4qu9lWtOSLy3XjS5atKqUyt9RLAxe37iWh mC0nwryHCAXsi6Gg8ueIXOHPqJr9W+WKAH85R1jwC+I7vDNPv/O88LA8ONNXkkPdm6yJFWqbjSv7 Pu4yZ778nMrALLhL0b94a1xi0jpr1qIWXB9JWUwQY0NG0u16tVKj4P1oDUt4h99hhrRqcK4jINOw aiUtU2g8M56PjmSciCaajS1JS1vUKD0PFZPSQjy9pu/tW6Wk5e54jnVXmX5apCHYyE9+Omw2s9m5 m9441lVaIJcfZxhjgnthBIZv0dY9wa7A2D8zsgPtFKWhytF6aNFnNrTt9AcMj5b5Jav/v3275lkl E48mNNjj0CM6/LHwxI1+8iWmrxxb0x4/mg0ZczMhKxvdhfBsTi7ke8cXP/nB/5ONgbX4PwSw8wEL epgFeVAEy2EVlOGZStjkcuF593guji+DlThe4R139X3dfCx/04ZUuu78SyxyWOG7n4YoAJ/PoB/l 81n00t0ZZPxwxACLfD4FgfC8z6fxijqfz6B/2uezkE6orOyFszMyzLkbSqqq0pKnzMxLmL+8uKS6 /Jn1RWUly/6Ts5AF2ZhizDeaGdnaACVQhZYGyTAFZiKvOcjrSqhGBouQwSdfnwDz8Y5iHK+GcngG 1uN9ZXj077zrv3Ovu3JkUIDfLvnILYWqsaMP1Ah9x1NXxJM1Msr1vlOoSr8HtNyTtqO/as/17Qul n0mRfoPc255s+tTyjwEAlQkQVQplbmRzdHJlYW0NZW5kb2JqDTYyNiAwIG9iag08PCAvRmlsdGVy IC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0MjQxIC9MZW5ndGgxIDM4OTYwID4+IA1zdHJlYW0NCkiJ XFQJeFTVFf7Pve/NhGwEDGQB5A2PRMkkAkFkS0MgmQCFhGzIhLLMkIQkSMiENWjYhdBhlQ+iIKIU kSAFX2iAQMEiitoPQyhaFWvZ1IJLJO33IVRkXs8MlELf+d5755571v+ee0AAwrAEEjlj83snT/U4 W4EX61maXVTh9sy/vGwUsKkRoGNF8+ZodZ5z83jvS8DSZ5qntGL+Y3tuANZQQDVKZyyY9uTbk08B iV2BgoKyEnfxByO+z2Z/t9jmqTIWdKzosB4IPcbrnmUVc6rHH55ZzOtLQOTgGZVFbqpzvQYs8fA6 o8Jd7Wl3mDaz/SrW12a6K0q2n3y0G1C3gde3PJWz53De/NR5/PueWSWe7/dVXQFsHD/4jnoUMfzG qrsRo8QjGjCv8nvN//eVm9f8+/6/+I6tm+69QD32UTn24U84SW1s9RaOoBEfIgoZ2IYabEItLJjA kt8ij0ll+SaKMRvRGzs4nx1oZt3xWISj6EzR5rdYjBXyY7ZawUj3wDDkoBJraYw5FxNxUVmOARiD mfDQEtNprjM3mq9jF47ID807CEEsipiazR/Vz80vkcQWm7EFF2lju4NI4yhLWPMVzMJWOUkhs9T8 mTOwYT7noCALzXRC2Nl7Ca5SNNXIdPay0zTM91irKyahDFtxlPrTCGFTJ5pZZjM6c4xq9roFB3CI qQnH8QWFqm3m62YbYpCIUVxPI87QCem7s9Q3lBFTGaVeGMQ7lXgbH+As6fSOqFRD1WQ1TX3W/ASR 6ItxnO1utvwH3RSLmBbL95VMczjCGZcX/GjjFC5TLPWmsfS06CUqxXY5C0EcsS9TMcoZ75fY+wWy 0yERKlrkTmWvctvSzXfJDOcTicfLeAXvUBhXqtFsWkaf0lciXUwRL4srcpOyRzlndXPVk1GBtdiL m9SRBlIu/YbKqIZq6QXaQs10lq6JYaJAPCOuyzJZJY8rw5nyldnKcnWlutpyzef0vef7i++mmWyu RC73w1LOfjO2c2VH0ILzTBdxhVQKoXAmjWw0jp5jWkRr6XdUT3uokaOcpSv0Lf2LbtBtASaL6CJs ogeTLmaJ+WKT2CZamM6KH8S/ZZTsIe2yv0yRhbKSs6qVG5gOystKrNKimIxzslqnvqrWq3vVk2qb JdS6LAhBH/2y807CnQs++Fb56nwHfI3mZXTiM4xlFLojhbN3M03n867jjnsLH1MoYxdLCZRKYxiZ KTSdqqiakXyettKuQO776Rij9Bld55zDRNdAzk+I/mK4GMs0WZSIKrFBbBSN4lPxs7TKENledpIJ coScJEvkHLlA1klDfiT/Lq/In+QvTKYSrHRXeijxil0ZoUxR5irblavKVXWielr9xhJsqbCstDRZ /ml9yppqzbHmWidZ11sPWT8JcnF3vouDOIwHHrokl0qHPIh1op8SI86IM9zPU1AsswR3qqinVWIh NYqearVliBhC2WhT4hnr98Wr4icxRGbRaMrHdNH3rjdLpPIm/1KUd9GqHOPazrDnaksoLRLXLaE4 QBCDOOYp2Uexy9P4Ql4kq7IDf1OCKYpaxW6Zw11wXElVnbDJbdgvq2ghDgoHT6fbQWu4j7PpTZ4L BZRMt6QJKbK5iwbIr7Acz4jP0cr3eBVepGKlFOvQj2pwFW/wreilzrQkWDrRn0W54hWPUCOEsoer G0Q9SaqReJ4mya2W6+I85qJFCcYF+XvOvkXsl1lKm5pHZXwDFmIlqsylWKA6lXNUCklPI065xNOt RiYrNv4v5qkykWfaIb7dR3kODJNZLInmzhnDfTGOJ8RWppd4TijcQeV8x8fzFDuDRkuBaEKpGk48 dQDltC8PE8w3sMUsxUxzI5J4HtSaNeyxHt9gPepphe85ePAo35wLNEbNFC1qppkkvOK8yBd1D58v ox1H0fiOaT8ykar+EV7lM+RjqLnG/Ct39+M8YbdgKn6Nr7nKHznCSHkC/XzZosHMlB6u9yJyzd1m dwpGmTkDY3EMu6wq3FZ72rBhaUNTf5UyZPCggQP6P9kvuW+f3k8kJdoTej3+WHxcT72HTev+aLeu XWJjoqM6d4p8pGOHiPbhYaEhwe2CrBZVkYKQ6NAzXZoR7zKUeH3kyCT/WnezwP2AwGVoLMp8WMfQ XAE17WHNNNac9n+aaXc10+5rUoSWgpSkRM2ha0Zzhq410YRcJ/NrM/RCzWgN8FkBfkOAD2PeZmMD zRFdlqEZ5NIcRua8Mq/DlcHuGkKC0/X0kuCkRDQEhzAbwpwRpXsaKCqVAoyIcgxuEAgK46SMWD3D YcToGf4MDBnncBcbOblOR0YXm60wKdGg9CJ9qgF9uNHeHlBBeiCMYUk3rIEwWrm/GqzWGhJPeNc0 RWCqyx5arBe7JzoN6S70x+hg57gZRtSzX0f/b8nOO6Y7ax/c7SK9juhyzb/0ems147Vc54O7Nv+3 sJB9sK2Iy3R5Mzn0GgZxdL7G0cSKQqdBKzik5q/EX9Xd+kp0h1/imq4Z7fThepl3uouPJtZrIG+B 7UBsbNoR8xJiHZq3wKnbjKFd9EJ3RteGSHjzFvwhJk2LeXgnKbEhosNdYBvC299jQsMeZEru7wW4 gLqfG513H1nyZ6SP4oYwtCKNM3HqXNNA/6dkILxFA1mNn0JiK6OYT6TcaJfu8kYM9sv99oYaF6Fr 3hvgDtBbf3hY4r4nscRF3ICf9ffJ/Vbj/f/yht1uJCT4W8SazmfKOaYG1v2TEuc1CV33RGj8Y/iQ w9i6Cwf3ZvhtNv8Br25Kw1ReGEtynXfXGv7DfbUGV3VV4XXO2efcCwUJxAuFDCUhpEAhJCTyiiCX VwpEoCHkdUslPKyUgGCxFZ22XCY8wiXRisKkQGkSQWKCwwVSG5gqgZk2UqegHUPV4qOPzNjGsbRD O1MoOX5rn30uNwemwap/zNwv315rv9Zee+2191mRdIKCGWNKo3oZ17S6NYFCrgm7NbHuZamI5Gbi h2wg6r839uuXMDBxzuqcqDbwM6q/7tTnFaTm5YdKkudEypRv85Z0k5z6ybE6VYomzioxknRV0pMM WYugXBprzEJJn6hIw8+SQb2qxedHVEqNlpwbTSib6/wv7Z2ScoedWuwr3EvSzW7KzGjOmO7yl7vJ 3czrEzFgMC7BvCWhSKR3tzqEmjPhPEWIeFpSkpI8K0qFOJlp+LXYrZMZpUnRIFw2ixsg/hyVErs1 TFLlUvxxdKaPzUWii0RyU5NzI2WR5S12eEVqckJq5JR+Tj8X2TCnzA2cFvv0rqRoblUpfLVay0nn PfV9pWshzUqga8e6shNy5C7H/Zl9LaXie1ohqr9OXxMbKQDM8w2l75hFVKLtoJDeSE8wjKEUFEfp UbRthDwDfJr7on0h8FdgKlAEDFG6BcByoIBltD3FfTHGBh5H8kYK+YfRerPIvoH59ppt9DBwEOV6 8TY1WFNoHeRD6HdGEE3iNuiz12qkGugPoH4ldAfBJZDrUF6Kfpmq3MtXjW8dMGBBPxrj7FLrHWmc pYlio/0m1lKKMecD2zHHA+BcIA9tEsEzgR1aG1VqbXY96sFUgfl3sB6YrXguxtmG+unoNwJyBcpD YIcF7gekAKP0ozRF/yK9CM7A+ouddQNttJrXHFsT7Fc23QrHxrx4YM5fAqn6FLsD3CvONi8qPJhn ZFMYXA4kAfn6q7ROfJU0+OsZs4MMhp+I/fQXYJpYRQsha7CzwGymfSwDCyQ22jfEAao1rtJk1H3P 2ot14EuWX476x5Sh/4PSrTTajPiajfG3AAcx5t9lPKyiJZh/HDhbdMgY2g5UYa73XT+xbyBvwb4u xlyf+jmGG6kAuB/7EgbWsj2YP4N9zvuuFXVNQdt30GYpA/pBElg7xyT34f4YK03FYf1Npnq0qYZf /wYWQIBtcCHjTAF1L2OcwYAFDAXGAR1APVAO5AAvAKMwN2FeQ8YrYoZjU8YHYsNsgw9hm4xZZw0H 5X46Z6ZOjcXzpFhHqVwhhcfk88IxC1uOu2PzmeKYcVnGdznHvfYBr5NjKsY4e6KT7mcb5BlEbLnM 5w4283nYqxdSJXgf4riCY5btc5n9wrEmfYIzoXhq3Foz5RkBG0SpKtYrXHZ9EePVdAhjllkrkFNq aa74Nt6uP6QV4grNNkbTODMTOqwHbaN6Jy32412LvVwE+RkP1zB87doasxXrbII/2+lZ+PRbol0f Lto102yy3zVJO2826U/J8i3shdbq1DEz4uv+Xf3ngX7JbELObLLfM9ttG+vZzWfC16llAskuQ38C CAP3+cdoNf5yrcVXSAkW0VVgvQhSjhmkSaIV+xNAnsdZgL7QfJPOGNW0U7Tbf9TCFNbbabsvQMvx /dGP59IvUQWDxwdviIujbjHnjSWX3Xj1Mud8FVPDwBbO3wWFdxQ+Bj5CHP1Ec+aYxPlZ3g/I0cB2 J17ta7H4PE+Hwbvc+PTEabknPvt449LL8m5BfnfPKezY6a6f8yPnOM6RnOc4z7jtvRzXP6I3Io45 D79KIXWuhyvMh41vqbOPPIz9LrZtK9c+YjXbDcYAu8HKQvkPgGkfwbo3xe7UErtL3aej3bvU0dNd 7j1qZtM6lc8OyXzzIf1Y3qNF0r5e1jHabF7HviMHSntr1RmEP2F3uSiDz/dRFdYx2NiB8wg9sJR9 IveC6G6+F/hONPbAz3wXVVOF8QbeC9w3m/rL+2I6FcP281KHO5WZdWYx1VudlCUKkWtbaRXvFa+D 7eG99z9Gff0B5Il2Gi9+hjYB6o12tdIHQToi44L7luP1A1/4VpIPMbsQbXi8OtknSAOUPw5JX8j+ eItwfLEvMKYVoMXyPdFJz5mFVIwzVOcLU51ViDMXoAaMcRj9CtkW9Bsi7+s99CDOVyVyUyVyDsn4 D9nXjSasZxPyOmCE4aMmutsMw4flcu2zhZNjd/D5MRrpXo4Raw/yML8n9lBEjKE5VjlVQ1dtIk9i 3l3QbcX5zcTZ3Yn+w1TeJsy9E3ruO53fMvxG4PPiC1KiFZbvAJI28DsF8xvvUp0xnyoRxzP8e+CH bZSO+0JD7N0DjHcg5acUqhxIXYLDWoqRQE9KfTa9pjcadyFu+Q49JbbQI6KIsozxNFj0p3TxO5zV T2i/0Y+WiVdov2ihKpZFIo0y8M41mvG2ZP1FeoD1+muQaygkpqJ/JX1TLKONxnHE3u+pt3gYe41+ 5vcRJyPQ/0OMq6C9TSGjCGdrO8qf2Ee5nZyj2S5miLmULvvFQdrqwmOznge/zceewl4ud7MXtsbs dG28jX1ynTwu+nEbsZ+mEtmXgTSHu/L1amoCavU/0SxjAX1Xa0CCOUC5WgdwQOHnNFfycSAfd/wE 7QlgnJhALwBbUB4L/hVwzJHxdptAbwDbMPZZ8En+LmDoM2kiM3QHgRrgN25dPHiu2+njYSZRd/l5 CjO0q/YNhrc9/DwR800U0+BPALH4NMPaTCHf49i/kdDfgzE9MubJEs/Tmp7s6QnaRcqUPnQQjF+j ux/ggXeAy3GczKzuhv/Ivs8D7O9m4CHp339SQMXQF7RLNBxcBC4yHqNNDMjpkEtdf2pXEWuMBvqR 1Mf2z9EjVgjvuGlevVf27mtPsn6SDsfDjYNYPOymrQwxHe0Br+w/T1sZ1kuoe+lWWRzpASG6z9gn bSIZYx7ZWoQ7E9BHwNYhsk8VIyZfxFkGuK3s35eqGfLsAnozPcKI1U9A/gbi/DqR/Yo5Zb27P+6+ ePcH9gXFBSCEu+ICZYILwDNcjsW3yhfdYj7fifeYzLmkw9Pm5pm4eTYu8l1z+zH/n4Cz8wrQBrz8 v56LswzniATOE5fxDpmOd2Q73icPUgXRDeSSTzOAnyIPLQG/Dh1u767RQF+U+0P3DfCzRNc/QvlR 6Nsd2LpIolr1rhwM3S9UX78ar8Dpf/3XRNcQUdeOOf2vNwJrUP4AeBLlP4PPgmvQ/j302wo+59Tf WAb5ceBFyJ2Q1wIlKD8NDoDHAonAAPTfy+D3yC3fof91vv33x50y3iwrYecw8GnwE95viDtmdz97 YO+3hrv/PbGpviVuZccP+GZ6C+++aPy3z2d947iM/VR/eBCmUj9jEL0P2IBBw/A/A1gELAN+ADwH WLIda9YDm4EzwBVZEzQGndidHWwB7ZJ0cs3aLCkud8SlD0nxZHGpwwvyHZ49z2mW4zQb/yVHPW6m wyPHOjwgLSvM3LtvVuuMgcZA+i2g/4vxqo9t4jzj7/ue47skTeJ8XQI++85xcjQxiYMT4kBCfDY2 obVYAsmQnYYkEDzxsakMJ6Cxlh3jow1bSdVNDJi2RJ1Uba0oFwdlToKUbOlYm5axtYxJfBW6/LFq yjIq1A6N4j3v2cBQmbQ7/37P8z7P7/24995774x2AWPyDsrBGIlomClEGoAwxlREYfJGS2XX0BRj QJghDEZbkZiYZnAsK9flzSAJsoDyYBn8g8wnM2R+NDvXNeR9lnyCzgCmAAz5BM5b5Ba8c2/C45wD 7AEMAaYAFwELACO5CefHcN4gN0B1HTkBHkA3YAgwBVgAsOQ6sIlco5uDztT3AAi5BmwiV+GyrgLn wBciJlfIFRjaRzH3Cte47jicKUcsSzlF5pSTx7vi5MPY3XIxTv46KjnEYW81uYQ0AIHOLkHjl5AE aAX0AHYBjOBdBu8yUgGvAoYBGgD+eQCbABKZBXwAuIyqAQqgFcCRP8agmzi5GJN9opcnfyC/R0Uw qRfIu7r9gJzX7fvkd7p9D6wV7Cw5H7OKyJsJeQR1TGBNYJ2QTyO/GS3NExPeXDIF0yMCOwEeQAug GzAIMJIpUhLbKuZBI5NoFvY9kcTQp7p9A73OIWWHqMirYY1JlOSVq8ADGpKGZKLIx09CkZJ87DXw KMmHfggeJXnfAfAoyd/cAx4leesO8CjJHd3gUZJb2sEDipOf/7p0iehu2Yklbw7ZC7O0F2ZpL8zS XmQge+mJ7hro2H4aq6iAGTulOMorRHUCq+ewugGrr2M1gtX9WD2A1UasdmHVgVUBq1asKlidxPUw FSpWzj5WXKEUY3UWq6exGsWqjNUyrJZiVcJuJU5ssWdqdBPQzaiXPldgVzW5cmCMNphRGyxrGzz2 U8AXAQm9pIBIKkmKF1mpLRmt8CTLVStdz3vXkhmoOAO3YQZ9DDDADZqBZTQDjcxAAznAHkA3YBqw AEgAjKAugYEP6pwD7AR4AN2A7wEWAEZ9OAsAgp5PDfGMPjBnatAttERm4CyB00ZsisUkmBymtcyg gHOsuMWasBI34uF7HeXlcrlxnDX2Rda/vshC6d50cowMIgvciFdTdjB21yLG8YmYPCl6C/FPkNUA qw6vQDIuA1sPn360vBwJHLW1SCBvgXXFhI1QLScmLxUncDatNSbeFebET4U4AfdvwqT4FyluwDHx zxB5a0y8JAyI7znjHETOyXEMZkLSpeNCvXh6VpcegMSpmLifmjHxRaFZ3CnoiUgy0RWFkpIjbpA7 xLXQnl/YIipRaHNM9AhdYmNStZzWGROrYQiOpFsBgy0X9E7tVr3Br7vjeJuylD3OhtgWto51sUtZ GyuyFtbMFnB5nInL5p7iMjiOM3IGjnCIK4gnbioO+EJFBUYTNfR9BH9CdN9EKAPp+xrmCHoWaflM kATbfDioTfei4BZJ+7zNHscZ6zu0NLsPa3lBFGz3afWOYJxNbNDcjqDGtj4XGsH4WBiiGnk5jlF7 KI4TNHTYrOWtDo0jjHMPv2Km9unDr4TDqJjf4yn25DXlrljjfwL1pNjx6Ch+zLdox4NtIe1NS1hz USdhCQe1H7VJnaFx/Bn+Z8A/jm9TEw6NM034s8AGGmea/OFwMI436jok4duggxVzW9dxViRRHZI4 a1J3Kqkrg/qgK6UGdOnpqEzXlaWn6zoDprqRaGnAP1JaqmuKJBTVNdEi6b81s2WgKSvTNbyKZnXN LK9SjdakSwQBJFZBl+DFSNAlAl6sSzY+kjhTkoGHkgG9JwY/0ghJTdbNB5qsm6Bx/L9HxOdw4NGG cG9nIGIP9NgDEUCP9oM924o1dYskjfSGaULSGLlnS+82ajdHtLA94td67X5ppKHzCelOmm6w+0dQ Z6A9NNKpRPyxBqUhYN/sD482t9a6H+tr4GFfta1PaKyVNlZL+2p2PyHtpulm2peb9uWmfTUrzXpf SF/jraERDvnCqzuTdpRkZsB67THbwj7etKtJX7wNtuL95gkD/dOY6QhrT9l9WhaApiq9lV6agmeK prIhnJNKFe9vsJkn8C9TKROEc+0+5Ojrj/aj4sB2f/IXhQNCff10wpPsiP6vA3IBTdnsj/YhFNQq 2oKaZ31HaIRlIdpDL0lb+SCWmRmIJ6aTwSoIrqRBhnkopLFGGktPTwm/ev/7U3Y1fQpUMjmKFSvu Q9Ewo1mD7QS2gvYOuNbOjtAEfC7R10M0DBcYxQ4cfdCGPmyU9BG93gfo6095qXnoS9lkLagSfTAd Dw+oA1sVbFRAaXDC24VFvrMEzxnZODmp5KM0wxyDMljDHEaLOGPaHGHOkWUoHZ/EVajYYfq88cvG r5nuNK77shF5wDfdA1pWbcu15ZYBwbaI7knM9D0lDf0bSYZp2kMocSNtSdpH8HG6FNXhVcq7+wp3 87uL9lXtcx7h33BeR9xxyy94MuA8WEcOCods5CyPe4o22whfqPA7EPOm9QpPokLUQvoX7zaTfvRd nhwtOmgmvyp8mycHrUclcjTjoEDel84vIRf435rJxOLzBWR73QRPthdFakjEiTfWdNaRNTUdIlnH +8ykevEKkcjmUomgykprZVVGBjLzvKVQ4nlJmsioLMjIqJTLTbi23LqSyTQfsdi7evJ35Q/nM858 JZ/kX7MMFuPiOOlQhEVN1t2SBVvq68u7hrNw1vCyLonF7A73t0/Q+do0f2fTvOnOprk785vAgD+H PHPznvmXsqsc2S+a3mGzG1/KpsbUqDvLqvGmrx4oZcuMRnvJEnl5bZ1bplzj4gsL0nCdu8jI8kWs jOvqltfK9hJjYQFfhLGR2hpXHXMh/OG+W4d2nnm713fxZ8en7v8ds5WLJqs3RNTvfOu+tT/Q3fzM Zrsdr7s/9to3jn1//enTvb0nXjj58tW23cd8h2biB/704/sjob6np1848tzgGubwf9guG9gmzjOO vx93Pvt8Z9+dfcZ2HMdOigOYjzAnJG7NcnSgrUAGdFAgw6QdGaMxA9JQVmgoH6WEBlpCO6AgGIHB IAzKGhIwSWjZWpURKeu6IKRSibKJL6GGsslE7ajPe85e1m1qnLuLksv78X9+/+d53ilLKqfVLJxc OG1UugzvmbvzifkXfgrwVtPTuJjtArBCmopYitl7BNENAdyCCa4z1R/NKYIqB7CsRKPjSxy0LKLS LWP7SuA/lQcP9HswSqM+izwNvEhoosYX26HIKpxZkpI4chodsJnhqcncAdtCRCUaoJSekPdvyw6c HhyQBmH0WGXMUBGHiFxaPqE8YuLgo0oYf7bzT1XVPRtWF08sCuOwPqsHf4lt966mH/55fvOu7vN6 gR74v/mFEWSERCy8hJFiMVbAH6DYWIEdDogL7bYCG7GdUL59fkcRkkuLQ/CJuIa5VImkN+BwuHBi 8ZoNPdVVH+mz8HX8155zu5qr//IwffWe/g/dDLM/hwaYR5kzyIoqtAK0zEK+MtNlLGeyLOMZ/isW L6skMwghHmFutTsMVoxXpWIDMelGLIbGpcCMqfElw+VgWVCOyEE1KBOs1+Ptx/F2vX4Av3HMeB7T l8E8x/Vr+GXUh3j0w04e0sBvTUk8UwthGiME8ziGeDg80hgyVXCPzkA1aDlah1ohsq3WgwbYqXjq hgTzQhow7tKAlM4GdXxJBELqNHHFEyaUn+mbOfc7UaCvr35rqMrzzI9h3kk4SerIzyEvjNY8K8gK SqpwFUxZhIiXXQEveJgVrxk7uxGXbqFxVQPjS1A9iFkWVCeRkTjZ2Wn0Wl1wa4LVUzRccxNjsbHc Ek8hphX+3soczNkvS1tuUV19fX3ZPi1zm0QhvhT96ByimWvtzihJZq5pAWd0N8WEHqCnKKGrEHbC 25AqIR/SO4jcgbi3weTM6TUwckxKDUi5WDexY8PxtTnnhsMqjmDc1qLP87Cf/xNGIGhO5jYjsxeA p3zU2WEKeCRfMnO/nQSs72auIxdcClx26DJ/wpiayBbrFvslG2vhrG4yxTFdner5Xt5sxwJ1gefJ vASXsC5yLFUTnqfzVpNfmFZZ19ibTG9xu6RL7qvkiumK9VO71+tnWKdfFIc1WLRgUWmJBSOLZCGW lgK5AUGl0mzw2wDSYGkt/otbszKFgdx4fdgQy5ALx+tRHFUYXxguh6QYmcalAMTZ/OOQjKwiS5Bp ONOcRH/rqvaVj9f1H7y8ese5tsbGtraXGqfGST9m8MQTNaf1zFVd198/+dZZvF/f/cV9vATX3Xt2 sxGLz0Cgh6ANjxq0ANVEuTTBrCPbyR4zc4LBFmRiCbWwWCC4l8+uXTF2hLDhU6/AaqK9lB3aUgmL A6zGEtZj7cIx/ArKUVQfDmf3lqtZlcOiWI4aO0TxcLBINpm4MiA1Qh52TOqfvftv41YyL363seDt 7/fWGOuLQbw5WJ8f3dYmPMY+Zupm3zN1cxfNl3zcE8J8YbYtIdTa1ihrHK8qPcpN7828+17hPetZ B8mDs1m+5JdM72buIw4CbIanJXNf8/p5yWwy9fq8Tp/Pa/Z5gTmz10dFv5Qkh0/PkDGc3Nydot/J In+SdGt2TAS+YVg/rMeIJ+4mG1AASbhCE+TOSlJDlpN1hCFd5BE4n21/JxdQoHMwbECaLdOVA+n4 DVkx9g63odKT8ysainIFiuP4c8PVYKgcFBkqJIaRs1UGlIJvhvu6nAwb/uu9Xxzb8+LGffic48uP +wd/cPQPhxb4T56cFFt04aUPbi5OvLmv2fHRJ3dPzjvec3jLM+NByacytxgXKBlG/doIVnSJU8TN IjNFniuvyqNPupZKdc5a1/Piaudmsdn5at4RkWcD1Dh6Wa2CaGM4XCQK2BBIg8G6sRuNRCIu6xAE lXF3kcPIQ5Zoj6h+H8v4R4pKQ01geYAE1nMNoawHQhiFpBAJtYxxJ3FFu6cfd8ERFwE51m/MMDqJ 33hnyA+pfzsiFc+ZIg36RcdBmjOEzOkIFIFyABKud5S7DEdkJePK//PjkHqGfJxxR0WFoac6CnYm 1p06tDYy3alYG5Kb657d5uwI3n37hd7E4tqNLfqdK7/P4Jfde5p+t7HxoPNX5IW1izZu2hTovPiz 9tqafWP951+/oD+4BSv2Ap0S1FseiSilTVDmCUuEvUKbcElgp9Pp4i8ZqgBbSDBRjuWtlEOCIIq9 lHFSylAREUFkONpNupEZWsJWjUcMA6+gXp5JksVnWZbX8gtK+SQu10ROKywq5dYHy7gWOzEcJ4rO UkQkEiCUdNqSeFtWuc/joF44nAL0bklZv0GzOBiTo9FsxW8aG2YAPLvdDtplm2IR8q8SFZOZy5o1 EqWFY6KUyc+PGc3qfFAW3tGcgmaNCutnRgUtFBUKffAcE822s/Oh5SzDETmiFslUxmRXehPZ/+aH H3boZbjmCD3z9dQj+kGwxs50AqAx8nCQ/Q14+a6WP827Or85f5fjqON94YrwaZ7Z4nDbRnmppYQt sXaBXSmgJzl4VXE4em12p83htNlF4E9z2Hi/qtlaofLb7JqKVdWngE3P2hncb7AJ5tWKGL9PlGuk 5dI6abvESMChO8uhGyO35CbuloDSg8uQHe8EiivabZ3fxmPB//L4DZFG0QUOKweAyLgMF5TfG03m sWEWxEVZV2cNjevj/w0m0OiAnoACkUh1cpDJQ3POq3uWbuw4uW3uthFtr5NP0mdnbNpxAZtXvpb6 Yxqvl5q3fnBob/uMShf5+wl91QJ98OOLO9qvG1WtCtRUwc/5aBRq14oTHjyZ09TJnsmBamV2IEFr uVpznVIbWGl+3veKebPvivmyS+bA0B3FgaJA0HC2PMKviTNFAijl4f4aQzswsYX157GFfqcI9bYC 2sjO4Q1SVjvowSRJIlLLaN4Qy4+jGv8vrqsFqKkrDZ9z38m9SW5CSEJILjcGEiFWXgqCaUnHyo5i lBWLRUVRVnBFKg+73aJWUXxjxXVqW3UZtVVRy/qiDlBmfSyj07GO3Xa61bauu63a6k627dixuxXi /icJlDWTe29ek/Pf/3zf939fgXWBdbl1jZWxdlPJZ3yxaRYa6lSMuhHKppeHhtpCKMuDMSPTi+MJ Q01E39yjkFHOJXzF5hFdox+dsY2ZUlP67POLqGf7qrsGX/6o5Z/h23/c8m3nzcHcGa9Nb3jn4Mqm Y0yJfmlGMOOZf39ZWRH+6eOtoVdxEV6Fj17ouDhws/xYWXf7mydOkJmyEFhrYY8AZ+sC+n4dZuBJ CYwGGEnkPoPCjEbSNdI0RW57RkTgacpuEBo1/0Iz8AK8gKIL4LIcr4EBm6CPoYR4wXp/8MfQdPkh mXbEnRDtzzPmRYWeoAFcFIdojnfnmEy5C+n3WsOhohxDD73uwRbm587W18Om8KPuLzrxfXx5H8lu JbDLCbDLVuRGGehWIHe8BadaplimeO5K9zJYTQZejVbjVcwKoV5skF7SNVm3oa24ldkoNIst0kbd duuHxktxplGw3acdqp1cVDWdXJ5SPQQDSqoqIcWGpERl7P6xeKzJpXDsaMWkUxrPabCmm6oOyL5G Q0AFAEAUMMgGytCNd57NsjWeBH8K359ObowfdjXxgXgqvi1z2NVEw9cIGTfllaeHYmoUg0MUEg31 YDN/yVTDco3gkzjzCDSMhAZeWrfs7rnz92tqN20PP7xxI/xw56KNNUs2bKmq3pw/pa2kuaNz3Zoj dGLqm0v3f35rf9UbqWP6N/c9Rhif33EBz1rSsn5B5aaWgcfBthmH16471hFziwkRx5GG/hwYl2+f Zgm451pmu6voZZZae7W7yb5aabVvU/ZYjtr77Pctd9WHatzTlnZLp4XOT/0NR3mJfLmhtzaXyqmj lRn6BUSrHMApFn9SHKVZF1GopF6ch0RgmfEJdRpDuNdFqGccbq0xYKSMbb7LTw7I0EgxGqIYKiee PaI9z1Djx3kJueCKoLcmY8REevBQToVu1nVaVi0sWV2cg3Perz07gPlLO0Irm344+O7n1JVDK35/ +uiq1Qdwidz04rQ11+skW2kNFq7fwvKe8NeQmr4Jn/nTOXrc3rP9+1oJwyjUAzTbyHgAvzykKJVh EcdrKM7P0H7MMZAV0lEBooiHPCDE0kw9YQs4+ggwotmURFM4eiA20GVXrw4cgfhARXNT5L/1aEMg vVFcL+4S3xa/F1nopEebqy3UlmoXa9/TfqXlRa2eJ2vyfo5j9Yx4XEsylpv1M5EymhFiOd7PaCeI +Ww6U8BQKoOZA4ahkvwQsQYj4YrM0cHBkBxNWpEikfwBoTRqqB8qdDh0XY3FrqGqh8IXoh4PwpJl 4Bh4pMdKoDJdzpCrhSWaCnkz3SZ/wF7izsvfy6LAluFSqlheIp6UH0gPdA/0GkZidIyeFrUalmHA kAkcz0vwWuAkHiKVyktm+ICiaZWRzPALjcKygsLRXDdVF9AgQboXoDBF9WIRwC8GTJKKFvP0zGLm GnOLodvgvrsxDojF0nn+lkS3SVgi72UDf42n1vBreYrfZfjbZ9G+JMABTxt0wp4gAwBtBX57qOC2 nwTSEIljMAY3jbX5Yh4XFDBvk9zfr+/v38RGr9C6opNiSdFJ5ddzXuhiDLTA94I/R4//Q9Bbhhvq y90Q5Ny0i45z0R4vx9NU9l+pF24eH9x74Ab+4a3CUY5stvfnQtwXfo6ag3f3vLx9G2BiN2j7Peiv MTIXmwPFDFPoLnVXuRs1LRrut/aX2DoNQIZdL3Jei4a2edMUi1OjiTMpaWmpqcjhVKBLSYpiRILN w81K8Uj2MU5FjeSdct/EeRHugaiDxgdDQ+YeDuCeH7CSl27MI+40ak5hzGUbXSPcp55yY1dW1Np7 3GCesnIJO8nr3ZSn40pjVfWGHbPXXmgN78JPN0+YWlS4rj38Ba6d75k0J3/W663hTra3rGfx/MPZ 3r611acqMumZRktVcMry1Ef7eWlCTeHMVzLJhKt6/A37O/YT6EF3oKKSWuoErmXpKlEdWuFci1qc bWgPe5w+pOuhu3SXdR+h284HTqPe5DQ6nXQaN9qY5lCTfqUrNc+OL01YwtY4V5q2mfbQb+n3ODrw O1SH8VN9HDIju2yW7QyY0b+fHp2HiU55R+fJBoSZxDhFohMVRiN7DFORR8UY25OsHlXAQoJSOS86 K4NkUJYHh0yCMdIyn6+8vB7cQQO2cox7VDJ0x5ScncVYeQ9RKyrebCJ6xXRdfDr8lzuh8Gd7T+BJ F7/EYyaey7646+jX82rvbnz7K4rK/O7RBfzix3fw86f+ceWp/X84GP5u5/vhe1v7QEHagYNzACMG 6E9LwKMm4UlCdOONsmJAAhQKk8+e5JRj+678su/E3AxvembGpFcCOXQiL3ACKzACwyXY7DaKE7WS VqeluXiL2RJnoblE2urCJj2cbILDhS1aowv5fHCvafBoxhGQWC1WC5ggCiCS4sqKxT9wSK52/N/j c14tW9E4vWnn1Q3hUzhv56HMycE3lk3vDH/I9sY7py0KX+s/Eg4fXZjVmZM5+d7huz+lKQQFB4EL 38J9imhuIJ5jFUHgeUQz5Ea1GkVEAk/2zCGbxvGz6KmqVtVRWruO0cTuWpo4N7pR/mAE7+XBH2/7 ngR8ZgYUH++KHQeZ5IF22jfwKd3C9naGC94N6zpJJR1QyQaoRIOKAmmRSnbweLgYKGQfZEWRouzi 8OraifOeWP121E6RKffkyh30zYE71MnBYrJqfudgFfxDLXCgBziQgq4HJieaE+OpCi+eL8RhE52c jFwmK5WCYHXMWRU9DaZHg7HHm5KsgoJSqrcCHF/DWi/2Oj2qFmsTPJVzh1AblMsBCkEogZjamKlJ 90feRpNpHnF7AI3nGHeiw+5IcNCc5JFT4j1JHiGF8bhTbDqnC1kMcS74sTlO5eHdKDbFhR0iYMRs hJOicblQMg0nRIIWYIXMHt/Qg6AGWDI+xfh/LLFY+bEU0ITjYa6bGCBKrpGe9j+qywY6iquK4/Pe zNuZndmdndns92aT2WwyCQkf+Q4Dwc6xJTUkKUgP+V5BkYqnpiVBsJSjbBUIrUgLrRQ0FLDUplLl IxDTtArmVIHW0/YoBChYsKdQxWMPRxE5wE68b3ahuNnZe+fNZHdm7v/e+7u451nrg11nrJ2HhtC8 czsR2qLvi39t+PF1Y9+JT+9HePP3rn4B3/c6Sl/sW/4G+sqZcbT80DdGXihflmr58tq5G3a+bd1I fbUOqTSSeyB3CmxNLaWzI6R8jr+aY/Oc4i7xAxGLBGNJgGTQeN6RTLmRG0uZgFKp+eFc0JXmRhqM HYvcy9zczI5QWbIXRlY7uZLX6+2hFRQGmGhnGCqD8VKNw5aAzz1j+ObYWNpBRtM/x503G/BQugW+ /Ahc2lNwVSzzwmGqJ0zg54amz6q2bVV1xk4pz9iSSRmbKMrYWF7GhiK2Nae5lWqNPEf2EdAC9NZn mV3MfoabBkPhPOYCc5UhXg0Wn4Of+xk33mGXhvu72w+moLMmO3r76tPJO3GCe7mPCrVKPTJGuxVc K3QoMp8+QbTOrGAL6gzBOaNYrHHUig+Kbex69jTLrxTPsmdFtoRs5J4hv+CuCETkUA03zmEnRXan N17NavQDSu+Qy/DS1SHYF7KWozZm26ND3gBd/8icFYZfKiqaJTjD4VmgEKfoFETCcpxGRB8hsAdB cwBEOESRIZhDmJcERhBZLCGGG8EzTE85QbvIfnKUXCQcmSPQNamcRxrgwX6e5UfwelOStGzxGLRZ Aci095+U7qh862lo6+vpBhlDOUGmoECAFDhweEGpF+qBC0LABVHggjcYbuLM9A67LdgveMqm6iyA O5kcNji6FUQNiNlHwwFwA4aD3qjkNYQCn8GZPoPe+OEicP1G2eevDppSqLcvyfRCoGhwUBzBm1e3 juEziE9vx9+fYNLXr4LKJuHT6V/d3oYvX7E4JhM9rhSiR5gq04UwKJ8wAqXGEfyqKfOYzZYvxz0t 43IyUzUzQoj74Vf+BGL49y/hxG0M4/DA9ylohbmGwR7Bh6MCt9K13nXcxTpdja5GDzuJK3JPltvZ Lm6l+wm53y1ImAiGu1aei5vYB3hTaHF/URa34e3sVn6rMMi+yju82CPL5QRDYLHgcrvLiQCu4Jrv mY9MwEBBcIqS5HbLssIITrzIm/Ji7ygeZNyo4iDRhBFUYYoup6iZrjUSkkZxK/CqBEfwCMCjEwZB zbNMQcoIbv21RhaRFGHJCB4cUmk+hyHuULdDcOs2H4IfubvzSRJoERSg3PMXAYakauj/rk2NYCrK mc/x8DeMa+IWI0yMAz+P23TYtN8Fx0psibgnbhyQRboK6qC7J4fjhjw5brhHwK0z5Mo62z08BVan ZHXQAXwJ0bdbLwoEa+tQHOoLSiB1GypEXeWBcA1aiMibVus+q52M3vrX5i/N+yl7+2YD9+6tGu7i LY1qYQAyOd/ualcOeCVaOWqgwAmUwXkBEknAPMsKTg5jJy9wrAYzSFKTkCbNkxZJy6SURCQB2p1d Gl3wn9m+lykoZXY97L12tyACRiPK0dzUzANCNBsOCWaDAWXg6HCDIZiVGbfS4CFFKJcNh8GtzLh0 NWG7ppQweNkHWw7dvzacA24s48bA9VP3xoG7OZPNPrsRdYCEES3GSB04xuLRY7cteDxPcWvg0aRu pYCuFkPf/Qs5CdNZlFljLop4kE/x+aLBaJTjFM4nBaUo91pwWP6DzAaDoSjWYqY6N2du0Iy0k3Zn m7JAXZjTGVwYao20RX8Y3I6VcB7LevMkp1/XABoiqRiKeXT6rMK596JkkrKk3Y0peQNDAkjmKEy8 kqNYZXfJOoWpqmTUagwoySxGG1Dtu6hh7yFr+Mj71ujgcRQ7fQ5FV/1983vWafwO6kE7xqxXzl+w dh0+jjp/a/3Xeh9Vo+gQkp63LjEZjuTSEH83E2LazJol6qM+3KQ0+bqULh8nufIgBZlgKEM4Xl2I aBEE70jIna0R4XvHid7kdXr5d9DKbn3Z+SGYB9iL43EV/LtUiCdtafnWlo7PrBPWBrT6rZeSzRVr rafJqOxdMtzzppVOv86ijWu6f+B3w5W2T2win0FM/EwJ8ppbFuo7dRwO1fmxlMvlU0jx5fsSjlIy JVimzyT1wRl6M2kONupJsiDRrj9OVrNPko3sRvJj5ifsHmYve4o5FbjEXApeCkVySRlTSmYSLkm2 hLbqp3SuKFCqVwcMvTHUmDs7f3aiSW8V2tUF/s7czlhrfpvWVvBN8oj/UX21vil3k34udF4P+yE/ D0YNyIST5qyogdlACcuX6KEAYRwwAEYIpjsMKczL87BYKMzjnRE9Zw6OaKWpUlwa1yGtpPCk/5dD S2awsCeLLJYFDUatUk4oJzKTBtNHS0BvXxFwE4yY94AUlQys1ma1olLh1OnF3H/6+4yXdrz8+2PW W/v2o9knqH4eS18e7NkLsjlrfYyi55d2dy3ZkSzrN1Z3HUXdH55FXx/9nfXKh4etCz+alhxAxkEk Pm+dtuBk673imWGIzm6oIzDYgYoKULPp8Uoy8tbmduY/IvTkc96RiY+HvJFqsFeHCoqrVbofK65W staTtXD8zFBMzxyH85WspcfN5eAUyXNy52gPS925Pbl9zifkVZ514gbPi+7XPCOev8mfehTZ5dJU j09VParH5fRGcTwSEB1eVXG7SMjpDAQj4bxgkIkX2IoOhTweWcjT5QFHUitcVpgqZAsLQlllJ2j3 vwPvEIrwJyE6NdFanxU4LNcb0yAgCKLTL08tIwAAVPJ3uzRDmcoUBdNjeJQZqncGrT6o1y7yMhSx SNhQocx5YZPNXEOBlq8U5MN2t2510OQJBPw+Bw/DVTAnwU7FkDsJO49oIiXiu/Ezb//xyXf+3FKy oHni2tiCx9qmxJv+inav2/rQiy9b5WR07vFVA+OxosKHVli9qGLtxukSn17BVtWtenDpetoDuic+ 5f4BU0Y5Y5kDi9nF3HL22xxXVFzDGrn3s418c2x2/gOFDcUPsx18d6yt5On/sV0tsE2cd/y+7x6+ O9+d7xw/zo4T24nt2DEhgTgPQ9pcESEhbUjo1hIeLqEiJQEacLMyysoGqniGR9QtXbuqYx1S1QKB QEjwoFIZQ2tRpzKhqV0mwaQppWVrVjYyJEri7P9dAu2kxfoe+c53ufwfv0eOEpUjIRyii8KVtkTh wnBd6YrA04VPhTda18sblOcc7fpL1m3yNtt29cVQd3g3vd+6T95vO6juCr0SflV+zfaaMz8cUmQr GwTPmstbOIbGHAqHCuAMrFVuyWHAmDEXVaKiAGpBbWgz6kUcyqABI1ySn++i2fwSITfibRQiVAzF vHODETuK2L9vIuqchzZndEwdM23X2HQbjamTqVEY4xokDXKmET6CLTB1Kg1NlFOVj8vnzrjWUFEk UpGorCyH8ENrQQuBH3G7GLeZDdJokVXn5NUfbd907Hstq+ZnNy7tXPfjf//s6L3d7Hlb/3sDbyer 0Ujrjm2777/1YfbOG+gztevgsgXdC+vWFbrXxKuOtm/67drOP+xUeg7tXNlcXr4hOn9oy4tXu39w C/6HMkDl89BNFqrZkFmcD+EBg8mxjJDB3YOmVEPoHBdAuJRGNOyH0LRBgav88BvTiExKV50cTd0k JTuNynPKwGtWELeJc7J5zP5sLiv3939zh1TB28B5xBU5qLQhRmytTCt/hWdchNhdQOwJZj6/iGnk t9jeYb+0WSQKaxl8wfBxgiOCUwEXCrhaXLjNtdm1w0W7ZNNxknsFuFdMOYkigJzEU8R6ptJ3p2nO JAjoElSuzdBbBfCyw+WCLGhM26W12ft/+iT7zeZL9f3bPx1mz0+cvp6dOHoIybfo5okzHww9ewk5 yLsLgD6L4N1F6j9GQymLiqkoHRZLpTKpTdrH7xN6pYvSbckakFokzIC5w6IgBHjWAS4P/E4Asw6M WQFh9lZABC3ZzqN2zJO3t0aTLTzawffy8DtChoyNaHI1RofxEYwxOdECbAuLy0A/9oKpuM2yoCH3 Dlrb3p3WkOnRVDpOhq5CMQJ+eD1jem0NUYrENoBShAVN60QHaMEzlA3C9q8zgh2RBaR0Zuqf1eYP kYxR+FqlKRmpqYumq0iBCEwFUfm0AixH+LHJj66h7bP9BSXowO8nwbHd/2zH5q1bmZjp3DwUZdlC cBodMBbGqIgWs0f0JFWpJe2V+mKqXltsr9dbqWVaq32Zrr7Ov27DNAMCnLNArESrJAmyYrNJjhy7 3ely6zqwXs0gS+kBskp2jazGCidoQvBfGIShAyFKZ3k+36k7nE7dLglCvtMOW7sm2WwBVXOoqmYX JF53sjZNhbpinRJL66rNJoCdw4DTut2uaRTvdbu96mMCWkoFKAlmJwyDYtHS4UAAIeTxZFDP6RnM 9nqaJkGvT3o9k/qSuvaFNx8i9wO9TmAb2l97MECVNn1Xvf/vAki8R1EvX4ap5vKD3XcnyI0NcqOR FNpFPTN1dzphYTgs/jZhM45AgZNByWCNajOHL5AE5kwnMMcOS045yHhgcwtCv8z+6MO/hrzVInL/ /Vpzoa/k5u+yXReyHxdZ3I7sFWiJ2p/3/SNE35j0Zr+603OWPgkiNnUg0F5//yjpDG6mMySUGOaF eTQzX8hMfTFodyegvr8wFNgwHphoMgmEf/UgufRnYxFsmChM9ggT44vFUoXpQB1ch/UGx7AMTXO8 ReA4gaOFgGh1iKKVozmBDmAEvYQ4ycohAC1kzWCPIYiiQGOAMCWDdUOQhCcNcYeIxQwaMmSrVQpQ 9JPN+LDZUUNnEMExfVhWLgVJF8XvEiQD6J5ebhIkA+s1XqNNp3DP7DgPPcSSTJHNHgVSosL0+IAb Qu2DUJ/lJUFizk+NU/TUODJ7iUA+MtlZEIB9eRgM2IrTHkK8yx8SeFD7trM0PH/y469QsKVuwTPI 97fJc/h5uim76OWXu3vRqYnByZ+SeMcAuQdIvKmbp+0KgZB5spZoQPV8g0CLvFXAxxkIDEKMIDK8 KEbygomoiO4BWgYQA83CiFGrL4HIRNIwCCtD0pFDTuEWNt/CYauYL1G8eAENwZ9kIIq5lKWMNwCk GqVakJFeBVEst5TyyIQMoCGawIPVECqsaRpP16ij6gRF+ICMGi1pmiMCSYBTUOyKOlPTL0BtplNx M0q4IJhEejAJNXJjCJxZgRkp0CcVqLKKcAqyBJ0x/HVLw8QnjHfiynL63bP08bWN/f0TlnX98Jo9 2U6sm5xWbfgZOo6wynJxymKHyrBwJxk2bFLYCf6tjgeOYrzGZK6ZF51TlqMFnYVaubMHHRwZyXZa lvbdG+kjUS/KdqKz5rMTho9h4xZOpXGcQnaOZRE+ydBhC3VCeHMFPHj8/zwXBSvADVYE0dls98gI Opjt7OOK+kDVNk59yfiYR6koVYXyjEOCLBR7ZG9xTC4uTsqVzqrcecWLi1Nyqni93FncVrZf3h37 hetN73uy8x3Pseiw50L0sudq9JrzepRf6EJ+t1+PzypOJJnkrMVMw6yn+eXx5/jO+BZpj3RFuiff i2tVCQUxamko4Z4bdOirY5tiOOYrVWqVw8oRZUphjyinlK8VWlF8tDuDjxkuvc/h81mouiJxro+2 xtaoa6hwMJTBKw21yKAiaiQQKYucirCROUlSjP78wkRZ8mIS/yqJku6wXlAa+oC7ymE/V8thbk41 xD0NYkmFQribGoNYff454enR2rHJUYDJUriahtUUTtqMcoISodJhoohMvVRlfioSRUQxWYoexaaA cjmdDpe7MEJzFgWcICF4+BJds/Y360+9X9/dULHhL+tQed3en7yUN6B3/XHf3mMtquAueN/nfvby plVzn+/s+HUk75WnFh3ftWTnEocie0NhsavkkeVpPd3zuLGmcfbW2/d3PVKNrkd9arSptKFtZfMj P4QM7oYM+qEyVCqP+tQ4gVjJFmIr2DqWrfUP+LHfX+Ar9y3wbfb3+rl5OTWuGu8Trie8KT4lt9pS rme86/mNcoety9X1X6bLPyiK84zj77v77u7t7u3t7t3eLXssLAccqEf8dQeoZcJaBcciAv7W8RoS xRhtG48KMTFEbBI1jUmoM0ljTApWY02jEZW0xtpKq+MfqQ7YRGdCfuhUbDUJkUmVxB9An100yR/c O7vHzL3v836+z/f7hDutj7w9eo/x78CX+pfGpYyL1rBlZDHj5HHaeKZUtplZcjWzgunJuEFuKV4l 6CMshdJN6OFC0PSJabndIlZEW6wVm0UirsVqHMXpKEV1Ysi2bbgd92Ni4VJchWlsZM4oHjGyVH1J pTJ43UmtqbujYKnq1H+kgaXqUSoCklAhpmZSQQXlZOfTkFKhvM5skM3i+/7QUX/woQMpe+jrvx5b TSXm/6Zx35sNjfuYo4M3Xqp66f1fDl0bOv8GfuX4/OfP/LP71BlQU/XwFboPqA+jM/YM3ostc1pg mj43MFevDdTqO6gd9GvSbmV32OuRDGEV9Qi9imnwrpGapT3ed/k/Ce96vSHvJu8livZlPyA/Km+Q aRk7sM4cD35djWrRGtSC2tBF1A/BTZZFaJl+U+TSTCKaMpZzfdnpsItcMWaBFYCzzzSDuV0ctrhS juImpCdOuv0h1Qcf9RVzcypce8WOvfbVX++rd5M+sKpOHqdA3E/23ov3WHcgRWrC74T67zK9Uyy6 5GDGtXd6hr6pv/rc/k+sA8aGJVv+uPuZVS/iZ/U/d+EMLOzD1MYDO9NX/+zEB+f/8SsgqxyqdAHI Ul2y3hYoIkWlhDRdYgq1QnMhNU+Yo801H6aWM3X8Mq3W7LQ+ZM4FPjUuBy5r1/QvjMsuQSHLioUd 7CrCDoPcWCpXGhuaQhVKFVSZVK7NNBcKC6SHpcvsf0O38HWfgoO0T1RkIEvkVARo0WJaHKOoKkcV pVvFimqrtWqzStS1/tzjXBd3gRvmiFO7Ko7mjMxE9V2wKvsAqRLFMdZeN4s7f9+j5Yg6UuiIGlQ9 UjDADGvfo0VPqju54VzDqg+frn1l3OHBrH0NjW/uXb9u56bfbb29qxXTv66ZSvlulVP+0+///VTP 6ZNQswpQYyaQFYSafWYvt5AZpObTSSbJzxfr6NXMo3yd6FGQghUq3/8Rc0sbCHMT/FOMCeZUf2V4 qlnjX2rMMR/0/zz8oLmOXRccoAbSFBTCsqTr1SFn+KBDptyitCmUopB0U+CQAx6PXw4AXLotuRNJ /phEu4SlsAVPh6N5CWe1M5zOaGErFFdyOTt3TOIHJburxVjlYO9sJQWJJBVz55fBXhc0sKpUCXZ6 olM7nHSqV38PNgXFJyJV4yLuUIMjeW5fpH96tOCr964OXcPaJ+ewD9+5Ihx6dtnWwR6qxjtpwXNP voUX6Ls6sAW9wItHDX02dFPJOnB0JX5507SVexzHCyBENTMfIB0dtjM1HsvGOGO8YRtrjB3e16W3 JE9YGiW1G50GMZzTjQpbiQyPRHtlU8BBKqYFCM0ioVXD2nDAJnqUIJra5iQvKMmESQlntQXTSrTA b+1KM47hoyiCBrCAnECWjMWcAKaUwEjTlxwJZOClfZCiJ4yf9ritKSrLc6wHLEXh/elIZeV0HMOx MRs34hiAVe+4bbwwUVwEXIEOHRkG42Dth1pbA+GnG2ctTZ80cc70ri76ta2p1Ynyhf43hPLah7be WQEM/Xiohv4cGMpEY1C/XSuKjFYgRrVZYpnG8hlGRoGYpxXkTBaLtJ+I5doCbpG4Urwl3Aj6xuYU 5N+fc3/+rPyWgrYCrihSNLq0oFwsj5SNnheZN/oRbllk2ejaguaCnvwrka9yruWreogNHqEOdowy A5zbwZQsNN7tX82oE3Ujh64meypjmrJQlm16hVAwHo0L0bS0bh0ruq3X6s060dfKOIqyrdzjcpd8 QR6WiSWXylXQFY1YwdqII8jYbFeQYLyuJgd7ByCe9Dmum+x11hJ30IMupushfcQ784EuakSZOqQX zfXfwA/kueKAOHHa2qYtaT7c2P5x/y/OvnDsiT11H7f97fPte5qe3Lv/iXV7F4VrohOXLylufx6X fPoqxltfbb6z6tuudW/TY852Hj994tQJuP3NCNFXoM9p6OB7KARYSEE9ESWFdBl9VCL0keGLdq5u JHSP6lU1msFINhlOEwVvlLfjRYlhHnfymJ8dcojSE0WJ9lB/iFoTagu1h4ZDJERpUZc6Owj/3A+/ B9NdN3gDQbODM6pHOn0M6HIiCRQpBrorGfFAJ/y7uPlYHxf1sd50LHkANASkxTaiWBLH4iPOGAoF 1RzVrQobVDd3PNXZ+E5FR8Pq6hdKwAa/3pbc/frgA9TOzevnvtg0+BdgbAtIDL5CNFxxk52s4lv4 Nr6d7+Qv8P08h3iLX8M38613X13kh3nB4sGrOELRMBE9BXMXwxKB5aIMIq2kjbSTTnKRsJ2kn1CI ZJFueCJktufeCevhhI6OSvvwvYnUufL6VKAwHqThFFs6OjrIF11dt4Mk73YPiH/490M1eIq7Rz/a bldCfmZ+ROLMJobRPQzDEUIRJoCwJFK05iUqI3LOvkSWM1W5BXSv62GvV4oKQouILbFUrBJp0Qho +yMz7gHpJA8YGsrqpv8nhUornewBG/NP/m6Lajy+WfGUjFyCR5HzPIqQjnkfl45GLgEnnf3jYpdK OIXGAaWbOoZWZhdZxUUd8am/nUmunj17c/1238xtZOnttpOVy53uBvWnv4Wzifi0HebYBewSnpal /zEDLD2ffkyg/GxWwB1T+w/7852xtb8DVj/jvoi4L+xn4A1LYFRli/kZUB32PmGR8BjdIPTQl1hu D4tz2Dwu6pnMTuJLpSppMVnMLuIW803kcWY7f4r9FznP9rJXuW/Ym56gXxAYmiYUy3I8D1Mbw3s8 UY7VOI6lCYkygsYwMOPCgwfD/TIs5/GIIhLIESwfYrI9sNg5WW5+CbeA9YhRREX/T3f1B0Vx3fF9 e/vjdm/vbu/37h33g/uJHKIeIAHROw2KEcVEog1wFxlFUxAaQLRYNcWqoWmsIVoH02krKtU2SUc4 tRUbG9qqmfhjpKOmdTIGnRBba5k6Hcc/ktzR79tDYybtHPPeu7td9t73fT+/wPcRKEoshX6TBe3t 7Iq1X9UdiBWU5mECcwI0vAgvaI4yg60ExzQKx1wa8q4OFiycgLpMpYzQMzis8Vyes4RTO51lDKS1 pLMEpmtJjzINZiu5LVwD+g46RYRxvBsimInhZHYJoHk4acXTJ0mxhMlMyjtBmQY1mZvDNTgy4kcZ b1JIbbbC08zmMmWAux4mJXzzvwYdmctRokYxqxiOqAAhH2KhodHbd9NN6P1P0ge/T5/+8j00kN6Y aiDd30vXQQdshzYoVrp71xBBgygVP1VIY3EqLMrM02dkZm9AmWMBYCU97aYP0KM0tRSG+7TKTbfS XfQETQGr8KQqQzT4PymEYwcFOkCgYbCh5BOsQz3GZDicQaVCvu3KTvAOtkPS/HxBhhmZICiRjzg/ RHATf4vN1WiBGceoMe627TMPfZ1+6CFtao+PkxweTqXyubIYS5YGIIgYn10W+ZEA6gn0BcgAYFEX 6DEgwymUOCkFehzIAauYTJAFvgAaIRD2y6SbwN2iImR/4BTqPP4VUCEjpMbAoIw/SKSqFLiCCQZN BkJRWgnaBinIzSBVMJuCZsHgQEat5RFdYteCd2eZqVg9PGQ4UxHnJ9nzYORI08Ze9ysXfvH2cV98 TutPTrzQsHhbKRXcV7Vy1Qunj/02FSJ/3ryydF9/qpdMdnY++9M3UzcmdeQOVMtKXIqZaBVjIn8l nhI/Vf3ddF/10MRQGLMzoICbRLRfHJFuSRMS5VGbdWarEQQFMVYtr9UJOr9GURUNgj9NlaQcJFYV 6b5Etkp90oA0LFGSiiywWCeFxfgNYbE9EpUHZZmkC7ICCMPKAhT3WFesjIHj1TzLqxgxaGB0DqTn jZMFy92GBTms9LRl5mTEfaJg3Yc23Kw/+KzIn8hdt3D9USrYe2x+65LI1tR68tXvtMzdcyn1HnRd OfjhENRES8jEH2MJI8vLQgWzUL2CqVG/xDSq1YViqbHUWiTNFyuNldb5UpyOc8vEhDFhXSa10C1c g9hibLE2SN9FFo6htXWq5+nn+TqhWbWGXsM3C7wti2IN0HJmP4tLYfIHCqeziGBF1gPWdsYobjT4 XMbmF9Y6PxGDS3CjkcQMOza+UKrwOJjexMNEIqwk0HHAA04HGP5cNV3NraJXcRRg3CQWQyUIi+JF iCe9SHn/a+c+RtbN914fTY8PJbtfTR7f2Z0kTSi0e2P6duryvR8gF9JeunjpL+cuXoBHd6cbqWyo ixFc3pXYLwVxqjhbrBSpqGfAQ7o9UwSfM2KJOOc5Wz09HnWprdSxyLbIUaOuE+K2uKNJvU5oFFts 6xzDnqvmm9JN+1XXmHnMdcsz4bH6qLAYthRRpeICapFYK36muedMixqDDpJDFkamNUunIXSyf4RH Ih/j6/kunuI7kKmALDAGCGIYaBv1oQF0H1FuFEVLwaLL7opiCWViVTtWzQdj2MhBtaKKaJZMZir4 lmgzPQKZ1WImsWkLGVRPlKq7v3TPt3840rRhdHPtG/mGIxs73znasX4w3Uif+dFzz+2a2H84/cXr i0tTX6j6L5+9eP3ihb9CvRamG1W3oF4ikUX8IbZfQ4bJXGkWWUluEpioJSpXyj2uPhddaCp0RF3l pnJHtanasdq02lHv6nJdY64b7zB3hX9K4hTSK4QtJWSR8Ay5QKglG8kbwsfSp9a78h3Hl6QeUVqz HXKnjjFDnCJ0Nl0BgVOnHon6mL5e36Wn9B2G/5E6na6v+dyMyX1Q9s36EG3IkMlNhTMnne3XImde bu/yM+l/v3z1lXNth1LZ73auP3Js44bD6UZSPasK5SO2L739yO7Pn1b95vLlP39w7aMPsJvYCXbp PFTHQGyPzZpmQiKFfFQh9TRVTa2lOiiGM6g5Nac1GTgtoVIjjdIGBM/l9KiR2usxIRPpNfxfl2qs OPvYpY6JiQftY7AtvClwqBmrRIgfduu2nsVbbEeJRySbyT0scMXOQ3Mao3Uvzpk3b9aLZhcVPNi2 sPRoqCJa3566hn9/dOIfqkH4/dPRjdhmymv2lnKLuHL/Cu8a7xZuN7fDf8T0Tt6fVFrOZpds0yvz PrLRDnI5SYoRxEtxdZyL83FNXIhrm9RNXBPfpGkSmrQngidC+lDQH/JPmemv5Ws0DcGGnA5fh7/L v5f/mbAnpzdv3/R+/tfC4VB/zvHguaDVCQYgZnSV1KpDAYGn7J6ghdLkO+04GGW55ai8VF4pH5Ov yIxedssvy6My5ZbfkEn59+RywgJnAPlJRDFEimgEXBISEYmwHputhXiOuXSGQoTy485mJ+nMsrBU Vr7GbUd2vxwzSYXyKbIuyfpz4crfZZWM5KJcewTfFQzlFtZHhiNkNNIVISMiQshPePx67+hjczUD 85gCziWQsMbbqxTSbwuDuQqPtyuU1mYsmRYGNm9XgNs+BsdmUIyuLSMFsdBUlw+CZtAgGkWTqGK8 Wo+D4HJYB6KnwuAyw9tsnc9BeH1aQT0FbHBOiOOZMOUg3KITi0YYm7jMgM1TODe8bRtOKW3Y5idM xdZMm4eCoXzIdZDwMqrCZgTFjIOfzUVmyDUYTepf27ylsyiw9/xbS+c+lftm9dYztYYBYX3jliar dZpjx/u9KxrPb71yA83OWte+pny2TwpEntlWVbEpxx1euPklaVl8WbEvy2ni/QVzt8RrD3zrXdxp /on/kLn0W4SN6BoieDgbXxCb6eHYXFh0yZBwBC2PVIRV5MJ6HqhSpdGLXsKLtMaAgCZY9Xxufj3b ynaxPSxFgMb0sQPsMDvCMuxpsomQ0MzBtRmwAEOO41Q3hllgPApLzAIQKMQPsd0KhwM2vM9gkcEH HFAMmPEZzLhEpGhfXLaqOW/HjuMnT5rCOa6DB8Q5aw6Rq3chtjn9412pvUvy7Hgv2wE1t6ggIRFn hv5LdbUHN3Hc4d096W537306S7IsQFKwLSMmdmsZc+CUK2nDw0MMhVIEVQqTDAyFQJhQCMThMZPE kKR0kj8S08c006QFZtry8EtA2lBKGZK0Ke1AaemkQycmcWncSWccppRa6m/PxiGS9qm7k3a/3+/b 70MJWAMDhUhSkWjeFFKjwXHzuQieSiNRDUeiKiS8DctBzdHaeCyQGDF8JoZjDyaCtBcSI/FxgjyW eDVxLFFJhBLgbycIAbwfS7GL4ARD7MHqCds6fEddADOIVc5pG2OEIKQSIcvQTZ2AV5BpmILGCGk1 SKf2mHmaNm0vMCLESbol2Ij6usBAxYIwCcyUNKfz8kOvdVhqr2pvWrLkwOze7/fOf7Sj5XHy0mjP tz83b8nS7+wjHphFjGBDpCHYC44fGmgJY5SxPS6yWbc9BvIqT0VFSpUbPdDi8Rau+LPPJqfzKAsV jIZ8BmobRaGC0VW/L3tvHqWgMrUGlGV13EMtfD6ax5fj5aRAV7C1eC1ZT9ezJ9B2vJ3soE+w7bwL d5Fnpf3KPvoc+wHqZi/yn6If8V+gAeU4fwv9hl9Fl/lH6H1+G43w6RyFeRxFeRbV8VbegcDZhH0n mg/7IBQ5mKxaxl3GOJII+CnkYgw3cKBuSgnBssKZhHC4UcNahvq+z/Ywwkq4ps8HW0DC0PNZivg4 o974o4BsOFE9WhwtJuLDg0VB3IK775gvO3BeXU+d6wLf1RWwORibLcXcXS9UTOPmCKjn1gi4nJ+X N/5ysHZKPPfRyfKmUN3o0+s2L9tG9gEggIiMUHgAEHHIcd8yXTwt1MDJQnuVfcCWbBGfbEo6byUn jblb/2dTpuZDssYicg2rdsIhFJJVphrUsVBEcpUkrVEngXirVabRnJFHLcosOtv4kjRP9pVFtF29 35xnL3RWmV9xNiiP0HXODnmnspWelE+Z/c4n8m2WVe0syur1RtasdxrdmajV2U6fpd3SK9ohfJgc Vn+i9aF++ZRxIfQn+S9sKDRkfuiMyP9lSUcKhyGElTDjnKqaxi3bhvxq7wkjJ1WqLPDXctNI/dpW aEqxHScXVtxwWDG4ptXqhqvrBrVNM8epC7ej8ASKiGDFCVHT1gyd2zwkObqmUaooAlbHNA0Dcfem pePV+mP6Hl3SS/iQz1MdHG/muznhJfJVn3XYeLO92ya2GKlWGK8O/KAEwB/qwzcjN9cGx0L1opFi MQ60Dx8RAMX4BxOoW+NvZ8xBiYiwg7pr0d3B8NkGIqHLsM4phtUmiuiL0n5sytIVvXpKS5E3KtcQ hmJULvaiJjPllCrX8MzxV6H9WH7pipOIVi4eV5pwMJFe2n6secnKYPbacSU1NuvA7ORgFh7Ub6bE s2mpcvGE0iSeeALNJKfGfmni4RP3xYL77Mq1Hp4KpZD4AogXNL142KV+x0PToZQql45HPFhQAU5F EeFbQKWJIA9iPBITgX6PVC/h9vLpU0fmhJqPnPxhy339R8u9p480XIGg/96g/TbZNNr9zu/I2ttX SWff/34P0W8CH/0bot/C2wdMB5uZak8WfNRf7a00Xw69TA8a3zXPhM/IZ5R3TGb6US8hRViVnrBa 8Cx1Lz6g0kbna6GCUlBXGK/gbt6tDpCSdkF92/itdVW6zP6g/9W6zh1HliWFMoZlmYVDEpxWJpCu jk1Tt1TgbKKrkmZx2SQmt86j84xYtYi5CDGJ6Od1rNdqkqtpEmdMkohs6RCFiHc42Fmg79Iy3Fwj s10+ByIZ8OXF8h5Zkkvkft9ISbtIpgMWusDuHFOHI2PcAtRiXbdGhj8ofibEBLUUxwOo+JR1DolY M80uGgTOWA2NiKY22jaGU68Rn+SpYtfUSZ6WiXkSFDE+kfYscTLxKg9n0h7zk94dgioEnhV4qwj8 1BwTTNUKPUAQm/jp8sG/v3Zvcnptz5Xyi/j5967OKv+DZHH51rymuc23y9rou3hhoVwU7JUuL5H+ BfglcFePmcSm+BevJ72su9w8yiVf92FDU9mmvCUqRWNOVI879Wq9Vq/P0GboLcZBW8062cj8aMEp RApV6531kfVVO+Rt+g57p7uz6hn9OfsF54XIfrebH1bfsE7bp9wb/EP3E33UuuVWkpOBAjQL+ASY v9qNRGod7sLA1IAwalXuqiqPOI6mqbKUrDZR0kqSxuSbSZIskTl9ZsR3fLdElvnqHMd3yDecNx3i lPDcfhNn0JdruPjKMVOq76e0Jq1DkxZrFY1ocEVPowmLJXN6a1KdQB6Jamt0C8hKQBW6w3FrZLDa GgTjl4hbw0EPxYW4uQMxBWihjeeMcYy7AkCBGQzIyDhk5GmkVYaQWhnCd+WjW/lbf6vHM62eAYdw X5VnZ6q8cTiDlAQ8I/VCF7SK96dHELgL0A673dnT2+bH7LqwWn707Hu5zJTc+73ljV+c2tS5PF9e d8TKTq3ZYE4KZUcPfmtv5zay4faFo3MLSwXOWcjTS4Czgff5ulMib1Hi4M87sTywzLs+gw7+AmgD GJ31F0KngWRZo+Vhjy/AD5AH6ALWYX0dLyPL6Eq22NqIHyYPgwV5Em+lT7Ln8TN0P7uFR0hNNa3D DTTHPPpjegUrInoHrKo8AQaC0++SXw9SnMxinFDOazGBA4JgODlksiacgyXyNTrScwYnJWz2wiER hiRc5U9HSkZ/1cDI8I3Vxh7jYyNsbEV8F8ZHEe5Am1EFSajatLamRYoGzrRtkTUs9H/boDUiQBsF 0dZmXQd1et0WfmBcAVjGuRxgAwBsKSKBA6DU14DrqPAzY9tCxSbB6OyA2B6xR8GFeEsBFwNMKeSp KVY33gwN1HiMRmvuE8f9iZiY+o/Pox5xoSSin2ZwcwuW70m3pKuwMqM5XZUlrz++otwhPTL6q807 von/+ZL0f/arBbapKgx/59zb3ru167ru2Xa0d1vXPbpsc223MQqUh4B7sAFTHrMiE3TDIQIiERSM USGAUXRTJuJrKAhGJ4iBGAxmIDKIolNj1CCBxWjiMFEkiq7zv20lzkemiTExuf/td85/zz099z// f/5zzyfrH141eN2auG0UvyXsFG8RTsAA50EIbFbQFKc/qaCUWNFK4+ydkZ1pACUDV5Qm+1S6QeyC zppLOlpaOzpaWzr4O63t7a2k0zKAMHRe96Wuj/ZuJ6qYN6i0W9rTttm2OZ4Xdhl2JRws/cDyQdqn tk8dH3o/KjfdKisH+J59WetdJWpdWsyKX+fXw0OfpOagud7FEl1LXetc37hEV7tcdoAaDfA86Bny CJ52ZND9XtlgVisIJWpV3EfjNe/L2iD6D/Fm5PGFMCKTWkRbgHK5eb/ROmbf6sj3vG5guvli3QDt svS7MBDhd0T+VCxTw0sUrz9yAm/0VuQWMmeB25JrcvNchzvNHZ+rd9tyvYV+JypyqUhKTMmCk2Vm sfQ40qwSab78Micrd1c6kZxgzmKjBCpSDRlZsOuoiIaJeYYLUT0WYmWiJTWFiznZLmJ4Fld6tkh8 ziJ6y1wWv4+7ktMj3I7InxqLy8xPTWx+8Q22uPdYuPPIkXDn2yfY4jeeCvft3smKurpY0fMvhN9v XOPo2dT92cKDq+7rVlY5Vtav6Hjg1nkbdH094Y6jPeGtx46xlp6j7Oaeu7rC7+3oCn+4cyfzdO1g JV2DZtddHf299/bcsG7JqOr6HZ2d21vU3H863Cpcoty3YmtwUb6Yr8tPqxQr40cbponT4qcZ5opN cYtFSmZxTfxGcWN8kiXNahQMnKpEPY9PyZQMCSbutdKBzna9/W4777YftvNT9jN2bk+kw1/CGRM7 bDpl4jAppm6TYLLaDhA9bIiEMBQKUS4OBqabSbsYqFPpU4w/JUUpFHEookdEDmmPy8nOc+cl5aj0 6Fd2JFx6xuedEpoVLK3au9e3srZhrU90//TJ2gZHQZa1ejCsOxQe9/2WxjmbLrCjdD76mfWKS3kT rXJHMJH5wW06hVxgFaNLqj9k/gIldZQmAiWeKK5gvVu2qD66W/iOzaCcMGBtsHyNvFnmCTIblNhp 6RuJH5Lelfg26SWJz5PaJC5LBgg/0vnVgACTK5eydexBJrADrCGYKtFYUqWch4AgKJxxq3H7HVFH qG640G8O0CoOsX6QT2hfGmBJo2E+TnvQMlWwfBlLzfH7aO+nFSSxCW8qhU1FFT5BPPLec/cHGgqm pDfNpje0CV+xsbrjZO1tQXefdE7ir0g9Ev9WZo/Iz8h8hXyPzK+WFxF1kplsECDvkVTrHOyy2eBC IGooFMbYMDPJykEyM2qgeXBAjRLIRrKOhCxN9ntTUyS9lFdeXnHnm05PU1G5XxB/IBPHzCiYmjaf vjhRaRsZ/BrCE7QtZRIej0LkhNWEw4SfiV9RP/0GQKKvmLycznRvAfEXAONEIOFOwETtifQ/82kg qYrww58jeQ6Qch2QSv9JW0g4D6Q3g3YpwDqdcCkKO91nysCoI4CDSJ6TauUWINsI5LwN5M4jvAO4 NwJ5rwIFO6Lw0HmzqJiwMYazw1FMfUo+BkrDQFkZ4CU7fLcD/i+AcnpPxVqgksauuhYYQ+4J0Fhj aY7jqG08jRfcBUyglJ70PjD5SeDK3cDUAFBNc64hu+voHfXP/k9wfjhmnP5nmNn732AW/x26gcZG DRo0aNCgQYMGDRo0aNCgQYMGDf8GwMGgSgoEVWM2gh4jihAp4+INRpgSzUmW5JTUtPQMq82eOcoR eeTKdeflFxR6ilBcUnpFmdfnL6+oHF2FwNhxCNLzyVdOmTrtquqa2rrp9Q0zZs5qvPqa2XPmzmu6 NvTnL9z/GrD+lT+2b/qN/tjIdv9tEbFLnQUU0kQqCzAGV2E2mhDCajyMDjyKF7BfSVYyFKuSPTRE vRW44cEE1GAu9VqALX/sNXRu+AXX0LewD50dOnvmyTPb6VoUi8fIIozYQ8aNsdEEGKlksZkZ6Yrq etIy1MiLcdSSQfON6hwmBGK6QO3VMV0kvTmm60lfXV1TP3lSrWfC8tYFbX+l079rUI/JmITaiH+W o5W804aZWISbsJK0BdT2V73+aTvNTGemYjxugI5mYkYJJtK0jRQjge5pEuwheiKrgUUkvNEaN3IL Oemy/N6d40lo7SrYL6vDnJRrha0xr/LOx1/c7P96fmLge9kuR3o/ey6vUK331nz+8aWXB28yV8m1 dKv6OTLyLwMA1LyYJQplbmRzdHJlYW0NZW5kb2JqDTYyNyAwIG9iag08PCANL1R5cGUgL0V4dEdT dGF0ZSANL1NBIGZhbHNlIA0vU00gMC4wMiANL1RSMiAvRGVmYXVsdCANPj4gDWVuZG9iag02Mjgg MCBvYmoNPDwgL04gMyAvQWx0ZXJuYXRlIC9EZXZpY2VSR0IgL0xlbmd0aCAyNTc1IC9GaWx0ZXIg L0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJnJZ5VFN3Fsd/b8mekJWww2MNW4CwBpA1bGGRHQRR CEkIARJCSNgFQUQFFEVEhKqVMtZtdEZPRZ0urmOtDtZ96tID9TDq6Di0FteOnRc4R51OZ6bT7x/v 9zn3d+/v3d+9953zAKAnpaq11TALAI3WoM9KjMUWFRRipAkAAwogAhEAMnmtLi07IQfgksZLsFrc CfyLnl4HkGm9IkzKwDDw/4kt1+kNAEAZOAcolLVynDtxrqo36Ez2GZx5pZUmhlET6/EEcbY0sWqe ved85jnaxAqNVoGzKWedQqMw8WmcV9cZlTgjqTh31amV9ThfxdmlyqhR4/zcFKtRymoBQOkmu0Ep L8fZD2e6PidLgvMCAMh01Ttc+g4blA0G06Uk1bpGvVpVbsDc5R6YKDRUjCUp66uUBoMwQyavlOkV mKRao5NpGwGYv/OcOKbaYniRg0WhwcFCfx/RO4X6r5u/UKbeztOTzLmeQfwLb20/51c9CoB4Fq/N +re20i0AjK8EwPLmW5vL+wAw8b4dvvjOffimeSk3GHRhvr719fU+aqXcx1TQN/qfDr9A77zPx3Tc m/JgccoymbHKgJnqJq+uqjbqsVqdTK7EhD8d4l8d+PN5eGcpy5R6pRaPyMOnTK1V4e3WKtQGdbUW U2v/UxN/ZdhPND/XuLhjrwGv2AewLvIA8rcLAOXSAFK0Dd+B3vQtlZIHMvA13+He/NzPCfr3U+E+ 06NWrZqLk2TlYHKjvm5+z/RZAgKgAibgAStgD5yBOxACfxACwkE0iAfJIB3kgAKwFMhBOdAAPagH LaAddIEesB5sAsNgOxgDu8F+cBCMg4/BCfBHcB58Ca6BW2ASTIOHYAY8Ba8gCCJBDIgLWUEOkCvk BflDYigSiodSoSyoACqBVJAWMkIt0AqoB+qHhqEd0G7o99BR6AR0DroEfQVNQQ+g76CXMALTYR5s B7vBvrAYjoFT4Bx4CayCa+AmuBNeBw/Bo/A++DB8Aj4PX4Mn4YfwLAIQGsJHHBEhIkYkSDpSiJQh eqQV6UYGkVFkP3IMOYtcQSaRR8gLlIhyUQwVouFoEpqLytEatBXtRYfRXehh9DR6BZ1CZ9DXBAbB luBFCCNICYsIKkI9oYswSNhJ+IhwhnCNME14SiQS+UQBMYSYRCwgVhCbib3ErcQDxOPES8S7xFkS iWRF8iJFkNJJMpKB1EXaQtpH+ox0mTRNek6mkR3I/uQEciFZS+4gD5L3kD8lXybfI7+isCiulDBK OkVBaaT0UcYoxygXKdOUV1Q2VUCNoOZQK6jt1CHqfuoZ6m3qExqN5kQLpWXS1LTltCHa72if06Zo L+gcuiddQi+iG+nr6B/Sj9O/oj9hMBhujGhGIcPAWMfYzTjF+Jrx3Ixr5mMmNVOYtZmNmB02u2z2 mElhujJjmEuZTcxB5iHmReYjFoXlxpKwZKxW1gjrKOsGa5bNZYvY6WwNu5e9h32OfZ9D4rhx4jkK TifnA84pzl0uwnXmSrhy7gruGPcMd5pH5Al4Ul4Fr4f3W94Eb8acYx5onmfeYD5i/on5JB/hu/Gl /Cp+H/8g/zr/pYWdRYyF0mKNxX6LyxbPLG0soy2Vlt2WByyvWb60wqzirSqtNliNW92xRq09rTOt 6623WZ+xfmTDswm3kdt02xy0uWkL23raZtk2235ge8F21s7eLtFOZ7fF7pTdI3u+fbR9hf2A/af2 Dxy4DpEOaocBh88c/oqZYzFYFTaEncZmHG0dkxyNjjscJxxfOQmccp06nA443XGmOoudy5wHnE86 z7g4uKS5tLjsdbnpSnEVu5a7bnY96/rMTeCW77bKbdztvsBSIBU0CfYKbrsz3KPca9xH3a96ED3E HpUeWz2+9IQ9gzzLPUc8L3rBXsFeaq+tXpe8Cd6h3lrvUe8bQrowRlgn3Cuc8uH7pPp0+Iz7PPZ1 8S303eB71ve1X5Bfld+Y3y0RR5Qs6hAdE33n7+kv9x/xvxrACEgIaAs4EvBtoFegMnBb4J+DuEFp QauCTgb9IzgkWB+8P/hBiEtISch7ITfEPHGGuFf8eSghNDa0LfTj0BdhwWGGsINhfw8XhleG7wm/ v0CwQLlgbMHdCKcIWcSOiMlILLIk8v3IySjHKFnUaNQ30c7Riuid0fdiPGIqYvbFPI71i9XHfhT7 TBImWSY5HofEJcZ1x03Ec+Jz44fjv05wSlAl7E2YSQxKbE48nkRISknakHRDaieVS3dLZ5JDkpcl n06hp2SnDKd8k+qZqk89lganJadtTLu90HWhduF4OkiXpm9Mv5MhyKjJ+EMmMTMjcyTzL1mirJas s9nc7OLsPdlPc2Jz+nJu5brnGnNP5jHzivJ25z3Lj8vvz59c5Lto2aLzBdYF6oIjhaTCvMKdhbOL 4xdvWjxdFFTUVXR9iWBJw5JzS62XVi39pJhZLCs+VEIoyS/ZU/KDLF02KpstlZa+Vzojl8g3yx8q ohUDigfKCGW/8l5ZRFl/2X1VhGqj6kF5VPlg+SO1RD2s/rYiqWJ7xbPK9MoPK3+syq86oCFrSjRH tRxtpfZ0tX11Q/UlnZeuSzdZE1azqWZGn6LfWQvVLqk9YuDhP1MXjO7Glcapusi6kbrn9Xn1hxrY DdqGC42ejWsa7zUlNP2mGW2WN59scWxpb5laFrNsRyvUWtp6ss25rbNtenni8l3t1PbK9j91+HX0 d3y/In/FsU67zuWdd1cmrtzbZdal77qxKnzV9tXoavXqiTUBa7ased2t6P6ix69nsOeHXnnvF2tF a4fW/riubN1EX3DftvXE9dr11zdEbdjVz+5v6r+7MW3j4QFsoHvg+03Fm84NBg5u30zdbNw8OZT6 TwCkAVv+mLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowaj dqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AA sHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9 j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2 y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ 8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui8 6Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4 qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//AgwA94Tz+wplbmRzdHJlYW0NZW5kb2JqDTYyOSAw IG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ODc1IC9MZW5ndGgxIDI3NDMy ID4+IA1zdHJlYW0NCkiJjFZ7cFTVGf9959zdzQuygUBeWO5ySYhsIpQKhPCKJLsNBNKEh91korMb 8gRCVoiYUKq8OrSXlEedOkJBeaMDI3ch0ICIYrWlMKkUnRZFCzpAsQpCCkOZDnv73U2IxD+cnrP3 3u95vveZBQHog+WQKPnJrBGjKoO+EDBvG1OL5zYEgp0nRm4HalsBap27pEkd3+k6w7xPAVtxTbC2 Ia39x42APYvxSbULWmrkamUloL4MTH6trjpQdfKZ63l83k3WGVPHhLj4qDQgdgHjQ+sampo3vxSO YnwD0Fdf0Dg3MGt1gQT8rOOY1hBoDtpriW3PW87y6sJAQ/XVdzvPAfU57I8n2Li4ybzNHNQnW/zg ourglk3VbDt1EPv0M9sxpESePUhVMsAy5j/5uWZ9w/XmDYsXbjS/EF+w9uHup2sdx9toxSHs4R2C kxRUoQVreZ/Ev6BjBzZSGxZjKXYx/Ca9JYIo5ywmIYg/YCRJ8yz24+fUB3b0w5/RgSex0VxP/RGL FORjEY7KU/Lv5g3y0kIIpKEAM3FE3sB5UsREW7JtsZkNG6LxR3SI6ex3AgZgLKaiGBXs01729X1c oExbvnkRLuRhFltuwTrsxGlaL6rFs2KXPGWbY2422QqfFIUMeFHPUovxHDZzHN9QDPWnk3RFJitb wp3he+YujnwYHscT8OBZjuY9nMHHuIL/0ByqEW4xWwYVm1JrDjTb2OdHMArTeM/AHPixDC9wxrYi JHbK1vB74bsg7imJbPZ6LHI5/nLOVQc+oQRKoXQaRoU0i+ppG/1XOMQ4sULsEnelTWbyHiN3ysPy M3lR3lIKlWblqj3WzDSLzDqz2XzVfNv8nHM6GJmYzmdW4GkEOKrnsAKr8Euu1hbeW/EqduMI2nEU x/AhLuJzdOIu9aVRNJ4mUA0toGZ6gw7T7+kDOieeEgGxQ3RITZaz7V0KlAKlRFmsnAsjnBNuDYfC fzH7mgfNP5lfm/c5m4M55+mc0Wz4UM2Wf4GN2MQW9+EADN7HcIFn5EvOXDRvJyVSEg2lRymbRtAY KqFSKqdaaqIWWknraANtoi1k0CH25gS9T5/QNbpJnZwZTrOIFfFisBgiskS2eEwUi1qxRmwQ+8Vh cZz3WfGROC8uiCvilrgnE2Qi7yEyQxbKabJCNspm2SKfl/s4n2fkJUXh+sUrmUqWslrZrRxQPlC+ Uu7ZYm3rbC/aXrZdsV2xw+60T7SX2Ovsv7W32z92SEepo8bxvOMFx0rHkShEaVH7cZCnI8SRPrRE BbbjQzqBf9AemSj2UYnYSy9RX5mM+fJ39FdbEX4lJgiDZoiB8t+0hJZggHydbuM2jghFnCe3spe2 4ThPUquYL5qVePqp8rpyn5qUc4oUl7FH3LDs2BOVvWxtCc9/A01iqBYNeEUk4ozYxVV4Bu/iFXu0 2MB1X48MUYjRNNWqjfgGX/F0JNBkzOM5uU87bU1iOy2V10QcnqT74iKNtzWhxu7ECjokiuUZusyT d5z7pYjqxDiqxH1cpR10VczBDLEKO5Va20f0Gbmp2FbH/Qflkpwqa0R/8Sa+uw6gjSehA9PlKVTQ b3j6O4QbU0Ujtsq36Eu00TKlVtaxl81CoVU8C/txSBYqsZiCNtmGE/Sa/Bu5cUBppoX0oum5/xTu 2Pcob8iQbYwyyDwd/pR201nzmLiFseZpOSdcS1uUFJ7LZTy9izhDsdjH+lv4xtiDKIbSeR7Xcb8O 4LstmqfcyzfXdDxNnTwxqzhLYygTxWII5osnHKo9kW/jYUBeXt7kSRMnjM8dlzN29OM/GvXDkSMe y85yD380c1hG+lBtiEsd/INHBqWlpiQnDRyQ2L9fgjO+b5+42JjoKIfdxkUkZHk0r181MvyGkqEV FmZbuBZgQuAhgt9QmeTtLWOo/oiY2lsyjyVrviOZ1yWZ1yNJTnUCJmRnqR5NNToKNLWdykt9DP+6 QCtTjesReEYEVjIiSB9GXC7WUD3JdQWqQX7VY3iX1OkefwGfF4qNydfyq2OysxCKiWUwliEjSQuG KGkSRQCR5MkNCUT1Ya+MVK3AY6RoBZYLhkz3BKqMklKfpyDN5SrLzjIof65WaUCbYsS7IyLIj5gx 7PmGI2JGrbfCwVo1lPWO3truRKXfHVelVQUqfIYMlFk2Etxst8BIWno5+VuUD++X71vzMDdN6p7k etVCdX2Namwr9T3MdVnvsjI+g3VFuteve9l0q5XF5BHsiOW+FUpXUNWax6L456lGtDZFq9Pn+bkg qbqBmS2ug6mpeUfNS0j1qPpsn+YyJqdpZYGCQaFE6DNbDqXkqSm9OdlZIWdCVzZDfeO7gbg+DwPV PbwIFBG3oKKZPekkyyNtKreBoc5V2ROfxoHkWK/qHOhzc1iMVxmxllHFZag3ovP9ujPXolv6hi3d qan6HXDZtetf96YEuin2dOcdWKDVHD0NxvwHsOF2G8OHW33hyOdCso+TIvjo7Kwl7WKMFnSq/OH0 ocTHamW5IzjnLpdV1bXteahkxFhe6uvCVVSmHUTeCHeZIfwW550HnAFzLM7yB5wedb/G7dsG69/d ACMqo+cX7xzY31OXa9DA72FXd/GLZmlFpeU+1aP7u3NbNLsX1sXP6eF1Q0b/fJ9ME92QSJMRLndi RY+whfjiDCWdf/ZIJ1e1O6K4FSMUUr2G01/Y9S6Lcbn+T6V286alFfl8q9btppHr7o2P74X3ci9O l+ywkiGKZpfrekwvnpfvHV33aqpX9+uBdnN5paY6Nf2o2C1260GP/0FF281ja9MMb2vZ/1ivFqAq jyt89n8jIojP1DqLqVqLoAjxbcKlgjFipMYISjQkQK3xER80FqMi1rbaOpqrNlY0rVWpqWAiBaPX aCPpNKU6sRnToM7EpJlRIwJKkjFRq/j3O3sfXtFJbKdz59tv/32cPXv27Dl7sYmZYkQiTA1z24/c mkCjndobH7VmOq/iFWGHJwp9u6XOBHlteAhF2ikRaRRRHvCc3ZPqzGzaLlbhnVhBr2kV7ka9JzUb e8iHsYPQlgdepA13N2P8eqNIDAQXA/OB6cA6oBK4BpQBv8L4F3guywihSBiOpHlmtnsK60016+hN 4CnUpxlnabo1HHrUUTbPNYjS0f4UZD1hVVAu2gvRfwhtU8B/xvczqHsxz0X9b6jfstcKguwjqLeg PRlyooDXofdq/W2MLXJLtAoRD5m5QDrWKALPAWZhHO9jMLeLOnpY1LkO+segPgTrj1bji6gQMprY ZrAJz5/AtsR3Keo7oMc2g9xW1Anoh4w7G6+Iw9oe90nsv9y/b6CODvOeQ3uC/gGd7oZfx1nhwJrL wnFbt7tQ2gZv6imiI3gL4AEe0Y7TXGM8zu8sjTPP0ySGQ6I77JSLPV4yCmmpQ+5r0PN1cx/m4TuE Iso0XqH2+hUahr4XrU30OdpJGwR8Ra9qzfSS1YcOwb9yIL8M2AOZi5QvFNKTmD9AyTmP/1JFtB3g tfsG7cS2wR+5cnstrYDdbzrswxV0Gjgp6oQDEOaXYv1itjmfu8hubYCciRjzLNAL7fMUiigStjqI c/0c/n0aslYH/HDabaZpAb8NgXUIQvlZAMr2FXhzVVAtcBT4EDZbB4xF/XGgCsAY4WDt7vCjvspf 4TOwQ1/lH/AN9n8+K+Wz/j1MUT6m7owwMb8b5GwGdlt7aAlQCezGmAa+L+yzrGdQNt8p9pkgK/+e TW9oFVon3if7VIj57hHND91B+FaQ+d6x7zNrHhoGztZTaDj7LPtbkNkuSn/cR74TIb69Vxf6Pau4 nuYGfL00yHxP2RYh9lKOsnc17UN9hrGQ8vWfUYbxTyrUblGVOQxnOdst4b1pTfQTp5YewFlm4bus DW9m2PVilllLl5U96+m34AVGvfagUS9Ms9K9aJI4alZqJap+F7eFqPX3MTPC+/7b9v8F2kmzkmag 3mjWuy72s4HvhN0kkoC4IKO9GigF4p3+YrMzW/jsyRRjEV2x+C54aITpoaFGLaUaXRAHiPqgfbL5 Mb2gr6WRRhP9UJQiF9SLSLsLcsAmeoDX0k7SSgbLB88P86M7fK6tLwU56K9tmWN+wKcUB+7esnvw cPik4NzA8VnlB8RoBeWv7vMh/zxK+eDHgv55p5+6dWH+2Qy53dv6ZVtWuQXxPXhP+W4E98/xkWMc x0iOc/hn1y84vi3fni9ScE/KVBw+TrmBu/1rYCNQgL6+0PMT3P8lHMuw1gdWFhVY79BM/duUb+Vi vWZ6xkqhHtj35VBOfdptDuTT5GAuZTuhvzmYR80kclQ8e5dyVLx5lxJVHoVunD+tP1Cr1ZXswNwW vofqDi6gDM6NxgzaZGxwL2Ifv9PfgL3RbuTQT1Uf0Sj9M/e4ke82cE7UN6oYVGi87J7Tz8H3eO7T 7lzzfXrFGkmFIXk8BsxtrL/1Fl0wsEdzt8r53mA85rN3VrmN9hns/206bxzAmJ50wTzGe4ENBqs9 TVVzd7jLWZad7R4wLlKBeRBtgJqz1G0K2CM73BbKh9kWkGlNUzn7iHkCfQX0oT2dcux8rLuALtjd 0MZrrcX5DwD/2D2m8nUp8lsiFepfwLfmKF+cZa5w39F9JIN5WK/DvVvpnjaXgn8E8N4VI+7j/qj3 BnzE2ov3Gb8nNiLH96bfWOW02HqPFhvXaLF5FuMHU6regntkoD7GbQjE7QzdQvtVxFz4t/8t43/P 2GPd09Y2tV6G0oHfKUW0TP+McrQDlIpYMtGpgK9MU3l6DfzvX8BlP+gvQGoAj/mhtUffCfjoi/je pseIh1HfpKXQP7QKoyvaojnnGivoOSObkvVBiCMd8aY4QTvEddqqR5NrHKOtho9OievIk53oS72K Jun76KZqf4/mYVy69j6NMjYjfo+CDVdTg5FHy/U/0Q39A+xhBmI95pnr6LLZmxJh9636F8JhiLPU qGdTo/UL2srr8TjgMOTnM4yxlKjmhUHpGkQbnbVMKtbH0c+h76eol92hL3QN6bmaPlU63kM/pQfL xTweY2yllUTuGaCPn29NDOOu94EzYRzHjDMt57xglSDmnUTsm4o3SyyVQuYVotY04ADGTQE3o20k 6gOAYahHoG0RuAbcAZiBdoxx/4q2dKMH7oo/Ti1B2yz0+9B+DPx3fOPfSGsd0c1LQAc/WjuD1wNL gQ3AGID8fOMjvz7uD8AlaIO8my9jzlV8p6BeBlwHWoBtwBrM+Rj9CUAmvouBmezbd71r/u9873x2 v8xxi/UED8M9bGibk+6bg+f5Ddw2dwXP/5s47A3ahv12CO4jLJd+bc4MMkQkBX6UFkvLtV20FzgC tAAGJaHMAvIAnTzaruqXUjw+UJ6imgkTk0uZxz+erL49Y/3cLsrPESP8nJTC48prMor5u7wmeYT/ O36Q/7t3n+TlaTFaOQkszGU0yoFAKrAcMLB4eU2Xnv5pEZ152s6ab/VIjj6i7cSInZi3U6m409MO 3bFZVpattaQNFU2Qtk2Vy1WZp8pUVQ5UZXSgt5FXV+URVe5V5UBVpqoyS5XzVKnGi0v4NePXhF+j aPTEUoIgKWISRIwUngThkeKgiBCR1Q/J9T4R6Rn6kBwQN1omAylxj8oEsASWxI+ViUCv+HQ5VEAu RQiNHOrWDUcU29Hx+MSeA7dWRbWuiqIIn0itjh8v0yLECKREXm4IsAUwquMXyrcwO059EsVpldXy RqJPZFfLf0ufI6rldenThKeTvCbPyavykPxSjpNH4yvlQYzaUi190mdg1O/jfVqlJ1qukU9AuXOy WM6Rz8eprjm9QJ5IWYBJufG5ckqcj1eZEKdWeVRCzH6Zgc70eJ8Q+6VH/lKmJKqpyTx1vxwkF8oB Ui2X4F/ue37d+jHtl9/FYg+qVTLk5KiIqIih3jO294+2d5ftLbG9abZ3pO0dYnsH294k2zvQ9va3 vX1sb0+7sxPrxDgdnPZOO8dxLMdwNIeczj73E09/vOyosxXDhLSM0lD1GI1LjR9++A8rHI3GUVUn PVPLnPR9kVlVW0CZ+XFVX036zn8Yr9bgJq4rfB+7Wmu1snclWS8/JFl+aJCxABmrSgQSxqaJVRsI j1iAJqRAYqflNZiHwyOUAMZMzCsZaKF5zUBg0mJkC4MsOh2mpKRMan60HSbpjxJaD2WaKJNODJ0B ZPfctWzITH/0rvbeu+d+2nvvOd85524KiwuXJXh3PU4Yoii6uN6a+IE3mhLGXkgEvNGEsGB5ax/G h2IgTZADKYwWt6awjYn2FSUMc1sHwaq2fT1FrB3b1xOLIfOWsDVsmK0E5zX8j2plrvY+KVbv90p0 QecgWLk1KThmCfC4CB6PsMcj7NFakjgeXdSa+LgklpjBOmMlsWji7UXOFa2DuBf/urFhEJ9nTax1 kFbj3sYXmJxWN8RiUTCNigPa9zJcL2sAl3cLhRkOTiS3VByHx3FuFQe0G8eZncit4txm5/dwpfg8 w01hDeAsX6JSFVdq+fIpXF/a3djQ53ZPvCutYtLj70qEVIjDARCXQ4WAqzhUiAMTFTLvCWRqDlIz CalRZ6L4CcYxjtE7JzB6NpP3/ypr6r3exnbGlQWtfXmoPjZ3xXhrljfMVu2ut80+U5RGf6JfIZ03 lhDd9Qmdux6Fw1avHMI+jZTQgEiAm6GfdVl3FcHHGj6noiUQ63NDU+dMncOGgL1sKB/EBbkh665n XUVpfC43JINYgTmeWmdHx2YoyNrY3jD525Qrm3NtB4ompiyKJsILl7X2CUJjIrKyIQayaRMyna4x NXZ1XFgDwhATUjoJnJRptTkgaOPS/Go834EDsISYdxMsBSZ6WoMdm5jjsWwGF4RwATX1EXwFLKaB L51AP+K5FK65SJEosM4ARrY8Dc/GCaJ4blK7/LegyQehbKhFHgk1Z0MoDH35MVTTp7kUl1IBFbg7 euykVx9HePQIObmr4O+Yo0li4NMw7cZIKAKfFGQDj3kOc5j3EIwbOGriOMpjAjXisEC4oxQfIR7E /4VSD8x+SUA2zfK9Vm+LPNwsD6OwN4TkbMgrD8sZpBiCQawYLMGu/Bovv1P+xKuoguD0aTi+ERsD foFiTqq9ObOdJrHh/v3RbyAGTR/9HLehIaRFLRGlXJgpEEGjpXkcT5HmNSFF9vRrEU2RkxEDIbgR ifQCacQXULO49i7TwkgWVgG7z8ihBxnFEsSGIJJvsBn9MJ9GIwTqAuu9NyvKDr+sbK0cSn54XDff lVLTYoqcJ2tB/86IjLcjcoGe5OHFNm5LPdvfSPOw/GAY+TLTpxkDLuGlSuKpwKmBARY34VyK18Ga KbJdYmuCFaXwSJJ7hi1pJIPC8Cc2/RbvUPXQEIDHfj52jz7P/xn+MfUS2B5sS+boIJ1hvANs+gxA vgOFr8MNCN6QzbB3hMJgTgH7cRs1vfv4ayv/1cNCYMDRsX9y+/mrSEHlaEOk8EXTVmG/QAUFW616 pdbGKndq7F4SWie0ER90uuW9LlKp65Q7XDRs9bvWmNptr7r5UqeGNzsL9IYwslUUhbX2ys4lbOsP mjNs/2wfbCc4Ho8z3qKNcWOtYTbxzzAXmpiZ3GUkYLKY/TMCdYaZtZXuMo0A19H1B471LD13p2XF 6V0fnvnHhamztrUv3bGzc9VzO4MLQ358J413390z6+HX330zerfnJ5je6PpR+0v7CX/6vbealr2R /Zwx1QeOcQt2qUMHIqVRshOTGMZB8Tn8vLiYtIq8qNOlEYYzPQYXeRTJp6JHy+s8SBJFrU4HySgi wokCaxewLJcisQG9FsvIksZNeApiaSWEva/L/8ZWXxy6vlyfdVVOs9uX6eJrvEBjpgHYu8uo4QN1 5cAnPxyD7h0f/basCwv1nvL20SFu0ZYfnq7rneMJPozAjPA9wL0Bq3ehDy63FLQUt9tpfmrsj5Hm fKVWckJVVVBurygO0rqCoCFSUl8aI2t1bcZX7CuLVhavKvlx6XaynR4kB+nbRWc0KWpxOFFJkSLz VFNs13AchGsT74TzBLrkQpLzgVtOwy4V/GlEh2xlYthqd3f3PmXIkYx8V40RYeYhlkmfBJPG/bMJ 7AiunAGr6urAvszAGh68xyVsK151+l+HaqNllsNtr5509dkfXdn52SttkdE/7H/TRY643+x7/8rG upaoP7Sm5/B79mt32n6z+ljX4v+8diD0EfOVDcDXzaCLKegXkXxfFTY5C5RaLVOCGVSShJYy1Vig E7DMqGok8yxcmQg8poUFuAml8JKI4pGaCpyi6Cl0FvOc06PHzMASsnmFcMW7Dp8NW5kCbPjGZUPY Ya+e2Hx2JBMHd3zCZUPQlxmWs8MsSE2ogCnBGDADi8dVIAQmuxPaKDRpBKYS5C6r3JAwda/ff+3Y 9vxqh9166mz3qpdPmfurH/7q4u3OzqVLRr8Y+vQ+3m0+ue/qjp/2cCe4E+vWHOz5WfnA9b++33E+ 6D8S//3o7dsQ/1EcOPIixGIR6XFJZBYv4bPSWf1l6bo0IvGc1CQRnxAW9vB7pVP68/or+s/0eRgO d5JGL4i8luSJvE4vIEnSS0ifwmMRM+VMlHIg4EUxjSTwDYnqJXYG1/IejtMLYZKXxjch9QxdFMFT ILai5O48nJfCX/RrOS5FOPiS4HlRC0UUcz4kSVq0HsyYIsv6C7QQiFFEV0AwseVL4E/dg5PuBFqO Nw+DI30bz3nSU06lJn7v63+HR4CN5427YIkQdCBxBJmndeXt/ARaqzcPfK4Aipo2UHyjy+gKYD/1 C25KjZisnp/9uJLOfOfaTdfN+Y27s3/DW5L06OMVH4weJGayOvtLxrpDwLp3+I9QJfrdwDzLVgtx pMZuJWWllmdn4yCQTV8LlU07Q+420ipLhWOe5UTRdQtvUcymQg+qwLKOyvkGxWx2Gg0mo9Fgseer dFSSrvywHdTab2hSUnhbRDIWmsMmIyc4XXqFBSOtgYYrbFW6cEmK7Et6WEydYKFP5SHL1tmRbEZl YjAXZVj6ZI4JxFT8/q58NezEc/TUFJpUhk7y0ugSXDRHTsIBLytn1v6X7ioBbuI6w++9vbWytLJk y4eOXcuHbGEMtoAaDFqgsRmPTQoTaAmoNbQTEkwYaLiMucLlEKAQoAaamLM1UAItZgBhSsLVwGQY aEpo0lBoJ4UAJYZM4hAKaOn/VjJXpqPR29XTMfr//7veyhgZ/Jr+wp6Jb01/fkX/jZfImUD8/KQB C5/b8elaI9489/hYvC21QBy0pGrq5Vcb19bUyORWq7GsuPjysZ3Gvzf88vQvLIDLXdC5ZcBXLzD2 13paX0+1h2RQzmbSpaAo4Sv/0lWrI6x4Gh0NgRlFTUWcJvbyVqLxqEFZ6l4aENzpKPbwKz1PdoRR ng8FVeaOuzr9oyzVyWmqJcXdkhfhW9KzuvkiKZmhGFmyd0TCczsob01PB7rGO+90mD0JJRw9yVac rNs0oF7hPqYjuYV82hmecT3RJ/xOzbrq7Z9tXX76wDdDK/aemtP8XsoOW33tsN9OH/GbsT9cP2HN yzPPMsMjkSvH/tu2AcvfXfpy/81Jh/coMybM/S5+Y/bO8X99ecmWm4Cnu8DWE4CnFPRjvftUeZFM stlR3ETuJXku9yuOFyU7LyDbaEhT9hSJ41VRYJE1JeKHr/4J/w3Z8EBcSq29MwoIoAAw64rSecO0 e/aIRjXQYNRHg6jBM4TBhRlDo7j7oXhegNmRc6vtXM3av9zHt9taWz8yDhgLjfUQITY8/IJdBJPK BJSH0db9OSrg20NnY4ObnnRcPgryPNiiOltI3/LBjZSWmUkklFmcXsZ0ywgWv+pnovBHU7xqKYRY PV2yhEtLXQFV4EKqK8UdsRf4C0hBDJe0ZUWYGB6yr1dJBJBedlCNWLJ6d2WGOAD6Tse30UdSG+oo pxo7JRkfQiFMUdrnkaK6k5LaK9zb6XosunSEZqZIzvDs8OF18y8euzxz/k/yexo3rh/6T2tLw4TZ bzdM+NGSgSv6zaxdM3rI4olvHGHyi1cMWzxlw7nm+nfL+gwYNvHPxpkru7Zcw91++tq6SdFp1fPi qP/kQW9OnPPSgg9BgR9+AjO9DQoMg0Ob9UqR5wkvigInWawsL9qsVoEX7ZykWNdZMVHBYHyC1SUI VmJlWR9DQG0JFuwsTEux3gdJlESN42P4sG4TBAjQDBKtO+0LF2SEMpVOlBGpUOijk9pwRQcGI4Z0 3ASyB6oHomfGZZP95U2K7SR38mSTuQpKRRONIAFc5gwwGoM1Jr+AFwqZyLWv36uK/+EmjuCr5ZpY Wse136vErcaLpD+efHH13N2AkFFwxugPFaYiDwqiC3pVPoVIGl3Kc15JO+U55WWdQa8nmJ/mlLnc QtkZ9Hi9vkSwcjm1YLCgALHZHg3XBVni82rBVCS6i8QYadZTbEUo9/ncutz5uWxubgxf0H1eSFxI 8ngkr7dRsqMSUBNUWWgGr8phXaFrqPKVmbpm1T5jDsrXdD9uRt9QHIE1dMIKPSkBtax4WiXd5UJF RcK/y7BW6vaRLo/m+QBsUOzkBzRGKwV1oDjSRkGQ/mB2xbim6sVLZ0xfdnWFsQcXXjjcd+wS43QH Hrq4e3TqoNf3G8u5dotjxJpRDbEeBS2vNFxuYIa8sWDAi4X310hK7dznxtcDT9ofXuM+hSyfjTbt axaxk9ILuOYymQf0Umh/HSoIZQbd6gkayGa4Mki+K6JUMjMVVrG50tMylVR7uW21jMtX0YzKphbL TGYxK6FGOJiM1V32Rlt6EeT/EgELYY9tsDc8mPLsC5CQKbUdinlESPAsCkba6QDkwNknkWoSfAOl dPMooCKH4uytlbKmRKoC7zDJxp4/PsbYfNH41jh162Pc7wbW3Ae9+1ca37Suuty2/g5hsw3jAa7E PfByzFy7d96xqeX2WePq57c+oOllNCCrDZBlRyparVe7VSjSQxfkUl09XH90sXZsV4mEZY8fZ3v8 agkuUYUqDquKksSXX9UwDhLiLFe0oB2JWUXisBwlhgXdkcBOpTYZYwAPxQ4AJZqIGKZDJDFyBeKD AiDhmpJBHUqORqc8AQoCGZYP5FE5oQ+KiwJAw2hcits3vTDz9yPrdx95fdxK45PrLbNqelf1rRk9 u66q2Yhz7W7/pltr9xqXLs3xuVu9qYHi6nH3N7e973fDtMZA9Xuhehmd1PuHSCHTl+jCOMJZGEJk TpRYMcXKSlKyUB7MURQExLBaEGTCImlBGYnCccRjPkZ+dpDjWIk5Tgjc614IYhC/Gs3DSxeFrAkK 1T9LIZM2tY9D1iy6fcWkkxmyEjQy16dZRL0HCATCYqYM6BakicRzDC5jcwIPttYxQwIPYhOYtwNc +3bjB9sNYqZ5SK3cEKhcQrv03n7sZ7NFpozpzT8k93mWVs6JsuX/li4Foe4YnrZPoaXj4wc4TmGh dLjVM1hWkRqn0oknx2+hs683Z2+OnkKgNg4vlM4rCr1cSSbJp0pMYsGMUkmReKLAKC5lDgXi8liG CTyIL6O1FW+Pj4fKTj28xmvAahWdOYR8wFsHULnKj31FNiqZNpPN1/fJSYsdCDeyK9vl8vRLq1Q4 hHOyGD/yBlW/P+kNfp+zPHW1TQ0ijQQx5tOLbYy3mJecRalEIgoY6QDdnZNV1MOCSyzYEmagRQrD aJYw1UpTEytCylE8NEH4O/TVx/ixu1Yg6AWCDClCxVyXf5h1Pz7ZhHAfjeHZgFqQ71BSc+nRLpGU WCAHdVknUxUgC+Y0GB82G0c3Lr6Bf/73d+4u8h71n9iwyfjyd58dff8fg8ig1viumrpj2zDCIt57 bsqR9Wnrtuw2tl2+9Plc3I/iYiRCvGgy4p96NSuJIsdYZIA6y7ApViLLXXgQBJ/IueBtycJCqRYi 8xxHoD9EpkABfPC8JAiNIhxE4Fdi5E09kCIRIsny9ziBOBFoIbor36XECFF7xV028uz5Y5ZJmWd2 KXjotx5dqdlANu+iSdKXu/wGrBjgVAZHEc1ZhgNOjRmJy07MI3fnnTTOnlwVl97i2uObyNh7lWRf vJZ2ZRpIZT10hUFrdUnhsIQjHIETyNF9+UVh85oRMK96gSstTBgm2SbaDwZ6AXUzzGazbqSnBiII 0c86snLCCvz6RtbUhY3rntAFGDjU9qwyJFgS6qqr5/8IrxrYJs4zfN93vj+ffT7f+edycRI7DsSx CQmJ458SyFEYhTIYRbQQQmg2MmhGRxLEf5AKVUugHQMEZeqYFobaAi3V2AIsCWH8t3TaUCdVW1um 0U0plSayihXooMll73d2EoJUTZHvc2zr7vve532e93nKiRkjtKhE6+AI5jXiHeCORNX/baF4yVik UDQChuNcOpcFRvN2OwP5Eq4iHgWUBvtjy2fsHsiNHMvmC7wHfspCiOQ5mnE67HAAkbFZAEd4juKZ LpQ0nM41D/G8GyXBGpfVZyT+JtC5OrNdqroaKm+Vn2+fm2ny9mxAZLLgcHw1D8jwFtGpNdOXLj5p iyhaHMVqCVIIZkwYIRoE//I+OoA8g4vQV9fNWvNPjQDWVHxx8J2Bg/gLmIJFcP4FMIcr4PwMtc7Q xsIB3RphYPsXbV2oxMjlLGjGtiSbkeluVEL9H6UmI2xEnx+ChQAS4hbAXs3b+D4o74NbluouAXY9 gH1p2GYYHTpK0EkuKSTkJ7gnhJnybKWWrlOep39sa+JXCU2OJmez0qQ265uUF/Sd9MvuV5RjysfK DT23Q7+hYxeo12+lINs7dJ5i4GWDjgrTNmAhywEvHU5JEl2y2y2pHq9X8fk1zbtD4gXIfD/sZBR3 sAtFjAVeMMSYYfIVr0dheMXLw3u35HEz2C0Jdnu+KHlEUSKWWfN64A4M0rxLsCC18RFoaoQ1JaK4 3aJot0OXCwJ0C0yFUwyxjzAMJhsgqFSbJni9gqbtYwRJIlwpicWt1TvOWo1qSY5LZWKH+GuRbhZf EG+ItFim1+hY/4MdNtEGmrFPCDJ7GNwAuYzJ0SXRq8miXxujGDmE9OAZrOEZ2/wPcpX/07pZrm+9 QGiSMyIem89n/iE/yZGtOfvQm4yIUOSeMSIp1tpfLfcTVRkrKO08rMzDb+BBxPVf/tYLlUqlUCpl xak10Caqz59IIqJCCZXlUNgKBfQSVHF7f54wZTfGd81rF16vWl5TP/j3s/s8Qo52iekZePLM8f2D 9E9AoD74GlXufnNgGn182/ELrQO1pMsaocsk6DIVzTGa1tLrmU0SnZZqpRVMk7RVZoodSUeje719 vdiOdzo5HkrMSS5ZdroVVZZV2alm6eIAdbBzHvgay05nPochNGGAGhMLwC1xqE55CY44HQ7A3uns Qg8M3QES34YAMAe5q+BwfCNwBreVw+AWthsllAAPsMKFqo4mC4HzRBBl54B0nB+eZ6EKVc8AS0Yn EHA4bGRwzeh/Fsfb9dZqfUM+HP1B9qN/ZmGlLChlgmVNtXVzgudocBvWpPYxkFmCZIksgEXgIkMD WTg1osrff936+PiK3JKT58xrF83930+4Yj2gSJ8OHG98u/sKvezBTPp7n72z+8OBl+GsZ8CbTARv IlMF1AFDL8YREW9SX/JgjVjuUfNtRRFRjucTh5IPH7CqEPCpuQFbBM3SFqngP2jaW+oU9ChLmFSU iltrbqG1GrDN+FawZk+F3NFyCuYGouJBYkfmZVIH6BbxFXMzJmQ0acA5VZkKQdLwcJbhLizCSY+P xIyEUhXH4ULqDLqCpiMF1S6a9l7rgaMnzBuvXVj10brWP/6q/u7Jm+YhvALtQJ+bB82P/vK7ne8n Zh1FpYe2fbx51Tnkb7+ObOYGkjoWw3x6zUodOnXQSB21HVHxBPUxdaO6U7FJsu5SZUn25qrYrbtc 2W50yyGQNCpHtxyoC3pO70LnjEJvtIytYeezDWwLu5Vl2SYIKmsRHplKTaMj6V793MGbjzjNEaOZ TaTptHvYblLEb1aQMCphqEWIViGQZhPpYlSJGzs6nnuyde3ju/aYe7d0oOm9J36UWrHX3MH0zP7N 6rrezVNdocF38f2n3qqfVReDrTTAqf8Kp/ZTRdSXxrYQiZd5QYc7vkhERK1lRXH5tCJ/ruZTBaZg nOor8vuzp1egDpLogV8pLpEeJ40vEBW/sN2X26CFYIdeKlxk1cXvirigSnxRkeD3D4810O9T44SC aJAtZzE7fTwZb7unZ2YbVAUa4lvsVlb9xjrzPvnzrD+FeQ61kwhjmAyDKCU97LIId8gr42GHK8ky hEMq0TkoY5iUNDkVZ2raADVdebp31b/Mb+aXLE21XG9Kz654bl3fjmPI1Ztu/um8x5a1moVMz5Sj WztvhSent71i3kLu/c/PKRtcR0cZcd5L3zWeLSQKuGfoC+ZZ4FmS+qSbmgBccrrjUcIlDd44SMnX TnyxBCdsCT4VooUEspEv4/BlKAgXjlzGlSVK94u0yylGJ0xkfVV56QCVRnl5PoSqwqU+mi2tElAb RaacszgaVMoV7FJaFKx04crOlBCdRIhoh0dNej8vqjcEyL9yYSQeDJQHcFngw8BnATrQhV/tTF8F KOS7MLruDN6JQUCob+2/MxIP3OkyuU/uI0XNpgEiRrCoSS7DzKp48XjyN74qnkhUWlXmuHjxRGAr x0I48Ft/pPY24POe83jeyS0nuidV3Hi3ZvmyLV8e6LzXjM6KnoX76g7VzkjNjl/6ZfX8Z/YOUW/e N6+gT5XKp3fN/fny76RTDXMi017/Qevpho1X6wSva2p4ysLKWcm6xNMlec/MjFT9rGHDB6s/IdUf gj5/A/qcozqMRC5GQSrIJSBI0QKPWBpHSHjIdDWDQ+A7R9MC9GsBIiaZiFmoMG7ZZEcgP15GlVMn wH5Dua+c5i1/trsb4RF/lu3eGOH5o8kAmndw2JqNjVb1IRRKQppE6M/IZRaEbS+GzbB5m1GPHHnQ T07y3tBNViB+DdS6QpAFd7xYDup13ibvBrTRywJp80UHOCQHstnyfRTgQTkdiMIRrlQRIjASJ5+S otsdyEG6RDDE+SKmRCR24ZWGpKPDtuh2CrXAcw77YHp25sRfhEa411ffChwDne6DNVZD9cfASFe3 S1nfLGWthtUN4IxZK/8lyFiiWQwQk0ZIogOXe/09u1outJQeu9w58YB578RbX20qAe/Q1pJYv2fl 1et08cAbfzOHDq6+2Da3F/ZgZl2DnfqFoc5AM/BCtBDc8oih7BpqNmIMZQ/CZA8xPAQFnkIoHzMe DA4SnJ9lCO1gA9t4w36J70F+KOF/DQcTRG0GPsycEYNZzHJ0eVC7o/fD2q/15fRrujWRa6zw9qjJ io2dxKFRz4Q18+bZt8ukpZPx/8iuFtgmzjv+fXef73Jn3/lsn312Yufs+IHBoYYkEMIjdmhKGI+G hxJMwYRXYIFBSIDyWKEp4VXCo7BRVqqSUHVtaVVaQSiJWgZ0BQaFwqSqU6cJJi2DaYJRdWyaCgn7 f2eHRq2l3J3PZyvf7/u9/uYrj/4Ca3v1Xwc+XcmegxmIQc89/gcZScrRIDQCnU9OnzMUh8WwOWgJ F47GkzAXzynLmRVYGiAlhUPMJB6NSKwVhfOD0RjrkMSi3GgsVihKUH4kV0jXsDbDoefyEbFIZ81a yurCsGO/T+bH/VxkpNWfj1JKcFWQCT7OT9rsJShfyW/MZ/M/ZdaDBUXgSJP3djo29b/pewqk74Op vXBFJZ6415vuoXsrZyOorJ+hVPFZ0YPgwxyEsaHw0pGhUkPzwQKOH0QVr1HFUx5owYgDYltmspRg lXnHF/2qc/r2BeNwzSTnU4kNzfsDp0f9u/vC6pRnjNd12jouMmvJkS3jGxY89/b8rdMnf7Bj9ssz 7RbZN2l4IlRUn1aOvDtvwqqaVX3/21xdNK8E37YqghybVzZlYd17NMcrAeOJtGmiIHqUXJLrl20l +fRAAtXhtc5dtmO2bhs32BYPJ8JVzlrnEie3MYBZu+oscMA/aWe9IZbTHQwTxEjFVDgYsSFd53hH FIlu3WoW/PaEFyNv3JvwVnvve01eL019C8wXTH+T7MIjkx7B6DkJVI3qEEGoNmSYRG39jya45p9U SHf/XJBugqHz5CovLo2lZ2Njd6h59Pb8MNllOwLEHrDxc0pIlDa6Ex1RDfOFrsDCRg3iHbyxB9Ca jI3iKnHRqRW1u6ccvDTt+c1bxzV0DB2yAm9ZUNe+5KW6hW+VgjJ7H1RX3Pxqzz/b6+KNzZdxZ8HO vdtw7rrtvz70xlrQ52rA2gV8zkO7k2IZ26AuzTvEETcNrhooEmVim42Zm9egvCBsUF7LMXGqSx0s PI1TTCqHs4bkmWYcGgYV5BXqosSum3mPTswo5cfDoCx9K7v8fMRrTSFZkRl5sm/UZEpZKEwGW++B HT1JpHQPdADDPtMxWL6WZaY9RJfPR+hyswRkA6cqH3Z88KddGP/2/T+cwKvnreiYsz6VOopbHZfO //XycTztw/PtlvrmXX13tuzcuR0Y9QtY5WWjGero3W7kg+yGxdnpKuuAVwLLycTnYRssXdLHMu+S Vd9gPuiskmfJnKrhOA6Ihc5acYloGo2LxLHOyXi8OMnJua1WGGZUwYLydIG3yqKqM2bpqpyyXFWs ddZGa4eVWLtw6OOA4jdF/JFuHDYk+yBTlaf29PbQ1Y+FPzplghltMvY+DVMc7H44iwDVojEcGMFM VQpgyAyrvH7s0OX2++sv1q/v7Pvynb5hhcsm/XLx9q2LK5Y3TDx84tZXn+GKjrPMmO8n4DONLTUt 732/ee/otq+pwpYBHhWw6x5UgM51owDgIAAgOu2OLopKiqLCRQva3G0e4vZU5TI8OuW54GEjbKF5 Xe6OXILosygvF7F2bLP6UEjB88GGsYKnwQXBM0lebqHtFXsHdBc78esWXgNmQI05kMxT/TmRoM9v TWr+EmRVrKustwCp8lCkPEOPWIYfGXgMckDWKr2QXUbIglIuxyhVmptoOANXsvmUIYvKB7LphQMZ sDh22keRvvtnnr+w9ChGB3/3N/nRd+TlRenOvhDk0c7la87iBnvr3RU3th3HVe13rz47Q/ccfGMj 3ui17NzfASpJI8Q+Dc3PhT5LLg3yOIoHm8v4W45bqsmNI/aRdpaAxRAna3e6XDa4RiaL2cKaBdnm cgWRCVqJSfYLWGUKWQfAQVjOBVbkWKOyaxTIN/sap1NwuVJIIGugqNDJCnUxaqcmfLEbrGZAje4Z UEN6QDTxnmwZoSGn9AKXqKn02769TLnMm5SxY3klM3w00fHDESwthnoMtOINF+GL+SCbPv+m703d Xbx60TOtgbnlI0pV9xXflfPs4d2HmhZX+I64Ryxq3v1oCWXPiL5ZZCuwpwAVY183imTUNLwrcy6i /ElQtx6uDmeIu0yoidRHWkaYwrFhI5iwPexMoLE6gepYqGmi6IlKUbfHExQ1SEUNhxCMsQwsfm+y WIrrKu+OalxUl0RO91ndbsHjSUFT0AAsQXtRw7oW11q06xqp0zCCPO1iwp1C0K9Ao7ue9DL+fdDF LiiRhIiRiMWSqKaImlgiRuoAVZhBYjCGnEs34duQm39XemMbv0unm5qxB8w7a+E3jJOBONzyxJGb UtKAnHbqnv4CZVTAHbLyeU7Gvg0FxzSNg5JMRVtaOkDNpcWszGQo61A11w+OLjOjTzMF4eHPvjUx HrXvaT/6zft3N/2xKfT218HmL7a1dM+548xvrJz90Yr9y8e/sLx0vq283OaqKTtbu+/eNydx4WsX jz98fOzMz8e/OMPDzFxROnX6Jsyta329av8V2jsrwaLH0N6J1eS6KoIjPNYtusQIOJzzMzwhZxa7 I+dLG7+U35izETL2k5xPbBwxE5lRYURkWM3NMG53MNOxBYslKCmqJCkOyFWasBIQWhDgfkoS9ilY UYS4lJBelK5LRJGqpTqpUSKS1MVsSg7NhZgV3G6gux3TYv6jkPUIGCkS5Kyk1ZbTpI1Rcg9MWyB/ GiL3iRKeZG32E6V/w9zZrm7sV78y+sdKXs6IAl7NKN00IG15NujIWgfHszRk19Yfn7v1gL/11A7f xMqFJ+qH1EG0XltY09Y86tXePUzr7lDJ+KUnL/WNAvKOA5GEAGcW8TieFN9hL7J32P+wRKBzx5T4 qJJqoUW4IbC6EBfahQ+Fs8JjgUMmQjALUCLMRhmeDxKs0juLKLacieOjRATUeH4lERQDNbAR+oNu +MEWcoMwJGm2lpC1dI4hWeCyoMWaYoAE9JBTJDn1qYTxNSERSZBkedh4d3JyJHNXrgjAXTUKB3sw 85FvWObsjWfOWvZRQaWP+gYZ7054AonYwNfsn+xR1qfo8d6AuYk3DXCnWBMuLeYxzBz4mVhnrK/y 5qmb5N61aw8dJPLwz5TDE4DDKwFbM7Z3I/Hxt8kNZqXEb0qa5pBlpI38hhz+P9vVHhTFfcd/j929 3du72733La897ngJKDY8DpJLWCUQ0ajR1AvqoPiMxFQBkWCoBmZiNImpUVR0qmOSWjXtTKwgEbUV zbQNjibaTKbTzLROOkOadhwqk5qZNjN39vvbO0DbwLC/3y38we/z+3w/D94icVihYfqu9Svrt1a+ WXqV9gmfUA6uUpJEq5WnlJMJJ/CUE4kspwhNoTJypbzVY7YOySqGLQI0XkESLQLItd0Go8CugucE uUC0ANeH8JBRZOXWlPCY31NtUpzaiSo3tMHtqFOEjtkgM8ZAxxkM4GuNrE7Oj5sfGlkWUv8GuEQn 0ZlMgzOKRACJZ41lcjMVF6ssIgAnRsUoE5xWUBwzL0KDwWFqoXW49Nxlot5NPIZdv//8z3Ohx2zB /0m0x9eT7MuJYwzLCuBppsnThLGkiccL+W7+Fk9FrPMl/HH+DD/M3+cthNIURGaOhikHGlK6aWJ4 XWgY3USkG90C6hsy9JQNXDIlr5ygIGNgW5KAyAi4qtEEAREjoPnJkRGBT0A8xIjHXg1kR5IrEA5N EA4xwplvgXAoxVy2np/Ffhl2PczCSRr+Dwsno7fJujbADVfAkCc+5S9Cy8OoBlprNzhcIa43Hq9z 4mJDspYdL74UHi6+6b8W/poIR/xHwh/4PgidKb7kF2odMXGJ4znXescrxYKEQ2LIUS6WOupEoZj9 4wvtahmdVkhIYSFDEgfVKnB5ADQzKyusBz1B9iKIdT2ouFxht8fjYS882O325OqCpttspsIKhXoW KzDFQ/gzw+5RJFeDR0Vu1U2gq2w07HqmmtUA1qerOtHZGx0RtbDhISoWwcUEVd2juplAJLUz+ZMk ZpKXye2Du99i1Qwa8DWRN6ByAiPB5Rwpbj68ndLXIiawRRA7Si2mvPq/V2Qf3NfcHsxdd7xxzU7v ooE1O3f69w7ud8+OLjrdGH5x8JA6q2z++y+Emrm8M62x5hVr1+xo+0Fr/Ifkciy3LLr6+M/jcfJJ vV5mrD7zXsKacr0quEs/ums8k2Mpt5AwyRErSJ0YI8/Z1pNtYqfzF85hMLsb4jWng/r8oA2U+P3m XRlqVYt5VynDU+FFm4pTvkeHcMJwEoKFApvfboeMwYwLlOF8v61BhcUAC8RT9neJbIfMTfDFfn8D HsIXDfcDdxOYMjx2GawewNIKi+l/ZsaLFlVHkaaOBkw3SyHO/CyJOJMGViIZrdEU4g9hDX52+0T+ xourenrTdg2+5a2vffOL0ue5vAs/Wrtn62OvxLeTd1eXlM8e+VfCBQO9FprCYkDPgYKo8wJyQrZ7 FrJdehAe+RJuCrWEiMCnez1ZdKlnmTeWFdM3e5t0oYbH7WqHpyvt5axzlM/QOQuUQ1kJImN6SRnK y9aCyKJaWizUsiWUt+6BVgjZ30z9SVGDOAYnc6uR5DGIGfQjLNw/QSab0Nrzfd9euXMgcbfvx9c3 Dr69+dG21bVefd+mJXtay3Evjtw4PX7jfOJ3p1/4aN+hn5Y0dT21ZvnbxxcdvQnyd/9OopmbA+dz omz0nRGq1WPcCmWZd6PCP+ot12u5+Uq9l8/lZihF3ggXVXh1CDxnERw+gyGwNNCJtwVex33o39mC FsizVeI5+Hl1Q0AQs7HLSWimnzidKflUVUdmMisJft0hOwuQQwqmobSVaSRtiGQbOYjFIqcTYtFu U1lVVgOellCogMkpClmvP/FAbMXJWNr4/5GHCW4jrGOp3GM+405omEnRS7EESGKmVCicjWAbE1Qh AiTVfJoKphO51ItLT+mNvYsPj2x650RsuLnzrFNrm3f0Sk9Tbce62Ylm/jcHVs37y6cnE3dPLvgo PkzrX5ox6xm88vyu3vp9nyWnkC4HnBV0z+iS6GtSr7hP4gS7z35S/Jj7B/cdFfJIAVeJK8gcvA2/ ji0OhVCZKMpE4GwQBTkFn5I0IUVpQIZDLUMSsyEQNjQTvIz1hybUAnY0DlOVnC+KYqrpSdcv4Cia tKVvGs3Q2AbGdAEhMBNPdspqHH5wE7svaTHT/eban5Vyl6WpyFn0vSmzeiLdoAmUgcQTo5hsXBRG 8J3pi48trlg4t6Ry5UjVMi7vi66O/NOhzxNjiRjz5gUwdxTwKkbfDMqFirNMH7r/xwFYKatXGmwO 2o9mHw3RDvqydkg+aONkRsggK2GwZrO/ehI2O+mbgRPySTtXR7fJu2VaaMvJDoUrbVzQJtNMcCpY OezP8S12oxyMp6XpbguvT5MzgwZk+HZcPET2GxJuCLKIjlkpNdTpOjStcTGIctVckjvuY4g5c6aV IZ/qI1/6sO/qjNjV5Ei3Fs2/1xgfbYRt2xjIWWtyuF1VJaNqfNTphyBTBVEHhj1ZmLD5dMOEs1JU Xpafl5PPapLpG5Y8Bp4XiMm+vR6TqHlLBmf2xDo7c3ITfy2oeXLk3MgfuLNc99YVG6Znbb9VEVv1 8a6hnh68UV6wqa5pVklhYZc2bfOcHecu9NmaWmKPPJKXVrGs7NmXFh5evnw5HHDL/X+S/fxplIZ2 G4VzlfVKh7JLOew44j4l/SrjSsbf3WApmCJNQS652GkDd6ayMu4EH+hX210XcQK5SfqAp0GyDZH0 fnu7/GuSDmRNRxKAJOcUA1lVaa9EpSGydyC9ciBQBNAU3Ru9B3iw5yjDJxqPVgMuVeo1xp5ci3nO 8rKIOxwpdUdoqSVMAQZACN/JmvX4i8bMtJ69mXsjNxf1Z53t8ucWRnsPOMsLasM7SPMezG9P7NgT H2zxBUNwvm7gVQeXBy6UMLZqoiYdlD+0fGj92vtVwAKxV3rV9lrgoOWg9Zf0fUHMt0YCHZYOa7tt a0AoxiVqlbPeyXm1AJijT/P4wAtfgev2acwcedEjzgRzFDHPi0jUfJLoFwoUnchawMqnFfg0kVf9 DT5me0qgoVrDqrZQW6lt1jgNWuFAOkw4c8wMW3Amj2/xX/LjPC3hq3nCa37ez6dZK6+m5G8BG9r5 Y/fGmD/CYvojSCIL0GPgkNFoUuKYQfLMIGFjRmcHS3yokVW+XADVxLQ0hWVFRaSCfQpTbXikqy/U PfgTV/1TT+9rzvZlNg3ePnXlT2+tr/kZWRdfuqQkWjN3RyzyBr4OpQSj9yBhbANMreiYMc+VT4O2 OqvxX/arNjiq6gy/59y795577+792LvZrwTIAuZrU4PZhU0wNQsmYggJAUcNpBmIC+FDHEwmtOJI pbblw8FRcRSGGQdtq3b4wVdAIKMFO+mUYaz9o2jrgE6bGvoj2GqI06F30/fc3SjDUOWHf3Ry3uw5 77n35N57nvOe57yPt827U96hbPW+Ql5VTxBNQl0RFEvVGkB9oSSYJ8CYB+fGaIJAAFMMhTGeSKio LNqBmYwiGgWYXLQXk1nkX0TYSJ4mlIxrA6SFPgJu3PQ6VzpH+KTrOACcdtg18tbld6S2Y0z1h5Ik viwmJGzMvlJcIrQdPNxhBJNLSOa085JY4pxY+Zee3fRxdz77MftN4Xyi+P6Sf0SIUfRRES2PLIj8 xN4mbNW2eZ+wfxneGt2jvBcYVi6pl2y9yBWKsSRv03eiIjMNXbd8Xk3TC4KhUCAciUZDXElJqgd1 Fh4xUdDtUMBvWZoWyqgqn7mtZwKBqJSJgmoP0FUQoKtPRItCoai/3Rogp0Cjq/rPqEQ9SU7103aC Z+aqfoNzEnkrrRh4YEYKn9rFaWeop2Ws5xPTGevMRsbCTqS1cXXDJ+EWc+wyYjWCUI3kEBtxYSP+ WquWh4upbxkcHMRmor6u4qlsvLMHOjmOHEgeLi6gdgIlV0mpJBOibzw4y6bi1IpbnT/MYLS6Z+i4 8583ykRaXpMdFkuyM7KjUzu6H1pNK5yRzee2XSZ/u/pXunHubx98zHkBeX/cwVhqQewNoqcDftMq tmipkbbarG5js/yxJVkc4aYf3J6UlKCCoElIR1SSZRA9E/pWwGDy6rqhaVRRVN0wmK5IRDSYLAsC lVRMwwwMskWSmtF4/qroi4iRAZaRB+h0kKjWT4QM5VRGSOC4CRsxDRwgfwaTCEc4X13pHMKd5+Av X0Mu/nI1F64cSYagsUG9Lteil0ORDcomFwUoCHrcY5eNjx2dOds4OT6Gi51katj100pBKCnzuE3l hdwMQhJI+668LS0pJQJ5J/vF2eXVZaT6QnY+8Z5dPz2eHaSFVHtzfRfZ4Qw7n3/Q2J3dwnOo7BJx C2IagL3pe4qDs7S0Nx3crnoUr+YLKiG1QqvxSYwpPl2XgRSATZhgmGZC1gOyrPt0VTYFH8OIVlVF YqpQbGPmYeoE/3S1XSEDdDcUIDgYfOZQ1UgVHnWcxfN4YHThKefSkUtGnJr8uSumOMjq3G1qpZCB kH9S7hbFSfKzTauZnZpemZx75Ghb2CIfvul0PLA3U5/tPmBGYh1rxXJneP9+4f6rLYd7ecZQhpET wVlacCDduI0+6aOStok8Lj6qPuy7pEleTVV9AiUiQT1CRDGh+gJ4Re3jYSMnmERmGoYJZsJS7VCo WTH7LC5jVK5mNh+V+1xuxpTgEL4qrelJ+NT/aTPfbaNxVzeODnG9ODrUavLdBvUt7u4aqs81KArj 27fwCNh+zXbCvChF5qSkGbFUTCaSPCcRk8um0Nt/2PyzmuymYmF22DlzW9eeGvKr2C7684Ym355e Z3NqpYIEhTEu/I6mPMdAgWWYfUhzJCpLisCQX0BaL5+kT/RDIxFO0n1pA9kFNCQS4RBtJIeQMJr7 1Y4nOYWOOkOtue+ta+HhPDbCcxJ/LeSOXpJKIGfJuDDkjvg7t0x/usv6cak4/KdjLz/vXRzDnBHm 3sB+8aWdgYvwBSlC5r5M+wQQDomLxPc9Mc9b15tULV2QV8gXWQc7q6xRPlMXop3Tgt4mzJD36QVo 54ydxmVzlfn2jcz6qT/pf82usv8YaC2oKLgY3BXcFaoOnQ6/EmmIHIuuja4thMI3iiqLzk+5Y8p/ p746LTLt2e+cvTtpkzZpkzZp3zcDXijP1bAEQOAeieJPgm8sQq5ReWWYlt8OoOZAxVE4MWDmLSWl ZeUV8Uq4tWrWbdUJmD0nVVP71QMaGu9acHfTwuZF0Lq4bcnSe+De++5vX7a840ed/+eNr3/zR32b RYRHsA6DiVNlUAylUANN0Ab3wTp4GB6F3cWR8XEcwe9UwjxohqXQBQ9Cb+7O+N+vN5j58Yt5rG9c ENLxf3/tNzHozj9BABsg74vo23lfQq+Er6So4JUSqM37FHRYkfcFvP5Q3hfRfy7vS+ifWti8uKFt fnxe77quDZVNfV0b1mVu7hIsRAgWQwNCNB/iCEgvAtUFGxCcJuhzvXWQQZBWwxrYhL0uHHFz//Nt jsqhJvwGq3pYDh5ExoQqHA60HNdTwD6CQp7BO0xEj/cmWuimfp4ET5Trl6ceC6QxInYz/pi3WULY m18l7O44f5qsMOqusAhzR/+69/eneXu0+aN/Xr3grGGvsQR2lYkY+d8AFMxZRQplbmRzdHJlYW0N ZW5kb2JqDTYzMCAwIG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4NjQyIC9M ZW5ndGgxIDI5OTQ0ID4+IA1zdHJlYW0NCkiJXFYLdI1XFv72Oee/9yaSSAh5KX/ciFRuPFLUM0Jy U+MZoZVYyr0RxCMEGUQtipZxG6pkZrxXjcdqZfBHyopQEhRjqFepV422MqOjLNRjDXH/2fdqDXPP +u+/z9n7nL33d/b+7gUBCMb7kMgcOLhNcu7l7E1AUSGvDhhV4C5c9vfFdmCKDtDaUdOL9P51eStY dxWwrB1TOLZg6MyAwYB1JqBNGDuxeMyTv9x5CrQ8BnQ5mD/anVdT+tMQPq+a93TM54WgLNunQNAN nsflFxTNTI1/UMcB2IAQz8TJo9w4cnE7kFvC89IC98zCgBhazPsz2V6f5C4YnekObAFMZf80pXDy tCLzAWswdZ9PXzh1dOG360ddAmJK2Ud7rQox/mcLYlQ8YgCz9rfHO8Gs9em8E81a8S8+rcnz59fP LFyglhSJh9QAO+g1HMcXuEitMBsnKQ+NEYE6EQedNFgQiSHYiuNkRQ4qzJ/wGYbiZ0X4BNfJgXdw gkIY3bexDgOokVmGWyTM63xCF2RiGYVr07WLNB8aSfGh2QbBvHMBwpGCtThHswN2mefxJr5U/cx7 WEmRohVCUIh/4i7HlyQ6iXfNArgxFzVkkWnaCtOBSaiTC82NHIkVg9nvSMzBn9lrClWLHVoemqAH eqMP3kUBtmCbGKPdBUEgHhM59qO4Sdvoirwp/6NsaoQq0Vp4e7DP5ngDnTizkcjFNJRgJfYTqBll 0Sot+dk8xkTnE9qxzfuYj8WoYG0IhVEjeofWiTnilLijPtcumqfYqj2mc0wLUIOvcAv3yUKtqS3N pz10RpAoFk+kbsLchwS8hSwMxwzMwzKswk7sYzRrRH+ZJmdIQ91ST72HEYRhHNN7qMDfcJ7vrQE1 EfHiZxkrP5Qb5Qn5kDNpqBaw7XXOoi3H2I/HYM5/Gt/zIizFBpRhN6o4ntM4gyuo5ag70QSaTetp Lz2iJyJWNBfdxGTxR2GIKvGDbCwHySFyivyTXC2PyHMqTPVSfdU6tVtdtiRZblrd3s3eH80BZrY5 z1xu7jUPmufMOwjgTmsOOxwYx1hP4bzmMpLbsZ/HMXyLS7jMnVXLVQcKohjqQH1oML1NE2kqLaWP qZRW0lf0tQgUYaKRGCgyxVixUBwTp2Rn2VVWqgSVrJxqmJqgitRCLZlHf61E+0zbqpVpd7U6SwPL VhtsJ561enbNm++d7v3ODDRDzKZmW3Oc+RAamvLtuTGWMVnDmGzi6vgrqnEYJxiVbzi6q/gO1/AP jvAX1FE4NaZIHjHk4NoaQONpJs3jW1xJa2gj7aZK2keH6CSdpjN0li7S9/QD/Zvu0F0hRZRoJuwi UYwU+WIuj4VihVglVovjXCenxGlxQdwUt2WobC7byE48usmespf0yDJ5WjVSEYz2QPV7NYsR36Kq VY06o37UoIVqDbU4zaH11T7SqrWj/pxDLJGWeMskywLLB5bNlkqrsja2drTOty62rrFusH5jC7fZ bZ/a9nIWCRRF0XjpQ9l0BDtkP8qhRTSEgslDOQgXidigpog+aq34WLQSZT5LS2dl+N7ycyyVJOqr ZfITKsUuInTFB5SCGbScb/oIFXJ1ObBaHpBekUFMC7SJOuGRPMWcdJ7Rak/t6C30EcfU19rR4YtE nBhBl9QIS4A6ghVir3KpDooY22Km7T/IJeiIO3KavMFdUaCWcUfOJoXuoise8PsC11AotRCt0YN+ J6MoU46haM7Tt/c8s8Q4US564DCVigkygd6jZDyEFxXaIazSstR5c4DaZeq8MssPxlY+h3OkEulS r5tDvY9pkYwUNTJedKf7yi3GebfTQGovamU7miaK6ClVUAJX0HHRX/SkaLGJa/8hfuYaqsM97FQr 5BLzmizzDhL7EKcNx1lmNAsGiSr6BeeYT/dzVdiYc7epjtglJ+GudIlK8Ywei8dYj+3MwjtES7oi UnHbMlJdp9rJIdRUjmFOE9jMrJwr76Cn+T2aUZF5yjxAMdwvVcxL97RDYjKWM1/sZ0aZwzzm5mqe iCAq5g4I4VHBtX+f+SGCr0djDp3Efbqa+bKK+eI8s8ZN1l/FI+7dVbgiCJmWtRz5XRzk/J6QDXuQ zL8ZIdxLN8xH6ixj9wUWS8Iha0NLilqIL7UD1pTUnqk9Urp369qlc6c3O3Zo/0Zyu7ZtWic5Elu9 ntAyvkWcvXms3qzpa01ioqMiIxo3Cm/YICy0fkhwUL3AAJvVoinJfh1Oe4ZLN+Jdhoq39+6d5Jvb 3bzgfmnBZei8lPGqjaG7/Gb6q5apbDnm/yxTn1umvrCkUL0buiU5dKddN06m2/VKGjYom+Ul6fYc 3bjtl/v7ZRXvnwTzJDaWd+jOyPx03SCX7jQypud7nK50Pq+8XmCaPW10YJID5YH1WKzHkhFhLyyn iBTyCyLC2aVcwBbMURnR9nSnEWVP94VgyBZOd56ROSjbmR4TG5uT5DAobZQ914C9l1E/0W+CNL8b w5JmWP1u9HG+dPCRXu6o9pRUhiLXlRiUZ89zD882pDvH5yMskf2mGxGzbkT+b8qHN0jLXvSyNkZ6 nJHjdN/U41mkG9WDsl/Wxvq+c3L4DN4rWmS4PBnsusSHYmQbDsQXvi+V50mNtjt9K67xuhFg72XP 94x38YVEewxkFcfujI5O3cN/G6KdumdItj3W6BFjz3GnNykPhyeruCIqVY96VZPkKA8Ne45meUj9 X4Wg4JeF0S90fslv7pP6Zr2Ak3wR/Zf1agGO8qrC53/tJjzKCiRWI7rJmqIsuCERCKGQDSEhDyAh QCaboixv2qhQ16FAGUIfNu2mtKkIlhakOGJxKXWbxRpaCwGdQUqhOrCQ0UzDw1ZgiTAtYIeG/H7n /v+/2QTbomOS7z/nnnPPvefee+45N65ShEHYudAJT2pcWEgufxbnUnBhLrrhxyfBKrwIx3B/OLnQ H3TksZztw1qmw+UMXiccu6vzcm/JfFNiy3RcJ2Y5OOIBBr3Fh93u8IgRHBf2QhwkfJwk2mNGjVzZ Ile7VjicINg+qqyBmS/Pgz1PT+dTbWzx0gI0wutn1hhtJy1Iayavx+0Ly37WtFqalDmsWW9p4uZ+ F8J3L/FTOSWcdE/8b5AjdUjRsrywlPoZ6sWGvnyWq3xmbY2zKOg397Z8dq+Woc+N60xOMhTY8LCa iZ0qdSHiqmprWIA/LbPYVXS/vwQ3DD6GhxTWKGmyz+DkNEUMhbCdGx+ZGzUDeCw10ybCflFYQdgK geQsDjv8JcbX1y89/VNtWuxJCUYt+lW2EqTHzFxSOM/duz2hV7uXdwOCCvxV75HLZ9cGg/166YqR o4LBYpezOOgPzm/R1y9wOR2u4D48BguDK4r81um36G80poWLn/ZhEcukvFHEJ2Of1D2DCpPdnzxx a3FyAaUjryf8KDts4viI5PEmQrROOSp51AAtAGrtw+gN7TCFpH9IY6FrkEO6XxlGR9RXaCf6p0BW AVorj9dfRv/HgY+AtcAyIBd4FPgVcBJo4DZsmoBZGOM3PI6g56nLfox+rB3WL2K+KuAQ4NOqaTZ0 lbbx9FtuY66pGGMC+JmQz7VhHPBzoY+g7yxBD1Mt+HXQ3wD/JvgL9g10VavWD4GPQZ6D+YdirJew nmcw/2k1oHfKIWkwxp4LfRnow6CrQR9C3x+A9wLVsKnCWp2QTwdfif0pZTmwVj2vXwddg/2ZDP0o 2L2AdhP4LfBrI+Y4AX6gSpSBPtXyRAorw/QqzP8U1t1prp19nB1fE/wXPvXGFJOuYf8SYfjXgx7f bkNTLwRoj5JDZ0FXASOAkfIxcW610Jdo7+MsgCSSvoF9WoW17VEX0c4k0vfDz+3aXrqA9qNxBGi0 ulXfq1yjZdC9bduM1+MixNdo4Abtki/TT22Z1ID9y8f43wPGYcy7RTwswpkH9Mugy9X34X+AdgHf SiLab+yRfpH3Bu0NOFesW+8CTypiGbBj3R3ALfYD8z/Fe87nLlV3K+B5njV8/pjzIeBHsO9G/40c zzgbO8ZqxBwfGueA+ZgCHHuJYB8siDgzIfY+RAGZX3MhepX3Cns2A/g2+LuAKUA9cAbzfxX9J4p4 RcxwbHJ8cGxgrHI+KxGzxhpmIcY6zTvzFuxjwC5gq+0VehV4B3gR67nK94Vjlv20xubY4ri2qIjv OnpaDskOXifHVA/FecdoNfsg7iBiy6J87zj2mSpumg7qU6I0jWOW482ivC/Cf9xHvhNx2rPWG/D9 Saaw3yZiHbFoUWsv4vQs+cR+4z8M9QZi+Bxy1Umq0SporVJEO7QdkNVhf6KQu2l1UpSG4iwrYLul D32eYY9KD2CuqLob+4n5xb5G5Qw1Kmnabpw7SUe03fI6wd9G+0JqNXRMGYm6/1b+v0A+pe2mJeAv aVFdx3p+wnfCHpOyAKdFIW8G1gMjktzS80l1Uot9DjlsRNeA5aqX8jQvjVNbcS9TkPOIMiGfY5ss 8u48zDFLikljlajksafQBjWd5vNc8inEBMDjg65IiKNeMdc3lixqxWtfynFoxpTPzL9TzdzWlw4C vsy1gfOzqA/I0UCVEa96Yzw+j9BC0CorPnvHqX46IT6PIT5H9o3LvpRrC+d3657y3bDWz/mRcxzn SM5znAOs/n1pj73E9elnIg8fo1rzbm8DQsAPoRuGuvUHIw/rMa4dtigF7PkUUI5QwHaQltofpMdt h2kp1t0Rr6nz9NfMeppj1VLeJ9TF16w6qk2mL4p8tp/uE/lmHw0XdRS+cf207aALtnwabOaVGN9D voPoM1vUmzfh97/0a/D958oVqmO5upI2CV2DyOsfqCf0j7kmKltohahFbfp5dTLVC9vt+ndsHtTL PfRYfDzuA8oy9t+eKiWpF+Ffq6j566x8zGefdFA/mVSNPHGSbqg3kcPqaKt2EJT3ICTisUrYHtaX iLHq9HPa15G7uA+gxkDr9b+a+yHyjdBVi/YhsRcYE3uwR7wnotjXkJRsj5LPfhH9o9SGewcZ0Eqb 2Rfcx1OiXl/D+yiK2liE98GHRu3W/q6/g3v2lXgdvgs5/6Z+HLm3En1LzFpdId4WuD/ivYEYsQ/l Gquf0NzInyE6CnmT/WHE5C5qhA9VuL9T1Qeo3BYD/7reZubtauUgxnyEHhPvk/g7QXfaD+rHET/G e4F94HcK+/MCcvvvKRdrmpbsxlqaaQfirxFx1wH80wAdArxAPlBqQB4A3V8Qo1xrtysbJQ/4zfJi 2iqH1IGQQY935K/pPvVFmqG8TP3UJaiHl+gZ2UMNygyccSc1aAqdQTumjqRLSif6fUxX4FeD1o+W QZ6lpOJ9cgHvRx/1x5pPqc20XNHpsno31r+J3LCLaS10VluIGvJdygJiDHkstanJ1GZrxJsW8/H4 wCGMn85QV1O2sEuA8NUC+/yLBJ830SrlEeQ99ncT9i3BX/Y17mcrnWMf/5N/wg8eF3aiz99oA5He DmQatHtmAk29A7QnUCdTfoNzXbBFENfzkPtW4c3yOjVhzI+IutDvFs+Jl9qtbZDNBT8ByAafAdmD oM+h32nwdZAfB/4I2WQ1jQrMPLUL7W7o20BDoN9Hny+Aom/X74g+uWLglhvtAsAFLAUUyBtBcw3a /QHsSkFLDF1XM2wOAG+bSDVkXVOAGbB5ArIiYCLaAaCOY/v2d83/mX5KPbtT2lO/9JuMvjXpjql1 np9D+9Yu6/w/jya8QXtTcx+sdSTU0s+smRZFKOabv7SPvMr0iCcn29uiTG+elMMkUlRqNCtFs7nW IItz1rMyLU0oI4OHGrT/wOxBBSnKdKoHrgAK5eNbATwL6IBKg0y9rEyLSBlf87+llKNdTjKmL40U FmbXH1BKkbFKqQNQhDRLOFUaGTPGoJ7RBh0+3KAZmZh4ALrnA/XAu6a5JsyTh2R7CtKVMqjKMM+z +B4A3gU6gCuABr/KyANUAH5ge1zaIay8Slnkm3k8X5m54LJIf0d2ZYFDKcHAJTAogbv8lWBSgmFL hFlJJNmRPXif3iq3N3sLsg1m/L2CeS9yb0H2yYIvye/BKEtuRxZvp0rAD/wZOANcBez4v62dmoCX gDBGUMc1FWTIR2HXJP8JX6/gvYLPEnyW4J2Cd5p9dpIErITNL//NevXGRnFc8ZnZvd29s43PZ2Of bZy94wxr9sAG7LNNsPH4bKeCA0wwGB9wPVNK24sEhdoQRU2TViJJkZrk2qitStQYoaAg/IHzOjVn p6qtppVIKKpEmvZDRUtVKkqoFVQIIQTb/e3OOVCJD/3QvXvzmz+/ffPmzdy8d9D0JmHsTb4keUW5 orJJZVJlZ5WzKhtShlTWrXSrrFApzPUVtiekKBwUhYOiWGXU2cooPB4lSchZyBRkDqKQOlzwz0MY 0sJGokPsnjZIN+RVyBBkEqKRsyipw5vnJHNvz0EU4mURtCKOrgg4ETgmAk/bfdQZbYN0233SBnyi UpQ14dOIT4RF4OXfWcEGx90X5ivvz1fem6+ctyvZuanR/RUtDl6viNgDdJeFit3xbA6P5LA/h7UC LbOh3oF6AasFrBKwUkCdAFPAMgE1AoICygSUClgooERAsQCfgAIB+QLybBg1c8YYwhhDGGMIYwxh jCGMMYQxhjDGEMYYwhhDGGMIYwxhjCGMMYQxhjDGEMYYwhhDGGMIY4ych4I2YheqI3oWe+DA+wLe E3Ce5wH3V7fo1+023cV14LOQI5B+SC3EhBiQoM2R2qxXlgHWjQZCerLdLbUi9WjFL7EVP/BWIktr RgNBXcd91Ixj24yD2oyj24xjO4TyLGQSIn0xxqTIGPS+2taC+cvHYMqnjimjjoV0WECvgO0CKvlm 4D3IR5BLkKchByA7IBshHZBWSATSRInvCr1Jme8g/S5NU4lS4qYMP4GyMlzEviKNv8MQVombHbNS xdD/C6vm61gBfZvUyJTodJQmHcyQlIPDxKBLgGeAvcCTlvkGXhvC6QP8HCcMsM+qqQJ81aoJAPZa NSsBe6yadtvPlvGG3u6mO4ih2Qp7iUmPA7db5jEMbxPQY5kdAF1oeMyqeU1vz6NVJMWGwa0khoPl xGTDln7PyMrU0j8zsmx4TP/U7NY/MrMaHdOvm8/oH9ZkGeWF+h9qL+qXghf1d2vq9F+nwOR5+lTq ov4r0EeqHQXHTXgb3T8zm/UfmjgMtehG+2m8esQc1g9CFab7pu6wDwSz9DhG9xuv6fvM7+n9Btpj etI09R21WbrE0rdiGhA3otU7pscw+frcxF8yw3onJu+w7bT09hpHI4cGyiv11uBVfS1saKp9R4+Y a/VVtVf1kNmlL05B0Tl9e4G7wN2UztIQb1TTl9X0t9T0djXdoKbr1HRYTS9V00vU9GNqukot0Xya V1ug5WseTdMUTdaYRrSS7NwVvpzgKitRvDYosl3KTt3L7BIFSsKoxsgG4ssUSzEW64lmmsOxrDq3 NdMUjmW0Lbv6Rih9JW73Zqb2kthXApk7PaEs9Ty5M+MKRWnGFyOxbVF/hn0/S8m2Ppxy+4UXKjO+ jr5xQmn5Cy9X5jAe7+ibwB1dSuhAnJQeafO3+dYVrXmi8xFFf64MP3j8D9XDsS3PjON4nB5V9UYV zR4003YzbTf9VZmfxHr6Mmeq4pnVdmWuKh7LHOsJ7O4bZ35W2tU5zspsiPeNy6PM37XV7pdHO+Px GLbY4SG6+cEj1TaAt0AjAZtHAgs0h8eGBU9nZTavxgbw/KeI7vB0/ymHJ1ObN5IKdHWOBAIOB+lx yuGkQuQhzjhNkmqwqqsF6wRN2iyaDJ2wWZmwo8gwQKk1HApdRAxHkUEXOZTIA0owR0l+QUk6lB88 oJiCIp2Zp0hnQAn/H5590a5UT5TGtvSNaCQa79gtsNR7cJ1zMgrK152qnCCXpBskLxzPeELRTF4I gb/NH/a20LoEXrCepzQRd2of2zUlP6OApkJsDWuD/ucqJ2RCTzsa8tFdkBta0b6i3R7CmbeHFqC7 MDfkf25tsHKCns4NedFdhHkftYSBgcHwwMMdj2T9bw/xd6U6xdefE6g/7MjgwKD9DHR14jtIYhmz J5ZpfnJn34iqdmV4f2ccfbXzfZLk9I243cA9nfGB3BMePDyIieAtvooja+BIGTjyBY5kgSNT4EgT OAI4R/TmCN0ccZsjaHNE7BPtHiefO+Hkc0NOfQjhs55yZBUcKQVHQOeI5hxpAkd05sgvOMI6R4LB zSpk0IZTBOv/y0mOYQ89cRLGiu2BQYAYOhymA/PdOWcx3EtIk10EkVQlLW8zek5Rs+wT7icu+ZxE PKp8jpJyTXGdY1LGPfkXHJo7LTMtm723WzbNtJA21L33UaxaGSwKFi1BgbuP3A9IU/e5i3xOAvKU ffl10xfZGHsdszTwEFnfLVGJncZd5aWcMvqUhH+9XjJJPsa7d+QnltuzJK7OJA5dJXWJ6VUri4NS 8Bhb8fjMB+z12RuEzr01d03qcn0AfRv4Qi/1sk7ayWSsBiazuwcppVn6Z54v3eWEl/obfg8TcNtY cuC34/TLxB+uKPfOJMIV/unbiWksog3204RK62mc/fH8TLjc9a97JbixydG5a/KPXFNkAQlgpiKP rClynlLwz9K7pcoyRiuzdJHlcvkAvCS/wJ8iiBBMq1hcmCLlwV/+1B+GozZNb8ZqNmGe6TashSRo orihyUfqV/sWljASWsyWlJTWr25qLG6MNCwNLVYVSTka200DGesfb81etaxrtGJjy5Z1Pbx+U8vG tTvaGunly3+nC+mC2dk7f5vNm/2Esokj/Rv20tC1lw7sWf/U7CfXbJ/fIkQudb1L3OTHvDJGNrmT JEmTbtdyaY3U6GpUeqXP3IrscmVpEpteoiiqSibYAUKlMp4nSRhR8lXFKyFXOElk+jWispeJC8mL wg7jb8ghXuS1w1ob6Sb92Ldyj1KWlUpGbiF6YNWJQ5uu3pm+PTONW8bxsPf2zJqXXLXh73h/Yzub JIqLq5vqabBYUW410oELZ2cvzP71w503pA2UnPzTvVbp7uP90P8N7MC3sQPLyb+5GfB3Knsrjy6W 6/yfayyg9VakFh0JH2eufE9BYflCP8wMLfUVqPmF9o4s8nqop87T7bniuemRPX6ct35q5243qUwn pGVgL+L/YbvsY5u6zjB+vu7Huffk2nFCbGdNbCc0cR2IsyTkY0vhlgVSYCWBAcYwN1EHG50igo1g K13xQDBgH002aUAHzLTTYKu0LQtQgoElWsfawQQZ6v7YVCkUZaytlsLUABWtb/Ze222h2pXvPUfX SZTznN/zvO9xhAocHtznSXr6PdMe5rHfz4BdLZPAB/tO11V1VpGqHS6YmwL5nX7iL601BRbD+IDp GPAc9RDYde+Ad9BLvcP4RVMfAPjgzeyp9/O7H5uKZWI3YjkIsrxlJmLx7KOwNRaOT+JCVyt8UG4o bChsyAkEnDxcAmTksWj+ZCorDzc1NzXUl8wolpUSeCpyZUXVBlxUGF381I4Nq0s89Q5j87eXzZ/7 VJl1rz6658LFq9/bElu9+cgH6f/iZGDLml3fWPM0u0m2rOtYvnZj40uRnW8dSQzXfP7wypf2pv+O yPQ7kApfk9KQCRq6ba4Y5xjW7BebxD/pG4x1imfYiBgTt4RURUMsyFfRVdpBdkBTOEdiEVoiL1ZN ISOVK1jjnEiyXKHwYkXhjNIKwosJ4XyYRIeYqtmHBwN2hkqMAIGEqvIw2WnqfiWpkC5lXCHKWTwD IKYkamo+EiabyDWw+jB5xXQgbvJNfIwzxJ2c8HO4HulkiJwGh3ttBO/EPJPZicd2eZsTMHS1hu3M msyjuKfWYw+Ks61tz5/sFIjHYnGcQHEMkQNwBijFrDhzdtC6SB/Fne9Z11ettH6O261zUvreQtJC lmaGIHSWg16/Bb1cqBwFUcac6w/hVU78K3zcdzQ0GmLrxAH5OBoLsUhRxNej3wqxGr1a1IVoUdBX rhdX66qn3OfzIQypg4uLbFHc1VeCOOgPjgdJONgZHAyOBlnQV1YO30FME3/22DXbhaDxd3qCfhWH 1T7Inkszg2YII8Np+I06o8dIGSOGYjy5KYRD5WnyE+ihZpqFo2gMkTpkoi7439seQe40eZlEQDU7 d+OZCWfsTiwBrMbz7s202TfQGg/HYZLXDuehVaS2bH7CBdDGwdP17nLyMZsyq6QArk1udVVlJQ3k 5pWB5RC3t3/xWO/+pXufjyf3Wx/868qNQ3vbzS8Gtr97GVeefm5J73broJTWHGv2r912otaXWrdr cgP95qx1rS2PC/mj6nBv26JuO+n+OH1DugvV4HNoyKzthGJjGqaDKW63u4bXaDXFj0udjo7ixZ4o WUPXiP28AEqa0enodhBHGv8GucglU9NpGKLMBD3sV1549QXGUbAPj2DSibtxCs57OxxBW1hiXDLL 8LUy7C8zy7rKespYWUnQVLqUHgWqqBOIHSY/O/FQa322jMUnnfFYAnw/Fct7f15mKmY7Pe9ySUaV flTY6JrZUM/cUpVtcFDPdjvbhuui1uGb1vvW3y7hDW+8h6tKrXHPvsRz/9j56+1bXiXO2rvWh7gd N97DqTen33zou5sPWudfHBw9CLUrCkz+FZgsRD50yKzY7cHNaI5riTviivjSM864L864WMJ9Llee uiKXTVYhUsuzZJUCY0CWN4g0p0a0UjOA/QE8Ap7wnQOMXGQm1ID2z6LkR+5h8vLv6/MkTWQmljpj 8YSdfPeT9EAdyPHCoBYqMgRZNay7ucmVxyUKkPzgl7Vr+7esrD217+ljT7567IVjP50b3bZ+cePu 30lpibesf/7Mxknrx70rgiX/eaRlGTZOHz5S6rK5WAEKXAAFdPS2WRPhKZpSUjpr4iYxaYQxFfs1 v96MmKRyxjjPCyFL9vodihpWO9VBdRQOepyyvO00yK3XX9GzrlPSZD6Sp0eHmubI9lQn80+ZWg+o ZRuNkvlmURdoSJwQWl2EpeDXSwuYrR7//+qJnHq996t3JxZLPDExFZuYqpn4jBnDnyqpfOxAEFOB 5MreK3A9m9fw0c2F5G5Dhn+VrmyU0retE7etxG1bHeBDLs+qM27WrtK6CojKIiQiRxSGFFXVQQiJ cE3z6WqxrqsSIT7KiqExQNgWyKvIdTKWmabrENpcVSHAVZ1Rp/oH0g5/lMHT7saiZnG3fkUf1+m4 jpGegtm0zvRh3HvSLMAFEORRs2iUjlFSR03aRSltE7qbZpXYZp9Ecx4CB8UTk84Jp61CVodsnMPD 9YAS9wW6fWdVyWU5hTTHAdaR+cs+6ypgNXsraf4Wnm1dtq6S/kxcSmcukqZ7C0GZDmj9joMyFI2d QdL06IkvdTRKwzDOM3Nj26O5saExN4brsqP5WPXsxgEJq1glphQhXVKPlJSOSq+Rf5Nr0i1JOKVu KSUNSmOSZEqYUJpHDsigWaTIeVs1EoV20+bDvwkNoKNoEDGbkR5EoeO6hnAPvCPoLfYALiBPwjtR mslS4rE7rk9dloAEynX8wAfusBdvXbYLmM3BVxBSFFitwB+a1w2ZK1xdgBbQhdpGdau8G30f75Jv cVFnmMaYQR0KF9VkllisLBRJZUAZEdzLS4XPqEIhPkv4DYXqVNxA76pvi1uGLCMdO4gqcUVWqaZc QFfU17Q/668L6YB2SJxEZ9VT/LSQ92o/FEdkcKf6Apef5d8R/fKPlH51H5c3iB7jGZSUk8qzqrxI 7RCr+WrRJ/cqcitvEZ3ylxUmyNdVRQkgAUoK4LVCF8CrkBiroAR4JQRTAYw6HYoPsvk82QVnHkF2 ggvbTxpudyn0IDvMYDeASZLAJnHo+KY9pnTcr+MkrEDvs9/69E6d6mk8BKoNmSXzoCqMY+rASUx0 7MP9eBr6yvPY7gek7DbuMMP9bIRNM1rHTNbF+liSpZjMvAU24AUFTAgwHZGIDsQwtQVwR/PsC4pD GD4fN9KTE7YHEtadWPaKxxOZpQvWt994YmrSORnL+sGuxXvuN8AeBqOU2/6tYW8YLxnUl60+YfAC Zv98FMc+uaAGJeIB6HTshgf4CGCasq7Pecf6H9lVA9vUdYXvufc9P7/Y8Xu2Ezt+Mf5JnNjkh5iE BNyx+gEhEDIILVshiCxIIBEIUTClawcqLSmjULRCfwRtJxo2lQmtpYzwUyeiG+3KbwdkSKVt0ES6 MgiwQLQG0Aa87Fw72VRm5+VcnXffU3LPOd/PIJTDh6UwBAeNs8YAzs7p+xPF7vsPBfbvmrSvW4QY omHvyHBS3wOShsKOUGpFHahBNnWLmmR2lNCldIW0g74j3ZIGJekyhQIyFiKonWawWtNcSzMsYz+j a6VNdLO0k7wNO+hb4jvSXvJb4QNpr3mvfJR0SV3mbvkkOQUn2UnhjHjC1As3TffIXfpAKnzRAjIh eWDOAjCbUF8KYpYgiNIuQneJCEsmkaLqBGI2gyioaAM7UR/pcytBn1k7AfTJldvgfLqOZVhQxteU IN1fTpUzCa2HdAtYGO8R5zGhR6DpWjJhcga4hdQEvvQITPFZu/soTKkDj4pO9IJ1v/fMw+uJhQu6 iDR87gAtnzSpAbMFmA3/X3YcZseNZLsP0Jp0thyz5d/PooolqxunLUrlBnW3JUZzsmKgZsVEjGJA jdEqNSYlh88cUGOQRgZS3MDZOIjV5y3gDAr9xjVjzTnjGnaBBr88Czns6wdhsftBMfsCAZIcHL5q qkHVpZIxZI3ucTlzXB7NPSYiFFqbXaeFExZZFkQLzUrSzzsz5VwMeomJ5US4Vu+Tmazp/sX+3X7m t0cIvoTuJsB5EFGujwzi+7mI8qVF1OpEonFgjprgOoLEB+IDKaHunIA6IVSB2imLCvl5IVqQEk2O lEciB8MVf4HHPwcV6nuNV/5x1rixBoqSO9Z+80b39r8aN2m8ffsn4N1jfGhc7zfm3OgG5+s7//xr mPGrfceNpfz/Q1wU38XeVohGDuilMnWJEed8pcE5X2vzfu287L3uzKjUerw0poGKmzRC/ECxC6ld RYI8bFMU8GicKv2IQQQ5AdTsCBeIc6U+SZA2lKFFXexlXu0oHjxB0KcpSQA9QKOgw1xUnJNzIdVh S78nqP4np9JK4FEhgM6R1zFYzvW3DWVVfv7EEQmOkgo2cPqjP+7oWvnU89vXzvjTJ+WNt3cvKvvJ G1+J3XX7nmu7sH6KPeO7yRvrK6uRn8j64WvicqxzEdj1lqnSLLXWPjt3eWaz2upsG7Nk7HboMHe4 Otzbva/5fpfblXvGesx+KvfTSDYpgRprbbAun9XIumWOr95fH3ixxGTyezLcvmx/Vd5sS31mjU/3 Twvqee/5TjmPF/T6egMqESG7zQWuJDToyn7PHz3nPczvKfPEPcyDJNvpjHmwlw47cFQB+CanqDtj u5FWj4lMFQNiVGQi7zZvWDZHSEgN0dAdV0TNhmytxBtpU6BDASVJS3QFUp0XQMD2FJ/DTuNwOzvl e7jw4iuu2BONxVy0FycaR3U7tzloEVc3Ogtcbt5zlRPChaHCwsoJ2I6jGj47y+3i3+wsEswLFbaD 3zR2auebG6sKjfd3LQSrgbSfazMuW9pfeL5l/Pi9D6cvQ5i99bFxczVcUrZE56yom1IafHPJuyu6 hv55OnP5qgXT4mOLalurl+761Bh44W8cfwcJMW9NcffreruVeimXYhbZyhwXpd4M+rR0QaJlYpmt klSyuG06m2Wutz3FmsQmU5P0U3OTrZm0iq2mVukZ1k42sq3mXeJhcoL8nfUJQ8SL2I6cbTET6wXS gxSbQZkocKpN0yoBQDFotlpw0BFmEWetSdp+mFhWWaglSQ8dzNgq4xAvPAhbKcrnhbqNiX7TQr+0 TaJ+CSSEVt1q9rNt+CrWxCjDRKf5WxTYVw+pqIg2dbExaEnLGgcGrjQmOBEi3d1Sh/BnaDXWhWNq 6pteIftxukND6o6l4IEkyCgE9nVaYhnJ4R4MNDnc35nJsW8kDB6xxiw56GRx2emIWZO42xET+Q1H zKw6Yoxn7Pz+aNBtasyMIGrOUfByjSLoCIzyzwiUspTqTLGqeMI4H3x4wzg9EcKZcA9m5MG3EBKi 93uQUQ2BPpDZPY46i4avCdVCnOST8fAbve25yCatPfcX3lciokNgpgCpYBZHjVadWxverG0Jd2mn tUvapfDdQovLA2UVF1l/WX+0r+JB8Z2yO1FzKQl5HnM0OJY7mj3rPF3kI62XfpFz0dOv3QjfjCgL PDA+5GU+m2QHEhwOQSgJLl3zRhGYVnl7vH1e0Ru0KRms1FlKB0uhlGvdck88FSNZ6ZjvSEVd8ynx 0nCWBVGQUAV/NZE2dDeDxESSLKSPDer4ZFDHx4I6PhPUcb8ShGHEqSJBkqr9PlB9AR/1Jel0XbM+ aa8guIGuUo4plCiqElCiyrAi4uDGj1SQkMKHH3fmFFW79Xhlkxuibt193n0ZOdlTPvVMepgTxTjE SMuclYcGHiR43zzELH6wp+IDfIEx5aYGEjjbXEelGoigbUASTUACe0hXQc+IEbxAlzHilaoy4kBB VVVFOc44Wlcc+GBh2GTKz0MgQA87sSrFRGiSpNRdDhRVE+Ga0R+9ffzsZ/aKohzjul2Ivzdv4wcf f3d2umNW7ewGAK34q6llM38w5emYi/4r59Xde56Nrrz6hx9Vz3vs8Zq6fZvfOuK050wOjXs8bhyV TFp56Ifl0+NLlvPemYW9g+1E7Hj6X+qJWhUKSciSZw2qQUfQGcgKuac45rO9pB+sPUGoFt42oyq2 q4qdqtk25jUxlTocdkoDQJDGCHpXb5FJyg7bLHaSge7EE5L1ouiE/fJ5me6XoUneJg/LjPN5QB6U BTkJdYcCWE/0dIFO+7NYn50f1SNKvRpApwJdB2anWQxJjFM5ytjiURpDSv+vX4GcWJk9FsNB5mD7 shlTts/SmIszjQaGjRw55Ucdlpzpg02dtWSahWolsKx+yxN7zzR17F98paVg/c+fnPnS/GfmrZzT InYbrskV33z5mnH7/Xmn9sOBlk3NV9YkNizdgn/lOjy9jTh5ueSIPik3F4qsDbSBtdAWto6uY2vF Vf8hu1pgm7rO8PnPOfdt33ttJ/a1Hcc3ISEvQiAQk7CscXkGMiCklJANRqlEmWjpSNBaYGxNCyUM Cs22FqQVqVER5bEiQiZYSJnItlQBFdQIdYUC6ogGjKFlyRiiawFn/7VNizRb93GufX2t//+/V2Rb +Cg5RA+zD0KHwl1wnP7e0xnxlaiVtJYyCBLdayDf5ca1YAHXogacTspMbrzGW6BJJA9q4MdADUwK dBTQbNbAAswM78JpEMGYQXRTt3WmhyL+PMcj2OiVuXQjq2ixY4CWpQWpynGXZc4QX1/WgrtUjVIh twUEkSdnD01RuT+tQum5Y7kQmJm40/Xxv9oh98ipa3piWG2qfap93tKZM1uhvbTnT3c+PQKTj/V1 RJoWbfryhR8+l/RAG1D7m5IeKItciO/JDy9g010LMuZac7PWZ0nfUadaU8NLMuuzW7PfJ4f9/eTv 5Jb+JfkP+0rVi9XCzJe9a7N5JkNUuymA7g5p1CfQgJvpQAzD1iFDxzNQfQWCFsIi6QaWgTRAO4AN a6EVWAd0ApXAj+sJ6IgEyDbziGzKtjyCielGBAJF51NTNeStwmiExSn5/4lyNOHRPOlmdV9SH5IM PSUNVzKpPODLgcdGifKCxIg1f8/y/efBHvrs+XUQfTBl3aL5bQs3Lfz5e+vqnhy8Ogp7D9P8+/da Wp+/unLdrsQtrNjLOEVrcYoCxIZL8V9u826P0kAUvDuUbe4t+pDCfbKp+FWWJYfUqGZ5gpm+qNdu kuXtZlv0D8oJ/ZxyRfmbLGmS6jXBpCYzuZltRmdEZ9rqYvdz7o3Seu/66C+kt+19yn73Kem0/In8 uTygXtb+IQ3LX0tfyXcy7mfdjfpLPNu8tDG6KvqeymzZOm3DmzbY3XQ4HiDoiuuB1jtlBhC9kQKf pJyTHTrPL5zsHOOZwezJ9TIskCFV7gEsuCB309nxSV6xwKXJm5RzEWunRSMWWDOI3/TbfuZvzbXz NuNP5qUYe8Tgxo2cRyOMPIz7FpRxnN+kMospPRGdB5cGUkcUCDGtK86xC2UiJakOhyNt1ww5hByM OHISieNdEUdTIo6mROLffNnjIAV98bKWakgDZFmzE3SR0pOPNkf/26VWKc4T1Co5dUiulNRKSa30 5OqYniL8R8oOOSlYTRGc8SEVGERyHEbKTzO+xJc+nAAbGt/ECtfd3/tZ4u6G/VD+55uJr2F1U9PO IPR4lNWvvVXyzjtg/PXy4Zv//vxHS33qSy9t3Yw89CIhrA/9tgUr4vtkKgs3+TVpFEYkcUC6pFwj NxkfIJfoRXZJ4P2sn58ReiXeKZ1UeskZyo+SI/BbVyfh65WNrjdcrSGe748pFZmzKB9Lxwq2MktY xVa7xOnmzEyaZzofoAYYPljug1Ef+Jw6+gp0sCgLUMYsWeBc8ZgkwJjNlQxcgJiUbhFGUdkKiORM SxDvIujpRMZVhZvEhKPmgHkNhxcnpoucgx46B+NN7nHWwKVzYg/NJQIyY7CGL+e0jIPB2zk1uc2H OeM/DfJADz1JPyLp1IPaffe6+fA67lG7U4rRXFLtCHkS4noK41WSWV2NG2YgYqFfx46XV9V15j9V 1/ndhd9fcgxzZmWTA33EfvoF0hg0aJiOHLVGVQlISRGRJBYb93FXYrCrY1xHICuY27Zmy68qV8Un WiiXfOyFBx+wRRfWbC2L1004Pyaa8XSdw5XxxEJ+H5GfTyZDXXyHHYO2wOYyGhsz312XO7+Yjw0U TphIJgEPGmOBzg70h0dibHtZa+zI+INlvD72cuHa2JbstkJh6vjZ4VnZteOWWEJBSeH4Sl9lsKpE KPUVlVML3XYQBOKyXKUWC2qhcNjWghl4MawV6aGgOKE4Uyoq0FUn1dBH4aaH5REhBS3B6ZaO/ROK cwytojComaEPsRthEqRz43b4SaKVae0aMzRb69UY03x4Uq91aKe1EU3SuuGjeDiG8N41No94TI/t GfFwz40KLaBVqG9McPpVncT6vSET29MydN28nrzUi/1IWS6Hl7FXSMQpw54i56rHuTnVG8e/Y4ea A0KG38Ga46impNja6xiAwJQcpqcE73HeRqs1Hcqyp0/9wZSikBlU335375lt91pXd04sBHd36RP1 G99fMXgTnl7TULezbmP9vFeL7cpx48ty8rKeKNhcvunqpx9CZcfalace7PjLiRfm2L/5nY9aG15p ufBs8/aNrzyL+FxMCO9BTQxBUfysnQVBAY4qh71XlYuui+Ylzz+9UgYHxK3HcllGPuS78o28UAwq aUyOuWJGLDRLnuVq5I2uxtAG10bjdfUAHFQOuA4YhzyHvAdCx9UTrhNGP+mHM/Ss0u8+6znrvUgu uS66r5iXPVe8t83bnjIeQpIwDV33aC63ajGiut227kE59TCCykPRv1HMVRnFkuR2NFb16BRMd0O7 Drb+iT6sM0Mv02v0UZ3b+s90qnfT8riLNCxA8t4V1gOQNGzoolPaetcBoWPWkuBzMte36to23voG gW16Xx92sa9PwlZWO60kLUi6zTk539o2CRH3yK3hG36SGIRJEH1xxcFnXt2d9Vpi8PXMaVW10xaX BouEnof3vjf9rfXxrQ9/TTesilTEy6c9U9HnoK0Bd/uwC8yhnfh2W6ll7UqHMoBGVPSDxahBDUbR IwgWt4SD0lHlDO8X+6WL4hAdYre4ewwfI5QpMTEmLRYaxVZlt7hb2i/ul24xNzYPXS3rpJ2sl/ay ATrAhukwkynSPTAMK4QKgFSHjxZFWyIZzpV21sE6GWOOdgWCk1k3y4/rHHBY8C5JRU/n+OEusQE9 4p64IWFoaZdgAf77XbIU6KYnj6WNTHMJGuQ0yznZ9l5J82NGJgmUR0xXnbbFWOZmrLKTNiXcYAtE Y4nBbIh+kRhEz/ug/f5lgpM7D//MbayZBl/E/ygLgmhx5mKGmqVEVe6thTmsls+R1/CdvE2TZrPZ ykrxf3xXC2xT1xk+5577OL4P32PHie3YTm5InDS+eVCaRzMBMWXEPJbhRZSw0TSoatMJukFSjcBg Jes2AhMDtGlpgWpjmhQI6wivhgCq2k0Mh0aDSBNLQpBKBF3CWNRI06BQYe+/1yGgappk398+8pV1 v//7v//72smvyK/FbnKG/IVcI9cd1+VbZMLx0PFQZiJxOBzyYtJG3iZjjjGZZpL3HFwYFYn5Uj4t 16rEZ6VnaZ24WFpEG8lquUVoEddL36U7xQ6tixyQDtAj6Cg+Kh6Rz5J+KUEGpAE6jK7jEW6UjPLD wjVxVBqlf1eGtEk8QT4T70h36H3hvviA3nPclyv4fm5z9NsWtg7ZQWVBlgVCeE6RHdAZnnKKYiDs gccmPOH4akH2CAL80CFTQxKhY6LIw62KRKmCZIEXIe1AxKENuRL+LTSln1sadecKeJ+QEjgkMKFX +EjgBYicfSu1TzUwtFYbZaXBDjgq8p7H5/DXZzYWBJwmO3I2tU496SSMDXbVuMCJ1lj9tIINVN+T D1CRpYYSnU/nd1J2kUIYYlPpMYIup50LSd2MulWgAKvh4U2ZDlWvwZY7QXYmbbJCEs7DGXlEIvXW cB3Gm2HOXryVHP/lnxfDVAn49eRbj17Cd99P/sliRhym6Xf2NG2LZiDBEPYLh4Uh4aYwLUgnBGxv jQWLK8uFRtIBSCTQAE6QETxMJvF9ooBPmMEaQCSIYkYaTqCbMBMI2/Dw6fz3mOBtMx79Ma2tB8Rm m5XtwJY+h3OSV4TzD+vgzmUIif+GnWpyUtRdJdVJMT+hiGrUQw3eXWo5tBcqrRJN1VbGS9eVcoX0 uPrHzJ68G+qIPuyRykut049Lb5YKYT3sDgfCocLiQrMa1Uggxe7qQFXxEiWmx9yxQCxntdKoNwY6 uZ8pu42O0h50VO3Wu909md2BY8YRs7f0A+W01qf3BfpyTpQOoMtqgl3OvBS8FLqcl4gkTPg/Nppx PXM4eN0YyxuOTKIJdidzInjXuJM3EXmAvlAX7cRXS7mNpZjjSHEkgp06Y1qG2+XySPlcUTGJYI0x w+XxwEkgGDRCOZ5QKAdHIoaJPNBc5nIFQ6GIKXsjspwf4SWMRI8rJ4RMxqJyQ7kr5eKuurCrn/sw qgQbykOpEHc1hEMXuA+RCc1Zeipiqc/yqGeuideZeKW53+TMvSUub8hr2hJkC366RyBCzOLvDIdn pL92aj6bsqkMr68sAJvDztmVbu/zmXVgXejFp2y4adpc1lOTp1iNp98uWrpk96emoQSgfMBqDB9L U3vWekv28v9fy2T2syja33ARdgZ+c3zL2+7qKxt37A3uSo7v8ldWbli1wHwtOb7TWzOv/NUVATXQ khznC3988NU18Td2barufNTO7f4hK3mu9VtXkjnc2xvzIlXPv1JfsCPpm9n+F4CRfrwhekaWMLAR 7CLVeTcVjUCcEj+Hj7MbEqgV4yfRpP5PRj5hiayEb4zxZ9Sz2oCUUPjuzFO0Tz6j8FXeOrFb7tb4 sLdartaqPHwYFciFGhmRh5VRJzmm4/elHkePk2yVtulbGamTY1qjTDivz4edmqrqDlmhmdhHQe9U 3QMH2Ocz/Mjj9yNFVX1+2R0RLKLoKvIzpUG1hiUYq9yv4s/VlMoZ6lWV09VytVYlhrpD5VTbCfga Vvqxf2+26vXbxKh/2glADpv1ArVpNvw/L2Bd5s/auhlzZ7kCmwLU7rbenxqBIqd7D0yYPjnT99mu f7XhMz2uwCzYcvKVn7yT96Pk+FvBRV+rPVhiPLPWaunP16zo2v78e4+OcGs7s6tr1zcu/Cj5DfAO 21MT/CD0UEXZ6Hi0Ypl/KPil/0E2P+j/JJsr5oroM+4if8y9zB8PtvBb/Lv800GFWXmTWVGTFRHY 1+nkatXoXDj0FjkUrUCMRuZWiNFYpRhdUtkrXhW5ZnGf2CumRB6JTDTEuDgtCmI/5IMscI5BTwED SoFHnwbZ/CxQDCgDxk1TrPWeHXbNKVQ7ZZrW29bIttYMhvLmoUy4ziksxGmup6No1XZcj/W7mCb7 kne7JtvIvPaXm/bHt7+8Od4Gq6kINycfjSWTyV1bbuAVLdveHHupbedr+xCX+k9yAz8CaDCUg76M /qJeW+quy1oSbHELFaCMcaPFvcl4Fx3SD7GjqFvv00+7L6OEM8EmdLZH38O4Arkgi6Pgl/SMFteQ IXAup465AHZ6VKcLwiXWdYMhD7MeVQwAGT1FqqIz3VfQS6+C1bIw20dTlGum1gHsD0YNGqebqEAB qbOGgTsMbNjuSU+7JytgDjEMYsk6IGP6c/tx18nVPvOblmK11VvS1WRB2Gq2TaU5+sSuYhdoE9Bz hqEWMVvThHzMMSZByigCaj2dKkRAkHkb3208Mtjb9de/vfEmuNZPtzbEftrYtqahczlf+L2lC/9x Ozl+qecPj0bJd7bvfv3zlvYdP7hlbdcXwKxbfNPReLQpzIXlCkeCjKn/UsUGAgIiql41jAq1cle1 tkJqVJpdG6VNYiceQAktoQ9rE5pbI1ncIekdJ/+i1CVxsD40JxY5B89p2Ok0dOTRdeTUZUc/Ph51 2HsB6Uy0s96CyriImYgtAnIi+Jeoy5DwOqlD4qS9vbAtnPZOOLtSx/pepnvPc+dw1oyPuT3Fmu41 td22yTg77o+BrLFxtFC0pR0cimX2bX32SmkVBhANrJpdvQtj3y8qWX5gdaTOGswrE7l3nZsuDCZP AzqlMI3rAZ0S/PtzKB/MjQPiqc+AS7g/9cUpR00+lOgepYaVGWVzy6Jl8TJBdtLiKiWmtuePadfC kxqV8oVwVn5GuCBcJy/JlwCb7KEyYpRVzKkKL5kTC0fLmtBa56rMeFaDt7FgVWFzSbys3dxpHnQe yzxsHi45UTaYOZj1sXmx5EF2AHQVbKSRNye/IFyoeSKIx95cH9Z9ub5m30bIE/+luuqDojjP+Pu5 735wd7t7x94enOFQuEME0SrgFaI7FiOCX7TWwQ+KSR0bzUwJThW1U2FGlMR2EhozxBqnMg3pxPQP qV8hmon8gcS2tto4am2dQDto0nYYnYSJNilHn/eOcaZ7+/Hu7Xtzu/t7nt/HAC3wbDtaHAJTD45l C+7Fg5jhARr1AjYrLjbcmrLwkvCaMAXy3HxOLbiewAmJRsIoRwkzEUvMS3gJnnhlbl6NiQvKEG5G LYisRafQNfQAMQBkppe1BlrHvG6SGFT6AO47U7p0vZvRZlnl4+Y4jOdIgYYan0xzKcuwEpPsVBrO HIGc5PH0LBtslORTQDM93QtFJadFPZgZlcQW9Z7MgT9IpnsknJTE04rAfe5MXwoWOmm2KV+YiCcK EvHyhZUV+aDHPJ6QkGeHwo78ZIegh+Kl2Cn8YfNzVbOznWdT/1387PcOYPLHj6OpR9ll3saNa4oi L328fGvq0/tf49kljStKnpozI+zE1n9j9f79m9p7OuZ+c0aiOlGUYxY9XfWdXW98clL20rGpT2mM 94D+XvW+WENfpSMUVhxm+DX1deNvjP6YHWSd6sEIwzggKhj10V/SK3SY3aFjTCmi7fQwpYQIxjk0 iVA0xXWIwy3FAkPtWJ+po+a/Ig8VayR3FI+xvytsBELIiHUnwoaUIfMGvsXYe+olawh/xFif+rb2 a7cv0o8vCqXD6sg9wnrUHq2XKY3uHm2v26F0iA5TmRlZxpZrjbRR25CtzFTjWswssEqz464CXEBj LMbzlXy4E8NgruPQCHWQUJmBBGcGdDl1MFxjft1vmUEqc8lsxgxGjZhDQzBfBBCegjeTULACvPgQ qiURNKyr/bJsyHLPp1wVkDSnBO6HXHORbEa5SAUa0Ax89QT8bkFEkkK2UdDt9DuDDkWO6cRgMOFw 5wJZiXJwtnTusvDGxyZ2jplj+8zHUIBu2cRE6xgIFNRT9WQThFR/JtQgt2xMEsMcuQvA0pV2h35z 6P9NAGqCSNMKwRXCTbByQWUhXSBm0Wk5kxwsiyt4rORns/CKVadK+psixZXBlaV1q48eLtxAG26+ O5zqvpn61l4rv1DcDOx6fv5v8W/gebqBTyZYHO67zttDVDNZpT0dWqWtCvVxHtQtg6iuiyJuESpy Y9Fa98Vob/R6VEdRrCMdqwHVjBDXjOQUZhVai3Jqc77rX2dt823zb7XayC7/j6xD1hC/Yg6Hb5ER 53bOwyiwRdAOhuwAZZyaQZEd9Ads68Opr5AfNjb1BXKnHnpLLRCrgA08bWPGYi4KwU0gKFFTsWxd FGcbbm5RwEauabW129dskmcvsdfYFKbH7Hb7gU3tAfwXL58VIBd3u71uvzvoXnd5zJ3nElezw27Y zdUb1kveroY2LQOAcMasZazaHHMQSfLOuDVAik/bNcnki2CRYKV1MZyU0ROkcdpySFKfA4EyA8xi UllRCcEyv3IaIDwX5x1wa8rjdasX5wadHTjvk9TEU/3XDvTMZPHJn7ZG5y6dUbVy8dzn8Vdf/7X7 ZM/+yj7Zx0cg2b0PKGXhs94lPzQk0W0R0rlChZpNIyqzUVbVk7VG4LvKXfWuNqaz37M/8Y+U3+nD WXfJXS5OGr3+fnQGvycu6u8b4mV2SBxHx/lx5RfGO4rYIbbr7Wyf2KO2+zupqDc2iQZ1rbZOf4Fs p6IcVbD5PKkvMpb4lyFRhMpYiVIqitWCrJhfxFEFSPcypUbUGZ7/ZeNA1g1dh4CLDW4oSHdwxBCE M6EPkN1eGIORo0zXVFUB3w0uT9WoIOgiScDTZpHH5zsMPGpgY4DEvLCOvt0CkjGKKb46omP9zWat RSPah6QW7CnDbyGBOPmVpzcrLUq78kBhINybvSiSqh0T84QnXoSeHgUHfBuRGFlCKBkg/znja5CN OtEE3QiqAAIx3jSeHskQZ45LdBegdAXIT2YwWQ1fSxPU+qQvW9PGO60oOuixHk6qrp0Upp125GlD np9PoSQWBHE+rOyd1OcLUx+kvjw4VYfrMS/AK3CM9E1uhgJYRK7IDSjqBiSn+4C4QfzeHXsdvBWf SUwaVIIi5lvr2+JTdcq5Yczzeb7NaCNuVhu19YZeTWtprbIN/YAeRifQMXpE0WbTUlbK46JALdVj vgpSQSvUCm2erx6twLVkNa1n9XyVUitWaxvQJrpBewFtx8/RLWyr8n1jF9uj7dPbjJfQAdylnUCv 46PaUf240e27T0uoAnRLGSQLLgjYFw3g1DnoBTIQNpim6XDXBlg2TaEMq0JwzhTdMDAmujamdAKS F8hGeMLlnh6DqWO0E2MwrhvPkk4VqzDwsraIXtEvBgE8LgZI4rzyT9rJMf8AfsdIHVTXH7yZeQQH SB5pJjQP0G0mLaSdvEpOkUvkGhkhD4hBLgBbZU0TM6C9c2xivMmcBKibTDlokqfS+mZwlnuQcqGa 1Wp1l9z/ZEg2+fTJUFeGmsEDSzaWucyzDICbwsY8eQwmwU1eP28kUcxIp7TzVpKqVpIPTI2etpJo YOofp215+BzOVAhz8rpryuuDnh5IGm4AzgOZSJdZwE5MBzycj9N1BHtSlXqc6sX/Tn2O57+Jfbgp FcRZqWu4OHUL3oSS+jMum7yTwpJBfKkG9gjqKYQveGfjFNvIeUY9qI46D1WeF/Ic8lnwSz6hPDLY PXKP3mP3DTbMLyu3yU16k/Hz/JwyTC7Ty4y/Td8V58hZepbxI/Q19obyc/UtwjvoIf5K8GDoCOG7 yW7axvcGuwjfoK4FituhtYT4MlYfXE8aaKPg5XSRmtSeITWUg6SzuFZO2BKtK9jNqAIEQShjWGsz A7ZPG+tgmLWFJE8M4GYvIf7Hfrn8NBFFcfg3j7aDYlvbC+XhA1ABpWApRIEY2xJAoAgFghiBaAUx 1SZArVF2+Ii6RP8AQ4I7Y3wkEMNCjSHRBQvjQhMjkQQ3RlFM1IWI9cxMKWCCiEZXcyffvec+5s7M OefeM1dkBgN10097BhgDGLkV/axbstaYTAVuOt/w3Uogb3QnMcnTZ+DU9e+j9T9ATjRtkMiNXG67 iIYJbprjubD4xsHcrI/1M9FM2RM2wUQ6f7E0dog9oKqejfDvkcA/un0j6j2zsT2CgvxrJU7IUUKn xnMqk3KMSmB3TfXIu4iTm1Ji+uhFJUyQ3ywI622hHmXr0EemySUM5CDDlmJdtqk4jsQhUzEzz7kB 7STWdGuiTQ4onJGnQ9dOOfRf5zZUpgpFh79zjtnu+rZzrS2h5ML88020m3wYaxgc4p7PhC6HS9Oe mR4jljr/kmEVbgPxAuAHVMTEP0NXQfFtFDDQXNJLIO7rPKvJyvH8Yoy7AXMJsDYFsGTMY723mIT+ 38M2BiSvAlLoe1J9wPorwMZqIN0JZNwFNr1TydQTV4GtDmDbJ8BO75LboZJ3FnDcApxPgcLTKjuO AUUjQMlDDQ0NDQ0NDQ0NDQ0NDRnw4JRzKYMgSxyd6zg9lk3CwooZFitD4qIBm7dkZmUDOXaSHfnO AjqSkVQS6y8rr9hTWVXtrUFtna++oRFN+5r340BL6/LP/i9JxCXK19G3CYhHGnKRjwKUowo+NKIZ AXTjJHojERol926nXg8qsVfp9eM4QjgViUQml7qiel86kYojH385QkJndBYBNsq56Jvb6FJlPUl5 smXFOGrJo/dXZR5GnIjKArWficoiyTejsp7k8WpvXVltTY4nFPAH7aVdwY6qsD8YaF9ZM6rhRR3K UIsa5JCaQqQ+P4KwoxRdVHaQWsNKSwDtaMARHCXlBqkltMJ7/+VoVcPCNcpcZGMdadFMdveQysfJ DwSqkwK5fuqRRJLk2lyJTt5Ct8fSz6Z0UYKbPKlXkqcZk1wiH7WoXP0y8PagaddnKVlSRg/W35dX E+54X03OXPg2G+eRXFSVbazM/EOAAQDD1GpPCmVuZHN0cmVhbQ1lbmRvYmoNNjMxIDAgb2JqDTw8 IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTk1MTAgL0xlbmd0aDEgMzQxMjggPj4gDXN0 cmVhbQ0KSIl8VQt0jVcW/vY557838iBI5Mn8ySU1ckOTKYIgkntDqiKSVm88OvdKoglCWqnBtFJJ TGZCp5SazlBTUaUenT9kSj1Dl44aj2ZRo6ptllKl0mU8hlG5/+x7qWHWmp6zzr37nLPP3t9+/iAA IXgZErmj8/ukTDrtOgjU8EJOYZmn/FBJ+EBg/iaANhXOqtC/P7XsMN+dAaypk8ufLauX34cBAby0 4c9OmzN5QMLjM4GUnsCgISXFnqK/rZxcACyI5Df9Svig04cdN7PCCbzvXlJWMfv6/rzPef8yEDZw 2oxCD3UL6g2UlfDeUeaZXR50nWoZz3rm16d7yopd+44OBqpnM54+5TNmVjBuHtUu333588Xla7pU hQNxu4DQadoOxPrXOsSqBMQC5rkfl7fUPOe78/2LSyyt6911b2zBJvyDepKOrXQbEbhFUZSMbCjc ZI1/QRteRxiexHLqhO7ogqeQTYp5ErGIVpizzIsYjNdQb26jKnMD37+Kj3CLEXypCP2Rw/xPoRgX 5XkUmH9CAGoRhEHIoy7w4CTPG4xhKZZhD71o3mKtYahieWkYhmHmPvMOemGRWqydavdXLMFOspiF Zim6IR51ItE8aX6FBBRgDTYxpkRqUiMQh6lYgDcoSn7E1Ot4G14KFhNlpraXNWVjLKbjV6jDBhyi TpSrndKumL82L8CCzujJmEpxkfrSKLFWBZtDzNMYjw9wkO31zSY1Xq3TxnuHmm+a+xGObRRIu2if lqL9vm2+udp8D8GMJ5k9ksN6JqEa+/Ax/omrotKsxAjks+YD1JV0SmCPnxRRYp6YJ4+jN1s7kdG+ gD/D4IjswE7sZt98jhacpzCKocdpEi2hqyJYFIljcoVslCcUqXfZ3zb0YB9VYC3ex2EcwTHSWP6j lEtTaAb9gd6kFmGIy+KmClDV6gfVpiV4W7w/mDnmDUQiGk9gLirZt2uwFY04ik9xFdfwLwqlVCqh 1WRQC10W7US8GC3KxXKxVmyWOXKJ3Kf6qgw1VR1Rp7XfaAutHqv3zjvepd7N3mZzm9nMudOe5Scg iz06n7NiLfbiOEv/DF/grC9/WP4gGkfPsJaZ9FtaRpvpADXTJbYS/hkvBgkHa50hnmc/VYmlYhlr P8bzE3FafCG+EzekJuNlP/mcXC0NuV1+Ir9RoSpB9VbJarQap0yOTIo2XMvX1msbtf3aFUuapchS bvnWWmWtCTjc1qvtSy+8JV7Du5VzN4AzaS57YhXqOe8bOQaH2KNHGXELrnMUoimOHmHcAyiLRtIo epomUDFVUS29Rm/QCqqn99gCtkFYGXuiGCbyhUcUixpRK14RjTx3iI/FSXFKtDLyCGmTiTJZZstx cryczjZUyHmyhj27RG6Qx+RxeUF+K1s5ahGqm3pBzVV/VOtUo2rWntDKeNZre7UmrVm7o92xCEu0 JdbSxzLFst5y1mqx9rPmWn9nPWG9FlBOsdSLket4YIgorsFuYoMIU5XUygddSaEDW57IccjnqriG odLLcWnvu2ds4SJKdfa9tKQrg99X0E70pQOotAjJXVW1YAudES3qQzEYn5KbotQ6OV07JOKwkbvR YrFL7KQMNIo0MVaslKDztB7nOd9nYxlNpZnYSK00kF6i/lSJE6KLzKcapJn1QlE7yqYrYASYr4rw DH5y0ADu1he9q1SIepH703Ys54huwlf0Lm6TZl7m7ia5G3m4yyzifF8AX9ebyHVWyfUYxR1kmuUY GsnCHb+/ZYiaiyv4Ny5qOzijMriTXvCWqlXqa7O/mcQVxlWG9Vx3JRjOFXOes2Q37327CVzpgdxL UriqczEORXiJu94S0zBXmtXmHHMG/s5vb5OdbtNbXBHb+UUaDvJ8FZ/RQq7D4T9t5/8b3iI04RJF Ug9K4Xpo1WZpi7UNWqO2RztiSWZv12AFZ/RZzuZAtqAQzbiEmxTAsYmCHY8x3lTG7sI0USB3I5Oi Uc4125P7eMY9S2aylCr23kqu591cG1e4T0zAHpwiQRFsUSHrD2A5I9nPv2TudziC1bSVT4q4a/fC d2x3e0oVFawvnSUt567VxJjO4Bv2tunHZee+4KCxLOsmnkYRa+iHXGpAlvk+d6ocOORh9nd3CkUG xdPb/M7NFdoeXTFA+5oE7N4cM1WUyt38jTH5/C3+esVgMD3HKDqwHW0Ip9Ho682DPT09feiQwWmD Bg5I7d/3sV+kJD/ap3eSPbHXz3s+ktCjuy0+Tv9Zt66xMdFRkRFdwsM6d+oY2qF9SHBQYLsAq0VT UhDsTluWWzcS3IZKsI0YkeTb2zx84HngwG3ofJT1MI+hu/1s+sOc6cw5+X840+9ypt/npFA9DWlJ dt1p040jDpu+ncaNcTH9isNWoButfnqUn17sp0OYjovjB7ozssShG+TWnUbWrJI6p9vB4hqCAjNt mcWBSXY0BAYxGcSUEWErb6CIIeQnRIRzYINAQAiDMqJtDqcRZXP4EBiyh9NTZOSOcTkdMXFxBUl2 gzILbZMM2DKMDol+FmT61RiWTMPqV6OX+qzBQr3B3lS3aHsoJrkTg4tsRZ4JLkN6Cnw6OiayXocR Mfdc5H+3LLxTpqv2wdsYWeeMLNV927q6Wt1oGuN68DbO91tQwDL4reiR5a7LYtWL2Ikj83XWJhYU uAxawCp1nyU+q+7aV2xz+k7cU3SjnS3DVlI3xc2hia4zkDcnbkt0dPoHZguinXrdky5bnDE0xlbg ccQ2hKEub87WqHQ96uGbJHtDaMe7jm1o3+EeERzyIFF8/85P+dl91Mi8+54lHyJbNieEoRfqjMRl +w/3ZR9VdX3H8c/v+UqWdzOYwkmvcWAqMJB8QGx6GQdyYxEoIKArJLSENVwcOblzROdpSRdZPouA ztXKAlvXhz9uYdt17cy0sdopWsd1Ok3npqLbOukqUH57f76/3+96+alpe/hnwIvP9/nh831/H36Y Uxb/W5JFgQezUAw/FRJqBWuwIsuCI3KrAt5sTuf6QS3Jm+gLXCQoIPH8ueEpi+0UPcl7kTjIOolI DflOOJiSEpw8mSVi5GJNMcbZIj4tLbUxJE9PXO71wcB9VATfLq7ITof7J0zgBW4J+akakeCa4nIr 7qPqhP3kT0+pCMpVnBN2cmJLOWeNkxOpXpUIJR8kfs/HBj3Jkb9R3rjReQ9nB6W4z8leYuUXzE8s KK4s9+UFqmzfFpQMi1n5WZE8OxQcnVuuJMh2SE5QRC5EuShSmCPlI4NqEv50IeqaoAJRigTJlx/0 Vs21/lfETJhw3TohwxNVKWT+g2sJc6WaPcpgdsrw+Kxh8WGjGxlQMF41WS4oqQwEYobl5eMACgTy E335garA4pC5pjrR500MvCzvkfcEludVOQsaMl9pSQjmr6/AJB6WstOInW3MHiqkXC8NDAwVe/OE +6N+tFt1O0meadNFIeUNWq420JdBvnEHVWhHqFL6Ky1CXh3IVe7A98xeKkX5FYg3wG6WZ5qXUb4M PA3uAveCZLAQLLCZD3JQ5yjoQhsPcDvCnqRao5e+jr4IbAOLwRatjLYib7s+k6o5HX2tRxuJCO9A +k69izYi3Ib8Ci4rLNcvo28hPxXhzVqZaRqtZCCNEL6M9Dj0v4nHDJuM/hvUBvM8wpPR9jeRvw62 FLbEHu8YET7JdcRceY5Pchj+aUL6RjAPtICF8A/Xz0C98Yi3InwLxjUCdiS4TSW6E2XuxrssCJuG /nPteZOYN+YRmRPGL8Z0bdinOdFgTDyvM6AXvBU1Njetw2jADX6XWD+e861gltxL34Bfhnhe2inz E8ZD9B7m1QM0vP2meMjswjjnaAepDfFMcLeggSS1k+qVC1iDg/QDfRv9FOkkTwH/pCT5HMXrSTQD /itH+wvAErT5mtBDDY/BPAc7Xj1F8WirCtSi76OOn9g3iM/Fupaj7CWE8YCkx8Ey+KANPMrjQ//p 7HOs+ydS2dALKPsh+ilg0Od4AeZurSutQP3voy1J9GOtg2UB8mvh05+DX4LDPAYHoTMb0VYXKXKX +THsaBAPesFG1huoAru5DPqPQfkYoVdohrXJ+mBtaEeEVufz2K05iL3QYu+ZR1B/IRgLJup7aZHN RJRl/1SzZnm/OG2ztljXjhWarmPdS2d5nqypKLtFC1Mxj0H0C205lvcd2l3JFt8APKZ2pY82sGZZ b45lv7DWeD/ynrBtUdRcU+09kor644TWoUXHOr6I2DepHW2W6Ruh034qVI9TIV6dhdpK2E2Y38tI w3xUvN6VFLrPE6ZJWMv7UHeHy7YxRp9Ui76eUrvhiz7aKfzaJ9+p9kma1m2e0Ug6qnXLTSJ8lXUj ha08tkx03hdN/3eQ39W6aSnCZ7U+08R8NvGeMPqlDOBzLNL3gzVgsidFavPUSSGjlLz4vLoA6lU/ ZWt+mqGGaY4aS374KQnppfo94tzdgPaPSP3UivV6woilROUMzkb0Jb+L+wFw+7D3RulomObcWnKs o1e3Zc3wuQurwY7FvnsF9IDjNn8CJ6DH74n9i7uBz2dxP+CMBq2WXs3zEX0epU7YHzv6dOl0skuf hluXbst3C5/v4m7BPsU4Wp358/nIZxyfkXzO8d3nlHfbqPpbcXb8QZzDvVRp7+tJIAOko41D9jnS o4TMC9ijp/W3zR5jjtmjHDN79B3mc0ad+bp+0OzEvCdF7tSwdZbxfnLuUvYT34vOPaol01L7PGsX ZdG/uEfLxDlA+krsv1qqRru/5XuV96HSiX0Hf6K9terz9F31BG3A2EcpL1np6nwq5DNRbUQY6TjT Of8WZYPIn6d+TI3qJISfh+2gL+kGNeq/4jpmr0g7aeVxmlZJ26G7dPVJ+pm2j8p5rXge8jTzGK89 9ny8Zw3tNAgaPkHt6gDmHMYcjwjbIfTEdQ+YAzw/YxZ9RVMwPy4DuI62k3y2P7YJX4SFj7YKDcMX 3Kb+jnhvkPYeyv+EVnliqN3zVZxPFynewFki+tpHCzx+4XdV3NcfYX/0Q2Ol1Kzdbn4m9L/XNJUB 7KF+7C9GQl4sjdX6qQN7qVn4x7ItvH+UfopljWB+JeI90Q+NP0uP6t20Xg9Dd324C/qwbv2YSx1l IbxR7TYHUTYPbRD3jfRi8T7he8pvvsX7xQjTGMOP/lGGxyDef+hXOYXxbqZmnCU5nn56Rvfxu0aS oL1xYIqFiK8GTWC9hUjzWlaagDZWifQl9LrcpcjQN+cfVV/A3uugHGUPxahL8X44S2vldFqnFEJ3 53FnKKiHuJpKE5XzVKB8Ku6fdVoMzRDl4nCPn6YitQL1w1Sj7qcaxUR4DNgKPaKeFqJK7UG8s+5H OzbydNQZQUV6C8Lp5l4uJ/r41Ixj1JWUKepFIcbqwGN+OmrMW+HbH0IPPF6Eo8fLY42M0x7jtcYn 5sntop4o80fKITLfB0mWHSqWW6kb7JaP4x0epiZpGx4rnZQvnQKdNi/SXGH3gWLKV5ukZlAEVLWJ dsGmwZ4FfaATHAJ/U6fRj9D2YdgD/F3AyL/A2QWL/GfBq+ADJy8a7uta6dGof6FhcS2TVjNyKt6E qXR1+V00VX0M53AG/AmURipi9Nuo3vBQvXwC6XwmueLaRNqu1tO4G43nRkhvUobwoYU/eo7OesDG 3QTvR1kfW+yvNL6f/9MxflGwvqvBQ8L/u+lrQkOn4X+DRkiH6H7pQ+ivk77N2PEq4c9d2Pf2OiG9 WaS71g9ama7MI787HeG1jBN3r+uN4mj3pWgcHTgYmXiLAPUDlAfuOO6DJxidNZYq4qsYJx7p93qU 0FT4KR+WhMZccd1LKxh5OeJtxDp/hInES/CuKrH0ycC3yxj4kBikPcTAd8Sg7ONMlF/L2a/ok+uS sz6Ozt3rw+NSf41yf8abuYTi3Taib/u8GKb5YkvvkTifJadcZa7siSt7A3vlem3+P4G9cwwcAb/5 X/fFpwyfEV4+J97GeyOIt+oz+MZ8g1qJLjcTDR4muvQAzqEpsC8irRThZNiPwBikLYPFbTQIlV2C GofeAb1gt5pAj9nvyrGI51l1Lz9nt5dk1ed6A3jtDE636g+uAx0I/w5AZYOvwW6BvYjyQdSrgG1C 2lrYqYgXgXzEf4/4bCAjnA3OAIzzEp4xl9JRfxdo5PfINb5D/7v2Ot8fN2sxxlrwHfHmxHjd3xA3 bZ31vIF1f2s4638j63xLXGVtP+DNd4yJ+vb53G8cx2I9P8PvhaG/E72qtNMoSaLxZlhpO+C9PdMf +hfp5R/b1HHA8fth/JwQJyaE4BLCPTC286MujhtmECh+LyRUazTFhbSyB1UNNFKnScVSk7JBmwQm JBJEmm7qpKrS4k1ahMbaPJ8HtZsg3GWVqk0d1qZp6aRp/oP9NSr6x7T/pux7Zw86iX+qBX3ve373 /dzduzuen/m7hZatMcv28XfwbH6HMOLwb5EyxMhZ/jaZhhjiIzLSFyupSqGxOeZD/ioxoRmIkxxK qj9bkMpfLWxtV93/QLZs0dwFGe2vVQo+fyxpt/HvEcrH+askQASfgu+Cn4F3wk/zl4lXz9MqtPhi MxgvgXiCbyPdaLbxdhaDD/EdpEPHJmVzbZxJ2dUTsxv5Ee7XkRbuJf1wDzdkTJgr3MJMLX6l0LBZ ze+K9G2L3eaXuUHakJpBartouc0byT5I3clYocEbW7Cb+BhucwzLIjBHShZ1afFXJTrCeMN8J2lH 23fxg3Qb/CjfJbeJ8greo1Xsh6oXjDcgPU8rK3ibY2W7gQ+g1eHzWPF5PdpCIXQgRuwQ7yJRiGFR p1GbRs3H51CbwzbNYWvmsDVzmMUcnjyEz6JlFpl9/DzJ8nNkAVpE3YUut0msYElX9nbFSvwJ7sdK +FawdhRXdxQamtXM/LJ1q475C03NscRt/hoZhRgmP1HY7o+dXeE9+laeLPg7FJCVDU1Yuu21vQDY rvbgNt/Jd+mV6NQr4NgCnyl+XApC2W9ZRa0O+yP7k9pfdheflf+u7p/V/fc13yizSgGjWEX2B+VV eyf7Ozp7if2VLKLG2ApbI1EAf2FFNQv2OSuRBHwdn1+Gl+BPwz+Suz8VRVYswDD396S3Xd0sW5O9 ++oVEaxXtnfUK63tMTvIfs0+JjvRxZ/he+EfszLZA78D98PLbIJ8Cr/J9pND8F/V/TdsVZ1p9iG7 RQ7AC7JZTcGRhrJl6Vb2gSS1T8l9YpV9wG6QHYi+L0M7cPV6IbRXtKygP8p+ziZkp2i1G9lPaYr+ E6EcWVdOWtnPZFx1siBXTVFiC2zB8setoBWxlng0GI1El7gZNCNm3FwybR+bJ5uwePgPy66ijBOT 4fRAFrTAZqUr7tj/xj2p+2JkBmVO1zIos7pGUPoetn6pawl2mYxCDH1MQdPQDHSRuFCehy5Ab0Bv 6isT0CR0Do+PLIgsiCyIrCayILIgsiCymsjq0SchRWRAZEBkQGQ0kQGRAZEBkdGEmm8GREYTSRBJ EEkQSU0kQSRBJEEkNZEEkQSR1IQFwgJhgbA0YYGwQFggLE1YICwQliaiIKIgoiCimoiCiIKIgohq IgoiCiKqCROECcIEYWrCBGGCMEGYmjBBmCBMTfhA+ED4QPg04QPhA+ED4dOET+/PJKSIKogqiCqI qiaqIKogqiCqmqiCqIKosnN5XrE/AVIBUgFS0UgFSAVIBUhFIxUgFSCV+q1P6MVgODZT0DQ0Aym2 DLYMtgy2rNmyPl6TkGIdEA4IB4SjCQeEA8IB4WjCAeGAcDSRA5EDkQOR00QORA5EDkROEzl9cCch RXz9Q/m1t4ZdpCkPvlzZDO3WPk3ua58i69rfJHntb5Al7RfIJe3nSVz7ORLSjv60TxDhoVLEW+x2 PAJGoZegs9AitAzdgQxduwv9Ddpg+609rhZj1Fg0lo07xqZlo2qwFveoe9G97L7j3rTsrrqZaXcw r36O4tFC3tLlNMoHEL5EUCZ0LcH6MW4/nrP78a+f9VtbvjAf9NC7PfROD13uoW/1ULuBPUNd+kln kjjDxGnKagoNiHUoHgoP4Mk0f+v+diFD3xBFulqzbqsXfh/KQ0vQJSgOxaAIFISEvtaDfMraU+9y FQpDuyFTDUHa2/G+3brFY5WYly4VPvGSBjVOuAvcigxHYUUZHoV9KMOnhd1Ab5Gweg2iN7FzN+DL UtxD8/s1+6UUK7DrUvTDXpThp2AnZPgzYXvp80S4FDpW9+O4b+XHpHgBseek6Ib1ynBIpXswUBCt 3TRF7sGDdWpvbaSAFIdge6Q4qNIeElYbT90koqe3CVLOC5jQgxJNuai1WXwhfiTuA/8HFhbH43Oz 6ILdDRbpC1ajWI38BGFbSLtR5fH9kK+7o/ymWArOivfQFw3eEu+Kp8R8pOjB5WuY96weQopLZpHd sLaKGREVE5F74jXxrDgljokXg7guxUmxqqZJ0jTFbtwSSXT4TdxFUIpngkU9xaPi+8ISYXHQXFXr Sw7U+o1HVtUKkFht9Cexvj3Bojrjz8eLdIvVY3xpLBgnjEHjkBEw9hi7jE6jzdPq8XmaPU2eRo/H 4/a4PMxDPG3FjarVS3Bs29w+ZW6XKl267mOqRKF+kDHqYeRZ4mzlI2zk+CAdccpnyMhp0/nX8UCR Nj73bWdTYJA6rSNkZGzQOdA7UjQ2jjnx3hHHSJ5I5SmdT+Oqw64UKRlLFemGunS5w2k9gkZy+VpH iVD6xOVr6TTxt7+e8CdaB7YcPDr0mCJTL3sf/fm/Wu10fjxyPOX8ojPtxFRlozM94lw8bp5MlVgL 8w4PlVizsnSq5MqyluFj6rorO5RG7J6O4TQ3I0bCyhDzDBJTxfA8GVQx7FEtFwKO3G5lyDV6SUjn Qo1enXNRlcuvm8NDedPUGfzAXNeZ9SD5SgYnBuxQPhTSqYBJUypFUwFTT6xbdyQEIhGhIxTvdboj QfVgzr5HkWA9sv9hZL8ei9NHGVHLtHX9N9PWhUzv//k3PthLC32TU2vD44HhTGB4HMo4V19/xe/M nDbN/NSkajAdHsqcPvOK8lPjzmRgfMiZCgyZ+b61xzSvqea+wFCerA2PpfJr1viQ7LP6hgOnhtKF xOGU/T9jzT4cK3X4MZ0dVp2l1FgJ+zHNtmpOqLFsNZatxkpYCT3W8HfUuU+m8h4ymD5ysuYFtrkR ZzjTsTs92O7LDqgDXTq02z/V8ZGL0Otkc2/aaQoMOl5INUXsiP0ftqsGKKrrCt9738/uW3bhLbvs H4v7BwuyyC5/u6yS8FCxEkCkOirJbMAxioraIODaqLHTUUlMjHSSig2Tih1dxHZGKkbRasTUjjpp p2ONukkn07SjMpl0bacyjmPcR899gLUT3+49995z3rv33PPde849VATnjIpSgZ02JbK8OceVeQ4f mxKJwNZ75qJp0yL6Uu1QWWPtkGvJyyvoVhmSVj4fsw76KGILql43H/7Q71QK/J59E3U89+l83tPV 1dVBSZevA6HaofwltUPBRtBEpYKpWuY3Aa9wmscwCu+3glA9MjEKQh8ogTvpdLTlwz6woKSBrEtF +vl+FaGpQuewLav4Rxcggu+EAnkciZ70FylZRHTYnUPzl85hf9lkDfkprU/aXMUww3AIPqV1zmQt 6WdBoyenZ1ZPqD+nf1Z/iAfu6RgwHTEaSk/6Ywzq9HVMGwKanU1gbFCLznf4pD1LmbifNny+Jl8H Vuz1fWPjaaM/NWzH1KgdyvCd04BM8jvQ5MuTQl/X9EddU58owi7lEzofREUEmQYH2SncUeaeIljm VSOkUjIgjpUZpFGxMkZWNc/JhDmPvUjAQ9iCLD7xYUWyYpE4XlGfrECV0BafACkKuPQufQ4QcPPo iZMZfSJx6DvkZEfpDC9PfMnFuBuQmBVCsvWVtDVFr/Hb9FZ/yBEKfJQdSx20HnUOZscKtQLLe6ys 2ZPD5Gd5XeWBDzwJ5p4txW63ZWXprFaLx+P0+wPl5Tpdsd9jZQrK7TaG9TqzMANZLcOX+z3OLLvN qhPKZq404LIf8Ck4Bdlme/tEk99ETCN4l6TTFPSliQ6xR+wXWXEEz5DSivvSNA5NQMNorOH67RYf rC9Sn0xGEiKUReI9VFlZn6hM6M3h9HAY69OhNoeVXreorlBBoXVRAEVwJEflzeV5jzPXW1YaDHkp LSk2ZRh5lSEYMvO8ymTCoWBZqdfj5jOMZoYHaiopDoa42PEdHU1X98r397YdG6itu/mHT26tP/zH bJvsLXf6f5701i1trJ5XJ81c2RJ9be4bC4e/eKFtcd2H0b59f1/SdHjh7rOfvtvUv1p+ILXO7t6R X7CO0c6ukoJ18wpKX5J3Fu1d+EpHaQXE3Da5kawFLES0QErNSxtgiFrASBBRuvoCdiMBAqYbAvMH kkZ4oO1zsgGWsCPkwLD+aBtFP5JIjifEBFhErBBhyTiCPV5SJsLiSgjJMKabTWT1pV/0r1q2a/Tt 1hfKPHLjGP7PN9iFydcX5Ovy8vtH5GN9a2j0nweaSIomNZIll+RqWkmrppcMkGOpKkEtIvini1Qn BLtP0emU+gHXp6XapK+fR7VJJO/8vzKGF5myUsKUmNIzjCrCVC+ZP9u+5u2LvQNza38jN5785NHf uu7jQey/Lc94dP1f8rj8HdWkCneTdaQfdmqx5ApgCRMcgn0rMk4mwLDMfE5EThQAsZU9uoFujzuR evFeBPkTkaKAAXZ+FcnD3dgqj8FoE8mJMTIH1sWgcikLzFlDGCMhDBw5OFf4W2LjmG9hpPeVkcbr YYM9rIc1VFRWdHOFvh3i5aKACpdgBrfdkH9m5f752AhrR8smxthUbhSlgirvS7VbNW9pBvBx1XFh IPWMcFVQL9M3mZpsyxyt+rWmtbZWhzpMwnxQCOpqSA1fLSzQDQifkWv8ZeGy7gvyV/5z4XOdXrQ4 LcRC/VpOuqnUElPrHGn+NJImQS8thriseAOLWZvbGE+xum58+j9926nCCV87LdTsKBLBxWaTXlTx HjfSi6Gg2c2reL1oUrZ2UC96vaT45tb9PdGbt+THQEsWm7JKG0omK2704Cm5WW45fQDX4Bj+5ekD 31Qt3SjDc0mqWroB4CCXqgCnXwEoXrCBgJZJQhvZRt4Bs7KQrww3c5gbIa+eUQscRloB/Q5uPgRh EpF0HGIdrJMdYlnWqjmHB3A/mjzhFfXUlymGH48kwvT4ulx6XlUWzA6VMF557MPrmzAJ3GE9PdUT 2df20J1SDyhkggYz0XXJv8+0z3wtg9lmf8dOYswgN2A8zZzjThu/tHxlVZuM2AVXNxabDSaXQydq NSM4WxIk3X4d0ekwuCIipTkMfgMxUHMbYpkchiThYxF0hTUBJsXAZmO5uiHtqJZotSYxvtOx33HI ccJx0cE5vlbFG7Jxts1nipujOI6s+U8BGp+CCFalD/sjqDLpa7+jENpNgAML68OIUuUPALZHAEJD joKW4ppUIdOUj1LlvEhKAFs4TyYgyOPOrseibnPj8ujmHwZrHZu3rqhZuCZFTmZu/P2P/7yj9cab vfK9v1yRH+PdrrWbdr2+fnvGXWbd8pdWvNZSsPvQK7s2vHWpI/P87kvyv+/CeVgycY81gz0tKBsF sOvjgDrLUeodmXgkRaFxRX/FcJu7rWIzUsypGWKGsUvcYtwlqrwoXxtEc7QLUJ12E7tKDXs+I5rb ndurO2g5ohu0DNpiMwZyYwWDgbO2MzPMUcMewx5jdy7bq8XaXkDRXngQWj6BtnMYRyEupBBUFjYU ksJz5D1kB+sbTJbS1+0/sZN+O7bb+XQxD+dRVAR4M5An5ZE8CPeSmK5zuHGlu8FN3HQMN2XaeM4R F6K+eEMaTrMVW+NMNCdushZ9HyDlFEXaK5MRX7tIwWn3JaBJEYrQQkGKhCMKQqg9AreCZwMKxYP1 uJVIYzA+xY5nnmnjhRtX3b1xfWx9yxs75eTtq7s/2nK2uWFxS/OixhZbtGn55s6m1tWMufBwy5Fb t46sOZRfdH7bZ/K67fHoFdy49NXmpQ3NLckXOn+6Y0vrjveoH7oGx+AfrFe5NxRKmUw55vlyViOc YAjhvdjJBTjCnVD/6ddKtKAXhIqHsMrKxKSnxFCuUU+JrYyO1k8eTPpNmhEi7iJ3DsbV4OKzSDUR l4RQuJTPA6JSTJ9XVspLQKAXlxa7ckEGZCbKZ/O5PM1/2a762KauK/7u13v33mc7jh3HiSH1M6mT EEMwwSsEDH5jlDKyFAQbX20gFAIIbS2Oxte0lTAQtCPaUql8ZFpFpsJUZS1fGW1IYTAGbHTayjS0 UW3dIrUdKYKVP2ioaPyyc58TBhN23jvP0ZV9zu/+fr9z7gTPFG0yy3jWa+txM1nD1vG1sp8UzNWR anFECkENgZClGWCohi4otZhexJjOpR0pmyHVT5iRspSMY0J0KnrQadunG5hRijTuCYcjWg9eaZtR +A6URK3g0D0YJB0VKClaBRa9+HGNwgphgRuVmstXjUwSpQON2TuN2ZLc0082z4JpIg2gZNINt2B3 J6RziYRr/Lt/cGF3TYkKhj+d3n0B2gCqP2bC6PsYjL6nNDLknOBU9g45AM3gcZ1OUa+lSNFCvWIx Am8UCxLCzjq/bs29vdW5hKehuur3LqEGp5v1Dv4IW7k+2Ll9gPRzgHQQesk47Zqd2VyN1vm2VP+b DlAqYiGhV42LxYsD0dC8EE6GjoZwKFRUPiYeCHKrKI40PKpyg96qY72+qvIoKElNyMJMQWdug/5Z Y9fMr2mq2VDTWtNe01nDrZok6KpojKVZwSTYXQ/e0z1+4sIRE86lG/yN2YFE3rDcmVJdrhrU2KyF hlpPlNWF4EdORFRoPR6sg3qXwiIlFC1vYXmoCtQpQVoAizK0WO1jeEQoMHnpLIYKJ9VOfkJpo7Ki nBTGhj9UlO/Dc4/8cveyF1bsam/8+aa5zieOF1Wdf6v6G4vr5477cxcKdCZmLrS3vsd6y57tWLH2 zUTl6W2rz2S9HNNLzltMLH5q1rcEy51ytghP49Mzn61W3WLl0HW2HCaBiHbVbtglXi56ufigdkD/ nbhKrpqfExEXVZ4q79iiscUb2Uaxi3EjaITDwXB4LK4mcWZUsQyahzrYfnGZXDQNtMCvoT7tNmhF IV5YknKj9EJEy+xwyXjKfbYvkPLVryhAynzsUEmqoAdV2WMC4yUp+My3SPtMg6/EKJIEWwtVdhqo wIgaSYPA9N/WPerF4W3JqjbfONCY96jcHTCpjxMqqof8oAstn+m03IJ2r8WscHGYVSjDgZ4P5kMz KDrT+eNN5x/OS+h7KIW8b6yudf4eObzp9T/8vnNTFx71zO1P0U/QMvQ82ntw+bHZLTtvOPecGzf3 KSd4Ffi5Evjp16LaNntSFYj7qXAzbfaw6nBdeE7x0uJ1xawu/MSo3aM62D6TRQsVKYOBeIGfl1Ye NZAxzEhVlB1sjSErlozhWGEAOOhP+rFfcdB6JAfvE1BVmUWKROFid5zU1bs8T6EZWLEGOPQqLnun aXtP0/jJaxp2PHco9xdU9eH3J89ZkU5/e+GMk6x3dMV55/qfTu7oXFVfHaXnB7/iCyy62NX19pqA TzFkr6bR21CpqbXb0zmjBo/rgShDSXYUbJQJQuMw/EgRNzVu6PUEz5EaHGkiljfptb3ES4WF1GgK jICKPA9W5O5fuuFO+k76EaJioKayOgZqAlGxh0RFGPjPxOSkwlgoNnztpZnBT3FfziKTWO8Xzrt3 nexdyH4/ZL8Tshdai52B7HUWNyye5Gf5vzidwNs55lzLlyAg/4w+DzxjAYHTJ45YZtLE5sP5y0fl 35gf0XLpgEr+UfntJ7dy0/Dq3M9Uboe/yL2ikFUeV+0i+7odF5RJgoWM08BRggjRdMYgCYNzwJVx S39fcQbvscfY3vneJi/Z4G31YgVyp/ecl3qxmU/zHJhnHuiND1OnZcB9HLF2uKlsXaSJizTJ25cK /4f0SDH33/tQFZ6FqpxrudOsN3cWf/XebLw9tw1qaoPCfgU1Ee0Fdwe7a1MppqheHnejnSkKpzRm s/mslfUxFmVNbAO7zWgrUzM00TgmHyBNO6ZBFzinjEQVdQU+Ue15OvHgsPZbhkvJuEeqbAtkq/Jr Q1Ws995syKMDsP2twhZttSNcR4GAlIxgQsFkhRRcMsGF5D3oHTth6EWGoRPVbCU0WykFNFdJBOEm rIbeColppskNDsfM1SfYHA7BDhguxfF95EcIvup/uJcqhpTkHeo+7KWAO3SFcJ0GF7TVkgSFE5X7 wNUD96f5BaLuSuBfW2KXVuiVop0e0DvhiHCOGjv1N2g/HWDQ/4f6uicvSAkF7OPwENeny++SXaSD dIifyi7SSy4T+RtyhQxKMl3OJLgFWjFKZBuXuvuuD/V3B8yM3jPUbwcLzAxNeovh5inKUMsMZIAJ V7oLSvPRF85HWOFGWOTG4XUnfMGMlu/yyL1De1M7gmII/ozCDmDMIvTj3DU829nufAcMJbcR78ld HNyOj33uPAk79hoo9TA7ojFtuh2Zbyg2UOgwGqcsYmDyIMb6xFMPitBRTGjIDZPB5WnoNfi9Pnbk y6/fVUoDuemlwAYPetM2TVLBK0xCQWVgKrYYPTUlranTUi6aw9E+NLoG/gs3HbjykbgpYeqQMohH U7+IynI8jlpiglyL19FmsV5uxlvoIdElT4peOSDuyeKDtF0clJfEZfk3fI3+VXwgr+N++om4Ib2b xRa5A7fRHaJNtmNjidmM19O1Yp3chLdSYxaup7NEvVzMF4sl0iiRE3wpPJWmxDSZ8RkEe6guhAzh CA0LaCHT7PEwNVqUC1FLaBEhFJtS1hIMj9jkhHgoxh5gtDB41Id8PcjbDUMG7cVTXHU+05hXZXjh N1Os1rCNbRzxM9sAmjOmZXpwD55iB0CONizUbFik1UbVNAVf41UG47+TvZVI+NP/8acjpf5cNpdN R0r8MC/CP/wfZ2Ff/C7t80x/YIBMuPNQcCGwkA/1HTctNSc2ui9XzQkNWApbCezJs6jwFfQukshA p51bzofOR84/YVosIf33ZtMffvmiumCfD4Dqy5Xbo1/YPkF0XkrCnAbAU2CrNcV15W6qahXtaiiI 1Boc5M8Jx9ggAuACqAhVBVNVMK3V34dZWTlvqW3ON5tMssFsNXGnec7E/6W7+oObtu64niTrlyVZ tuUfkiywLScOdRJMoiR4CaAOEgiBEAYE3C406y4BsuuScFDCboRAR350dKXAgME6cl0HW+kgCSsk HBw/unVr9wc92vKjjIO2DDh2lF1vx8JKlD3J4UdvN/v83r1nnS19v+/zK6MQFD32ozYO+QULdLrg G1zMPMHF0EpDNn5Ix3Bls5jlEiEfpFJd+dbDwwJNSk63mbnjiLOI6nAW2Tc8Rc7XqQVwcGB+rAAz MLwC2wRFrJcaoK5jxB+xs9SnFBbGJlI6VkrNo7Zie6le7BDVh52knJmAUliko0ahHVCuGdzEAh0N WwMpFsGdnQYdydfRhXCwr64YF4YrOFAoSQZRLEDmonGyFC0kq1GD/C5aS9IiqpBz0XJyN3mA/Ct6 Cb2F3iTvo844mkPOJtvIbvJtlLAYemXi4Qt52OI0YnfYwitw7wJhdAnwmhdG+mFj87CP/lOBHX8w w/JaaehRb0KP6kIU5A1j0U7HTmoXu4vHKUDylIsMxoNt9BoPucbd5uvEe6getpPf5OkRu33dge5g p8ySHthh2eeRRTnok0lvHkdLeSTmjx9iAMIITJjBGMuFhZOqodarLWqH2qsSYfWfKqoK8V4EuKDJ S9q93Hw41P7uI/9pO7I625HZ6REe4Fbo6XXo2EuKC8dsJwJEz6Osm55e8PtlPYfBDLDJbDdPmENm O5h0o7//iytHj15DP762q2Ug8S3zh+Zu83WzGZrP5ffN0dHRB8NfW3WwnNgwPN1WHdYYWYRjSBwK YjMdYJnjvAP1uLM4nkcUwfIyLoTy/4/L9I9Xk2PP51AF15OMGvqm0XzkM8dMzWOvCRsGjfRYWNE0 CYWPNpZVfg4uA/477W89v7O66f3Tbxx6cfrSWUW9jmP+yJVDXYMr3L6RC/gZsz7/+adrlnMM/GPL /0D/gPiQCDJsbEy5Kl2LySZnE/sWvZ/v1Y7wF2mGoAgmQPmZYr6Cr3CRlEC7RV50iUIxX+ya6VrN rxU+YpxtdJv0otpNd0udKkH7RZp18Qv41fxP+O38r3kHH+ZYkeNYF+vjAv4sryCCerFXREURCUes csHC+RAKsuNxI45wAhT1j5V4L9FHnCI+JHCiq0UDYS2poVrE92TVok9qvX0WxvKhzXmP7aCNbojs Oh7qO3CP5UGYUFrrrIIW2PWEETDgjWD5qKa53Y+rCmNf8z8+6Thzun5d02HzV+dXLlzaWHb5k6ay ebNif7jpODbvg42/uRCa3HnA/BxMO5COjPwSq44t+fbsZ1mHpXyzR2/gX0Hs5II+Y8qQe1A9kvNe Lg5DnA+GOF8w0eBoyFlFtHGrci6x5zU2zSziF0XT2nK20bMssiJnWe4atVPdEWE9mqWO48br1mw0 SLI+PzpfOx09reGt0VZtQ3SD9ln0M41IME9xsWhMS3G6VsVUcTOi07UmrkFby/0o2sO9HN3H7Od+ G/VCC8YRUUKTGInzR8moxnA4CNQGDSmsNwdBc3BvEA0eQxsQBbIQK6fGK0DJEzFkFrBoqVIO60lg gBpQD7aAXtAHTgEKfIkbckrAAZ73FB28OxoAAcMb0ANVZDxbzh8f7xX6YKqqAnfdmQZKeefGznzV giX9iDE5PdfqXrVwD86JlVambE38qy5xPTOvTFyHIpahLts8RWE9FHWqZpmgzPzFgDcVheWBE1y9 P+CxVh8aLk+KC3tSjP1xWXu3DJ6Fe1yKCVof22w/fqUfxrosvz9DHHH7XaQXQ1LBMyGWJHxiwI/b J8dKuLNBWN7b9eprU+boQ1/Wd62/+zsgggBpXvSuW7ehcmLuZNB3dvXmUeSkeds8D66EXuteO1+v VDz5pbVrD7a82/jVB1zr94uiKT1rYuMLJ37a/rcfAGCdn1zIOUMQoyTMT9pEOoknHTV0C91Bb6FJ AjjQLBxDSYSiAwEZX2/pJMgzGIIMgySy3kIJXLoxvgZtQTvQLSiOStTI22NVn7+kH4VVt/PTSBkc yhtmXB/jnDLbykFhKLLSE7hqzsVfMavxM8PDX0+Fd7UNKkIM3pWEvGxMJimSJgVIEvRMaiZNLqZr hR3CTvcu3x7/fuGo/4Lv78Q9wsmxLEBQMstLs84wd9byQnaYUmqUegVrUToUNKwklV7llIIrAKaO sJSUTkmYZAFd/r9h6o4NdjuEeCNu2BK/DV2oaQKPatFsq2/bQI7T++qP2ztkkJPccPHguUvtogpF 7saJyc+8sGzHQSzxwDSHP92R/t6eRe33LKavHL2F5+NTEQ0pANXGclKmQg7VL89WZoUqsy4LV910 sVQhLc5ulJZld2ZvlbbJ++Qh5c/yXxSWIDifn5D8cWKCLy2tQTvRfcQ7xHsEe1K/JKBqrGCSO5eL GYl8PWZEc+AgqXpz7EEMjVWoFraSvEufogJEFdQ+9b6Kq2ouKEQMuGupIIosihgh97SIoQhwCMp6 ZBBd9Q5OshyTa2kN/M6e4df2DK/IhVcYhugcNymbmkDncOnx7F4WhTZyFDpJg/frrDxPB3o97OvP kgCAwgmR5wLgagDMCzwXaA5gAalwxdMPcx/EZuudOitWJTKr63YXIGzgwYF2ykaszbuJO3VwCZkW 44XMeWqts3AVhyiyGBcT/YGIBSyCgH2ywFVSXJJRaWCJm0+ErYRbxUWgYTRx7uzxwSpMyTJvOwUS m/Vm3Zsnavds/dOcmuaqhWBp8e1YyZIZc8oLBSf6ef7u7emeo+bg5k1zQiUSVVEx0P3MK1WhrHBo fnmpec5TEIyXldYWZJfEGqxed8Feb7dVPYS8PoR4RoeNSc5UiTJTQT21RC1T668NpkP/JokivJQr 9RYp5XgVV+UtV7aTv6AZlodBCZFhiQccpGhV2ut0uhAmEKHklnFgnDABxbJdg2CCwYIWpMPiPXVa ppqtZXPvjJTdqIZqn9H6O9ZphuTTWgfqYOx0NhKNTKO/Mbgi5KiDXi1hJStYOw+0NbBicZ8XHvdH zqYLSBsHzpjmyNCz/YZHr1xb99J/6a762CbOM37vfdln++7ss+985yRO3CS+GENN8AUIBHwhaUrp uiQFIhzIErYB8TZBoKugnYCoZECFxsfa8dXQhK4M2jKVhSYkMAZCW9k/U1Grsqlb126jSyMaEU0R 0BIfe95zAquqWTo/9/Hevc/7vL/n9/yernVrdkKfN/ayNWx9aY1ZH61Md5PTTtR39Lw1cPwYZpfl sPYU4Fwj/mE2rhDTUlppFzNSRtmqPqcdIg953vW+q/7Ze10dYUecI/4R+S7rn+ufKy+Rlih1atqT 8TjmSXOUOSq1mdks7mJ2ii9qp6STypA0oHCCjb88A9t+KWAISR7f0cKGbUWfwZ9HNOGCmEk+N2HC UMKEcURyP6DwPPAfDY+Kgg6E76IIkeDxCR+pB/II5TkiAS20IhfKp3DZaHlqND4+Goe6Md5yA/CY HY/HwebYHGJq83YOVrPnMBh1WCACFuly66bwvfrM1u0/bFgro0B8/E8j1k2kjF75jPxi1tJlB968 2L1yQ+J3V1AU0dABlZ7EuFkGsVs9iZv95gwpzaZdaSmHlsMAjbsc1xHuDJPzKMMzTza0JVStZ4lc qx3huIANFzdGjSm4HYIIW+EKxgQ+ijBSRJEI7cPYiTi1ghVVD1a48XYOMTZH5xSvrWEAK3yGzbgy Ug4tbEs6EqmYXCBo3yDo+/+FCr3aulf9m+Zz1j3rSt8LSMtKidrnV+/uWvf9Xd0r00iHWi4g7WXS O9Hx5rfWn3j93PEeWG81rFcHrASIfPTLIcILeVLnrjzCHeUPek8xJ10XuAv8YMjpDKDF5ONsnas+ fIofYAdCV11/9Fx3/cVz13GH5/PFfNnMKzBkU/AZonxJfk+mZBsN4ZRthSBY8mcmCEipQWgTSEGV sOYY0PIMlJQIPKagyLDtI7Gcjc/IWTXftqYIZAldA0F4we1WSYIwn6XdkorDXeJ2EBGUkHMgSoRb wxvCPWE6LEacJi8aEPBJrovjiLdgUI3j9gIkhxlQzbJASjXDIvwBwaqYiW3FkMrakkQCJ2CEhJ2B QdIkEWPbNzUUSNRWGfYLBDyQKrHTfUFszpzlXAvty+pIKk7g8TcwhbbY0wsmREnAkwp4esGEYBH2 R6FBiMdBGIHSTdq1ENgCYYgXQfnDGCeoiF0Z/TntEiS/Qurskbetmz/NoMAHo0hisyb1wupFzTq1 pWlVVRVCTyeOHu8/8DFgIW5dtS5u3bMY/ej57TU1z2DeUCEB/g2qViEGzVmzaTSNLvIW+dJ0p8o4 6UsqKSs+MiApPsEvEl7BjwgvGeCcohu1uu+7STfeCBeLfKKC7itIwZdhL3x3DD7N+gMuLply1jsb nJSzzJvwtfpI3yCiTV7wR8lAK9GrXFZIBWOC8xiKFtwyRGaI3J4BpU6AeploATmj3SBUSBPcAMCR gr/KWSL8JguRP2nruVlBh80KclIuBnotVrsrjzy75ZlozcIFFe+/bw1309GGnV1LS37vrWx88uOJ c9QTdu5bjXSbrQ8SaJbZtrlgVwEpefiO8p18ZzldhKBToWaiJJmkTFRD1lBpMR1IlzbFmmCr7vru +n3z+aQyvyw5HQS68mRZ7fQxTzbo2gv12O3h3dM8vC4oQXkG7wGJqZZg/Pfb+LdhLvhsiJx1e3K2 bFoO/sWlOVtu5NKAk/Psot7KYLopFHVsBNcMHG637FA1dlrMHQ2pmHI4TQuF9pWjciCgQdNFJEsi kjbzAfeMT7KPd9SbvTFVqrLjm3KC+UYcGqyg3VVV4gO6xKkyttHmJjETyJSui62NZxIsrmRBRglO FfcKoKlJkAYrQMGBaisCNeAPPOSr51C1s6Csaf2cUj+/7fL1rd9F6NIfOpFjYceFfdZ//jmxo23d 3t3ta3bU6XPlcEQpL/7OK6f7932I3Cj0619MPP7b8z+oGtorkDveOHb81RO9xyAkPwdVnQbuVog+ My6iQlSJN8u7CC3y/R19iTgHozAl5Apfu49BiPQHfJKfCpBIxKEroBycyxWQXQpBuF1RJ2cWlRhv c+g+hzgIJgReeaTE2K/2qmSHOqaSt1SkEoGoItvUBGN7ZTQmI1kLpnLhhY4Ga9lvY1kbvz15ZXM8 bmNHIaZBW0M5bZkLjI9FQJiUAa6GXdJYfIre2n1xdXd9gTVc1Ligbn3Sgt40+1nP4o7d+7IHyPKT zRW1L+7MfgGLBvy+BMl2Gk4p6Cs2DxEceJbyuVIm18CRndwZ7jJ3jbvFMYVcG7ed64UbDMU6CIam oFKZxDXiU3izBXQPy7AO2kU6oC7aiIuUGLTmnFzXw3Wk7BSkGC9eUU4Jbor7sdNwvIQ0axhp9ACi rYl7S+jovY9wh/HAw6VDBAPfjmH/mAaG7GTOMJeZa8wthilk2pjtTC/cYMAZCqQEFUXElCeERn/D k8m5k7l5mfNf1cFc2wiCPQzZrKP5Q0QM3m6BuYA9PTKreAzKcBqqUVxLPuZ8TK0t9hRRidhSri3W GeuJvc6edPzK08/2e87ErsU+jQlELBFrgAeXYp/E2JgZyjdScN1pP2QcEdoRKsB01+dyRGzWox1e n0/Py8+P6i4Ip+iNSj6zuaLNhzZAcAbJOlMM5UUL8uHehnzUlo/y4d47pdDWYKXQRxC6XTy5FLbm bPBbh6G6WQ1HFRwluqGb8xYYCf09/ROdEvVCvVOnCL1In6nf12ldK/tX1ZS0zyVzPJflVbehTgGV 3t7Ygs0UHL02JFOjkPB2vkM8N8UxnaK4PyJjYR+05X1QseGpP4DnQ6RuQ9Sey2sPzqx7bdWzr5UB Xgv0xvntj1rD4dTs6vYZ1jAdPfDGsuXLl7Wuqj2cTZOtrz5atXjPQYsk615pnl7XdSQ7AXt2AGcw 7JlC9Jiqwx/0NzvbnfQgjWC3vLXOWnHEy7B2uvocAs963G6QWCSKKoSdrgS6Dx/5f+nqckc9Ao4v z3seZK0HjQE/fz1r7Uh9I3FxjKoeqLPI19LUDhIkL522hksaK5/4cRzAz+z5oOVofSEZPr1mbkNX n1VIR7vfqWnv+gnO1adBdx2FlfKg0g+Ziz9Hw847/jsyfZX8nCEljdE4Mu1t8jcpafUQeZg97Dzk GeQ+JP/K/O2/fFcNbBPXHX/v7t2d78sf57PPPofEH7Hj2AkJxCY4sOZoQwgECAWykk4ZEeVjjJHC JkZWdSttEaHQla1qIEW0RNMkMpjWQNhIuk1iA412bFq1NtJA1RZNYXSorGFiadCIs/87J4x12k72 e/d3Tqf8P97vQxxRbnI3+Y9U9ynHVeY3/CXHrxRuj+Mlfr+D9dhTKBu0RDoR9JxgdoR2hZiQM4L+ Q1YXzElBbM4iurjdvRW05vYAwRTOcbs3o0FayKeDMSlNxB/C7rWHpk7cwZn8ux+/mv/0EA4f7ezs 6ensPMpEX8b8ofyVT+7kL+2f7n+zv7/vRH8/zfdw/ivkGOTrBl193Jq70NvkZbQMm1Nz3kyogV2u Lvc2hO6FROrNZvX2hHAv5IDz87AP88uy2+Wc9WGecqfTlXC7bYEtf9aJrbq9GBrpHvsvL2bjLeUw 6sUe0tegH6CTNOcZM0Yl9r+zPoz5mh99eRgz+fvDG460QIv9r2zd9MKBp7YdhNau2Zz/Y34qP5G/ 1tg69Vd2ePDMG4OnvncSBrIbIbbWzr3fSh7jsOjE67it3B6OrdI2OL/k3KURSXQpJQpzRJlWmHql RWGUIWavVS4IMN8sw0tJJLrFanGXSETzOe2kxmzUntPe0t7TiOZGCcza+TPMPtwHxjXoqR/GRWjW jj4Y54n24KqCfIJKwHTn5hdKsRs1Dxjrmgeyjz+54aw0fyHUIWLP9AMhxXtwH53ox3Y0dLQ9sexz i9ZWkcSxHQ3Zf8xdcjp/B3Kshnl2Q44pptN6k/fwMUeZ4TFivVqvfqysJyUKeqPOaD9Vh51XIjdi k+pElC9XW9Utao98TDsVHVaEJTGrtCGxLbo50a116weiL5aKtYmlfKO8Qm1xNUYejQrR0rJErZKN ZKPZWLZU4CXOI0YCapkSjUZjQmnUqvia0qV/w/f18j2pg779qeO+ntT56PmYug8fMV4OvJ76QWqg go8OTV+l6ioys0M8OlhcSuPRwZLSQhw07dgKwc0OFS+INkZ71deil6MfRPlIVFEJMdGMfkM1VMkN GpX1eEbq23E0nqG7NQfYAuFqbOE1mHTgfXgcswi7IeoA20mf9PrhSYytXYjgjWScMKQxKfsteLW/ xrDgvYYFLzWsbG3GsNJzYYmXwwLvdRklxkbjaYMYraYFeOcy8Rpz2mTMRq9gRPxWJJbxW0UlmRI/ /hMo8hpHZE38SJyJW4E5mbhZQf89A8hlTQWursBVFbiiOFLtxu4aHEEzBGTv8EiBfkUV6DfdNUQn 6z6QCkjI3bdngDK9m0ZAN3DQQBek77bPykga3k3PUBE1PkZuxi2lC6p9N1zt7bZ1Kp1+1xJlrd6V hAU68PFP1JyiKzl6e07JQW9unZVztj3C4JAAu7xxvy06s0BLZTAgoP8pU3EFS+TTQWsDbemgRxPV 2NQ6n9pZG9d9y/M//MK3rt+4/kEy/6ln44anq8NFCfyLtg13P7k2havSa1uTRVVhn+5pfuTzrx/6 2SuH5z3yaIk/Vuwr2rqi+cCrvx+AiS+Z/oj5LvcG4PdvrfIwAnsglbvqnCucbS4h6EMB1u9DhubV saExOg6woiAJSoA22oWMPmPAYDtgu2iwBtigcz5M4W0Q+XiBwpxTkcUqqQqBE9kIJ5oapWSATRha q69eP6m/pbMd+j79O/p7+rjOId2th/VqnehBs6tvlvibB2rhTC+CMz2M9OmLC9sKLupu+2L3XdtF ARQCOsKjY0D5npoZF9WOwTLpdk0NWrQElNQTy9Zk4x7mmYtyWVHZisCmZ1c+k5PF55/HJkmM5te/ kC4KXU/VPL50Xg/+3ej738+/BPX5NiDCOpIALj9hGU94tnmOcqzIB/nFzGJPM9PsuckItvL2ENmP JJ8OBhFcYsLnQxTMnH6b0QtW8v8wuuh4QOUOPO7Ajv8twAt08Bkmb49keTvNLNC4nfaCBfSWXV33 8+07Tq/EwZK19U1fTeHgydZNXzx9lOnLB0a3LGrZM4YvgqSFPGXQLE9CnjL6m+XjkmZVRqALTxcH Xdih6T8Mwm6L6bBZlzlOMM/KDoekyOAYGI01RVOKokr5iqzAQRu3knPCGQlxso6Cchyl5Ayqk7uR KCOJyJIoMgzm4V7MqfSNgaJkRlZL1GrVUolqGKZbqpdaJFYaYqotmTA5mdSTFsKSt5lqEEj7LJeS RTgMgMTioHIZ5iVIByYdWHW7HZiiPbh66ZaGv9ixrQ+pONRyGBwgPa1p4At69OCK4IjXALNX641g fCG/Hpe9U2fwTvevcSQPBZn684+X+isrmWJb+YugxhdClRR8w5qHZCwhnpEETgwhP1NMPJwp6GKx 5FEULc2m+ZicY3N8E9vE97K9vOikeXZVLIOiyIRwRJQlooSQSfycLgYln6LEUJKUcZViUipT5qFa 7hGxES1jlnFNwnJxL+oie7kusUvaq3Sjg6SbOygelLqVa+gaGeFGxGvSiHIL3SJj3Jh4SxpT7qF7 ZIKbFCbEe9KEUskNTb9viaG6DEnAIg5NX7cjiUbK7N8QjXgKlsE62vCLlgo3sgXLL2XChYemVw3y kgj7Sms+i5SwzLOsghhMFJaTZEF08A5B4DhCaHMVCbqMpCpnvZNxQkcdS0TsRGEo2U4kw9dCLHae D+OgenkYmwWiN4OrpszA1JQZnAoUOogKvaufEfjuxVTe5+DjsVcEBtSGYFQAUxtTAZgRReLzsqXm IJ/Jc2oO0pkEGJYthf4yDjDMFjaIRs/JNBqdBWV6tVFNQYfDSz84wrK4LT+APVcuYNfZq9iXP5P/ +4XzMCBNzBD9/vM6c2aqFWZEgZPUQU8S3mcdTgrvEKZXGMYf4hFhXOUcgkkCfJKvRQsdTbgNP4v3 CFICp4UFuE5oxCuEXnmSnxTEOEkIKSlD6qTHyGrpEnGslNaTNmkz2Sl14W9Kr5GjwtvSCPlQui+p LBEEUfKTMElJ/2K/6mKjqKLwd+dvZ2Z/Zna323ahQlnabXFLt2W3f1jtUMpfS2lBgRZdhQpotQq7 ijGoqTEq4QXQJ6ImBF94FEsj+PPgA9GQ+KAPEqJEGiEGH9CGlJ8Quuu5O4MSVBoTY2Iyd/Kdc+7P 3Jl7zj3nnpuSOvTlkhaRovpifY3+tH5EOi6d0q9KmodWeyxUzv33zLFIGecTVsQXTDNJ90jchsRU aKrINfHRgoXpgsi4aBmlVWkxLmglgqDJitfrdE96GRetMur2xiGXALIiy5TnqRo5uXxCeGZMSWnE LK+6rc9/yD/hF/0ibxZSXt4cmiR1UT5ZiQZI2PaHF2fJa6cuRXvNzNWihKQd7YjskesTiWxizysn 99SXOxLjhzE4sbdBJpvNMU5SrGg/xq3nY6P5t9jGz75g3fmDbG/+yJnvhPmCmD/LqvLa9DdsVf44 j4OB/FppHVkvzNLjoVqZhfkSy31GWi31G2kPJwoncim1CdxF5lIslBVF8nsDiikgrEhhQaLdQil/ eDPlISfYB1bIa/iTgVpURhoimyPiJAXMYnYVT3NuhSrmpCPkIVKbaJVH06Nc8azG0oRiTWACr4VY G6yK5jTXFt0PSk46Z2SidzpKlMe+6aLLkFZyvebUBboZZZK231DcC3IN2X7jCZjtXFO2u2R6jpp0 xC6mI3ZMMvFJgaxSmPxQNFkrlcFiQiMXLloBf7AjbIajRELlHTLfTlThfIzq9lyDtrN4AuL8WE0N P4ZaAiyRv87m5/curV66cbR/7ZpoZ9PQo1FynIBw+abwcWbo/ljwrP+5Qa79GN0xTpP2TVY7Hjol McosC1ajGUzrjIiHqbpwjV3XhRbvCn2Fb4ANCMNsWBgNqeekr32/ShM+SU9Khz2fCs9Dhc4eomSP YhJL+g4XD2nDNKHvlw5RcloZrycXYIlxTU+ZhpMncm5V80TRMI1Ko8GwjFFDMWaR7j+nW4oQ8qgp vOo7wC82tC00msPjK+M1lhgjg/91uumjdDP44ku30k1+lckkcuYUHerZ3NUMb5lqv5TI8Ug3feUC 0Uucs6xzr6GAli1aQaBDVfe2eU0fwV8MVYNINbHmFsUjN82LME9zal4kxvYNJRv783vFZ/NP7d9V wY59z07tTIpM+PnLfN27nmu4VUZmBrtuQ3iNLOO7A5scHKWIN07e32xDefPPUFsdvP330G4C3q2A 7z3AT+8EuggTNgya32y3EfwFCHUDJYuAUhUoMwkTNqL0zuzXgYpZhBv/DHN+Aub+CMybA8QCQBXN UU2IU4JUQ6h9+TZcBO6l/0zQf9a9ACzM2ajfADSuBBY9CaT6gTT1Nb8DtA4AbaeB+x5w4cKFCxcu XLhw4cKFCxcuXLhw4eL/AQhg4KUEIpfYLIKCGYtYpBq8PmImQuESlPKW2bjHHlBVHa+pXYBEHeqT DY2LUmhqbmm9bYKuZctXrFzV3bMa6Otfu+5BrN+wcWBw08OPZGb++H9RJBwkWkmPVORxLMBCNCKF VizGcqxCP9ZjGDuxu1BwRtTSiKQzYglWogfrsAUjyBUKhfN3exwb3L2IM45Qsd2ZSUSQKHNWEqTH lhWSYtzSkkYtMfpXWxYQoNXYskjtjzuyRPIbjqyQfKS7p69rdWdiSW54y0hd546RrTM3oJsU0Ycu rEYnEqSYHKmNq6WO6juIbyU1bcMT2EXyFuqdefy/MYJrRDZxGe20Wpk0YJLtlpCKesmeItVp8ewA 9ahScQtIuMWxXQjR67+XO83QQQUW7YjdKp/mK3VIEhxrEP92X/WVx4z2K2pULY5+/3x70WXGes79 cOPGzWlzmToE7lrMttlvAwDS0xkjCmVuZHN0cmVhbQ1lbmRvYmoNMSAwIG9iag08PCANL1R5cGUg L1BhZ2UgDS9QYXJlbnQgNTQ3IDAgUiANL1Jlc291cmNlcyAzIDAgUiANL0NvbnRlbnRzIDQgMCBS IA0vQ3JvcEJveCBbIDAgMCA2MTEgNzkyIF0gDS9Bbm5vdHMgWyAyIDAgUiBdIA0vTWVkaWFCb3gg WyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMiAwIG9iag08PCANL0EgPDwg L1MgL1VSSSAvVVJJICh3d3cucGl4ZWxmdXNpb24uY29tKT4+IA0vVHlwZSAvQW5ub3QgDS9TdWJ0 eXBlIC9MaW5rIA0vUmVjdCBbIDQyIDY0NCA1MzkgNjgwIF0gDS9Cb3JkZXIgWyAwIDAgMCBdIA0+ PiANZW5kb2JqDTMgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAv VFQyIDYxNyAwIFIgL1RUNCA2MTMgMCBSIC9UVDYgNjE4IDAgUiAvVFQxMCA2MjIgMCBSIC9UVDEy IDU1IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDYyNyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8 IC9DczYgNjE5IDAgUiA+PiANPj4gDWVuZG9iag00IDAgb2JqDTw8IC9MZW5ndGggNDYwOSAvRmls dGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIiaRXW4/jthV+n1/Bt1CApZWoe962kzbYoghS rNGgmPRBI9M2W1kyRHm8zq/vuZCyxp7ZTVMsZiVLInku3/nOd/60fviwXiuRiPX2oY7qQsTwj26y vI6SSmQqKgqxPjx8eLSFaC19EAvb9g8ffvyciJ19iKM4TpVYtw8h3dZifX54krEKgyyq5S8/8zUJ 4DVe8iiRSSz+oSIV/Gv9V7QAfpIJYRaldVKIooyyHE5f/0C7JxnuHuO+8rHTzfj5qPVGBOt/L8zP o7ysUrDNLVJXk5QzaQ2GFFIHYQKGtPt+gN+J7IYdXS9BmEaVFJ/6luwKiygr6lrA1yrOyBjaLU7m jeOCN1ZxAKYrKX4KYBXs8bnhB/3kbsQjvqnlGCRgwokf/oYhSaT4+IIvE6lXQZhHGSx3H5hJz8vR pDQqqrhcWkTupdfgsz1/C3DRgI5W0oofm2mwK/H4UdQ5vYnTmF2EQEDURKgi8oX3wwy6/TLn4Fp3 GhJXyeN+oGvPP78XWUw3VQiXQqZwAP4MU36ax87uuAQrb+xOi+s5zvC/NLAul1/cvjnvm7p9cxmW dImznO1/OyBvoPEXTbh7/l6cz+eo7fhnw5gcCaA2gDCAh/QG8EXXqB3oevBQLRhtSRrVFZUC30Gd wPk5ABfCCeVCsC1n2D7Jx6F/odjrfqKrCWII2NBb2jkGHwACRZp4J2JyQv5gbNs15qDH13Av/fnl 9fhUAYCVPz6mqnnCwoNyklEQ1mkNDn7qt8N4aCYz9KLp+eVGbJopSCgmoh16f296qDPTi2lvrNgM /HF7OoATK/yRSzENOz3twTx0Q5VRWua1q0Jy31mCMRBnM+1xGVQILIGN+cfVHjoaN0qSKFHxopzj K1gwMsAEs3FNf4G/jWi6TjTWDq1ppis9eG7BPJVlttgxX6YHK7CUHTNEM2LZVZJ4xmd+5hlVA8Cu 21RXw8hPCYFqTyEeH+Y5ZCcnfOZ58a4vTxIjijFPoVxN33anDQdHyR3gJLuGDsr6NInOHIz7vqH3 GL2VTyI8FHavtd9xJZrjsTMtx7gfkFVwJ4aeqoB0wcibwMxcR5mD+OKalBPXmf9o8av8bgGl734N BGcOuESpgrd7koCbo4vm8GI2mBfCjaFk97olm9A7cdsNIGNpUS0z9mYfuG0DqsrLBQCl4EzUwEG5 WqYCPVR1yR4ex2FzaiFiGcDAulaAqCIHnOng7Ww+3CNbp0ANIXI6RoHh3Iuh7y5BWQGpRMgwkD5e 9feTi30lN/gCiH1rdid+MmpMvfB1VNaljyGG/NObB7oCWrlTznvT7sWh4acX8azdwUc93i3vW70S 1vwG/7eDnVbiyMsGtuysR9F4YyCkyW0eMHwpA0RCnGZceOAXeZZQuLMq+Qq0mlELbScDMIIAPDdW e6SdjsRQTXexkAQGF2xb144WwgUmXCHShkFYYevdgHOHU8d5oSfoWAEFNmxdWNoTxaSktlwhNQvP PmWevEdjG23NrrfMOaMPcWea5057dhtE65iu6Xc64m6l6kilKQUlj9O5XcXpfIKLieItHWXX8vMJ 0uoRwAlMr/kHEg5KcGwzQAChurGwIKDTadL8ouGv+oDUBntYQyCTa53gqcOWWX+rqWBrt+2wXQnA fdMDOl+M7wwBYoRqlz56vuA38OtZ75tu61fe13QVZapy7PC1In6PY12S0SQ0MpdE/7fHgC6I6/+D OGaZ5/PDJLhFeoB+ZSDZGNNSToipVLpAQ9rtCaj2cjUqzOMoV0V6SzwLGalU8oqDBPEIyhKF+TqO rAqJgxzYaHu6s9p9/GJajbibP+A8F1EaV68KZhZHSZY7xwLiCHSuYE2USTo0Z/8KoJJ982L6nWja VltL5+Aa0gUITD4MSLPOyrvq5MNcFEeAb40WIngi8ecvrT5O0Lcdy3KpYptwXeKNrkDM8k4fd9ll CtEBJuebHby4ZsLBS6yDJMb8auqu44GrnWMLUm5j0HrrHnichxnMTDn4fJfrfMaS06Ofm05DO0Fv Uzm+gd9S1en/DODZrSeEjWtoWK7U0DKomtuDIOOFp4HfXY7JYgIqWfKA7gJViPQjkAihQHCLCkbI OH/TDehqF+hXIFiwcOygX4B1oGsoGblggi4B9qtv2bIkLpBpdKvvQHmrJfRylr+PSMoVCSV4DlT/ jqh7XfxqTpgTaK4MEznLhJqjWkhqAsi7XhpMmtVSIZ1mOFlosue9e4ZqWWzMCNoHmGLgp1js0MEN QMsdBNCT+MXcg0ul3gnlystgtuCgNyD2uhWkYquFdZXbb3yR1tCSPU4+IG/Td45PTvYq/o0bD3bE 9sJe7KQPdm6RryHqpSI3Kc9+VVQlaikDwruavYpTTlRvPQQ4pwsAhDf90om3DBcm1C8zoFu5Bi1y drWJWc/l2G3OSJ+YHP646yD+zDanpnPphZ4FUsk9vgQp9hf3wgQoCXf7KSgw9TQVcWrAvDStvgYe p99cpufZi6cuDDANXfzaYasx/QwhBIyG84Br3R5nGh5x/nm+b34q+2O6+TUp3iu1SPyE1d3q3kJ4 9zz1kbK/0l+WpPfjzl089BdfTdhMBncvzAGAAD5pQyUCrmnrMZtXRf6OHpuG41F3pD/8eKlZw45n YxeSDCuEAYBPCABOe88ASBkALqgKCAMb19ei4kJgaHJEeCRIYhaTteMuhKVdQkeeOF3UM3FEPLgu 1VOXmhYO+M7F9ntL4qK647dlT4nEP4OaKOrkiaCZVUiO1Pk7UoM8thnOfTc0GxwMjjDI4LgAM+Sm OTqIoqkbYyeXOPQ9lc/88gS0BcLzqgwc6NkNGA7r+BVNF94CPw9QcWiWBewGT4chCw4NRmF9ZsAT JNj9OHkma2ppqHzx0U68rUDzrKqXJqQ3AoIJ4tuNghoR9aEwKzk/t9J+1j9xWfABOVOq0/YVcRUT q3iBvjF47T3qA3CAFXboNLSJUfM6C0ORNc8z8xRpfatZ+Tgnt5zMQC0zUgHQ1NJ1gqeYldie+hZD 3nRmorf8sRsTIFj1HZPwAU48ThrVEQTaoqSBKx4C4oPNJT0LVFyAp3vqIjihmr716hTGObUIJ2/t sOgn1uMwNr5qLdGwaO7yShAv82/0mj+mBopr1S/lQAYbsGJnslay7U4bxB0idjhNwJYHnphSmpgy mphWPjyKw+ME0wSVhsJ4xc0WiarrOM85e3Q16G5i1G6ghUpM5DQ3NM9mpt+OYJc+QMWAEnED4Tg2 boAkmZ9I/NC7AA3Jz5tNj6MFFzIrfdBmKouLJSGzDqRigKZflll2RzYZKzJ71K3ZcsfnNjiDHqzd OuSMdOy7SuBt9irYSBYC8iMgsXVinV8A1Ur0f3TMBaR8WfBuQaJrFJN272FWSVCWnfcI24MBfhfP kNeZ1pjnjjSsNLi22fmtj3scmrTQW+7oW2g34llPZ63vp5osjeKiLN+barCAStlRj4H+zS3nHei+ buNvTLEQ8Au0CK4u5Z0jvYS9o/MMMGAXDl1rL6L/0l4ty20bQfDur9gjGIsoEi8CudmWXeVyDqlY VTlIPsAgSKJEAgwWtKT8Uf7SPY8FQYCqXJKLBO4C+5jp6e6JV2k2SelUD0mycE3Dvt4pOsDcyEjT Wwaer4umPbqxvHOvduqYnFeStx+8odYCqYJF+DGwyLg6LkiKIS1Q72tTMugqlOtz6SlSYhblJbBC J5E36S7CWqgxtKCDDbNzFHRDurQwo9ya6LGr7CYvuqZ9kcG/TpRWWD1ZNfDjZZpe51rVDiGJJUJw Yw5lW+xyNejOsjN1aMpi9CZxtJzy4blqdFlhHwUEIrSpOqybsjmj9kUicjwhU7Z8mKGAnCsLF2n4 iitz/pC4j2yPZWMLH9SdHJffEOuguormcBD7C1zs8yfhRq1LtwbjKtcfpenHS7KJ8u0zawMRmLrA dU8fsfiOq72kUNfq/20oJ4zNfQX7vKVnlb7bH6UlxClSW+YblMMhf4TtQba3NH8uD/1Ki0SqIRrs TBJqhNqwFXcbhHQiRXmqam0v+CzURHas3111KAfmSzc6SYlQr4suwJfQhks/jEOQfaD1dtu3ZsXZ X9GN/xEbYD7AVMrV+mZEuGdt7spiVzf7Zqu+lQzC0hn/V2zvbx3SHADWvnkHX6MxqbaSpJ0kqbPS x2lrsOKQ0zxCvvYnXsLtO77Uf0TKfWUT5fNiNxKLDxKipq5JLIipmX/GFnYxLLwrFoeDOmwk/vVE wflEymAGWVCVMypvInnoZiKAqWvztWom8Nk+Dvq4ttyiOUDPiuM7NVy7t1w7kyyW8cSEywnU/W3M 2IybO8RHMgivs6tlrpHfjBoGA8Gg4TLiT833lm0t/bAqZ1D1LAkmcjapUnVKSESdH1B8eVsOCgo+ 7ii1Qx0jD+LU2LlqEQTyOV0FB9A8CdHXZWt7rCWSCdKthclMFPtRatCZQFvM3UGCEozhhvUR/gDq BLDFHhoGeWDZili25uhY6em2tIUgvq2OxA89ihQDC7p9klC4b88Sjo6G6BgBs8qH+jr0KYkGCVue VTZU93W3034QJPVyLCF2pSLiQHmkp3oGBvaI5HSgA2eD66WWRGzpSc+gvw4nC+skH5S8gk7Azrq+ MkuHh+tZIlQ0MRrL51xEo5iR8+nQV+XosHbod1WoZrRqRSijk7oBxtJ5viufO3nS5XBQRoVI0zjQ czkdYS2YRFuze/9HKUuf2vrbqFihmlk4qPbg3OUlquCkleNtAfFhvgbbefcf0Vy03y4TDFdzuU0o lv6xpH4OXoCIUiWyvxnZVtxpgCS90NeiJZ+7loDa4z5/saN7TRDVS8YqWQ4RFQ8RxZkHDZU4k0xa MumMBcuNGI2RNsaijfLQOesW95c8lxjvGadq3Ropm1p3AkIqqb0OtafQw/DxqIKSt+A+/QZsC4VT vODJchj0R64vrXUJ3Gqra4AadHa/f9HpEg5X17W6nvuSRLmqnbnRSzHAXPYiFd3cfG9O9DHoZy3R ybztjCQQM8/+BKySlevUoOj5Ur6MsBNO0si1pwottaKZyVFXaKxKZC0JkxRa8kWaLMBMOVYiG1Nk kVCtLOLbTjP+3Fd9QhWlXsc8tVXnXqnZ5xP1F49lZ33zySFCTuNWmsWeIgS9XuAdYe7GdQRm7neZ Vq5B6VLV8qrfzERos0u8CW2SLxvVEqKSXNnFu/+0GgUb+jt8rbfzgTpv33zemEoZqlLFnYcrP1sN UXIJ/yBTEofzULDZGfl1q7hE1wLnyURgDgpLFsP8AvpN7aA/I6Da6nBSXHfuxVK/Ptn9i+SRrPYw Rqk7VZg4e+SkIfGIj+SJ4EJLJXzUrK/MVkfNngZC8Dm1GfUjjJmMP1UyIchKtDLxn4FHno4+OFld 8MF7+zDTZ6ufbutfJa5y+Am5nx2Z9zvHbJTuwE+vgcq7/9C1+3F1+cmgyfLejpaC+UmvLPRu302A cwbj60tdORX06bbcC8JH/oUkgG8+lIDe43rvm/16zkZgpDVxfFkW8TnloWONebRgrUXEg0WIzb9W WxXqfM9kcSMg/1zbrj0V5HJuTKtava2c1UxHJei2ikL1umRW1VGgMHNx8u2MV5EfJ7BWCtYijaEN aGxTtu5xTbUhC1S1My15//i90ddQQ+QdNo3b7nhqjzppS5YRAvIGpqj3OMU+b+fK9EDNQmKtTK+S takK7gFlJSH1u1+GJpIkQSv8a7nXGi26XuysRPKQr12bxOX8o8qVf1Py+fpdfTK7Sp9hfwNKSFvs Xgzcb25ss+meyCj3ErmX4+nHfn+Za0KT9erBHsD7s2nXpOt9AS0chIJgmNRkwMmfhWsi2rj6e9KP hX56iXKHOPIYuE64CmgJYg+vKqxRQB1mFNyj/NjlFiurK8xdNhsZqOruxhRN7czmnCxreeyMzrc0 guiu1TLWTeeMb61rPgEp7UHbhY93iMgyQq/gBxB2dHRga1vUbyI0A5FBB+NjYEEdxHwZQ8wCgPQN SVeCyRXphc7BxkQyF4eZv3z9U7cyfRxl6CSRKn5rMBstlldn399RsCMlnYg7HH49Ix+8itA0nnsc IQphSte6ImNINt86TtAlDv6eb72KEI2UQzI6WpS6STR5fpiOpkF2K6jhCgzGvjyC+ukkPLCbi7KY 3hzOSkiQpVc25anplj8HAETIocsKZW5kc3RyZWFtDWVuZG9iag01IDAgb2JqDTw8IA0vVHlwZSAv UGFnZSANL1BhcmVudCA1NDcgMCBSIA0vUmVzb3VyY2VzIDggMCBSIA0vQ29udGVudHMgOSAwIFIg DS9Dcm9wQm94IFsgMCAwIDYxMSA3OTIgXSANL0Fubm90cyBbIDYgMCBSIDcgMCBSIF0gDS9NZWRp YUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag02IDAgb2JqDTw8IA0v RGVzdCAoRzIuMTEyMDQ5MCkNL1R5cGUgL0Fubm90IA0vU3VidHlwZSAvTGluayANL1JlY3QgWyAz NTkgODYgMzk2IDk4IF0gDS9Cb3JkZXIgWyAwIDAgMCBdIA0+PiANZW5kb2JqDTcgMCBvYmoNPDwg DS9EZXN0IChHMi4xMTIwNDc4KQ0vVHlwZSAvQW5ub3QgDS9TdWJ0eXBlIC9MaW5rIA0vUmVjdCBb IDU3IDIwNSA5MyAyMTcgXSANL0JvcmRlciBbIDAgMCAwIF0gDT4+IA1lbmRvYmoNOCAwIG9iag08 PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9GMSA1NiAwIFIgL0YyIDU3IDAg UiAvVFQyIDYxNyAwIFIgL1RUNCA2MTMgMCBSIC9UVDYgNjE4IDAgUiAvVFQ4IDYyNCAwIFIgDS9U VDEwIDYyMiAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSA2MjcgMCBSIC9HUzIgNTggMCBSID4+ IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDYxOSAwIFIgPj4gDT4+IA1lbmRvYmoNOSAwIG9iag08PCAv TGVuZ3RoIDc3OTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSIl8V9uO2zgSffdX 8FEKYkWk7vOWZAeLLLDYnY2BPCzmQS3Rbc7IkiPJ7TifMX+xf7lVdSjL3Z0ZGDDFW7FYdepU8cNu 8263M0qr3X5TRFWpYvrJR5ZHhUpNlOdqd9y8+zjlqplkOlZT02/e/f2zVo/TJo7iOM7Urtls5ZNE XTbB/9TH4XQd3eNhVuHuNz5Fxzgmi7KirEjK7m+bmBf/N/jY2XoMt2lUBp/DjP5P4baIksDaNvx1 9487HbPIVInxm/m4cj05lZPVzjaHfuiGx6sycZzw6VVU5aK4fGRpEZn1ajFLEEUC7VXNcZg2soka U+WRzlVBO9NSNkU6pTtEJk3oP6mM2AR6mFWlSsT+89zNbrs7jLZubavej2N9Vf8eh8ZO0zBSvzm4 2TbzebRegRQKmFQUoEa8wcdD59uFF83Fgp9PbDCS8POOFMzyTN3/s4IkJuVr0Egp2iuSRDca7Wa/ 8WfIXEoXJjs/nzWlKpIyisk8jBDyF90Vk2Vk8mUyrbKIbHY/LcdmxY+PpPHXx33daOWU1ykWgYZU I/dttY6SlFd9eaP6zYpIvzaJcqOOSy+N8lR1z+a6210xe5N70/eXzYfdPQ6yBT/4wmYd86X+FAtr XASf+nkc2nMzu6H3DvZwfgFMlpuXMUNNgLncjGUZeJu+ygpRsws5YA4hKV4EblIXRpE60WgS1Ccr 7ajCPGjt1IzuQQbspJaQWgJSG1K9WGPKlDdcLaGZRlnwWUQWgW3/mF5EZU6WS/UqQSdeVw0h6igR MEsEbGXzVhNkCq3Z7CbmoMLWxF9TG5NisyVGSII2JHAUgarHkfo6qNG/qnCbE13wkpGHqmCQThNu KcD95ilMojSYMDOSDBHRHKRPRrvfQVEosxYHRGp3INvyKVh2xCkPXq3Wt+qEbQOut3sDUxpviLLw t0HMkz4V3YXsqVltI9p4DpA5y16lJeS9Qz1x82CtLO/h0SfbDdI/YSUmW79txpyqWwx7odNEZ96p 591kYu0d1dPyKjizFB0cH6RnR3G7mGCQkT1rnAR8ZZ4ZsK6zx0m5Xh2I9GXAuyZdrsNX5fV+O2SN PMNW5Zm6b+xbFiBTB2xSbT3Xr40qFGh8KOB+NW7PQYABYVjXP4oRIpERM+CqmKJtAZz2RjCZN8J7 1Z/DjK5ProV+JlDDXtUnwlnQuaamZuZLmMARpoJ+UhIjZWAVgyrwvbqZRYT7TrScwR4P9HHlvWSf J4t111Wz+1Aw3j06zjx42K50ZqgJp48HMoz051okkyxYoCQLTG9lbN/ZbxL4htxDVhnkswmNMAGZ RvqP2EXcJ92vZ8eyLEaP/NnPCAEc2GOmfeaUfEG6XnXNoFAmjk+ATrIDerbutvIxk68oDI9kvKGX XVO45YCdsbB2dHykvliZU+fJqvngO7Mdj7LoFasZ0qWKU5CSgEVXi4pZBh1b3In+Zri5VnuuPMha IIPhArJahN15CCKzO6ok0G25eBkalpGRgdEKAp8TJnk9rdK7Mqa4QVp7X6uZCyIOOVZErO953C5T B5lyEx9LFmi6eoKbhj0WsMcfKC4jWGfrj30RASbzEVBmd5mF4s8y1dyoW1wvoAAOUtKnlRboNwH+ ayy5gh5MsJQ5Qlude7KyZwSGJiUuJxns0h+HwWqbxNsG2niIpsJ9+Uo3OYSTZY6yqh6vgHZO0JbG jRZTAuz9gE2IJ8JCvcrbd8OFAl8GThz6ksO5JxhNgp9WpYv7NLYQv059PGhJDxH5qqRqKPg0q5bD DOTIGaWZuysTdgbCTkHYVvriVmrZSNz3XVKYe3OocyREIpUHjPXtxbWhZizPBxl5q+oewhWlFFGb jGd08SoFVzeDc4HDyteqEULt6J9AUEuRPqpJBhskMAxiRf3gOhdWfPgVue4Uai0UzYtEo9JbOATK IXF/xgIZPPOVCFZ2Xc1JNofFiKhk3K9yfuqI1T1G2TSUWKBo5CuP262zOF9DeYWZZwfDzqo4O32i gOMMmCPfiqoSZ09kY+laNBOKMQKzH1YjKIZ1uYTbkpF+GLwI4QcqqLzIwS+wsodhiWWrNDQ/0KN5 fr4X7NgxaeDZ57Wzce8l+CsfXOSCrSCIaSwgvPtuyPCaxBCjxdhXNGeZciN4yLYYfetBSvEifWYt qvKJtWKAXgaP2FSj+835PkT6zor2rYc7U0ctS/zcuMzZ+6SkfRTqgmtaMEc9M9UQdOW5eZ1me1QX 3pwFruuU5WvzzECQoav1lGHCjOuQSAC4YwEnvN2w0JEe2WLkJRuihI6KMvMRdBqkwrnYUTV1T1V9 3dlbXUXSL24+gKWpHC+IiG+5IdOLrCSBLCfc1YdF0IyEhZIDkpy+Dj+GZFnyY8FOFLNgbuARHwQ4 5SXX3pf+LRQ81r20LSq16a+jyCsb57m/eCJRxKX0JwFAKkWtIJRdyU++YBDopACFAYr1EkXEN6rF B7u8hP8LQMaItAbSOuSUwQu3XAZjzSrphI+RJDHrSKfBecvpXBbJ16McR1XJsscrKaMk+y+iCgmd v7wZGMqkMhcZ39gMEp2cvI7uO/pWJpm/BVZ9i5ZpvOAq6cD8LUN+RrIzi/WSenff+27XVZ2XOfsx xjgfeQ0LzpOvPPqsOsgXXkwqT4yfespTrRRgjvPhEukPMnRF8abs8ST9LmTiH66ow7MF8PUN7XFK Fb3AnapGPB5oF9UPwwVV3ghWQ7VoUUTu965xmO7nRSTqxQYS3PaGdDnhh9U13ytjmhBywPuLXCy5 kouXVtXqrhjufMWNKsawlh1q6guVX0t1Tfcvgt/V/lZPo+2b61t1Qk0EcRd+ANADx03PX42vCrLJ nVBysbnZo07ehEfXS42DN0HJPpe6TB3vK7HfYXmpsWhfx29HglQpj5pmwNrTeaXO+7ygTeyp8+Qp e9yDxwfP9zcGZzr2XM8RdaP4+omTRu06z9FUkS4ZYViWoD3dCDBJq5fVMemiK19M3Uqxpfa9HOxo lZuZyjnfGlRoPNdL54955T0W/gINabHU8PYJYe6G80Tu3dt68gOk95+8IReH6XIJkf/40vgMFzRL pQygnjwby5yAQIhM5poBND6dj1gmL82SX5oyrupuGtQD9iyelWKUQusBAOjR7N28FI7YvP9xhY00 eXsjsf7d4HOilTRIpd4V1CH5shmmGe/BvpWWw5Yy20j1vZR+8xWW+nm3+brRyqlNRnyjTEFFilEm JajkpAXlk5Q2bb68Uf2ygq6Vq+O6nlJS92yu2+yfzd6kRbFhYfvNL5sPO35s5Xhs6YznY/rhC5tL ony1O7LXGGuRSRP6TypDubn3JC7GCN6PzcGBG6z615Mdn5y9hLvf7t5z1XJCtR6QUZqQA2SChUpx vcR2WpbLYyvDYwsvrTBbSvYUlS89YFq0LT+0JBPV8rrKbq8rrF6mG+yGzveC8IoMfarlDPicd1Kv mxTDUgs6gVKCBwhx9r4+/p/xaulxGznC9/kVfQokYCSLbxI5OcY42GA36+w4yCHOgSJbI2YpkmFT Hs/++lTVV01K81gvBhixm/1iVfX3aOhWEHBwG+9OXMfFao+WEAOrQPi/wPs/eZY6JW3LakeGzaYt AlplKwzURtsSVF0KupmMBL8pOXU5lV6P0W0gcTX4CjSGk/Tiskaz0I9iva0fRVE362j1cB4RHsor QeMgnqKU8KXiIiDYKBJuKqWzg4SpMRINrFGjoZ+YwJfu1OyksE3MZ8vSDm9GODVKlZFCoED74nj1 /vq87Yoi8jIXYbQIY4nM2HqJObpGpO4q5k/XicO4rXnvRLhqlmUNZ9HoMFFkwEoTe3XiZ6o4SJPg 8pwJzhnJoTI9JwW6HJX++X+JIXq65KKsCPeOmCmkKKnpsISuUN+aX364/7CBsmh+hbC9vTrbIgcy lQNVDw1AAMyRij1rtzBg547phmV7g3Fu4kFnDKqUqWngAfQ/VcdbCmF1RNOtOfuLzvjh3c/mhFfV 8SpsjMmaXoWMsmvcyW3NZ+JzhmVi0AY3tOrPQ0t3z6tTym4S5AuVhp7Wd96YEPeyJ6V/rCHi1cOR 7jeFcaDYRWyzWjYq9NH8/xvfXzZvMZVvyEHgz1Rm1b2ek0uqp088tyBwYPzjmnmrEc8Vr458k782 tXXi0QbrPyIPyPvMHxFEfslQUzUe+pF8SmUNM5LEhMzRWmqqVTyQ+PSH+bCy5nPdPvuXXRr7EvXW oVQDUGkP46vamLM6BLUQb8iEyJ873AUL9meM/YzmC5bTSpxQgX2qlOZBfjtbrxMVCsT8y3NpRDYn EKSnHsPODDYiWbEgjzyg4TDYp+6lIAgWQaAl93hsKnIgLQkDZyjUIgcK0q52ImXnjAaW5FXKfnAp uAWwM19wxg0sKwqGQCo7UvKmOQ2t2Bx7wquO0ZEiW14UmK79ppDfefTrAVMUHlJvzFdyNc56S1nx rprfMKLGdTUHiPdRCm9i3CD7J6/sAgKmhHyf5ae0kO2QcDogQolJJUVZvDhBf3ujNPJJ3wiArena OpZnBTwb6Xl2pwRQhyd0w7dS6SHjE/eGbBT5bImY2JyBMeHj7SSj3Oh8qcvwq0WGERXaV9jB6gGc TBwZyng1aYkqX5mv8jO+ST7R4g/1Nl5ETKSCeyLVKH0nd8sBRm4GwVQP4yvCRtgks5dftVwGvewi 05VDloiau0PzgITSF4Wr62Qq+nkro3G/XnbfPBjsS+AwtVhgI2spJDd6HkxAlkny5aoqQ0jK0EQM JqGJ8/R7etJDoTAhiZcPfTeNfWsYEX9PUPodUvJd4UtNGeq6QRz4EjuCVo24CaoI3obuF5XUuZMe gmDhpYR5CQ+Um3ph44S45KrpwFXEpjqM+YIqZwA98zIOVJg8k5WzlSwUAogpzxXuDyQhl3rPhcrK y36zFfOKB//kAk3yeSms1EEpcGmf8Uyeh4nRvqoTvGjNwGShNjYzKSQvyntRnJEGlw5HX8pauBkJ W1gISoxr/I6IDhf6CClkTY8gWXTMcWw60QzUddaQK6gkXmBNV1QSKZWEQZG+SDTmiVuEio4gWAhQ zBknRJNSLx5yUHUl4o1pF0s5UlOYXj/qgzXujNFDj54JgMnTf1eSBlmmJz2dZSJrwlmdlt4rQFNS 4uWhgkvABPmggpFNpOatgXJlIiK9j4mHkvyoeywHOAn2AaRgVKpe1+Is/neFJ/hHKzeebImcMeUz DniwUHCiaVOmd/4pa6kwebaa5Ri3JBYJmwKIYr4ymAh419UGTGh6/V0TVhId1TgDZnRYoL46+1yK UaRnLy9TaKmeJqu1aLXEBuSrOWkqPRvSdaOcIqlzTu2BuLixl8UygUuk6ytJPvqKscW2A2M7ydbL M3qFk4bJckJi85rdlNy1gW6Pho+yKqZCHnkfCs5eGhJMosezs9KutT31GHuUYl3GTVjOmracMKOr iHrk6XDFBTMd0xGVrb6BAicrPCcEWLamBq+CA9cpaLaqZJBznj3fUHooMyr/PLpEZJSALwBFJu5B EObst1QSQnXU0+BN1Z4vK8tevQSKqPeIBUVQRXLwTisLPyXG0Ie9Lv0SbxB8fMSyOGgWRmmuh1PT NSeqWVFLbemROuOFZrDe+SB4VppsV7H8UFlwsqd+fEKHHLTigPiYbvx6z5Elm0k0fRZaxyfSSJIF ehqsQRwOjCGpbKJX2TrLCrtU3JyHNA/SOiOe5b7VQPcAhDmwCOLWvG83r5dXkIf+oy/KShVc81U6 W8DC063W/oVQo1aFikOfFpw5Qb6VJAG9RtzLABaTmCcmZDVcbFB6sVdLMT+yaUm95sSm5v6X9+tN Tu2fRFT6E/VXAFQsXKix57DkAKDYc0jOXgnKIydJKyHMKQ7GnvZ4Xeswsmq91HWukc0R2Tcd1Kx0 oiR8W+nIQ3uhdLi4mPFUndBdUnx08uqCPCOqRVZkfEuV4Mirivehrsa9wXa5N3apxuUsWOcuRYbc XCYrL0YaL1hEaGak+39T5irxBkKLgH2P5R4eMAGDpJIzjyj9GpY35Lg6h+b4Z0Nfr/tsXk9lGKgo 46ggLQ7iA4kZBiRmVMqnJ7MfcYlKaf+KIuhlnxyEHbOalFVA0jlzKVwAL6lDH5Bs3Nmc7yxJ0ctT XrjHYvEWAdRbLuQSrE6wik2HJvsObvbS6hhpmBdH2EpCdgg2HsjCwn5X2If0U+S74HvqfgEmOevq TnVsJ/re/QGBHxThNnqp76NwLq+l6hMWUJx7L5c76eKq519UPV0KbnSucZMzaBwkEHRD6X13PglH 7kWZUq8fIhE1PjLBTkNTbCP2toseB1soFvAaIWiNsw4U1ykXN0aiFYgpoHy2FpAmyBaz+ZLm5Pzm GrB4u8vIay5bz7WRZAEOAHn1ZfXpzn1Zq8YIWGNIf8mS0fGFIBIbUA5yVlNrPZTGskkiNDmhzASM Cn+WjR7hjcsfpoFqHr1wZihx02lnQEC7NXe46xUur/l0B+DK5hwdjN5+8/5H+f3nrcEyFgCiILDm DLnJ4p27vbw3ga/EWJkXVEsr15x11mwbVnxbw03zmsWYc7sNEq+UJaDs0LpFbZAW2KMX2ecPoPgD dGIus0EehCJyDrg0BRnp2L3OqvTBYs1Lbo5Rjjm4OVYce4HBkUrPKC0Sj8FcSLwxEbk8ez3PiaG0 UJal1Nh1jnjzeJQuxvsSU6RoBowcGbuT1anspFnBa+GdSCMxHa/ajSRQZnBV2XqtT1NOCJ6dBPuk t8Ovrd3b8kWF4jC0zTqHYYrUe0yqZFSpXFgVrPsNg9HQmdCWmxdKnk8eJLkqGXjTYgVmLRhjZvW+ h+z2Srw/y8/DcZKKlgbnnAY89rckGUcwGvQ75pLqFWnYYMkavYO9anbTVaXDZ0KSBIskiSBziQHp Sn1ZOQsrKIz0sYFrPOsIuekWDRN+WUt7+xz6km3Km8XZNsq4wPSORMv22J1WP0slj9YEqG3e9BNt Mwv+u69QPaFwFTIVEtjwlnefbwLDfwz+UUCQmJuM2IGERRhRyFgP029gRntzuHn3waWmckRFWci0 lO8InLdFkMv0OCYwD0yaFduEuop0mxY0vyi2OZHYssCHe8OSKuP/BKv8PzH3H/5Ol+xvdJL/moAs p3k0ROtBbH4y//7PztQ37/56H5oHd0Mu0TTm+5vdX3xYHOfbLIvoy/i0hYnCbUj524QRWccMR/sf Pp/YMckIlPNcApAmqQmiiH5l2L8MU2QSx3S8P7Dq/c0/bv7y+ebdx8CTSprswPf6GCf8+Xlmsl20 jXcsM4X1n0VHqHnmvtWPPd1q8xMMDfE8QVOWFZQqLhRipKqvrfmT4VdULGmaRf7d6f/cl0tvG1cS hff6Fb0ayAHU7vu+d2k4CWDAxmTMGLNIZiFQdKwBJWLUFJyfP1/dvv0S2aS8k72hyFLdV9WpU6d2 9zsa0P4a4PFf0s/d5Up8+pzLLmBcy/J0H1jOPKVjHY3NT9N9wBoyRSzoQl8rSdMzFq0kGrxc0TJm QYi1abyriDJfRNksBaGTPrnhXL6VSXF4RQi+YJHPaLtnxFgrHu9zRsksRRdCdWWbMe8CuAFpunaI ByBmXZVR5wyCyQ0b3A0Gg4Gcb8czDi1l0fbpLtuLdgrORCFp+S98RAe1XuYNEkaPJ4pDrMdSOL+i D/QTtLmGLymFyvtYa+rlNNgu3923+4fHdWZiwRKFGQ044/iQSeny182e3vW6+nkjmCvJGN/moBKr 5TzkAzG9Gy0u5cMITpPAh51aFM06YTByXjYEMutnLq4OzhyzlKO2B4dvLz7/9NJu1Hb8MKh0CkUX nZ6/SmnYmEzlIsEP/kTK/rj88PurINT+5rdXKiL2HkoH6Jl+oUgo2xAFwLn7VtHX4CQXibe64A+c OZlA8jRiIEPh6/MrZyQMVdM1vEeic/QddUKHNWGwbEdLkBKUQhGouwjUfai1VlMfYhiTn1kcwidX YH/UgaE/6fNPR6KY3/SSbtkKOye5Xpc4x/ouZTAWW2myDa9olfvUFX0KSOaEFQ+XVKaG4jE4zPIC qJO0Us1Vgauiq0EqjEWh58izLquzbY6icI4dWKqdP9HmLt+8/3TAI8MFFPJVJtcTd1xyWY0uDYSp Tu+y5DLu4lLgf3MXP99l0WWBn63DI7HAw0AxAorlMH3c/FV9vt1uSpNXgjuZeRQELcw8VQfKNSLk KFbfyQAZyYb2fwxgwdUJ8ZcRhjo5hrDikiGmw2mI0fjkVQIftFMOh57H/YzHUsAis4eXVii4snDR N+KqHCuYCScvtuSxGjwEMY2befj5Hksewx4ZL+bUPRY9lgIEpZhGGpUgKpxoH4eAUqkAKh4DlP8m QDlFok5TVu/yHM5ypKOJaU5I84CddVmNLlPKWNhlyWWyy5QyFnZZchl3mVHGHEZnXZZUnwIDRn8L +V7JhEdRS/5zfg/Z5hTZLGHDyZADqzQxt0nyjRa90vBI0RmW+c3JILDo4RpGhHTKYyqojlEsrpb5 EtZgaZODcfnL35v1o8jc6tP97T6/Q8QOcENSe23yO97u7vcPu+3gMmeSXpMXiThocuCrbf+6cz6r XAUNbO1lZKCF3E0skv4iTyO6YzQADBWyDFPUnhhinmQnHh4I2GOG7pjtwcFFLb+Y27TnJAbQaQxf 4JDaqJO988Pjdn97tf/ysLm+2dwUTFvLKyajzWT4qd617ePhdGO9ZSpw+cSGgQ+x6MELb7fo/Dzo WfSfIF4MwfQGJ+GhfSaXLdwMrp1ayr6EkJdkS6yTVLD45N+e0SIe/p4cXFZMLPPb5gR/709osTng BroirOhVeUEUrRllyur2puDgvWwxvrfQ2HzwtTemvCE0amYpOwd6mu7eAD0VH+lsYgFskOARy+T0 smpimd+5pOJHeEh74YyQsadNSbIEUs7EWtqOS8Kmsne2UGcuyZiSKcDCBbTpbHF2ZhFw5VU2ZfHT 79z5KCsiNOapdmoRONn+rHz6oWVY9eTOOSH/uwC5mbkc4svFWGljsyZRiBLvcuf+d3X/g7y4vfjX hTVgxsfJS6zVaAYzeUm2+DB5ibUiSPzkJaOlf4mMRFaHyXniE+3kSoOhv/V49qFlWPTkxl0p/QDP aC9EgyXaVmwsn+InTcegoI2wL8reoXnY1CeUOu0vIWuy0FDVfysFLVRf0UdW2epD9Yx1U4FtdKwb uDcggBJMC1o0XHKlhX+Kqn12fTAGMNN9rZ6x6woQHhWxRiNiwWto2M2RgeXu/n63vt5WoyQVtyh6 Nbf1Py/Xu5tN9Y/q5np//eercWqR8/j0OdYlCFQfwRfe9NyP20eKUa6re1HeEGpuRIv7WpU4n1vU y3QFlU5faAiiE7p3EC/flp+ISmkaVv++RpVer79shld0U5dghU9QmJ/hu/GTJHlwiTIPKGbLHgBu wEsPlD808GDAJGeu+k9T3VxY5geVQr/B3WiQGweReP0RB4ZuyfbpHgLvCdgIVRPEW6PtQ6eLZYag VpUZ45yvl690fsXCLGSiQf5Hgoy4MExGy0FucngnKjDrRMqKsGaZaLvZ59fNfv2lel39vBFgHYhE A3d4iN+jmlSKhG+wOGISpI2aCD0zF04scFCUtg7fqNyOeWatvJn5uFpQcMRSztoenJ7p8aVdqZ3N bElouUta+YoKqa2BFV1kvDSU6HLxf3y3elv99rBbb9p293C6LtCmMgjKn1BFdA9lK3XhbRklz3nM GBPOs1zNw4kNvSI2OTZXTDY29tudcVllFxW79q65c5SzqFaHvArjLiddVuNBkI6o7/6gJ7ucdFmd mbcMBaQiA55nvIseVl9Oypv3n8qQFTTUTRFFRfuT6vm4+av6fLvNdUNtBWjviuaR2U2GsNf/PKwo BzQFiF5gkeHLXKCiGyzb0RIUm6lsYU6l2cDJhM1NfQBimhtQtUqa8HjUoaU/SgrqZd1oXk9HUkff BUGkTpNuWvNy5n75e7N+FPKrPt3f7nOSGOisIhcipLTNWXq7u98/7LaDzzxdPVcX3hi4mp+s79B4 1gdQJ4VoArGwQcp9aLQQJWMza6W6SWZqSeBcxVzD2vrCWvLoqY9Dvqijlu6s7cHphUhf1pXaczXL cKdFdnjraq/9qZqdNL7qXds+Huls1iB0eRmCV2kvr+cmTl5mRT7IFfkSdDHo0FsaEI3gbfIMKYuQ C1NLvzEBgmayBbLxEjJHYXQ74y38dWgZDy+LRsP8wl0Ov/9XtNgscov7RGYPlYEo+g597yMau8k8 wdBhms6iUjHoKJqMUSD68gjU0dTSbxykb5briPIRFwalcmNXtnlimZxdVk0s8xuXXHz/z2jzVJSU TI2u1jp3A03uqD+ZI2XO2HYW2i6zHjTeWXydRONgadLMQNt02QXe9sEOG4tPQI/KOJpkKppZGCKS 6o/Khx9ahlVPrpyz8ez57od4cMvk+f8BAF8QXxgKZW5kc3RyZWFtDWVuZG9iag0xMCAwIG9iag08 PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgNTQ3IDAgUiANL1Jlc291cmNlcyAxMSAwIFIgDS9Db250 ZW50cyAxMiAwIFIgDS9Dcm9wQm94IFsgMCAwIDYxMSA3OTIgXSANL01lZGlhQm94IFsgMCAwIDYx MiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTExIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9Q REYgL1RleHQgXSANL0ZvbnQgPDwgL0YxIDU2IDAgUiAvRjIgNTcgMCBSIC9UVDIgNjE3IDAgUiAv VFQ0IDYxMyAwIFIgL1RUNiA2MTggMCBSIC9UVDggNjI0IDAgUiANL1RUMTAgNjIyIDAgUiAvVFQx MiA1NSAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSA2MjcgMCBSIC9HUzIgNTggMCBSID4+IA0v Q29sb3JTcGFjZSA8PCAvQ3M2IDYxOSAwIFIgPj4gDT4+IA1lbmRvYmoNMTIgMCBvYmoNPDwgL0xl bmd0aCA2NDk4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJhFfJbuTIEb3rK/JI GiqK++I+zXRrxm1g0AJUsA8jHygyq4o2lwKTJXXNZ/iL/SIisxZJnoaEypWRkbG8ePnz+uZuvY5V pNabmyqochXijztpHKQl/ea5Wg83d59NrhrD66EyzXhz9+tjpLbmJlTrhn5eb7zYX//7Jo2CMilS 7Fp/uQmDMExi2rHibkX7fvfCeOWnQeX980HayMcyNVkQeVGo/hEHsf+v9d9Ju1y0i2I+GY1oVqQF NVAtDKK0UmEQpwl+kypm9fi8MGPl0IsLOVn9NDe7btHNcvBXaVB4s5/gV6tvL3p+6fSrOzaVY+OU j0WThrCLnCsmkRPS8/U/97qeH/dat2SH+zUOzvJMXf6SZtAf4ooUMyWrrSAJV5n1zebGXY4X0yoP kvLNcpirIimpiUgfXCKM7SK6qVtMK9gyvlrmc7Pi/5yJhffn/fyjAMkKHpAbTpFBdkkz5/QUscCm /zZqPw9ST+1rbucF7o49teFm8kOaw0rsDejHnkFoZJ5adrxbK+cZxAerUwZpXlXnOEujkyt+h4gs KL1pnNxX9g5xkIX5+ZuoOqlJwcQRor/r5rB004jIKD11kLZbPkGVzij8tzyj266plxUfsIoQv0VW qVUUxCGJEvlx6eRnkY1A3aplUn7u7efJpwhs/JikGdONPN76EJJ4apDlURr15HWBDmDgmsc9voq8 ehYjTba1m8fVnttaRMmiHfS9FgFPPi5ysWupA77L+i+SthLZQVTAYKz5eqdhVWjmr3I2cMQG5qmz 0Xh4GDu/hOhF1TxB2haesZt3tWxre23UfhZJW56aZf+gNv30eqWO1QZpKNo0E0PHuMzS6ZU5NDtV 88D4K9Izh+DnWS45Iu9HXmQDR57dOsqo5QFFG7Wz5qa2s+a1W+jzLQ8DfxUHTjwZ5ULNyFotjDKr 56zNoqYNJGv1cG8IdXIE/TQPPPU2qimQIkrSUwilF2G9p7vCnMc3YQ3MTZMLzJW4IzUoEd+ENYfT QdpuUa876TXSkkMoXCYX2fDc+8D+ANQbzY40hpxac3+WBiHXI3734uj+SJEnK4s0gZghpFOqMMlP 14jtNRI6z8VgSs5jS0D0UcnEd0RY7NkrUnohBBc1IFMrCfDKO6pmGk1n3aFH/o4iBel3q3Y8PIwt t7NIbc1Zsau8zt31Ywdv00yn6hfN1uOoymw8wZgHU4/ca42auLOBaggihERAH653fFKUBGFRJhfV M3InJc7QQCDO+5Lti2vhOpSSEKWmPbwg8wv1eAFxL660wukyUXi+TGGtfMLAWpkjqZszOBXejnMs l1ulngwOMjBqqGXvqEmrFLY03cC9rq9lCpDHW1StHjvZvZXPe62+jmaZD3IcvCeybt8b/rLgUl2x 5vhNCjnX88zrl25ve1p98VcFoaRPvlj8VcZox4558uSzR0rmyPtqpXx58qVDacCdqYEJqQAZI52J BdjVW5QqeBE5xGdqaWafANUOlH6xEuw3Rzhd2cXvxHxSt3V1CSWnCppb/G0OQJyK/EqNoajh4lih OBqfAJ5I1CDLqmOkGHmOVqnagu6IjEZGsmfiqVFNEiZI+DJkuvWuiOWJK5LdgiQX3OBCpBtN+iAS 23qRCsUwievfy9DBy8P9CVf4mLeZ5ShbVdmUr3szoWQYPnN6HVXHOQqj7TW3bjguqp+auleDpvAj TgHhuTcfP3EacC6mlD4McbGDOLE3kUg+76Vr2SyavkbRUpuax8CNumkQBiSMsEuw2I0YmDBsZfdS X64+X0rkBEi8ragBRCShug3ULyJxBlZfRUJyQps0t3BeD4SmGRdW+P+WL8jVF0FI8VUvPBXzTBiq 3/72B4zII8AHmWjiwXzkfc88qCkaCbxo0MrgtWuXHSDGKSRZ6CAjySNRqKQILr3QNRFROyRVBtHU P5IhQAj8UIK9JOQNMXNnAlKAouenUVYI3laMYjw8KpTfnV2KM+nkKPfSa9wSJDz4K9BC755Cj6Bp Z0XgyifZW+msri4UnWA2czG+JbyIKdEzii47rBebzOrZTiDDSkJGGrTSkM1k245XAfk8v5FsV9OL AJO2wlUcyoZQ/SrfPfN3R9m2nEAiY17MhOXO3MpWax3m0kxJjHzV0T5oZhXv9eWeRvYcRda1LcLI vZoyW9saieKe9ABVVX29WKv4fERzDOxFPq7jjkuG8QdMUrjgQaJheOaRFlIoUc0zGyn7NCFrWj4Q 2tgJv1zsd+TuVk6AaVigqofp8iA5dRFmQBV0EJWGSUQcKYQQlrZ2vmcA1ZkAWXzWNfgnpR6TB3id KSrMs+m2h5nLWv3MMyhN0557Uu9KqazwbeCIXfnxszeJwyBPf/TsTU7PXoYL7+u4PyzqTk2HBR16 nf75qy4Jww9fdZHlY1GVVydPsk/wmGkkr7hOUmcCwQGRghVmTfht8295ndRzbTq7XX29+0Y9+HbQ DV4GnRlM8IN4pFM33Wws9N6+Y9GQV4YXJDopTt5KrYyHmZ8cuZBUPGg4AHKvZY2u6XURpFecPDqz 38gaAoTi4au9yZN/a6+EWkMkfwTb57pkL71j09SOYYNPVHDqW4qdnGiZTRuyjTqgVPiSyLD7ZuL+ bEsTvbqQUVuJ5liiGbGcuGST6e88schgHrmBfosIk5wBmSbX+ZlkWun99dopldMuTiwtZcjD5wTM mbff0+80C+os7CtkGoF6RiWbFgcLSTyHC1Bj7E68IqxAEC5Pvcgs2JtnRXZS3WvCYUE3HN39wZ1W 8QEsl9ET92PA9o6XhdUx37iEd/kSzBFyLqHg5Ws3MrqxvLSlMsOResmIyTGwvbwmEu/9q64Iigg5 E75FxNix2MfFwlo9cIvH5geBuHKC3sRKaN97UeFY05P3+PUbHlrk9NcdZRvZbKfqvp9ejXJjxs3D +B9XWrhaORpY5Fl0QQNd8heFrZBATbyoFqCb8BgB08Plu0rJc8q+wJYaMaae9fllSSe8RdZTKWbm SQfhfQBIBemhX3gWIdN2s08HaBo1C96B3UiMzGpfBWVUXTyjnIGQ/5nztGYWRAQIJiIDVIipkLlc N3IAiJ5WFte0Kj+/RFwG5LmFlHtiHznHKJGSjCkJlX4p/JJZGGkX4h+nCujZC0fu3OmLAKZ3ns0w P5fQbnESB/rMjrP50xEZYfrCO22SsR6tbPn0cU07vzVDR4IICqCvdi9OrVp6Vppm7p4FGkiD8zvT 9gZfKsCKsjUV1ZDErV7qrvdLZgrY1p/eqfOPCl+Uw7RcCv689GWn0scZzTA/18NA+TRMre7Vj8tf lJZBVV6Xv9VV/Uss5v0ieM6ec3iW0SuXPEpU3icKPclg6xPxsHtrHtgPbKPtR//FC8X1ZcUIPXCz DSNj5nUvduJWuDoVG5ng5yvrxEwv5pij1lhlUDGsjquPEDHKMwskey1IN4NU4Z/7wNlx22vp8ysm lVfMJH01HwQdR37r5BSMBJMfff75JOD6zWMBMspKm7Db/3FebUtuG0f0fb9iHsGqJYTBHX5LFDmV VBwroRw/WHnAgiAXEghQBLnc/RF/b05fBgC5S9uVkmqJmenpmenL6dNcqCMyFvW0jM7M/QaKcvn7 JCQOOb2e8cLNRnlhrayPRDcy1QvcmqFXAmj6o7LTA4ntS5EDbspsO7tlkWscgP7wYgVMiokCNXLS VsimUe6J8BvM+dHdhrnBfqF+pkf1QmfdS3fuIo8yMRB8XjeHWkjiwt2lbaqGAJHtmkGn/JY7syO3 FF57bPbyUQM11zV/7+uOf3XYSf8ocgdyX0Qu5iFhuye+BuleIPwMBvMo0iwMI6t1tSrZx53pO9xM yIo8n7SEs+hRYvPUlGZz6nhXRbUkIa4sYxao4JHh+tyJ5kWKyYPU7V0tfuVIpkfzF8LDO8hkdWT+ KSydiJYvhSQEJwyBKjH6pCQYO5rxhdax/09sGqLDxIZfP6rmqz/LU+r5u048OFLDkevKgLhlHIEy ShaeZG/J8lGUnoQCVWQZFtX5WqkRC++kD7yB+YpoQVGop2qEMPEs3IbKGOdWB8Unnuej+Iu47SDC iBXEJdU6WYKt+XfD2cegxDvIn6wEqOmNikA8sfXUNcfhu7egKAjTkZzNOdZOwOTFPAhJU4jhui6A 0onvESRmz1+9yCAC6+e6OmlAQYJO5yAew6uf0zuFqml+8zYXjtJoLJtU58HgpGL/SL0g8V6ltAce AVIOjngJpk31/RNVlsRTPfupyPPOSuS14PPUgTido8jMAIxWe95c6skTMREi7kZCGi6QxcYTEbMj ETtxD5MiXilAKPDwv36qiUdRWr5Uba25E8w50zxrgtxaV0Apa3qJ11n67yQpgFRLnmS1RgORc2dE g0Gy6N4wd4ezRj/FgC9WLEl1kEQo5+nW9IpL056NrHAgIWKr5evEWTq2xL5mHZHXIZBP8kUHZWiI wLNLmSHSG3N1gaWYErclaJ8SbdY7Ee18QjGtffWasdY3q54/7s2GgxW+q5/LHX/t2/relB2vj63D 0mm/TvvUnZFkekYvWujuAlCJWAyVQ56IaMF7Ojn2QSTMcCznoke+KebPDbsDX73sUPBKFKQiAa9k BC+qsd36YgsjxxwRxoBMC4X3jlXVcvjz0UicIJ75dKwwFljFgsiTxOdPjoDCc9679h0y9tQu0G6h mcQjD0cjrpQiGrkiio/LltK6rqBQu9Kz+dHUrpykXaEnf0ZfhpVmQQhDlUcif9bWfMMcb3C9zsAS A2UbTxBKe608eqGZAJxlkkD4Vn9esJx/ccNidL1Vlv/zI5P0pmVKMhB+03gvrLNeKMeli5Y8YNvF Yrvc6wZpD1JP63lKpU+2raV65S4/qYXYyzaCYf54XpAjcOFL+JnSIEymVIvgkY6OjwS2KcV4TnrR 7sSjWiXQEnKOgR0XaNOCSySSHFOi62x2C2WoIiuwLZ0+xrdoxLdIu0wbho4UEOZSRSICh7DCLR/l s9vW/GuYiFLzwFQwEyqYCBXMhAqiUdgxo8yEUUZEDSjzEjEGzax5UMrgICPyBut+A8MmpCEW4/KJ GV7mKW1JuMqz32BSMrCu74UQHtGSmn4vc4eSf46NQNBWRIwAVqejfTmXRQFszVr3yc9lqEau30o0 Av5Scjk4lmOpQHIf+/noYaJAuXQnQsTqNT2mBDffdjXLrClTnih0OQtREh9aWeFMgv3Ojw0yc862 XXrHsVoMTQhZ3aL3IPRNJIvJWx57iJ8Ou2qZXChUhp7Uy48fZNdaUojSgwyasOMBp7yErVA4udAG owtt5PAmdg1beaBmpf3OnOEyfMKB1B3RdvS9NnCNbxjFxZQRoodUePsemPbpC0mHIgxTxlF8XaLo 1FC52bUbqTujj2ZQt1SyQJUQF5KoOElUbHnw6GJK5EVio/lm/SBDs3Vdg4OxjMEScpFSQLLkv7jU Um/FvwYO4I/qSMQLzONA44I8LQvkbxGVmwPABroQER4EondoHmT9pJp5VrWuFxzkfH6lmntZonZH jnxkId1h9GIHTFpPt5Qs8SLH+nMqJVAj71UuZZNUI/E/Je8HjkuAlQ/C1Npafgeqi+fFMiNI4qrT MGUEy6SKK7IvplNxVPKl0F56O65O3JMp9qMslDx6qiexUj+5Zbk421FMvsdR5XRcCeDVNzDKkesi 12r12ZsIf+j5W9+0fb/n5BEKypBNRSoiUtm3kuPS77FdWqk7A9edz4upen2Vnf25M+XrlLGFj5SZ pUFsx6T5BX0Wm6jr3TbNHdQNhOm4J3A1AgxBUwfXawShlyEyLUniV0ZwxNnGagRhsQ/Cb1vtGs2v YwNDsPgo0y/STE7oGLsGUQhzKQPgF7hkdUQItM3X2kjdu6Dm2kqWzqIh42ZOkSYN6kBQVV5AeDhV cX3vUDMl+3aSXxRtKNwfuBlkpO7l27+2/+t+Ip3Z/30rlLQ8rPbCOBHBl65Aq1Uk4QzGopFQRtq5 cacYUiaGXv/UrKWYGK03Vb+T9YZat1gLBPevAx5f0tfQ7PZaRmBQ9aue/GZsX1CxY93NYlOosRS4 nMk2U2RYXCJ2bd5TDaPkWktMd5IVx2bzYlRUZ/hyZ2V6lfxyeef9D8yaHXu7IGLBRMRs4mjC4BpX 6kmptHbGFR7CfoRPfTZfRajGWzLv5ewgdz1llqsvqR9HUXbtmVvlCNyToiC4LIISZOpGPAwuWSOQ 4IbGBeXS5lLJbhGh2HVc0nDVUpOqthQ6VCofzDwxG8J3XW+U8dRGNpVayEoROGshRJwIUSK6CxcM x+He9T08z/yEJ/Zy2qUbpu5nbD0raSqJ2/DHvXRO1Oa4NvPFgGEoI4ldcRqbIzKt8t7GbSVSPaZe rv6hpEEWhiYsMj9NjbWZT+bbEZIRjSDT4W9UhGaoOi1R8eTED2hTKS0u/Fj47MXA8Ieqxl9RzCuj MjumqlLrnsLJemYrvw3f/gnlDV4LqKSXKrCp5QNcc0MgGAHUSOBA09QjPOq6OeuWl2lOdexVuK/4 gIH+Ek6JBvhtL4IHaM48vdp2fkzJg50M9Ee1r+8v+p7UUcxEAfOxPqArGahaxsT8N4dyu6s7Zkoe GHglK2OrA6ZkZ8mRkT5EdM3ygljnBryQi2XZVqe2RNsDGvFUtstr0F1GqPJJlpvEimKnduqgXLfz fbM94aah+ahIYD640OKzfkJkDaz/w6c7a+gfuTdOfaRtZoGYsQmjhEbLIvdRaQ/13ebu3fshNdWA 6MoyhItfACvxN495d5b4MfZlFpmeQGUGYgvDLSmMskQ0fAOBTUxjxqNQXvgsgF1Y8GFpyKf9bDo5 7/3KUN+RGenm6G9iVu//ibD8O2z7hSLeWnM2sfnB/PLfwKzv3v11FZrt8AdutLr7F2xYFOH4pgQn 0WtGHbmf4aIBgMTEwIIgM8s8QHpkM5v8H3dUO4j6NITGaDxg0r+aeSeH21EB0hzAlEQmIgA1RMgL Ne7vCKxGgRQr+L2t4YbApAH+skiPuYC9VHFLYnX350937763DnfSKE0UefAZmwIUKYszk2bg3GFW KLJd2ZbsEUyY9qd//ER4hhzIQlAR4kaUHd6/663ZNAJ2aFzCHGugooxhWP7bux/dNgpGP4io+cLC D0QescLZ8cWgyln2HHQkBK5pFBr2IsLKj+AxiY/dOE6BymmcmBaAnfmvxyLfXu1v7wayzmujWFgz D2xhUpgH5Zlh2fuo5Ri3fDuGbVj4CeIuzcGXE4quHFuX8G4G17C7KDhnQek2TPFIO6YN83i0EexS FBxvURq+EU6/J7GaJNLCD67C5UrHDYmZDtgyzexv6bghMdMBQ0eIr9/QcUNidcNzcYSnw5QUz3kE 1LkZz38oipe8y/KijQqJ1nr3P+6rnjlqIIb2/AqXwEyM93tVQ5OCKr8gE46huOSGOCn49zxpvR++ s30XhuKgyfgUrVZaPT1Jh+dfCeNKCIobhJ9hfBUjejBCuS1GaI6RotKiglZQoQfULcaTNufws33K syp3VaXJ+pqVNZXGSpP3NStrKo2VJvNrVtZUVtCheXgL/u3oCBvoQFPeQIddQYeKDh7AEwffnOtc 7yJzBc7QVAEhSK+qCjT/P6GZg+NWFYT49RrxozlH8txqMX7ExHB1akkTS6bkAjbr+gBG9kyqKE4m 4IAMMOFyCpxQLCSO0WtA454ljFzuUZprM7YSnHJ4dkjQgy1T32Q56RD6A5ztg9czie65U+3r7QuS curI5/277x8xF100EP0f8Y4YuhCuAg/VQHAuYEKocbBANHIYqHNlmiCm3yUERECDau6BggGPVleK IHubLz0V5CNHfr4lWf9siJwfrtW6eszXQ+M04sYaknbAx7oXlEUR07Pi6VmWElv2E15aZD/Bihix KIKJ3mNTwS9e+kx3+zS+pF+vH5im3j9w8cs+KXtL4YPT3cUoRB6RE0QRO0VgE26h4KRwsr3QoOVv 2mHSccY/NinvkUvfhZSZG43l0EyT7YBPjxm+rAZnz8xnXYUBwliSN8K3s1CyPPdhmPQWhz2PpRdM u5/vH37sSlNfWsUMOnVUzAoGpGrwHL6nYOCb73mDnOJh0CGeC7QlEjitBqVyAPJtCAEQj4wD9xy1 1cEku68ppdysZCJ3HZDB2xi3oy+7h8O3Xfepux3H190J3Vs4yKsBRhWLeio/FdY6ric7BO4lrYRR gZ7HKSIXWGLwTEG1OkiYMnFRwhft5/cKBRQsXIlLYxJ46lwEAQPfj1USsGuG6oxrJeIMatkjGVR8 aTXkYr8kmW7an9wtT3RdDo0r468hTiXs+0GwDnYkOHQDdrRIjhTKz0QuKHGnLTBrhF487mZ6cToT PqBOUQoqG4U618BktNq8SwybWOCIEAIKC5TpMEMqZe1GPZ3d/yw/opLYoqXkhp5ic38YW7YJbUM2 26wmN0KLhodjLaHpgTapos6ltfojXhM2G0BlSYVCiPjfDGKoEMKrFEA5EJW3tlUhjL5qQVDxdHR1 Avg1+bOKb2TXYtD+qxgoRt8OAjQ7NGR8MAhM9BsY+Hp4OpyAwFgYYj4oj14k5bmMjDZtGoyNvVya H93gOQaKrYrD2uHtkqQ88vHlAoMr82gsrcHwKEhNUzJYAKNtm1KV5KakMJhF3zalqpNb0IIkXbU/ vrs2gmvxZzw7yITB9daiCC4eZIbeEybqZo65e3ne3T9O4P0twAAme118CmVuZHN0cmVhbQ1lbmRv YmoNMTMgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDU0NyAwIFIgDS9SZXNvdXJjZXMg MjAgMCBSIA0vQ29udGVudHMgMjEgMCBSIA0vQ3JvcEJveCBbIDAgMCA2MTEgNzkyIF0gDS9Bbm5v dHMgWyAxNCAwIFIgMTUgMCBSIDE2IDAgUiAxNyAwIFIgMTggMCBSIDE5IDAgUiBdIA0vTWVkaWFC b3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTQgMCBvYmoNPDwgDS9E ZXN0IChHMi4xMTE5NTQ0KQ0vVHlwZSAvQW5ub3QgDS9TdWJ0eXBlIC9MaW5rIA0vUmVjdCBbIDE2 NyA0MDggMjAzIDQyMCBdIA0vQm9yZGVyIFsgMCAwIDAgXSANPj4gDWVuZG9iag0xNSAwIG9iag08 PCANL0Rlc3QgKEcyLjExMTk1ODYpDS9UeXBlIC9Bbm5vdCANL1N1YnR5cGUgL0xpbmsgDS9SZWN0 IFsgMzEyIDI4MCAzNDggMjkyIF0gDS9Cb3JkZXIgWyAwIDAgMCBdIA0+PiANZW5kb2JqDTE2IDAg b2JqDTw8IA0vRGVzdCAoRzIuMTExOTQ4MykNL1R5cGUgL0Fubm90IA0vU3VidHlwZSAvTGluayAN L1JlY3QgWyA0MTYgMTI5IDQ1NCAxNDEgXSANL0JvcmRlciBbIDAgMCAwIF0gDT4+IA1lbmRvYmoN MTcgMCBvYmoNPDwgDS9EZXN0IChHMi4xMTE2ODc5KQ0vVHlwZSAvQW5ub3QgDS9TdWJ0eXBlIC9M aW5rIA0vUmVjdCBbIDE4MyAxODggMjk4IDIwMCBdIA0vQm9yZGVyIFsgMCAwIDAgXSANPj4gDWVu ZG9iag0xOCAwIG9iag08PCANL0Rlc3QgKEcyLjExMTY4NzkpDS9UeXBlIC9Bbm5vdCANL1N1YnR5 cGUgL0xpbmsgDS9SZWN0IFsgNTcgMTc2IDk3IDE4OCBdIA0vQm9yZGVyIFsgMCAwIDAgXSANPj4g DWVuZG9iag0xOSAwIG9iag08PCANL0Rlc3QgKEcyLjExMjExODkpDS9UeXBlIC9Bbm5vdCANL1N1 YnR5cGUgL0xpbmsgDS9SZWN0IFsgNTcgMTAzIDkwIDExNSBdIA0vQm9yZGVyIFsgMCAwIDAgXSAN Pj4gDWVuZG9iag0yMCAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8 IC9UVDIgNjE3IDAgUiAvVFQ0IDYxMyAwIFIgL1RUNiA2MTggMCBSIC9UVDggNjI0IDAgUiAvVFQx MCA2MjIgMCBSIA0vVFQxMiA1NSAwIFIgL1RUMTQgNTkgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9H UzEgNjI3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiA2MTkgMCBSID4+IA0+PiANZW5kb2Jq DTIxIDAgb2JqDTw8IC9MZW5ndGggODQ5NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFt DQpIiYRX65LbthX+v0+Bmf4hPUssAQK81E1nbHcdJ1O3mlr5ZWc8XAqS2FKkQlK7Ud8oD5D367mA EqXd1LszAkAA536+c/B2eXO3XGqhxHJ9k8kiFzH808SmMhNGyzQVy93N3bshFdVA27EYqvbm7vtP SmyGm1jGcWzFsrqJaAqknm6C38S7bn/s6812FOHy38hFxczGSpvlBVBZ/u0mxsOfg3eNK/swMjIP PoUWfvdhlMkkcG4V/rz8cSajlbpItL+M7PIzZ0OcxdJV27Zrus1R6DhOkHshi5QEp4k1mdRn1WKk QIIEiRc1ZWZK0yUYdJFKlYoMbpqcLkllQAepTQK/SaHJJiyHPotUENmPh2aso+W2d+XKrcSbvi+P YtF3lRuGrod1ta1HV42H3nkBDAugDQkAA3kD2bPMJ4UnycmCn/ZoMKBwvwQBbWrF/BcFBDIG1YAv OUkvgBJo1Lub9Y3nQXsGFAY7X+7qXGRJLmMwD0YI+At05c1c6nTaNIWVYLP5NrG12css4ftzdm/n kXnlP5JTmckVp5BEo+iEjCLjzCYcXIfQSB24MFIQWIPo1qKkL2KoW8ez9aGtxrpreVVWfUezYRBh GoxbJiAW9/4mhCr+mKBkokdRT1fxwuBXG95tHMVwLGClY5SZQ1cXJ/d9DpAhhL0DqjINSi9MHsgw gbWYskB5g+RoT1SbJqmWiRFpTlam4ATqGVIP/lS3VXNYOfGXdet+HeX2rxgfJIvS4CuQZXZmV45b f2T5CjZWbg02EosfRALxrmyhU5vYvMggB5PczEhlGZPyN/7x08e39//6+s/3Xxf3n0Q6ndTgfqXo 5L5rjmLddOUoynbTuFtyx+vnJOlg3Y5if9qdkbl7dYIXnzNg8ji3jBDBxo3otvawe3D9nyH8pGwj Nd3wxlQJBC+lGl4Rr+5wP1IWYggS+EIWJ+DvOwFkv+4dUP0SfAlfP7foN6SquvbR9aMYO9Cd1QcN RQ8zB0fg86K+klErmcVaXcmoE2kV8JzzZnLfgbnEK/Tc3aUzXrDwt6Qtm+rQlKMjD1H+EIuuFa6s tmDfa1khi4vUXssKQQp1Yi4q0QNRYdx/YcG9Of9v6ltj54HOKChVYg3n0pIyZ4vZlwX1IKpuhXme BOIwuEGMW79q6gdMN8VpnAW8OIZaGoQEOsS48Cz/FMCVSpJzHfKwQ1h8ER2X2qQy1ZNlGMOzSXqw N0kP7iduaLAiQZi9gg3rAS4GOKYbG5DUMMABWgEGHdr6F/p24G+OFiKM0uCxbA58HCOOTXHa6gm2 6hBRq3ygHfDzM90hMYzWL+u+d5cKe9lPZz0mY/AgTx9AUiy39cBqg2m1ya61nlBdp97J4NcBIhPl L4IV5gwg76Z+dITRRSBQmQyDipYQrjSuAbrR9yHqS1+aA9MYwoi/r/lk/1zxDBAh/wOnU/Re6p7I WM3MlKSTDtY7Tjw46HZsMD7xCC6E4hu03v9wtIAaP7MEhYwqpgDINNOJISPRmquzyL7X0hJaLT3r tYJ9fSlkLLMsU7OGarJ0PMVjWYWRxfToBkoetNEC+zMT3GN8mWCQzDgCOErTBCUuSF1PchI4x6KE NN/Xbdk0x1sih2lY9kdkorgU8/TlxAPsT6162QeMI9c5BwVUGXu+obJJHFV4FSH2IoIEiKjGUTRV /KWk+gsAGPnohO40K+wzp5w7YOwIiSpAJiqSg1vRSKArksRspIHbD552PK7DGJuI00GQKsWwEI88 KYkQJPDFNuSSJwPCQzJNn4d6xy31ga95aUp/2nmmntrAsdccJSkK5R/VMmrWoyxDpLt9jggaId1e +4TccekKQNaY4Pwyq5WKfWAw7BYT7EKSozIQC1tOUr/c06LD6FMgsnC/8LV6yukQk9y1tBixZFET hzAwjHyk5cverUbaBF4u11B7elwkGM0o4IpRBS8nVDAsfKLF1E5mXonMK/Fa1FDpy/9A5SnFnjY6 vgGCl0xiwxd2JHEWjAhSFsEIi1PLPKEt5k0+2/PRYdZbqngWjyeQiD1IYFRhLCFQlHuc73uMCB10 tPKLmksGlHv8yJFXYORR3BFG+ZCDgRaPGDkFb/QQwdAP8yUEdpxp37/G18CQmCkTUz2FGIYoY0yP oJgEw4GGZqRmHFzZh4gOB+QKNqbNlhc1gD0uwds1nd7z2W7DY7mjAaWnYyUPKQ2GaUR0ZMHZf49E Sr7c8+nj82Y+mjIFNeBT/WQTYoAmH7YdLZ4gNEFssfH09sx2S4uaNiveaajvPVN4X4c57G4OLI8T Rk6yQKkoMlucS4T2iZUWXqz3Hbo3YS9TaAU7nk4bjkex8hPIExrrZmB34+be3+82F+TKEHXwBP1A gQR55k8SquHECX/gQJcQlhBW6mg6MEni+a/omJsWLzylzNn4Xp7e3z2eBa6wYmkCTRyHSW14d7hJ sJOIXuTragrFJy30rJtRvqSbWHnQ/1BvttHf3SPGD/ZkCWKqWPQQguVuhwHKZcRTugKcOD0Xs+8P 9cpdw2dh1Yy9Jfz8HHxWIer0s5wEzid5qXOGgfpmZQoJfRv1zTCH1xDWqlgm0CEMVeuBg7F74fp1 1+/KtnLf7MeVLiS347SBpC7RU9n0nN4a05tx0M1hdM2g1zG67UoPody4ZdO28N895jKdHlfoY+cx ERoRdDEThv7fQ6d4qqkOwAzaSKiUtxjZL+fzqcsqlG+ESjAVB49K6FLBdhA5BAtYB9pDb4WTD39H 211arIBoyWeHT4YiGJwawz2LDhpBz+VVXhEo+tLC6A/xRAg1Ck3rOMblxw//xQE75G33xCcRSXyL lhQqvQ68fOYgwMkH6quho1A0SLR9SqCx3NIXAuiqaw47eiW0vg9EhrQPKBf410XKXkrZ24a8bdid acCne645TAtDjpSqmBVgYuAe3Wrelmg9hRZkEUuOrvUcAeEfShqHuqJu9f72vLW4n8IAFmXrxxWN qxorNr8JG/ERsrfgNxS0FGO9b47Rm4o7Bm25q0yh0Ugyc+oYzCSYsR4RKrKRYjoZdoVOfAno00cm /ebdlxDFhGfbeMsiJfikmd6pCypDXkH65MSKn6dlExGl90hJB4ufhPs1egkjQbT09G70zdZI7Ybl fDFB3dGqJVEGt+LkqfkMc7bs+HefElrESp4rey51ptTz1slYz+5D9wR+5MC+JWCk9r/yGc8h5WNd PMwBAl96tMa+Diqfb4ieHPS7D5zax25qk6j2t76h+gNbJNbXR3jIsnAPEPiGH2ApPv2o0yCEgOnY 0a7QlsZU8JqKfE5pAYr5twoie5pns2Z4YjXZASyJcdUdhpIm7QoKLM3W6Ah+hAJrKX4YoaWHSnUq GUj4CqjSxNc+sFEDPSZYAUu6Dp5aaM8M09TBuq5qdHcwQlcBz5smxPcbHwSfJKhHC5GKkwf/YRAz G3RklKZ7iqZE5HLhsQsg3qvnev+Sq7Cw5+Cz/zFeRTty40bwfb9Cj76DPRGbEiU9np0ESIAEONhA Hg55WM+M7bnT7to7s7d3f5+q7ibFGY1jw4BXUpFFDtldXe3ibK+/NY6zmQkvTmbo9/pytCEvea7B TM9euxUY0Pf2dz74h48KYz+U5B62jX5r+2Dg0Wkhna/M7JN+Zy/N7KPwU3Qnn/P73v4+2sp3hr46 E56UwxotQY4czYvdzv82xz+Pp/2dpqdnFg9c47S3H2VTnuxgDvNp0yxpNOFKGTN2u3Hy4vP3w8d6 0qPJgL00vQr9scF/zWdbh9Vbx9zdWgJvbSu+C2sq+rqf6q0t6TUeOs+6eV8PU928nlD5WEqMe792 r+o3aExpelpIbZrXfzZbLRaljzt6NSut2r01dXfvjevRxcAmfUCIDtRGq4+lodutr4tFPGeJbczv YTs/bH/Tpw+P9vmLHcGT3eX99k8tHPTEKpR+Cfc2yk/adL35dMsG76PfDErybn+rA2Zd4cFNTrW7 MNjuZOj82D7M+z8O7w/z4aRJenq6h1VyJ5bVRfrJxOUXuqOXKHX3u+fD7vTpJaT0eNKrzYLBsZdl YFgiuLNVrTw/WHm22+/sgCyIOld/lv37vdX0nYqD9pJW4/n4sRRsyuGt8X6eD9tbL6uLlbCA/9u7 my83oTk0NzGEzQgTNQZ6KelaeqVX+IhNPu5v/vNjc1/GDNNmSM3dMgcNwtjMF/h88+Hm5xW9Di30 sFzKXpGvRghHkOr1O9rg5Na6z67Onsr0BJX+usVWyZzKDbSe3T89bj8dTvvt6Qll8K/70w+0F95V of/Ktv6qBc8rw4rHtQmPXn7aJK5X7z55+/jhYZ7RUSLvnz3zjnuFtrgtfbg/MvL5dNw+apKxQe2R zJ6nRnT3pA9wSOjhbNwehqq3Uq214NY+f6V2dDn+H12v0be5FKusuz5vrd66Sh+PD1muc03ArrCY 63ZGfbj2tXw4lUzqLY/KTfhePCsO86b5qXlvxQJa8Vuzs6eDea3bj/Zqe6Z7xZ9RBY59pDnenIj9 Kg2DryfTULKQWoKktUbGisekbYyW54Pba5hrZWc1V3v2okF1eOJ0TmvSpnmnYvOJ1R2zDiqR7IMg GFzm9HQ7V0I0Te7+fz/sn19qJj8j318c6MAts20LexJCo7ano35VMWWzwl19JGjjbvl4Z2aCoXVH fLfHgf7jnq2NjtmeF9a+uFPvgU4HqpsKD8oWN39iEIkJFUq/OWUQKz+7kAc6Hjz8oVG63z5Rdpqn pUXB5WHrH2z4451WDqqb6nrHA+OY06vrvUYfvIigD1DXClP/eba2YmdWvvl8+Kzve+8aDtZN7Jvn TzhO+/EI6N8PO5t3/IEXXipEePG7ftg/WgMDg6s/3LDZgmt/lkWhK/0mgkjN1cAz6q3oU9P3R5ok RJR/ftxcqC+0Y2i6dkQ4LtI3Ql6K9oaG/6gqPhbnlZaxCa9ZJ5ehf3lzTM2bt41J0ts3/wb2Tzz9 CkXsIOzPTWibfzW//Ldtdr6RcTOSFmcAEY7oKZqQWhfh17yQoaeeLv9znSluoIOTsFgEvEwjSwf3 qVv6YgNkHMjqAyiJWfv1+blZhoHn7oYP/Zjf55u3Wk5szDSS45tUE9xcTWXvZ1QxoOP4NhWHDRWV v59TiWy67ttUQj1amPT1nCjCW8m3iThsrJjs/ZyqQ6f0HVQcVlPZ+zlVPzA+v0nFYTWVvZ9TpVFr 5reoOKymsvdzKhiG/juoOKymsvdzqkm+J0A90BcqezcqsCJZ6v8t7X5t/n+WvL1ZkvT6ahbRA4wJ 15oCQ81fvwLmRKrTqoA5NepEyWAJ9jr0C+jhW8VygXJA1uFZwBxidcAVMAdNHUIFzGFQB0UB88XW 11zAs8MrF1Wf1iIO5fQMjdVuCxb6Tv1xRsu74xI6qknBy3vG8dBVsL866kGgYaMGsrxZWJhm5y0l lAfsr1PFvti87gpvpuMXICfON+9/vJmSBgauUM9o2MAlCzoA0RNUcFCPi7eeR3cB2kyjmui7ZRzt GkPbMr4FdnzSjTiMjfBtNLILcLRLB1tohQIo2DBkgnSaLoLf05Og4NiOXksbeI4rWKc7Y2+fJtZN Mg6MeBYS0RkOJ4ut4PX1EtbZTjgyuiOQQD4kScAbVrQNOSoUp1mXw8w1ztnGxzaiSr0QohJOliYZ pkfQnxhU9lZ4zlVl7OwTGhO9EzwEpnNPGZ8XHHvS16iMK1inOyNCBDkPk6Z8k/JJazHhKL62Nj9Z eTuHdbKxAeGH5HcMKYHXi2i9qCgZ7fyGQZu6FZqWC5ao3VgU07WAkcKa2PLm5oILDkxfRfkuYZvu jAN/SYzJRC3IaIy9BUHBO4sRLDhcQZOJIAmjOqnYBVOsEAPzIMLEiU5xHLZrsj0iSNIat/lOGTct y3ViwpOSRpDi2toMh6NFBVcc0hU8mV4oI6KEghwYBmQclHGyIHG0Gz3ssN4oK9gmO99kn3oKMvjw a5gJEE4Ls4wLdWzW9ci4wnW+UdKe4stk2h7w65Rx9MBzOPGnzrrgOK7hyWqB8vX8kiJDjXxJEyEF k6cMt1SpWZebujUcLVCVb+SFxTRw5ySczL30Li4Z71yusKAyXuI63yhxorihOGATeis4LqXEr9Cy ZDBKY2tlql1hNtXZOvvUmXb1Wh/iIBaqBQ4uXn1kuKzxrogXCjZEIg4DFYGMI3MBdcfULsNdJkxG eIkPJm5kxHGzgKP+mBziuMk40s3OC+wzAq4zyBV8WuQQN6R+QTxVcPzMBZQ0ywXH85SQRCkvcZvv lIgUfOkoHWQcjDG6WXDYJwTcbxjXcGcVVvkm/UJPCDrcGDMBRVMFOKNd3s/IiFvBnGxsg5bDiLpq +g/XwUQYB8+sjPeWu0Mwvkt4XPSfRgI7mlrXhiEZ4+i56zgNlf5C+pA1bNOdcbRPwdWBfqNbhmR8 oUCkpDVu840SF5bGxfqFMSpuye/gOOkpBdhFpbuAs1FUuo7xEOElzNmMNt62k8F2Y6+R4beGY3E2 X0igcTWpnkQckPAne6cRcHY+RUMKG20r51rgsuFkK17iMVfZn3XJSSMvL4lrPlsT38dlSXCdLelo WVEdxwo+X3CyOvOV34jBsV6wY2ovhI7mBVf7qWb7igG+rasvCV52qO4hw35NU283cAkv1xTo9Kr+ QeBnhzpQHM9xNI12wBdwFUdCK7gEurTqTUsgO5zjXGBo/cZquApzgXXsSyaQMJlaFAbDcy5K21l6 X+BVMgrMZS0YAnNZC0bBTTAEnjZeQRe9EJhSzV4TNAkaBUWxCuyKJjCv8QpcFM27qSK4Aq+qhPGs +yqKK7C0MV3BF8kVuNJlCimnRfIzmEuC0AunNV6VBBE14KVuiVRVqYBetbCYZu8KX6qWSKymkK8/ K50F99KK9TQ9V/hSWoWuuRR/gcnUyunFPaMh8/XGdwGX0i8w1JTE7EwkqvfL7iPD2Zlwub5bwZU5 kSg2w92TwGKGyj0V3N0TF0xX4MU8CTz5VBk8gcWUysEV3B0eV0xX4MXhCS36uFhQoUXvFo9ZcPeg XDGlK/hiQgWuXj+5T5aOsllscIHdJnPFlK7gi00WuvzKyQtdfrHqGc1OnusNsoIrJy/daDO81xAM jVUzUXBvNrgee9wVvjQbQvqlIRL8OuZDbngczv0QF1TCc7hqh4THkZaWTXgcsjRlBbeWjeuxxV3B S88m/WCfvK2UXs+r9I0Z97aSC05rtOoqBVGmba63vYIw65fGtsDe93K9aY0ufa8wLLEhCVpMhWlB upZf5wJDaSzyGNVpjet0J0w2I3kVQCZhQug90DIcLU6SaukaTksVSBrlMbQuiUz2JraTB57DKB8m ikmTZIXbdGMcxKb0JmEwtswFllQ9swyLaxjEjF3uCu+LiEEu4YlYtfUQ4Wtxf4KqbvMNTa4wED/Q XaKTxZCyjXyWKfoVU89JJ65YGQ9+x4Nq1RqPyy2j5PDTOP6P82pbjuJIou/zFf1YTdCibt1V/Ygw OCBWXq3VGzwIP0jj0VqERsKSWOwf2e/dc7Iu3TMjIIJQwHRWVl4q75kGHBulHlv0xlSjCr4XN1rM tfYJbKwDjo3SMMinF6dEaRi8meIi4zmPJ45OOO6hE7lwPJ5WXGO1azT+8mdq7XSQa6btSgvuYX2L r2m9UrqdPq46DJAGCc3RG4k8/bTSR1rza706V/qoRfaMyrS/Te9W07PFkT08cnKkyWtEHQSvGedn nO3dLq6fcVmHGTccigmHR/HwaExM6+tG38vr5OmGT2dxdWPTGa5y40hsQJCZPr/dtiEivAIM5TAN WbwhRHY2HNgeCQHl6g0KezFNENVMVytc7/UQwBuxN2arIsHAGAbX3uHWF8g4fd122KFU80vbYfBS n9sOS5va4gnqsvVHXm1apJ5V90UA8lwkVCd31e8hjf2cUSL9TUnaiVBNcerh+nbDh7+esCWwOzYe cyljE0UdgdYZ1CP0sbwppHg5e/ULvj42q15mV+stg5A9FJqgIqJa4P4Z9gDEIBXUSUEJXTKQDxnV 0/hSNDNONMMXyodY4w1fP6rrtrPqPzSIh0FQrvB6AANsQaDxza+bh7YLYi+e3Dy2sMKgHpp2UFfp +x4Yr+4Sl60AzeavRHWxTfw+JewN5W2aT1nKXRZ9f1GId307plfBdpKOCFnWj/IqO9v7XB1fUBmv HjZNDnEEBFoI4iGZYEih9lJER7X+4/pxs36UKDDyhBGPJiV3JMTTLnUoBkQUi7zYXV4/NicvKdWq V/gJTIU3LQqFOv13eUgOoU7WpA5dGFE9c13of/L29KztMAIw2A21ish7LG7qedQaZmOxtE9hsFby 6BBDFXDW987RGMOwEK3HkiAStqLByctXZ80H9VfDN0GJxAEjpHiBv1wD6QcfGP5S52rEDwz34jCu mA73ZMyoUZhd8KGFC2JkMv4vP0zUZwRQfTs/jEeHGHkYhq/wxMOMSUJO3vzjn7QoBAVQQ5APEOT4 JRZjWZUc6ME4qOfDbDG6ap+tm+1l5b0nm+3d/d/N8cXt71+uf3/8g8/Ho2MqRci/UCo8WrAY+INq Eb/qZ7gZGl3+/bh5aF40DzAH5aL2+BEPmmlTkMdFkPSwimdqD/IJd0AiP0VxTCpjCjLyqZ4Os+ZR NH97+7i5705fH+jukj2XcW9r3Msj8IafjxeKs7SjLOj9fNnR2vZVa35mrW2ftTaYkmm0veSgwPXs UzL6dXNzwbJi1eM1f0f1302Cm5f3G9YQzdWGEcPDIziWDaRzow8pd+QYv9h5nPTaxUVX6/6TZdVh xMXg0DuZfxj7u0r6rOTUjqwIF5c3bURcbcDrdHN/ddey6dxvL+T3dr1pXt1tP7WGwXlxL4Fx/XB3 KzqgaXDOxECBEORkozkhwlIyQaMFXK3cKDvGAFOOBe1iwnn0G9KOnqNpRfJX8L3238Zj/RD8knfg GLQrWsgNdpO+6XSlrppHTotYQEh/gO57mZsP8abhHycnZ2RJ8twbMIHB7oF908uilnlZ0vEGOytu DF5uJPSf32Xx/tle733XsP9qavilKeTcITJ/hDmIgc19GDMPtOX/ojFsgWrqcQWRYjAMUlyyU9Eo XXFBhvx8RWeO+5PAnjYzKSfj3somksAb0WZmD5mYsH+IPUgHu+Cf4D0BHnE7/pgAb2TtqQIyvC8A NsTc/0MCkvlnAQm+yQ7zGHsPLh/46mwp5yv8i8VQXGQjcsibvsJfx2cH7vhzxhb77/qj4qv5ds05 4/e0q6/f1Wb2b9Wu4LlZPaE8l1k7owtY0JgMsDRWdAEz2mPJxeRW0BUsaMtiUbEZKkgfd2gLWNAo kQtshgoSm+H8pgJlZK97jtkFW8GCLgbK6D175QjB8mFzlJTIQrXRTMw+O4I7KmyBxdKIqcaRZdyN ElfQER4EegwMPYCpEnNdsPSrR99BqfAo/nI7BPG5p089Ww18DNWCqIziikLnsZUN+zqmZbTEtBus bDBQcqSOBRzYbvgC/gRIBiALSwLWiIuRU0bGATAzWYHIM90U0EsoFDrP5lGZCrReVYkZm7VJlEtV 16vLZ7CoFQvDolZSocAwGagjyjvt3adDzUsZgqQwHlXQYSL0M2GBhC2vZtjSyIXQpLPMVSBcLTJN odAz4Y628oC8z+QQ2M6w4T7ptaZ7CTEeES4+Fmgt7dcPMzYcDZWyQsKXdxOMbDRNIcTgbWe2CVqv itAEF4WEcFfb9AC0RIlhCdrtDDNzvWGjpACYhLEafIEgB50j2Bk7SFRkugwIU17N8CBNvBAixBds BeLdJDMhizaJcEfXpL6XlJQcE/ULjNkM2SPLmteDOKOko0AQ5CT/K3aggQthBoQrr2YY4y6TMhOm maWwFYh3s9CELfokyh1t0wN6qSGpKGxn0LIoow4dsUg42rRUDwJrGQ2Drbie9q1UGSJL3syg5lBV 6FC3Y+UpAG+KuIzKimSqhZZJb+564ryeamdolKIVZKSgt2DKIK5PAEQw923F9WwAlSxDZJluChhE cqZDIIXKUwDeTPIyLmmSqWYlk9ZjlBobWWwSMLC2e4SUocpBDMhiXADwRywywgvS0+KFLgHCkTcT 6JnQlcyzaBSePhWvKjAj40wVZ37QuMdLmMapEWxn2DEie5MSg8M3RnE0DQZmgta46yUUC9aRRaXM kPDl3QxjWmsqoaZKla1OdasKzdisUCJcaisPKDPX7gx32IV7KymymGrg5HiIn6fahC9TVcYv+At+ MTOm8V4/2eMZkMHOPd7rmIet0uMjj+ceX1p+yn72nd7PPZ5cYsxNnv1GBrvc5FPHrT2eoLU7Gu52 eE7G0oOHlCtYxkDPfxhvj59JdxuhsSx2eyiozc4NwciQXRxzRFqc1N89HEqcKY1uD8V9LzXR/oAl snTI40bBDb4gxzQEhLQv7iIZcZwFZTTYZXo8rV5Mk8V2Nl2tEHkGkUnT5E+HeB7T7Ae1pm02nJjw SPPGtMbZ9GWljNbt9HHVMW7hPQS8i6GZflqdK9N2MKx63rLCKY2Lv03veLMPcjMY1+eb+jtXBx9N ufrVu7Fn7C/ZLu48RYPaFk3AyjvATpnGt51lqhkV8WUw5/fKDG1n4sBPZ/E52qAGXDR9EHRibltN GmMjDwn1CTHUQyiIb4367/AQ60ULOGJIjkBJNdZAH2QnqgD06Whu48TcNLyhzc/VL5/bDr4Z1bZF Rg7qMoMbckdzUfdt16NXquYuY67aDj4NqqFKTp22osPrFqE/qIdkQVSrYK1rDNePIE6E0NFVZ5+r k7ctstSSHsE1qLPyghxKKFhRI2RoUuvDmHmIddcMFsaKbjBroLQQWeJHzgYzLB0XVPKbU3rPULDQ 4AdoetQ7b7IQjVoCIecKxqEe6guMAD++OAETPvPtaYt+4LPSryeUBv4xqjn+sGn3UpE4p0a8ATue 5NLVvOSmkdF7aZb0qW9wTW7trzwGJWYuidCA/RReSX0SY0Us4LdWERZNExeEBXbSK1GgHPWWgs2x y8UCcWqV/K1YL+NfocyQzW22wDI4V8pUyAtfkxttkZqxWaNMudRXutV3io1nJFGWdIudYsPw98El tyL22DQRex03uqUb5x7E1NVLO3vPOj7b+RvtIBVovqM/LJdP6I0gCE/rzZB3gWrzBZphzez5/L51 LAPNC6bfqJqTdjDqbYvqzWc52Hx+1Z9IJiszAQsPOgZm4MDMQvNFnYNi7581t3NkpssOPRetXS43 vAqsxOa/shuMTn6QcKS+4/8HKemNQd03YBqwAPsElJvMoKWOgZE5xPlumemlmsBUolGUCqYUTCFU QD6YLoeIFilommmkpqVlJmdCBPKAhRKQSq5UgKgDFkVG4JLITCOxCChirJGckVmSmlxSCjQX6nkA IUVakAplbmRzdHJlYW0NZW5kb2JqDTIyIDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCA1 NDcgMCBSIA0vUmVzb3VyY2VzIDI3IDAgUiANL0NvbnRlbnRzIDI4IDAgUiANL0Nyb3BCb3ggWyAw IDAgNjExIDc5MiBdIA0vQW5ub3RzIFsgMjMgMCBSIDI0IDAgUiAyNSAwIFIgMjYgMCBSIF0gDS9N ZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag0yMyAwIG9iag08 PCANL0Rlc3QgKEcyLjExMTg5MTMpDS9UeXBlIC9Bbm5vdCANL1N1YnR5cGUgL0xpbmsgDS9SZWN0 IFsgNzEgNDA2IDE5MSA0MTggXSANL0JvcmRlciBbIDAgMCAwIF0gDT4+IA1lbmRvYmoNMjQgMCBv YmoNPDwgDS9EZXN0IChHMi4xMTE4OTE4KQ0vVHlwZSAvQW5ub3QgDS9TdWJ0eXBlIC9MaW5rIA0v UmVjdCBbIDQ0MiA3MTEgNTM5IDcyMyBdIA0vQm9yZGVyIFsgMCAwIDAgXSANPj4gDWVuZG9iag0y NSAwIG9iag08PCANL0Rlc3QgKEcyLjExMTg5MTgpDS9UeXBlIC9Bbm5vdCANL1N1YnR5cGUgL0xp bmsgDS9SZWN0IFsgMjk4IDY5OSAzNjkgNzExIF0gDS9Cb3JkZXIgWyAwIDAgMCBdIA0+PiANZW5k b2JqDTI2IDAgb2JqDTw8IA0vRGVzdCAoRzIuMTExODkwMCkNL1R5cGUgL0Fubm90IA0vU3VidHlw ZSAvTGluayANL1JlY3QgWyAxNTQgNjU0IDE2NSA2NjYgXSANL0JvcmRlciBbIDAgMCAwIF0gDT4+ IA1lbmRvYmoNMjcgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAv RjEgNTYgMCBSIC9GMiA1NyAwIFIgL1RUMiA2MTcgMCBSIC9UVDQgNjEzIDAgUiAvVFQ2IDYxOCAw IFIgL1RUOCA2MjQgMCBSIA0vVFQxMCA2MjIgMCBSIC9UVDEyIDU1IDAgUiAvVFQxNCA1OSAwIFIg Pj4gDS9FeHRHU3RhdGUgPDwgL0dTMSA2MjcgMCBSIC9HUzIgNTggMCBSID4+IA0vQ29sb3JTcGFj ZSA8PCAvQ3M2IDYxOSAwIFIgPj4gDT4+IA1lbmRvYmoNMjggMCBvYmoNPDwgL0xlbmd0aCA3OTQ3 IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJlFfbcty4EX3XV+ApRaZEmgTvetPK qZSSuOxaTSkPWj9QJEbDhENOCI5l73/kf9M3cKiRtbFLqsGtCTQap093/7K5eLfZaBWrzfaiCqtc RfBHnVSHaYm/ea42+4t3NzZXjaX1SNlmuHj317tYPdmLSG0a/Hm+8FJ/86+LNA7LpEhBavP+Igqj KNEoEVC3QrkHL9KBn4aV989P3MY+LGOThbEXR+peh9r/vPkbapezdrGmk6FhzYq0wAZUi8I4rVQU 6jSB36TSpB6dF6WkHPR0zier66nZdbNp5qMfpGHuTX4Slp5R781cd711p6Z8qk7pVGjSCMzCx7JF +Mo3vamnu4MxLd79Lxs4LMsztf5FbUBn2KNIYaYkVRXoB+pP5mJ74S5Ei2mVh0l5thzlqkhKbGJU AhSPtCxCN3WLaQX20y+W6dyseONMWHh93i8EivINs8dJGOdvm52sTg/u3Q6zmbZ1Yyya5o9xlleJ e80FYAQYB5085ffb7AwhRh0maAtvhO3tyH21q2nNqlr5uTcc9zT9aGR5pNWtH+gw8VDCfJ1lbah7 nOgGNyFSvGHjB4nH51o/8UIURUUQK5EK4lBHqDzDXadOZ11oVvq5a+HjxJtx08rb0cDCpoA/3Gvc KlM3PK1gMHO3swr+m5HOiWMAU6TZrR68ASRS0DIJtdc9HVFp7dWPNNubUF33PW+TesYa1bH8bKjB Vwlo18Btu7oEeU4cs+fESSk+a/wggzNA7RicVDVHHk8TtnDKwOO5/6aOL0QNKkITRt13ExghB/lj zXNk9xs/KMALRz+C3z1veOD1UfaV4wcSkT3w01t3rghMW16rG9wTT29lhW+8+TO/UnIiJXLkbTeY Vj1+A2VBzbtbxGwRRlW0YrI4Wz7S9LQe2rmrh8aoB/0ZcAEfBfIV3L2KAOAOFtXpwHyN5RIoCGTB gqp+OZx3+KwAU6OaejZPtDriKlyTVjpfo2msgjt7I60TcME09OIlv3hJL26uzij1DQ9WsEEU5Yyz D+MwqpYVm31dgmvUrIH6E53aDVYWSevpCByeeM3M+sHrZYx1/OSKJpVTQ/jg5PExRJtEZyeDoxbE 32leOZuRVzBEwM+l12EAib3hqTfL9hBHaH9AQaTX8ShbItaDd936+P2Xmhp4yPZMuyCuwiIBO527 +QkLlbj5/c2t+s27huY3XyGVLM5m1POua3bozkdrWppX25HX1Z6cFwzN8/1YswTw2NC+AG3swlki R9p5lABmLxE+3tCiU2xlllAAQjwCt9TwMvAoJGNmiIQDoMoLfxoYqAMED2eBSNj50+iX8Az9N7/A h25pVPsxDGY/AaqBAa5cvY2BDB671KfXYjtjBEhWCAArWjUyqRk1Mv0hHuE8MSdCDsI7P4LCV5H1 hQvhZaiH9A6qsaTlgUITEkOKQucEGRWiV5mKYp/8oIQNbj/CQwToEgM3rU/ucnf7Ef0FjEKzNc0i kUk3VBtcSSA8kIBR8v2RlpEVvUdZQs7FSEEbHuSDb7Zr8IaFbNjj6wdCAgGzAB3XyNCuscVZGvSq MuP7QODBdGyaKPAZe+Dx0Fo1c5cIAPiSBxxvK4m3lSekhGsYp2TiE9pnoNkWbUKTza7mvTkP5GXD g/6lmsXKebv9ocfDc7ROhEw50GjmyfZncA0ZjiAuJdJ58G5GHxKDecKmv/JzShregm0axiVA4gRb gUdcVsma7XOm9xzZfhL4zs+jECPhsyFc55wt5B5LjUyvvXIpCgd/jHNM//AhcIxfMpoTSjKWLY80 sLzCeUsgGp/RWrq2L8TtnFQ9p1S4QK5Xt+VXARcA1ZiOEw9giY9gppra/sx0aZgVEISjM4fCbow8 R8n6PSUG4FPAq5/u2b9u2BLAseQEB/KFkRxpFPyPfSgX/zg4Z8KYgWtAHdwx4ojIw+wdi790khzl of4O85/qmcwpOneM3777nTv0dkA14jJK4E3k3JpHGh2fqEG/RwNB2jGuv92tnUA8qu57lnm2avG7 Ay9KJownzOOLqHGKVC5sPBmhTskbZ7PgSjNAS8IMZWHE3ujzlBrtOErZWdlvdjb7xcfeKBjSLMGa 5OfqNMjqIGgdOVZZM///AiJNwBnSlwUEJ7Kyc5YKrW247qOUFNNDBA6BCFwDAQTIsPhrR5aYlIjW 3GAu4ykZKMo2sU7AV+pkG0iBOWcHXqnydQLp7pmVsQvgEOPrqVW/3t7d8NdB3/3bcDVCRnCZumz2 KlN3r5tkkiPNrFOHT1dIAg2qoh1pIURMAZldD0ru+AXvZET7L53h2WfegOOMlEwzXywKCw2Fweli SzqdlIKx3foO7iEhkR3UowGfO0pqE7i9zrxsia85zhHbDwTAcy7SYZnHr5L0pWT07t7/Xf1qtmYy mKZ/qIdj3b/EE2hQJVW5Iu/EPZOr4B6Sz5jC9YZUWF3K1WZlDDyfQAzSebYQhYQAIlV6bK4hZ8wD W6knmwlIG4z7SGmhBEm4qqzPXIF2vcyfZL5nixhcs1xdJNZOhVzQj46FDgC4lle5g1fB/chGDmu8 zznxnXikcDVhSuGa6jyyLk8cuT3n/DyERDxepffJEmy8h9TVTyL13foJrqK1wPwDBTWph4CPHNpo +sjTdEWLqKMiRY0HXxIoFELe46ppkJpmL8MRdxtZSh1GcGheOMiXbKfolYWcf5e5AKem+ofymsJr XTGEcZ2zoASyoHryFyoiysfprxTdTXOcXVlK05A2HKhzmEZueWveAuvBgq514IOnWTZl4S1eE/CD sWMdIRzeqyQ9PawGHTQeCTpwzYBBa+jmUN2Ne5YQV6A++wP2LH1HCY7HFtZs4RKpceJPe/OlZnEA JEi/DFqLJZPSaZQRp+EFQX2+78kqe6k0RzYHlgQcHPHtzNfFTaNiXVu4nDdxJZzc1UcHUXjXS7Ef FWsYDMzXek/ZLKSeGI/FYWTr8yJxIedIyz0AgBhhNZUoqfeENRmXZzV292rbj8+cFOM65Z+Y95H7 W7VDm3ktpL3wix8gNlwannpkB8oWNesfnoBaRcnJm0qnmI5zFxcz0OmM3VK0JW5vhSUo2YB860tH BFXQW5csUyuMZjTb1izXKstiM0QREtoeWYLSVHh7d4p97VEc3paaNxdsckDTFI4euTtC+C057qUQ 2XGArkxrw1oEnY6GLSCDe4QPw/2GmezIoxmxlGISxxuBQbnXzZghgOAVK/1WWQHRM44YDCei+y+S 3ClJgVxWx8U6D3ZEl+jCcTamuFjEZZC54e/E9qb5ls3ajzVJdTT5xLkxau7xzEwpCxajiJsMWQhT lku0GdjSHqm+nHk4kWwz+zHShSUn8PYk0s/dG+QXLZiiGExg7ztjLzHegDZth6Cxf2CyQIyBKSfE gB833MmZAxcr8Ph/kM+OT11T94odGAkcvbde3JyqotK7UjWP20spXMnf/Qxz8Us1jEAFX93kD16h /MkruHAN+bCkh9dTN+/2Zu4aUK9VvdwFkG933daPUwAp/PywUX9WI73E/DgTld7XcCTnwxQBmnF/ 8GNKgpHvOwsB90qZ/9Aq5Fr/Y79adhtHrujeX1FLGbDYrCo+e1bTTk+QABN0YAOzCLJgS5TERCIV krLa8yHzvTn3URJly9O9GaAXYwOqYj1v3ce550J33O0kAYwXU+tQcThNOZWuojzL8M6DcsLddb9L zrxE3Q7oSF48DNjm+ZRMTqHmzoAHw7l5LvojvHF+jgbGrZPiKBBKshi9k4CGQYrGnmppd1qV8Gwb 1uNArP2sa8ajdrRp5aheP9fNMCqR6EPF8gd5h89Pmk+SEHJUy3bVkttBSE5GeWDsuNfTazJO55lQ Ic9Po096GbV1ayh9gzzQY2rpT87aybJdJzPPmoNPL7ngjYFIZN6GREdMrtPiZt08IY+Lo6zqeovS pJf0TwS75YlK1o4HmalPdZFuZAihHLnj+c8yj8RCKZwoHhU83OtP1OuVGweCG2dFfqIKELSn05KZ 8E/OmpZjpeDUW1KdyssEtirhuZwS6qPZNm1YyxtJ5oVsgFCVkNnaDJvuSHUZT4B/RHzA44a/m+GC mClXdMGth2a3Z+oAPgRyxN0d1ZMgSPwB1GJ3cGRCGXmSdnvQFSsYctbtzA5NTQ5SwLg81T+Dj4wd Nl4jhyXhEwmxY7bXtUJzWXol1cIH1xP2qB5FqE7r1sIsx+FMJj99NO2B+7vPMttLtlRZKNZolL3z Yl4LwsCr03PF5M7EOhGHAsPb0FWMbmBz7BrUa2XWVEuZIMnqAaXnsYPmtgcerTHarWUDw2QiVQ20 uZe2mwdZLngFAEllWXJCXwTGAO+okKRXK+EAgh6Ey5gFxgC5e+4PygO4RJJJIhu3mSx9ElWE7c80 8el2XuBFH6XyiU5lq9aFRZRkDDLc8bGPvPEFPmDnnWgyP4PSdmni97vkzsRfPJ5l8PfuHZeOdGQi R1qQywyxz1g1Iw8katzhCWuMrXpyNoSrblI55mEXsUAXM4aAMbSHnSne7xMT/r52HfsPXKcXf+Ea BBd/y23VcmkS3HWnbyzwe+0+2DsrrN6HTT/gguEAozQtvzHRDYWud6xfNK7MowxKTuBiqt6reYFd JgsuI9XL7L6jemTLlYVeoI8po1JMyJ1wibP0RZeccshF3eVyd8bkjIqPhbKyUfBKyFonZSvdy5PN CKgeF5szGgMGpW7h9QcZ4hJmYGPzsLBY7uqmnRK6Z4GC5fTAN1iuU53YxCr2MJ6CWdeDRnDK+EcZ ouIvELdbysdYsZcRkT2VqxBRtHGnZKU7nWKqPbcczyht5atvqrG+iOxThRSrRKuDJP52wUyAgI/l kcqJmBs3W5XyoMMvqsVJDg0lSVHac7HoyV63UqcCsKVSpfyxrSWvwCKL7WHJg/VgNDUNC0kr9fIg y8NqipTXGe9JHKHRY4xsZgAl4kg7l/LxhsG8DSCcBVZ9RPqZ9Sw8wAwKRqGEgVFzPxWPNMylDn2O GxmuKY9BcH012Rw/kSFtpKg7kfQa+CGeSiuemlGo+r6S7eNFbgg6daFakfeuCCOZ+ko2DklatdaM 9ZQIjKLDvlbRKWssNk19obqWv9ZMaETD9VR9eqPSiJ2YqV2Etd1Uu0H4XF0uSQoRfqxbPmxEeKEI oHprdbowE5NKUZWJ7J5TYSbEBBSKxU+QG2i/+SCTi+qAvNedxcyCYtDZNOsN94CucksljtOfc2xC 3rh9HS3US3JVfMWpypOKNQ5qiEh8T7457Ql5knAio2pkbW5jgRNesO80sp6NDn0hp5DjDiEYQxhO Au/u9w/ub4nEhFsWGr9gbKFcYPIxNGv5fpH4A4orOrTNqlnQJRlXIV7qDDz3lsuMbaWftbTtotEe XJsYL/e321Ne95LXYUPT6sp6KS1iWju37AOnqiVHztKZTsdpyRF6YjZlxQy6pP4i4oaB/sIZfXmu QjJ9IgKSQSImlmmWFX+P0oDcTlDOn1EuVGw20TryF/KvnMqRPXfYpTwBBVH/lscA0jK5bRbVrejR Aw1gZdQ8fBPyvE/T5Fw32RA+NlWBq+12AP8Wf0d6A4Ycq2Zs2rXWNnrEC2yzSsa9zQP0dz2eO1ZC ceov4LotoRDLYSOUeH5SpFoX9pcax7taYoELUXBydrxePp4FCe4Mu2jKLqpe6Zl1yhZyduKNg7RD Jwt69VvyN3mTivPiTfGZNFtlB8OxGRdy+uZW0JEcgbCJv6q20wGZBvFaBPnpG6UOpXfAOBAcAFLp alIzDT3LYspA/aGNdPJxc1n5BNZiXalWG2qhD09MxsmBN82yPlWP0tlWo/TaBXNhrRqtwCCQvB4G zY5WqMLsv3W9P59yAV4nRhYreInaS1U7OPgwSIdM52c6K0gBDOJBXfEsoPxG0vfhuUmcnZM+kzQu jqwWR1bAXWpLUjGPccVnZ5wNyVuIdAh4ddy2q2Z9mO6uPvMXishuzz2QN1kp9QSyrOriVYYPXoy6 UB1GLA2lIjHu+6brEUq/1sv3VOJpJMDji0lEnk5ImOjSto4sg3A6NgA7+AWnM0o6c6K+83DGS354 Oqr0p5IPGnf0JGYDxFGRyEmoZ1IYfyKKHFSUEJlxZHd0K8aBa/PP6m49EeLZDziciII44Bojm1p2 EW6Rgh3iEOpEH3de546ZD6q7THqE0y+yDsXSXnNmPdd2J+1eFo1kNE8EWDZvO4b2XFNVHzBjmt4a TZ4s4zxnJVwX5bgJeU8kkvTXaOYEjr5Ig3hfTpRF2DpLmshmwJNUtejJ8aJc6cHq0iFMyAhpmMc/ ShbayNzL7eR1FzfIpoHexCgg7UYXCRmAeX7V5Uu8Bpb7bbqZlVcIjSc6yg+jcjDWUtK5KC1jpJjI cva65O3oJfL6nyjqhDEKu8yk+Zn500EAnnivEnzlibK4Ug7OGPWjkMe+YlD7pNxfaamsH+SDqB3J +/Hxxhr6pzIwyaPUGV/Ccsb5LMozM/cxgiSDPW5WN+/uh8wsBjwod1SdFvy40hZhd55643PUct4b Z8vIFamZuwJMIi3liP/doLYyjZnclaS53EZpx8eofpCKsfgX08qN9w+kQp8bJub8m5qH+38AdP4O yf+DkSRPzNEgrdjE/Gz+9e/YLG/e/fXBmfXwLXI93PwTFsnxXnkOfouEHxUOSVOUKrkhbWRI67aE mGAp86zE0nKiHhbWw9z0S0ryeF4QNmZhHZ5yNGdBVSNfv+JhYisbgzb5wjgsS6HJHfATR6c0kkcx NLTFmjwqy1JGcBSNFBH5nQdQFnnBIz7KwLJopMztZGR6Dkg7jDIdubx9e7OiiL5mpO9N0AFyljFJ WMZib9ZnEUdZZrxHSHuTwqPwCLhI5F0u1v3KgoebD483736yEvsFvNrC3LEp4ObwhgIgSP7lHayc 4/GPuyv6IkFihgdOeH9rh7E/LEYqTpDdEHCZZWoGPlYSnszuUVjWNIc4xlNKOkjcOMXRdFxaRmku 73fIxCUwyZZmnrooBnXll311yVW/c4BbOPjEnB6tc1Nz0ohPJuZ0CfBpak0ayOHtk5HJMWrNycjl 5ex235lEb/gXhXNif8/BvraCPeyVYzm8LCu/xbFmf0EJwiwJoFTAVd5ypImxM8gCUutTVE8lqRav Jq59GtmeR6C3ssh5BEkycxcj0Bcgmt9WUOw6m0QpqorJGouHQOxrI+UpmgtQ3+zqSNhlgQ8un8rD Noq93J6IraFdWH26BrYG8boycnqpzVDw5ddHwB5SlicjBysvRsDxYQiPtUnCJ+fwCgTadE3Q8+uR cBd5+p/m+G7MgTAn3gHOAsRVrLUJgpJSOKhG7kl6RCsBNtietRrloACBp3zDBg16DvVJ1FtoPCHS 4/GcLEMHYX+O29mHw2A+df0YIpq4hMuAbdhfpgSRSEgO+czhQbHlJ9II8N4BefKUFZMg06IE4ZHC /Z/7qumN40aid/2KPuYybbL4fVScFbCAtetkYOQcOMJuAkWDeGzs7r/fV9XdbFI9ZMuCD5FgYOSp KbIeyap6ryoLNKS4QLdZFfPGk0vEG3Ab1aG2gANjDsXBL1jyqkeQJ4WBy5su7jUc6LyyB8JH7Urq AimDU0rqYkuljVDUULS2ZCoktSJfWop9Zu4qLHX0mk3/IpCKSwqTd4Eo+DHOe8+I2GJCiSiyFqri s5KjUFqKfWZEhaWOXl/SXwTS+Uo6H/I4xjGgt/Jog124kTi0Nuk8uy6NXhPsaAyXRNSjVpAzbYVR CNbh5u7zx39vFMUCgqGDpXo4my4NnKgvzSzCGWd8D+YPdx9Pv27VzhIYueddH1vTpYUNXdopLn6H 4oc67Nzh+fwlY+N1HjkUjdDqH8IYUR5jssyDF1PBf4Yn+UPMO0hexXmIPJqyFxYHRch5aIPk2Gbd 41VTIXyjrc58bR7ygoUz/s3/FfrmZKXIzJgC39t333/65WFKLShZhboQJRtAqaJkTw+fP53u+ec3 N7SMYxsChQSKDlxLyYABWAVj59vTw2n423/vPn6RFP7w8NvnPFxNY1XSkT+jnYYraG7QN4t/buka oxNBoxy05q4/Mz7UNsfGZ+JPMNHx7T+uWJcEfrMn7HFszHYasiFirfYaGZ8GZCPEgxutMbPY8CxO bMch9lbvbb/NYD7ZzrLjE1D1HY47sNs/7kDbidvZuCXTuDEEdAbSfgyozk7dvz/d/+9y7hUdCvIC iiYlMAFTM1pzDGFIQGOZPvk7iiQF4JJhADIRZ54MsTTAkb86luAkGzqafzeoSK0wzpragrxMNAcJ s8G70oA1iqu5himN4oUiP3PhE9dtRL+ayl8qz6M40XCYik1MAycCcc2OkIBF9ThduZhHLuiILsau S357boEKSlIbjFiOWy2FOHoGYQlZJiMaW9AutUWj0XKPgXAAPVnkplcL/iIcLBhuNLTqsvPkwypE G55LfGVxeLEci6NfsORVjzBLKvx5ZQPKYzAJDAEjFOQYMEcdDJROwIPh4D8Pr+XA56sfsxVplfDc xUGQeFal8iDITdG9GTUbQm0BU3hbnGPedwUNGeB8ZQigjlRA3hrykhrss57sZR6Un0orJWIFLVrU OwSNQhshflJCsxD5nYTROQ9sWjqNjrNBlwYcRJftivNC0dLPDHHmmiUHs0WJgrpfQ7PF28qCVZTE UgOe55MXfwp0XvRbiyRjTp70DgasUaHKeV1Cv2ZdmYYDIia/kP/w+0CYiuxwO+z7C22/udGTSsy0 fchMDpoYlUlTdroAzgeBrz35u++/nIf3p0+rSrwk0zDdelA/aQwNQAEwAbxwSGgRCDIpKcAWyLOv 1ngET4vv6nos1YAeY8RN81yGwdDgUjEG1PPKnssxu3jEUC67kJRntUnLY93DGhFHPSRNl2kXaGQC /ynhbQhjDFcUZJDIu3Rd5EXz/HDII4VPrLfQ8tHBInWF2PW7DxvhhVk0GteFtuvSghYATUUn0LyN vcH15v0WWuSL9V1ouy4taBHQXPTPhZYQFwnfg7br0oKGrq0i8wgwJq1DB9rt9VuGtpXnKG6PZqPB HSkgLI+AP939a7j57f6OV6D/4DegATEBDU+Xx5+ub6efXGStBiUZ58Hz+Pd/bgX7nPWEdE+2WxhN l8ZsAe1KxOKVuOtAnXZGi4ysMUeCJB26b69DLT69zqRZV5v+NrPPkxoc8papSXqvZjkRobw0awew hOhzCGjv7GQQAcYG0L0GBLLMPtFLRhWGeVMdRcJgCAiQASQeRuQhCpL4RTaGHHZZsuKokQoJv2D0 MvZIivDAg89o17GH+wGeLWJEwRtCBvDAEicROI09SbvSxTzy4FPaygMaoHbJKaATE6Lvkty+z3H1 adPcrkuxS4fo9n0aBU0K06AmW/WjRkV/2y6VIXfa1L5P61ioeGU1fV2jKuZejUjKF3VEhKbBXJ4T mAgZ7ENRSWJJVFQOr4qxsiw752IibYUp1+IhjWJJFy1r9GVVYakxSz94HQc5Q6sjTxEFwxreU8tw gfHMoaJR+1DLoud5YGMfjHB2mjeQD9wX2GJ0ZUG6G5kLkCos1+eNZxfmOMxuydrKEuSi7ovgW8u6 qoY8D0mv4Bx4DudlGCuOwUOELU8hhliewuvyBPIto0eT98GV8KFRlPhkINmSwS5BN4a85hHQ6RFe LnpcfUS9aV+CT4TJNpbo2WJciT6B/2IsT5At+RRQW8aXD80+waYSUbZk0Dn61pJXPcI8vcKrOAge BA3MQk521cKuz3H16aiFPZdil55a2PVp0Cr3evJBf2u1QPtqYYHcUwu7Pq1jkR9DYlH8PLWgjR0r jtUmjjy5rpymjcfkRAXHigUpvTIqr/LGV5Zp40yxfDTuEJlPtYGCdRcMa+R5SQGlQjvV4ss+wVSE hMIkKHqlWcvIDHMg1DIyLudH30fyQw0eh1DIyfmvQl5AD8WIbpHUGCm5ToJcv/uwTRBCZOzURbfr 00SHC7PSy4DO86u10d28v4AO10luB92uTxOd1Vxlz0dnMf6hjLvodn2a6BzuzqIH6pgwQmJtG93t 9dsLU0yEeg19dLs+LXSkPJQg/vvMvCMIvhhMF92+TxOdBjrr6bkvS2gKiXbQ7fo00aGp68SC65no CPcio2QH3a5PEx16J5oifV3eMTvxT0yiIDU4TzmIhhmR/djK4q4s/kCMHqyXkW3OwdnHomdavfis Lscqqd2oFC494i+SDjKBEKsm212fBtlyvhmj9EDBj4kHi6/spUvggEihj63l0oSGq3Wgf/KEm0xP VDdbeBYkA+nuMI8hOHrMHNwU+Lo+LaGChVBdOJnFJQbfy5p3p19+fXP8fPq0xciF66BnCZTDqfQH EhmpBY4lo0bu1fdSeAESUyxeLxYobk7dKNqXiNVsaVg2RpZZN20DzUdWfFJ0YrF4/8uWNfiyarXU kEW1vIpznFcb6teVh8CIknx5BjaE8gxG2dllOsL6fd7TKOypTYHFKCSfowLv1lJEng+wGkqs9Su8 QPgQjt6NHrMJJgWpSUhfdA2V2IIe6USR+jBGaFOxeLtYXBxM5GdkQ1CihVfDsi/Yh+TQ2mtIKC0u 0Ys49mZk/rxgKWLPqwpLjVge4c8rG9AjJJxFz+OsZMF9QKfFxBq4qfw8PLyK456vfrz6/wB4UCVT CmVuZHN0cmVhbQ1lbmRvYmoNMjkgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDU0NyAw IFIgDS9SZXNvdXJjZXMgMzAgMCBSIA0vQ29udGVudHMgMzEgMCBSIA0vQ3JvcEJveCBbIDAgMCA2 MTEgNzkyIF0gDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9i ag0zMCAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgNjE3 IDAgUiAvVFQ0IDYxMyAwIFIgL1RUNiA2MTggMCBSIC9UVDggNjI0IDAgUiAvVFQxMCA2MjIgMCBS ID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgNjI3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiA2 MTkgMCBSID4+IA0+PiANZW5kb2JqDTMxIDAgb2JqDTw8IC9MZW5ndGggNTI0OCAvRmlsdGVyIC9G bGF0ZURlY29kZSA+PiANc3RyZWFtDQpIibRX2Y7byBV976+ox2LQosniPnmyPUbgIJ4xYiUBMpMH NlmSKqBIhUV2W/mP5B/yl7kbRfXicSaAIUCs9datu5x76s325tV2a1SstrubIqxKFcGPGlkeFio1 YZ6r7fHm1Vufq8bTdKR809+8+t2nWO39TRRGUZSpbXOzoSaIerjR/1Fvh9N5dPvDpILt3/GUOOJj sjArygqkbL+/iXDxT/ptZ+sx2KRhqT8FGfyfgk0RJtraNvjb9vdXOmahqRIjm/G4cj05pZPV1jaH fuiG/VmZKErw9CqsclKcGllahGa9WoQSSBGdiao5HxYb2gQfU+VhnKsCdqYlbQrjFO4QmjSB/6Qy ZBPWw6wqVST2w9xNbrM9jLZubatej2N9Vh/HobHeDyP0m4ObbDPNoxUFUlbApKQAfMgbeDzrfLnw ojlZ8NMJDQYS3m1BwSzP1PU/KghiUrwGjJSkvQJJcKPR3uxu5AyaS+HCYOfHs6ZURVKGEZgHIwT8 BXflyTI0+TKZVlkINruepmOz4uUjYfz5cW+uI/OJ/0jPOF1ccQlJNEpCoQitIo05uCxEVKrrAITn ujmoYTrw0KjqnhqtenDTQR1qHm7p8yA9Xnur/Ax7a6+CTa7fv/pRWd67dz2v8OrfFKuR2sShiVA3 DtHkEg5JwRrdu1p5e6yDNKz06UCfYYRPoa0PVylVBLcFKbS5ks3vexVAMOqJ91nl3fHUWer4STW1 57Yaduo4UxOjj6TLnpFX1C1LaFUzUKu1t6pm6SdWZ9jztz5+4W6JWDvDqEf1HoYZzGF0F0B+gWWD XJNdjb639FHTw4CjoAt2Rx6tW/+dGqjZo6dKLat3YJhMK7Q4bCKHGRY79I+XwFDDEo4b0nb7G4aI gnWMk4Kx6TRPNlRvzk+BKQ2NuQATbIzNJb9+AoPYzc5ODaPUwfX7F5Apu0KmxTRxkmYsQrVsiIk/ yvVikINF5fGK0wGvAjBBM7dXdqIlJ5wd+HabKswMxPhL0QaIRImAp+7Z5QGsSzSH3PFo2a3qZ81u xtkYEuISVM1wPFHTdbL254BFQIT1HGC297NELd6BB1s+YuKPcv7aFeaC1nGWs3o1CbgPNglGAXVc V99RA2MoBuEPJLzAyCAN3ARyFR4NtuKxf9CCmTtOplrFcs4gp9R8OVTWfrbNzAkRbAysdAPLV3PP Gkxe1ddHto8CqrpkdCy3IBdu0EEDREiGWnvPjYEOH9FsoDKKKQFgsWxc4mytYYacpueeEGmYJ+Wn uusg2sIlWsuntYkxtEoRc79SmSQT4JyK9X5HltiQx9yA94erPwnsF8A3K8C+z7HXXKDOxAK+W7Li Aa1YanCahzKHB0Ewt+hUo30D3tIuiAEu7qxnLxkOQZg4gocg1WmMfAI7MFgKfeJ1LLoBjyEm7JZs Og003Z2/AFz5xeZgJ4lEYCa6b9Vx4BZ/yK+Wmp8xWlLpNNyZqTOhFhA3QYlQTnGEw2DMcLGmcIqX 3QP6gTCBe4qJYo0J5jWv//AnNZzsWKP9vASDuOjKDdd1Y4ko9Lm5xOr73k8jhn+q0RfU6D2gKLVG MnLKgAEumw5HtvPkGkV3iU0YVVH6HOkMsTEyZc8ApoCFUcNRNWgY+Dq4B2PaKICIAQCXUtzFo8HI BHLLYU/ch+G1pGC5APRwz5HskGS5nhzn7T2c0in49zILB33HQfElV4Arl7NWhvUvNPlq6DhMDThp JaIrKBRi6D8HRQxBUDMAuGGG8Hf/tFDo4lvUJdVcaw3wkJabqbo7M2xM1t/yGE5CLty5Xlz/YkBH a8DEKZ8PyQDnoThg0uQA/wv33siN4JtHZfrrbm9yCQGggJfLL4ie4eXpS/icAVVqeXwKYuFmOKym 8wmt492+XwCcan5LPQZn2O329O15l6VOKyIcr5l4dPPcVpuryg6t/FIlxUwRpPGInQxxJqYqDAWP Zlu16wZu1rQQ0j7HNMeFle5FyObE38HJvumbmT1duaUA7gf3GUCUXI9mSnRvW/q+mnsxbMKgWWie oDwZqHmiWg8hh4FGI98sYhZ2FOcSMD+e8FCmDR1wcWYW7UO9UAw/n07XVHki4kc0Bt1CjJZ5zITs jOgH1WTexFOOucukhMS0X8imfAmQVGj3958+qt3cU3VP9ZqIX0P2i5Ee4/vlmXLBr09BXKFmgako vugYpsKzpx7QhwKZBb9k9s5PgqJPCvazapCs1eDC1wvh66/hCdq4eqIoMWwxeg1d6jAWHhyF6l0j HaFh0CzR83U5Rj6mLWqFQaR/CwIcv5YaLsX9C9lItl50MpXE8FQ7LEjuHo1dEHaBZnDdDaDpBDB6 hwRtOtQ0IlUJvBsD047WJBexSSR4eGJkHSl1B+7cY61xrXA2xRkb651Mj0dJd8r0BIsHTyigqEzv ZsFrNBhLkcolCj25rVkyNhfaMQYJ3XGDXNfP3QTPoAQCYYdmTeh1QH3V1fC8YxZAA5Z3Uq6G6i+y rGdBQLSmW9zriQ2RwRyET7IsuDyRrpkha9S6Bm8LogPEP8BSevN8vWjG0Vo0vwpdK7+RDPvA94ZL Ik65nQPGPKGr4S408z/DqPm1MLoS8OXV9LbmN8TIdeWs9pafBpbHKWG+aTHdLNSKwPHeruoUGvDu QTTKWKPkm2oUX+AwEWf9YPcQePdMY9A9kIejxfD9Vk5aUIIwDFX4K784R4Z+JWWCYf6iyP8Bz5wQ 5VVC/NEyddw7zAuQPkmmj0/fSr9AxBf9yzxfnkYI6lKXXqhufK8Tz8td+TVaM22vkLbDY6N9VPtq 2bjDPAf84Fkk4Ine7ayYaSmDD47nCe0h+QgzXsbplWzEmVmwK+WChEHJdAMfcoXmIoCmQiKOT7KP 77yChFZ31wSE3hoJPqUSfB5Y74WsKIr3RI9nqO32s7vrzqHCt2TJb8lCUHbBr1jAHhBIyulo0UcG y2SwwbJJtRRjdcNvDKyhUGM6GYDiNnJtt+qOh5AMluTsnLm6luaBJgZeNcs5NHbgjpwFNGzdW8s5 4m/mlPimlWNHWXB+tEtUOYtzeUIUWyyw0D8ygCklQx8OrjkE8n4Fyy/NuyAj88PJ8EjT7UhWRdNj T9Ue8hhaVMgDQRw0D1DKWE3DIqbExt2Z1jzSRAKdUhqiy4ac1k+fpeVaB8s1H4w+UL06Doy2Awc8 xUmh6ZWkT0N3VozClqf3NIshHi+Rl7FDaZHsblvpS5QV+FqQOXhgATv2X2AoS+ompTCJackfyTHQ 6oGZ61nNnEjIj1xQYsHdU9BX6ER4C9D96pbTbuS8Bo28YgFwR7Dako7Kn3hFQ/J2jnv4vH2pfoOK uXAofEdiDV+qt8f82WBOHXjAKuQ2aGHs9fJF51OD8oYEBJGWsTGIl5ShtcDvYm7mMoI8g7cRsshB tZxBdEJGlV9OlNkOfZnC5yqWTLak9YI4aKRUXGnIlWy4VIKDbOfhaimnZoyv3okyydIy4LAYX3MH ZKhkB5banWius4SdKWAnvl2VCXHt9sA7KRPKJ8ATVUscp4uGo6AHpQnaNaM7Zrpz+EDU/XGBF+wE ktXmv7RXTZPbOA6976/g0a6KPdaHZblvqZkcUjVTm9rpvc1FluQ2M7LkkqjuZP/H/t8F8EBKdtxd ncNebJIiQRIEHt6D67eKN4RQttQWSKdmWUSFarfdz2pzgOU01coIRdcazhR2bsa2wcxNUQrMDut3 lccoWUdJnpmMvLTdpn7PdNKdW423j/wmgiNLIcot/VEUmXMnjar+iVIZ77w4VOO/L/kSXVHJv0EV FgWXUS4MTmpmKvx9cGiPCKdSlBpBQT1fOkpnAMPGlwrzdYLrjOt1g+GIGT2iSWfgKAVWkSh6Czji bKfAASBQkuJe6nm3nSTrec5lzqjnVAqLtlKug4XA6BkxoCT/rGYUQWoquiQBCLx9XfepFXy8UyfL PhKx4qn6W12OIBo0aOCyFve1pC2W4icIDA3MXZLOAtNL3CjyUoeehgOfaxEZGZiMSAmspF9A17pC TXcQvTq7MkfM7s6qr3S/mctBBQJR9ERL8i2Tqpn5TqdF9zvdk/kBA3OPTy0+FU2o+Dxd6AIkHgfa RSd3JVZz3EsDM/XrGlcyU3TsCaEnkrlXD2WetXwRuKD61nQCGRXBgwDqPnAIOZ98MB4qOg85s6ke RYQqFB5qdMKRz6UIhBmmkjlOfs1BvrgXvhI5Dkhl1ORpGWElb/NlucppyqdX4t+zkm2gZWAbACNp S0GRy7XMR4gomjOTinOH798Ji6OFIPFvxVKOuJXSQwm6FG9EkqKBqugWPC4GD/ztSu76YkIJWAsv cmAdzFHFppSS+hsIEM/gYNAgj/e0fArygIRbr0v49BQIfH4WCXx+CuNxsO2TfPC7ff7ln/x3HGW0 LVchrmWLW1cmAXI9CeG6AOpa1WiUtKXwICl3PFSZpmBPbxfreRDOZEkcysdGgeDxtIS6UQQpfMOd tFULd2QU1IGBb8dYL4NUk49dH+CMhhp8KaoB+RwBtqXVe4XDneENIOVDxrt8Rm9ZUUyoeQWu5PC6 mr4dVVbNJqryciejCNt2Rs1VVDqlQZlYgZc5/K3FwKOC63CjQvYz0cg8IEOSZYsHhKZ5V9HdsBol +AoVPnCMTSyQtvjN9nXpzINhbn2vpCYzLL6CGqIpiafbK2bDUzbTk65ED0zsZBiY8WuqsxSZEj9M ixYBqX7BjV9QKHWGRc85RRHLpFZMlQAjYbUraA+kQPIDsk9kcOWDdmKDrRZmez6DqVWWYt48F80I WvA+rgO3R7HsB/uf28r2UKKlexBBa16lMcQ4X/H5JotvfL4SWXLX4eRbO8Nx9RX/lIzac3+xfFHW +OTXOIV2tfq+q6/07NdxB2ybXAFc+1Zz6ueLh7c8kXKZmzwRRQFkonzmip24IpBlcQiDVq9lVmoq gYKx2qKEx5SmHLUBVl5IcaIlasIc0e+lHHcYPMOsURuVVL5qFqakUZ50vc5ptasWjkdFab3ibYj6 F49SBemhdpxCUuiUts47B/QGDoZKmhJuOQcCve6dFb3wsBp48iRfGPDjBahgDjhNAVQ0/1Ee7cQU 8DhghogecsN5xFaOS+QPquv/nGjpvAZNciLVGvRr1yLMrJO6YDvptVSIy66q36slomiTzIpawqq3 sC3qsBJ5ewQRJRxsy1roAtNB4gYozDqv7KRb1VTbpNUzHYRNzDiLka7t5uYLGOGs3FGs3a1ucaxh s2fOLLVdNGeEcnWRppQrqUiembeYMrbWDUKI5otO0iywCDMrtcBEROaRKig7aRLOgepH7OLropbN UABkORPs5v/RKYaLRKUbroFR5j7ZiHP/0FmSh3cRrcNYd5Yr7XBV8uAovRY967Qvsi0W2RY6vLrs RB7tFnoVWlnIX2O+jqyotuRJyCRKSalovYwWLTEJJqDodrrtnceCQ8JrZXvcoRR04NjA/wfjvl/Q tPA5YCtZNPR8B20POrsycB6HjAgfdikXiQ00oHzptTGMakhnYYnuL7R+62VKEmQK1Y9nfi9CuU7X D0pIbLuap/4mC0C911AcXD+WHG0D0HNtHk9W28TUCz9OuxYusGQSX8nEkuOA/9sgNump+dx0Bjyc PtuiJYpIGUn05uBn0H08NRa7t+mjUnazzfK7UlZqC0aU2WWcRzyMzkW4Lmk+zaoMcZXoZTm5vo4Y d6axf9e3dqU5uAKLqwLmqrlrgws20Q6n/NfnP/kRd4tf6anpjYu+PFlHNx/7ev2jZJwSiHAt3t+k zwUhT9caW80COdQbOVNMjJjLFKFBrRlzaOprtryTIkOxOZi/FsiymtUG54s9YHKlWUvwehflokkq eVAmjVSTeHGFbQh3m+7lryWnZsncgN+Gn6B1iCkylpOeDDEV7SZzmYrLrjEvp5pwsBcBVyCvv/At Pi03C/Nim8aciuda40lt3oVjRKuGKyMsPS8Vu/JUACaR2EDSmrmYtChb6NR7cjvyPqDq4DNjl+9n +jHKp1toWBh6OUB8PWj8XdgoIdOzJYhJ5Al9Qoi5u1qRkzjV+n1ZKsVkxtOvSA5++cRWtwthcwQM ZSH/zA0WKh0x23TSu4iILILoXFNy0uEwlQJH/gsOHBkgZ93aY7EGuLqmG5MC3SQeUE+F1NL2qVax eMDA4PsdVKQEqDvVU6f3IpDL0DA2EyTtk30+g6Rs2lWjkRKgYKcw3a+fCSoH010kxOu+kH8nEUku WJvwAGL2ts4pIkWJxzvJUwpJIg9NA9B5sUCLJxA2M9QaLRljYAWMQZKlnH7kNi3xGWOFDJcwax2G S6AWAQjgDJYbc6wBU6tX+MekLzUG2UKC8hMLASffeFcnUt+589IhUGXIYW/bSa/1tKQ1lORzW6aC CQoQ/rNNII05yFwUC5ujv4QSNI8NHZUAjwH0/Jp+kdqVerm1Eacv/iAqNpElOdDy8euMNu7X+0z2 kobuFuXkulT2mlhl4PZAhTl3yZlTguG3SvTnBC1fAJCZyXIdCQUyymdgNlHubZTOKbeJshU16PFp +UWGeiiVrgQHFzQn5QhWRyvqBh/OmFe30nNTCeWdb0nNZhe06sRp5E4DapQdHMWrDD0thTp0LLEW Dwip14h+tN75QAs0cvFffobJuxSjMaH5HWcE/fHxyg8ff5cr/Vui8MW6E/KULin5k4pMgBO+wTtO vaDO8tOGNw6/0mOx5Nnk6U9eYZZSe3+Fvka1sOS/reo1FnRIi6Ntap9mpXL7IxVdSpGnEUWlOMgo zRvsf+r3nj3+2bPvJvdrLP65TPcC5hGTycIRMhZCtrMFFARBluuVWAUYTiFTUymSmUAYXbrXh0A4 hnNewWdItdhzpZBqQSbkkAkUiBIOOYcDAew3eurBp94g/iMQKpuxmgwU5iwnGmGgcfbS2Fq+9x+E FlHWHvDf9wDu5kfoJG58skfciCEZe1bewNUhMecMfxQNPR9GPhBhsURT7DKnWRKekagZe74ATXqn hh0PH3VQrlGWOHSjxgDvnx7/8b8BAL8CN7QKZW5kc3RyZWFtDWVuZG9iag0zMiAwIG9iag08PCAN L1R5cGUgL1BhZ2UgDS9QYXJlbnQgNTQ3IDAgUiANL1Jlc291cmNlcyAzMyAwIFIgDS9Db250ZW50 cyAzNCAwIFIgDS9Dcm9wQm94IFsgMCAwIDYxMSA3OTIgXSANL01lZGlhQm94IFsgMCAwIDYxMiA3 OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTMzIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYg L1RleHQgXSANL0ZvbnQgPDwgL1RUMiA2MTcgMCBSIC9UVDQgNjEzIDAgUiAvVFQ2IDYxOCAwIFIg L1RUOCA2MjQgMCBSIC9UVDEwIDYyMiAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSA2MjcgMCBS ID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDYxOSAwIFIgPj4gDT4+IA1lbmRvYmoNMzQgMCBvYmoN PDwgL0xlbmd0aCA2MDM3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJnFdLj+PG Eb7Pr+gjGay4fD+O63WQOEhgIyskh50cOFRLok2RAkmtdvzrXVVfNYfSzMBAIEDNftWrq76q+mH7 8HG7jU1ktvuHKqhyE9JPPtI4SEv+z3OzPT18/DzlpplkPzRT0z98/NuXyBymh9BsG/67Pni5v/31 IY2CMilSOrX98SEMwjCJ+cRGPis+99UL442fBpX3318wRj5t85AFkReF5j9xEPv/2/6DpcshXRQL ZxogWZEWPJBoYRCllQmDOE3oP6liEU/4hakIR19xDs7m09gc29k288XfpEHujX4SlJ41P9q5brvJ cU3BNU6FKw1pSGYBW1gEKn/ubD1+OVu7Y93/uiVmWZ6Z9T9LQzITjSKllVJENSQfiT/ah/2DU0g2 0yoPkvJuO8xNkZQ8RCwECR7GukmfqdtMK7JffLMtfLPiHZ608ZrfD3/mFEWUOtMv3iA2dtbm9xBr 13PbH8w00CMn3n6+1iN9RZ71N1FQeKY9nWWn83lqT1ZmPXZnujz0k9HL/iYmDzH7bqhlgSjLeFBa oDRg1vazGbBiwbLeyMuGhvbjkKVX51y89yuRHMQbRYDIm/zEC15uVSEZQG5F5Au48WkyV9t1pp7M scbdXeeXxJb1Pik5DMbf5N5OPmswmOsPZj7Kin05bC5rIdrZtJNhHQqYLfLe0SQu1Pp5XEK6iS2Q e2TE9km+Omv2A9NKyV4Yh4PsjLUMJ7bv1TRDL9OZjc4hIieZe+p15tGT+RPm2KwxwbXG3yRkgqNM Wj/2+sOjL8dYX1yw9U7U2P5FIjUrCpX52s7NUdQlE8po6l7GnbhCAaky7/hik0SkyDwWfMbngPXO 7C+4LULF+sYFzJt4U2D8nGy6PVrwOun2gHX73TaXjZN07eRRWmRrt1n8Vt5vmdH71Z0GAHyEmBJt b/jmPJP8BwZPoFrlYUN9uZPTe/PTx5/vfZoDBBRZudzDyRtpK+cUpRr4PHTPht2wxKORSerA/NtO l26eoPR+hN+cMBUXJYicrDxA6Z0tDjj+JfhHHs7Xo5VFg1NWuVww7e1uLWCSL8mB4Bv2HCgNZIiX +uVzpM+EqRFMUtTzOvkWWWuaLfZM23M88Y7EE39wPPU4PAd3KeXtxEGBRSinwf7V+zyQUftdy7pC ms7Y72DSyHARMyhphc0VMAI7knxBnMhpnEJf9r2MPY/klEeXdxTPE8q0xyqwK9H6sQavKA6Kkmgt aTZeLJlm6pm7zkowyPOkHB4yhTb4rFkbx4npbhzhe3ipHPm8UvSDucU3zFSf9NWvtYzPpr5xDczk JWd1HydGKWKc5WsEkAyNXd+eBlwJfLg5EflkJksgv4dSROI2Sl/cKlG3ck+YyhMKpmSEKRd8UATu 5GNlGj3660XSVMb+NYnsiXdhMekWUtRlbWWYHJZhR8QFiwubt4IzjjOVcbqILp0odtb4+dYOlxtT DjDVOgonMw9OULUyzPINd+zauEaVLb3VA4DxGpPD0IEHiQr5CERzirjBjyiTbTLWKvM+cEjGnnni SU1beuo3FHVm5mksl/D8R7lqJhybcb3mxdEPSYoZ8u9xz3QDb5HS9D99kD2rNJv/I6SXrA/vUFj8 F8Ffu5kF/I8sEQGORbLeYdxhlcNF5hQzSFPkk4X35wgA7sI0gl2TLFPuW9SibBh+LNGRnn/DqDaQ OSnPTfzPcSCLhjxFzp7dEMq7yIStKGkyR2ogu08WW990HGuMnVGetRBQ6juZXIkj0bnZsf7Lk3KG v9kCoR3GKXinTEnUqcooecG/lB6T6MSkO5U7QH5ek8+jfEq2Yh9O+Sn4U8pJRJb6/NQord2lWxFF YrCuPEBmLTmz0p2LnOuxxOm6371GEvKrPFO8XiL7hJKzB14sOAr0UFDoEfdE9wQ8odK0JhzRy4oj 5HtnxWrzhHP9b5qNbxN6Fr2KyZGOkeRSVs2Ukdx3g/irfaohUPPhpKVAPPiFnppwxWJvkg7M7GWN IxbLnHj2TEhP85xwl+okvf1d7ukmiFyF/Fosqusc1/7wRmWN2IicvatVbBSIDfYP8b1UfK+E76Xi llLP8JEdhgnVsqndGXPGBocH1aWDzlol2MIDfrd6n+rcUL+eLD6o5ZDxYFQavXNwwnGQsh3MWZmu uDxj79F/JzCSpVXVuPisHcE84qNbYL1CO0QwACj6TiDvKSrxJzqIGWdcU8NayPLVWl3hmEBBvjQX tcM66YCEIwXkGTdGdA+Fd7or4lxNHOUaI5dJGj97qqUyOx9lGEbxDDtp4PFaT/DK48g2493hgDlu nk5uuxlwns3BH10gVP7eHo4vlWFBr7sSLHI9UVmoN53HduDHYL2pB6H+raX6e+ipKH5ubbczKK6S IHuprKLYUSkdBAyUla78tJwDOcGy+KDM7lp6jr7WVEzv/r0zpRpnKtuVFSFH7Tm8Zp1wHZVJn7UJ JXh5YqYZq11nd1L191hnHZbysMriVXmYOnaRq4fQOxy0bXHFTQRQKlxx80hVSXOkFvelPGTCb2oj rVysRpog66k+y3iU1+cIvtYEh8MZ2yMUYdzMpIOULDtRmJh/YumqB+EgFHRKiKt/KhbkKUGZcg+f nEyjRfL71eCTRX1FfrPBoEXe7HPvSlatORUQ8fZkzdOzObKfCe7jGnK0rIza6gH5xbtcpC4J4KYQ fwP7RMxSw6iIFNu/oCtlEyoGctOKFnVUwhMjHBLSdLbrXretZdaZEcuHllslKhWPpFsjFXABPZ5e IEDaKFBRspvXeHWD1BQf+uInh8aCeb0C6wKog4Ki2emJxkHz3UVUgXpbJo7EtZ0Va9nrFfClgkw9 hVql1TbkuYrXw5ruRvcB3YuQKsp4wdmzywpPnUr16N+4lIveqtK3GsT44tCpOnQKh47YocngMueI RTaWgqU99DKrtSWh4kbiI9Amx1WVUYiyMsqDPA5X4KRNhIYcyFEq7O7K0fjumkNGBQNE/6VZtYEV FdGvukCXnNPSYRYbh3yfQJQepO2b0Z5sT6Ej4H+moLeBeUMN0jTNypU8+aKGx/r7219X0kd3vW6U LnJoqwscJxF2dhFBFaFGISZx3+1n46hYAItth2grBbCkATNov+QlY6/TznSS9PnuHcqa4QcuPK9H tFoNRvgB3acj802ucjoVDFeLbROxLeE9/V/6ue2ULYzrsD4vw2Jlnmohpe8r8kycmiLyfFbj0NeS PAja6n4gmuOC70LsHt8X6cJ8KYMlMSM/17vAfHmV7rE3+Yl0ndjsTd1NA3WLq6Rt6qax08TiyPIz bqD4F/IuuXOFsMNk83azmuTJYr4iyKUjHbU+4xaUA1yAYalNpZWctFt99LQvvWgbS6lPOk/XzWr3 +hOuffzZ6DmuloWsNrSjw56IY166W6X86JtZelozPcuNRmiOsta3v+OUvVWvXOp+fVKROyL7cKVm +WkrCFm6GaOlHgLYDFjfz2KazENpTLcDF5+lxlss3SsNaRyQE8RRGUTC+SRRVxnSME3oPyH44yZ3 41oSzbOQ0vtloMLKNUbUE/X3kV0FlP+Yl3yAW1SVNCg32WQON0VMFkXr5nGVjhN0d5T2kIWx/Qfn 1bbjNnJEf6UfJWCkDEVSopInw54FDOxiB7GNPGRfKKo1YkxRgkiOrf2MAPnfPVWnmqQ0vgYYjLqL 7GZ3Xc45JQp5HiYFhEMyCSdSEwSJSd28Jp9K0iQqiHW3gdJjim+49/F8HO2H/L1RVA+Vn11xRojh MsuMMD2pVqU6cgzZ9/ig2ke+9kD+VuAwon58YC9LvnYnSoGRj3VOR4ti1tnVIdKkj9EyCqyh7zUU Ytp0Ng5tpwz+TvL/YsxVEqyie4LEgN//kxAPgYvmyWJl6MTciIc0MeXwqtbrZTPJUOgRSdwUA/fq V7Ekkw9OclZZW5BHbdCQHMi9Z0a2SqZToVz2S/6zbeXVaG9ooWhvxHVamciipqOhCJ/Ir97/rjfS ++X3nRGtbpls8ltXteWpuswAhN2hq3JZlQHM7qOx45Y39QUU0FpfCW79xup+9VqKOxGU6fis5k9J edd+4w6z9TxJo0xuEmvb8zNX4elklBihvukga355ZOP74VvfhZJP1ol8NwmC+IfyaWC7WRD6mk4i eWMgISXvVGpfs2FXVh6pLaUhj+td+dTp6CwVKJkjk41MhOldU/7pv3VuO4tIPAWnn6qDKO4x3c79 bppQ0EYi7XNF7+Wka8SDsSYjeyRpkbYmpv3YaG9s+FPhHkCJcygANYpLuK+3B82P3jD7iRtqOIZC j0NgNpWg0oI9ymryUaJx8AcazxeZSqAKGjRAAOJJvtH590OyAGivgbRLtHFp+gMHvqrG/rxBEwKY SukRtEWcCuyfZ48P4j/UXHE8HIC0RW4vlFMBCbDKabpGKORtYNV3nBv9hHOvzjo41zqQ32vk9tkd oLvc27/hSJPf6ct9Xte+akzg9d9cQyv1+m64+trI6ddpqlyKm6SSbdBOaFEwhBpVmZuJrBQLWged dvKS9BCw1Q0Ogt9naEB0fLJHK//cRgztJ/nvwbVienz4b/OVJjPonijOrEbOpm6QxxKGjHorsmzG IaXGTQDl/K1VI23NeDDRw+nBRJGtvlBB3bFjQRlmy9WobYrTcJwkqMy90qbgighz8FWqdAVuStlX SkXnrQelhtbKdr2R2Pc9jiUhBNu8zdlX6eZnTzzTK87dGzwNDQA6nMXomL0QS7O+w0PDcpYACr3v vP6ehRKodCA4t6ItJGGgTuXpHeK91RHFT6fjtu8T9Ju3DeJLMCbU7qTeE+wpF5GA654HwjRSVjH6 gkCt+TXCcmhZaqI50popbQZJPFnXEbC1fW16MbukxPwqXS8GspHjLobSe/Xrh2uZOpKhrJzRup6U k9Sa0fdIatwSgTuJ/sVu4v1Oe0WWEn7cTosIsH6i/RwMh7J+UguVqKjTvc4PFJa+LQspRd3MKZ6m k6fZywoarjULLa8cr9QWFG3JVM8RhG00OSlVArrEj2ppJGpoWvm8lu8jPs+2vkNSq/7GeOssSSFR ZUfu5LniaRoaTwELb/IaAQjlKob5cIGxf6OFseRiYTj3r/1QberZY11dJFFwUBWtmYOAbFyojaVg x/11mel+Fq5P5dbf4fjIpo4pBDlNOEC5aZxCyutWt3W7Ch5ehAQ4iJybbS6yCRSXRyARw4MEjib3 aV8We5w9nHGVjHmzLyKhU5bvXhFWClJ+KxTrRkcXiRDcWKpbM5Z0oiHUeT0XTJLRh/4W8rHbNLHO arFeGGCExklkUctJ3ZhzxC3t0UGs+sqHK8TROh65OQsbxnaFM0DQ7bpaXbCY0NEqykBaO4lfipQU KD/i9CiBcFzd+KtpHc570iQ6MuFKpm975968e7xzvi3m7hcm8Vnq0n/OD6dREfg73iKeI99Mcv9b +GOc9lYknPUlAokbvuaf/PAJ5oBdwva9vcRyuEQy3CLVQ60noRugSbyHbTvWvTSsywlE/6vXf0wJ IwVaV9g2RBMcqqi4dOu3wcTfluCE6plf9acDUqwCkEnzs2elotCKXKu6dluvg6p85kCLWRWqPrfS ztxnp7XocMweFVaCCvK8gYecf/Y0XlxxKSoUopVbOFToKqLQVeS8RLTk72eM9N72Gd1QHHIR647o 2BnU6ieauXu/Ny/deHh79elBEy2MkM9KO3J+nl58Lg4PnJVIeiwmUhzLhCgEdIFZl/yfzBQn/TkS S/bXRyHyTLgEy5ENSs1ISegp3LNSlYXBPn8uzZ8/RmYGjlG67qlMttF8eff2tzeuJg5JEaCG1a9L wvyCFaJUL6AhS9q96USwQj7GJ66zbS7uxPmRr5eEb+ybF7Rg/VfoLRvY1/JDVqy4dTx5JpeuBCBB FJ9qTiRaGx2eyca5TmouAjJ34zky64/wes4dCuBiNtn3u298yQdPXOLsFIrXqx6vkeZXGTYAfWg4 2j1xHDJVPVLTp47Wz0R7TgpOOp20KoSQAT1IwI+tYsMSiddH5G3dGFOY80kod8MbnoEaPO8KWmpX GKe052P1slJEbq6SXhYj6XEZVox6v2nztq+VZo+9VLhBOwTjJlSK605i1IocPVOyWyuABXPR8Qtn SkCxC/xMWqDd7OqMPbwtYxMSQvgK2AXZElDvNhcXyiW6Z72ArbLYSGHclBhP1mwg0KHqb1Wa4emm 7AByVyI96eFlmQaRfjxrWb84AlJqkY7YNRqfYFs2uULopgq0Of7qOl1lt/JHvxqtQ2vQNqEnkqyu dv+AhwH3+ANpI4auKj96ozLgaJomL+rwBXdIjDRYpzMHW6ORQqMaB6GvUn5tUn5FKa8RISNjy/V9 Mrp5OnzJwig6AuKzOR687vjPt+9eU2O4148fOGqU5n8MgGfho7cdwoDDsQXsweBwA0HatNNFJr2e Uk1LmeC/h73xTSOBURzY5pWUI3sllGVN4ttURl0oJx204rHVJNB+48j2nsDWGhta71DW103IRmcX NmfyGe036+6giza22JFFd/ySsW3zFUROjULuU4uPImNiVSsDT0POq8AgX0HtsrvV8VyxaqekkUyq ShY3PnxZD2qLXONVjE4FLLnfXah7jVVfZklIeLAS073mr8vd43SW4WoPdsOy+QIKpNGoeknKAwYI TeqFZLB9UYTpajEq38VqYK2lFWGuSF1vFemXRPp4wknBSacTjffSnjRTnleaF717R361PkbZA7Lr QIdXpkfX8/sseampBzkaYLy6zLWkEInQJqaT2rvQuorxQOvZElDf2zlrWb0b5a21ZVL0/PnT8uvI bLzrV4VWcgzg94PHdf37/1wjJG6yuO2hCI7slKqpEsTL2KyS6BZfJDJ9YBCTw7Fhg9LqJtfNomhx 0ba+8NDDUHyEnLKq0I1mxl7elU/m/YRE8MW6IbpY4bBM1DnLiaX7FlJERyUQDVRsHJYwR9LQlyQT qJ36GyVnZCxDBMVXuzunWhnSzNH+mRuyAhU+sskVo8YD6Mfr0L6k2lMttKdC2+vVgDxsIZGATCpT 9XGT6wQHovWP6XwAlCtNmvYdQDa0JWsTpUyvRNNrumQWJhNFEt6GB5eKbs2FVBVy87wxgBF3FB9x YLpp6wxJPrkvA91srHUK7lErmCYE3iV4b6hHkTvhmxae9ngDiu3xhAtIC7uzBk1aJDmWy6uKb38C v/NB7ZvbbiUObkqHVnKhukixYkHMzwIBi8X5z77oLGWkP0FJszXCszN/m45EDJEVrccY9iIs6Idw diUQc37T3jlfhiuGUJjLI4Xss8kK2/62KBb9paKh+4u0pvBzr5M76mBHUMHopOaODNzo1yPefi3+ B1mIg7UkolAS/Z7qcukQy+lK0lQ2x6E3rHKRJrlJRWkYr3rVOA4FsbqPedzNNFVVCiM2OR11ejrR unW7My1SXpoLkgZqccTQlBTX5joqpkIDH4XuIBTDtgfu8ey5sF/ldztftFc5YtScrKxej6q9dqQX rMx13pJUVF7zjXpbapbImIzwXoO4N03XuEP+EdBnG9TUdyJHHRd5vihVOdKCaCjqK234V9vVstsw CATv/QqOrpRErfsI+YBee6rUM6mpjQSxZVyr6dd32Vls0uYU2QSzC8M8tlcRfTjITYNNr5HLdAUR MXjVKI/BfohqBnbHc9oE9+FsOW3aqdd+sqldwuf6CX+bbipLEH3li3/ajm/o1RzBGsPyD0AAYEDH EQ9sC9MVph2iA/103wJGFd2PFb0jI0IbEYBa5zkyEVA7A4A2gs+MxGjm7f8QmQx9/VwYLl21CvFT Z2iPbAYscl+c+nH544SwZyELykimRNwLZiLO8P68IY8tn8oxdYTdsOUy5nKk8GKPT3pVNg1lI8R6 FxytCxrSaPRemFJnHAYufsAU521TDuJBOtupd2nnROGDp/UtakJpIaSctEzHy4uLgoTHh7xnOk0N k1xEG4guKA/Z2fpNsiAaHn6lxYUD7nK8YsIm+kgS1IlpLciZa6tRGzFBEOiS66fa0RPtySAcHd3R ZRsna//lzLX2B5ECN50VH6bc6sAuy7B07qvWigrJKBiQl3h5u/kFhWLcPwplbmRzdHJlYW0NZW5k b2JqDTM1IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCA1NDcgMCBSIA0vUmVzb3VyY2Vz IDM2IDAgUiANL0NvbnRlbnRzIDM3IDAgUiANL0Nyb3BCb3ggWyAwIDAgNjExIDc5MiBdIA0vTWVk aWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMzYgMCBvYmoNPDwg DS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDYxNyAwIFIgL1RUNCA2MTMg MCBSIC9UVDYgNjE4IDAgUiAvVFQ4IDYyNCAwIFIgL1RUMTAgNjIyIDAgUiANL1RUMTIgNTUgMCBS IC9UVDE0IDU5IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDYyNyAwIFIgPj4gDS9Db2xvclNw YWNlIDw8IC9DczYgNjE5IDAgUiA+PiANPj4gDWVuZG9iag0zNyAwIG9iag08PCAvTGVuZ3RoIDYx NjUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSImEV9ty48gNffdX9COZkmjeL/O2 O9nNTqpS2arR21QeaLIlMUuRGjZlr/Mh+Yf8ZQ6AboqSPTN2ldhXAN0ADk7/vHt43O1iFand/qEI qlKF+OdGlgeFSuMgz9Xu9PD40eSqMTwdKtMMD49/+xypg3kIgzAMM7VrHrbchKiXB+9/6uN4fp26 w3FW/u7fpCUKRU0WZEVZQcrurw8hLf7ifex1PfnbNCi9z36G37O/LYLE07r1/7X7+8rGLIirJLab SV151ZyyZrXTzXEY+/HwquIwTEh7FVQ5G86NLC2C+Hq0kCSwIV5hTc1FWRTzJnziKg+iXBXYmZa8 KYhSnCGI0wS/SRXznYgd8dWkisX+49LP3XZ3nHTd6lb9NE31q/p9GhttzDih3xy7WTfzZdLWgFQM iFM2AB/2BqkXm5cDO8v5Bj+f6cIg4ZcdDMzyTK1/yUCISekYGCnZegVJONGkH/YPVgfPpTgw7vl2 Ni5VkZRBiOuhCIG/cFaZLIM4d5NplQW4s/U0q82K91Vi/K26n3crR9z5j+2M0u+6gi4oovvxPg1m ni7N3I2Dsddrg+kazKHa4kghhNu4iirnxKQsbZCOg58gNlt/Gwex15FAHqhloFf6T91cMMyjgxoH NR81d9R57F+XedmmLkM3q84of4vg8syFR89bjng2KA7phGIQBxUdEqdkc85YXnkj6Y68CZ3Cm/1t QlnDM63MqKdXVSujZzXuxYpmHFpe0YmplTfU/OnJEq8buIM7Y5kXEYPr8ykjcYcflMvJyN5jJb5R cZkGkcrLhLztojQvr1Ha7W8dcOvXuAIApKv9nJnexuHHnTYOg7yI1srE5V883fuY9Yy+g49bhUVJ 4XgvohCt6htq6Yzx+3o9PbTfP2IURbe72bWF+DZMqEW+3Sjtp0FODgVKeU2gdkcZMX6Mc2l1qrk7 yOegEWnc0koP3Kif+NNrJY3Oj73ZqHlUsqVHX0Jtm8GWpFoH3HbJHiRkkopR/fhCqFx4ys8pupDk kIpdhbffa+lP9KEIDCmsZAyHQFp66vdfSL2MIRUgy9MN/V5m7UZraTRHO/BkBdbD3cS4p6xJ2Ba7 abgPy91f5HqTJQC/IAKDAFsC3b+JDVxDRBC1ZJx1S5QBmXgzUkdunZID8OMBVSRn/JJOC6d66uNG 7QHq4q4/JSPlyk+0IvfOvcwF4ly4VjxntKp7My4+IWPuQSC3kRKHFpTM5YzdGRXMCJ+RO5N4ZVaD 5r6ZURaoIblPLUYvw7GRea9kJUwXURcRZY7dwP0DR0zmDS0uG/d8Hq3KbjiIVEI5stpdeLEUQBc7 0MuHbOWSBDtpgK/vue4vNnrXw7ONeYS0XOATotnMdfNHcMXIKkzya8imi+bMwuRPRnF8ZJ5YbyiG UwpcgrXTWeZ6bddwXGK+PtFA4bl5Wa43qpH5ERGeSYRnJJNP1UpXT7KXclIGEBFWTm8bL53de6Cg 4pbbzZLV3gqpDzL8rbKQrYL7hFuKAULzh/tUKAluCIW4kccBHJMV+VJBndO8x0cHe5aCkDqXFZ5q O1OTFyiXX4560ijWB4X8QBkbxmH7Hz2Nd7i5tRK2hHwh+4qyUH9V2PfhHG0gWz0+qnu9cRBmuVN8 vpgjVBkQKYQIQIzD4I0mu4dVFQXvfEdyUIZlZgV3QzPpE66MD1JSzUa04YgtnfHtUXjr+ih12yr8 lR/O6cb+RqwRyfAj5ZMG5RuQ9b0FRzWCMXdD3Vsj6Jiz/p4V9pRceNTq74cXOp5XOparfLdoCUlD 5cpcsEQOh5KKccj7DaGwIRxQHUhNhwPcGV0EIFfpClyTb7MCG+HL2iRy2kqb1JYyIYcyT7C4ZNgi mjJibKCkypDdtW/REGnhc6LGKExs6PxCS6wkap61CLJVsQySkFjsXb4tCBNHtioQNiVAR6NGaQn6 UjGjbnPkDzwcqE97Ug1CRpoiKtY891V2XLhTS6dXIIcU9jyoZdDgghghEw/BsoLd5bUhtqXWNC63 3tlWy5ir5SzNox+RVII8QiLiC1uLg7zM0LJKinfs1Y10/1D/FVTzkPA9l2vvmZZUIsxI264ZrRDB C6uHfp6gXFS1Nyewjo7KwlVrNUudP/pOB+7tlVytLBsRrnFDPLh6nN3QM3GMbrzIXsJqDyyYlmjL KvjsgTUJ31YtlEL6V6kEgDLo9ohntCVECiZL7ZK+fl1XxiSxLD7JKznhC4KOMB/Hx4ug7lc9xC5u vpXOqw3UlgdB5ogLygoCK264+JLQZne74EbnzJpApFiqe3WICEoReGmQlfOq1EThfakhmmqN10yC vl5q/vYbPDRCih3Exln4kTAec5SVrXQlhFOKTvqwyQxCHFzYzFVGZPoAO1CjJdbfFsD3yIaws0nU rYnz2fEQ4S45s9J32MT1vJxOmZW8w57KO1I9p0pOSl46OczBnu2+8uKSCTTeBT7UjnvkK8Mivi6O ksUEl9IA2OU5K9zT4HWH+kXMXgqJv01x1I16ulCx7CUCkSv8vl1fn8s2i2MNBy4qHyTj1TgfOX89 elvUM2EWyUEZqJKkuLcRYgqXtdriR8pPUkRr7+pZG6hfqbz1r5vFozeVzQq/9/GawVOpg/z9HXtP 6Km5umYXrHkVrS+OGZINy8ayUGK+owSskXdUaqE5xQPLBqIN0Y0SEVpEoH5zd5CuiwXyhNy6mHX/ tHIPCvskYhOujJfYKYX9pEaRTpyAx5kYSOup19d9TBMCdyO53AhckuLRiidugt+kipVpBgrzOEgp Elx1zZcESm15/RX3C4LrTQ2KJjPT0FOIdzy1WuMLl97mjB38LDCzT0g7gqDdeSVkFmH1RhKB7hKk XMHKsMztdYwIVq4YFEFMlaGR64riF6BHunh48gkVb2pOzYAfC47xEu6efAFTqm7A/bNbxXK7hids lbMVid6dKzukln0DfsiTlg+UDhS5ciBupKQIh1Mjd/fyjqAo4+rArAA6fpPpF9n8rCdkr6yQwzX1 xcjcsnViLNLCJaiBR6g8SWjD9qbsXJEst0gGowb2biqkCC59OXKXygTfIvgHsXpZ5NaaWqalgAJz +rFueUpCYuA2u8nJaWsem+vrMjtFpua3psaxzVtmfWTpgakSsyIq8wl+W+n02oBz7SVl6TKbi8xP 9rU28PgstZ7bg+ysufPkxAiwJUFcZSvwjStnSmwvTVy5EYUlXRFjMXccmKCKG81fKaNbJ/ceA6L1 yw3PEGIz9qEJhGI6AauNDF/LSujgrqyKFd6lnMVfPDw0c6yfGq5uur3LR9TAsnq3wGS5KzDkUco3 caI2FKC4rd1RW0zX6oUgvTnWw0EvOI58ycv8LXYv6BIXS+hRPrDfEssOrYuoC7qW2uZgswWcSoJR iAFNETFI6HzUWZCvdE8dhh18+OkSZzG91yJ5vbwHioJH+eJvedR8evynOmk6ZmdO5ocvpDgBsKas 5Ip6C+kjFUWYOB6R4R6Pwv0og+kD1qZIJV3F6UoDSb+QPnNyTxi8Ls60aXzuWr2miSAmQujUPNlt Zq+vHI82CXkE/1kjxFIEktQGe8voXpNcAGStnqQWzC9aGoNz20n6p/9zXiW7jSNJ9Fd4pABLI+6S b4VpH3zorgKqgTmML2kyJRHDRcOk7HJ//UTEiyQp2e6uaUCAmHtmLC/ek4RPiJwnwoOWBaLClJda Cwql7QW7uRrnWOAaf5yxT3+FC0xDUc9TCSMCJOf6gXTeYDeT2NTkyDYUiNlCQKZ+cayg8m0QEO2P +Det/LVCpEmrkRtuEqfYpEW2X+Sb7phl2SxJw6dQHPuNLJyEj1+fVoH9MfKTKZYr+XN4J0e9Iuc+ /McEFElKV70Fiu3EcKNd5FOo51QkigAVJ7DTiuRCo9LO5h4cUbKHvy4iyaBXZBUrQ1oVIUIIaUb5 43LL407G7YAirLsfmA8I75AzmXYajOAOFzR0i5Fm4/D+cBVzCvVpGu3nkIsQcnsJuWUJHLU4Wgm8 Fo22R/XjoCO9YzpsIWYfOmzXfDx5cwupvgIV6to01Yr+fRygIUxbQz4cP4iQnFRduoiQCU5Sr/WC p/D741dgKIVG7RjjqSJe9IOYNxVUezjUJTpqfjm/eGReJHM5rSmjB7Fn2Xdrj71y+C32ZrM2UnQf 6+NFeGN/UcJbni6glP+RYlqZ0czEUnmnZrMQYpIHS22H6oouYTe7cAKGJVNuMWV4+0BtrecMR5gr Sp7YVnsEOHGxDv8XCtZIIg01XKYMaCJC93wTtlzw7REy96tnJzJaSUt8wYNkAvT78c6fywc1kjE7 1g96DyPLz3pkX2Lc6jynVxjYwR9yxmhyS7ZVsDVByas4fxM28oHcNDDHD85mMK2laN54+ZUkVLXn Ch7Pm3ml80Uv2JfIQIJKfPDuVARQv03zat5ccDIvWsD93rdR5LHOF3AOhIQ5c+yZujVulLBIwk7U 37fHr8IPtEv+6ERGPwIi+g2gbBwbRfhfGb+gUetQxfscsOkQYKceUzCjVS7XeFC5CnToOS568m6R ZYhEaCqjYUlQYcvLpAQ3AJJljM5SCYxw7QsmH/Or4IFcPQ6bsT6Ty7iIl6CIpgMntA0lmpHPLlDG 2AWOKTsplEszGp3XY8w1bz8n52JiiVGaBTkJzSyNp6iIppv6bGLEWqeCkkN5qkdbkni1P6fX5MUa BYlnw7+fVHjwe92bGy0nfMEMJZGwKHuZ0Llao2MPhEi8rJI0sbrL2aA9unse/qcuHgd8NI0oniK8 0y0eOulff6LLdrOqzbyQ4NpcSwpQlAo9KggLfuuFnhThz1mcjoo3gu5q6nTi8XRpvi9f9T645ouz YQnGt/sFc4+n8p4V+UwPI6KHIN6cSwZ1pwoItNArxs29fXJvH5FzCdunggLgyCT51l81xWVay7SC 6LVuzQinR1MNY73jpc5eXW3QqAJ1eA9HVXUHl45wsYDSaz16tRXlu2LB0eLpKIWZ0yR1gwEFnMPo AOF5Qo8vg9IYIRdQ5HuwhmbiVnLcLbT5Gh1vNUs4/TLIxIxpEzMK7mGZE7QAoa5H13lAG1R0E0hC MIMtxTwZLgS4UuzK2E8yNjjKGUwr2WNpiNUDIA5HXFHgZAYftRDsXgvb/OPayKfA9Yfx1cAV4vaI H6FtU8F/Mv2lNqRZWzjrfOqXeen+XlLEyZwUD92x7uznCUEKLit2twlB52Qey8WwuSINlKLEPoL5 KA2yAmW1CwyywAbPRvpdXRI/fQt++fVLYDud22ED1Oe1XuDD2Fh7Bcf3eD3V5SkQQ1GMmKO6m0PD EJqin5Wp+gGhY+B44rOiybiLNdnC2ZvP6o0XPZHHMLFEEUqq89FUSU0gqLMCe6AdEo8FmaYmg5w4 YY6FhJWizrGGHoWapdPFPEXYbD7hL7NlYrXMl0AYBlNWzrruSGWQLTADIpW/DqzQeCJT5Fn0EQ6K XpP4hguPlsLzReHNwOnNFAsPSsknp/5cxK79Ba4DN5nR/N+hVoYkvA8+rZMELPF2oTXnsMn3+cJp 5K0BThendXL/33qEiEWIAJK9S5hGPSxQhRc8dAi6WoKssz6A5Q43btpq9ESFzyMjuiImEfBiRsoV 6ztOK8YpqYR0h4CIQQcnEZ1P9+kt2+Q9YwVMopFN/1p3R5QlEjDKNS24Zm2a+g/t4UxRPNaNb7Vu 5DXTTgO+MmDZo/5DnpJLmKtLTWCBSm2r/Y4sxsfl9Kg1qgdHCVt6rWpSlpHFCcHRGChoGXKl8cIj tZ9NGlQ+Lvg7HHT9UOv5Rwl4lbfI+ndX7j+SvdtdrmHOqpInMpBn1PrDzpWvbokX8Wfpax99cyT0 3TzpjGI4HFTgtgYbltBjc6lkuSKNA0rl5BC9G2gjYPvbA2USIPuvoT9doNZW8ZuYlybAt6E/kopp idMrC82FAj4xt0HzafV5ir3HxXSGCtU8TJIor8qmd5bQvoRuuJyhPOhgCkw0BsgGTDiqoICkETEg X1KSc2EDk9KpVeAEKmsqPtAbcPs+lFU2RYlPv04iTFCf6WZLkZOEBn2NOoQk2WpdMEVj9cMu48Dc zquEOqP/JP0WGwRnncCijzdgPcr/RE10JZlg1G89tZMdnJ5jF0dUmKDzRiZT06rFFXC1AMmY0ap3 gc62KLZqgcOA8GsnPqIR3F9GV1cLTveqodxITlTBk0bx5og/8tRoMaUzTdCK9phYHwbeEP53JHHR Ub3qh72SjB7UqAxkM1AWhIulBag0MA3bg+0gj8/k8UWoIw4SkG3TY9GgtglO2kH09ayztafEIrgq JlfpyqcVpm0+5gXKyuPIR/8kxbhmUCa0IG9a0Cl0HaSZpMAeKZCEIHovzOFr8EHmT6CRWHeBn9pn jA68v1LHSpmkc4T9H/OEdLeopW2/4oAhH/Ofu/9btPI9Bf6lHmwJlaG8xlQVhUgq5s/ZtEJjLTr/ pJDvNkWWoNLJCd7KWbbXUvdgwHHKE/5RocWnDGH9CyoRx/Faldh2A300zdehHxgatak7dFTV81BP UeWCa91y0703RJSpIcTlOzLzICzobcWQFYizdnAWG8MJrPTSOQT16ILKSGM0zDQI0M4YA8vCRI6Q TYQY2XGMYDdIo13YtxIW5ZVYiaYaoAyRRRIjEGOLodP+D/9HceS9EuVLfvadkVlzkBkFVdB1zHhO 6BWlbOt4K6hE/+E99wm6fRYB6WabpfGfMtLfBX2I7wv8gHlO8JOCf6chmOobm00DkucNyk8d1426 K7UtWEi+wWajBYau9TKfcDqyq0IV1fwFXVziRZJfszaxn77jsZNg5HWlcfZONIxj5rESHlMZz/8i 1h4z/4umnZI9tlJdQ5JmGFBnhVZy1p1W9HzKENqzdhPxkx1v35VN75JkC+U+prUbkY1XCLhekow4 2mp2/uukLLPDP59Kts0YxLjdjPVZvyxdSpTimnk135YxqWQYFnBCtat1oyPDqXzJdv2KIVvWvmEi l7F3R099n2gob8ek2OPBakMnQunZBsq9oi3CtNgkWbZg4vESXIXukG5zfSNZSqXaB9Ic6NkmT+KF L5MpvNOtErXAcX0mcmYcCBM3LL+Sg5oB9IBoxbSh1ZfKtAA8Ng/Xk6v3u907XjSH8FarV90qx9b/ oEP4XFYRuAJ3PqMPhZjm9AfwWcpE/tgpllJx09WUlgZfJT9gF5aYZ2VX57Sl/5vge4/Zd8FBvwZh IvaHbqMXOTd60B1vSxeoD1esR1lfvNO4RGk2qKTNgYMFtfq6Fpco2Y6rsetRXB3nj9FCG+i/1l9W XCjgHbbG+qDpSzPWPep3AIzeXxF99kJWaPb2vnbGdAm9GfbDccSdwMMO0HeDRbvCpBrnHJU2dD2f I88SSFne7/q2xNHH194TlVYf/MYPHtCn73RL4851L9/rA177i1QhJooxEcVnlkMoUAethS1Q2aJc bYLHboUsJe8eTDnekVyYUmcXevPpjNIsGs928Y1yCAo3jlYL5/K6uQbD/yovm56GYRgM3/kVObaH CUoJbbnvwAkkOO7Sj1SL6Ni0ZsD+PbZfp+sYHJAmxU3cdnXe2I9trlUwSDgtomATiIGwMjyYRiyH hbY+jE4jaE+vsyAyok2ZCntpRJA4xGT5MGnUuHRTsYtpJKt+ZHQUOc0ju1oC1r65QLXgZwKhHaps rI98Fx0BSlKL2xy5+aIDmvJLVJsjlCgkTcoZRjfCH4AJNCK5HnL6GtOrtd1gNOrpMDCOV4n6NHLB 7ZNwjzh0uqb+4xgNyrKw4n9pdMXo2PdqtMHjX5/xzS8t6KntnMSUSx7+B+vczSj/ZhI7YY8CT5oV aEh5l+ksbjgNPF4/KWCukpdHtVfp36Bz0VCoCMgq45uoiyBMIRV2hhFjDIAaeqWMDP0sFdHh2uNi jYO2EI+mBtF0n74La8PQZzqvT4FjG4bjZXlcnIOGzTWRBumObmO3yYdd9BJRX5dFKQLbtHnPKQF0 mSzRCUohn/lwA1dCPoJrmXSWrxzAgj+GXSkIEYW4mv1CQlZDRp4DQ24/uC/fEGQ0h2A+3P5oXP9n STxpiaySQU2gzrfevQeDDCYnRaJJR6J3MkrZQKNLWThl6CUlNLI2yOW2fRsN9NinzO/YAp8W7Mu3 FxJKdujU8YDpQNV1XjHmZTu7L1Tv43FEiILbaPNAv3DE5M63MGpKzEUyDDrPxHAYY0jvyqyaEUkV 36GYSuJjwGDaoN1jDU5Awg+2YDKmEyZWK30MfIleYL3DGbls+Xr1DWl15gsKZW5kc3RyZWFtDWVu ZG9iag0zOCAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgNTQ3IDAgUiANL1Jlc291cmNl cyA0MCAwIFIgDS9Db250ZW50cyA0MSAwIFIgDS9Dcm9wQm94IFsgMCAwIDYxMSA3OTIgXSANL0Fu bm90cyBbIDM5IDAgUiBdIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+ IA1lbmRvYmoNMzkgMCBvYmoNPDwgDS9EZXN0IChHMi4xMTIwNDY2KQ0vVHlwZSAvQW5ub3QgDS9T dWJ0eXBlIC9MaW5rIA0vUmVjdCBbIDI5OCAxMjIgMzM0IDEzNCBdIA0vQm9yZGVyIFsgMCAwIDAg XSANPj4gDWVuZG9iag00MCAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250 IDw8IC9UVDIgNjE3IDAgUiAvVFQ0IDYxMyAwIFIgL1RUNiA2MTggMCBSIC9UVDggNjI0IDAgUiAv VFQxMCA2MjIgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgNjI3IDAgUiA+PiANL0NvbG9yU3Bh Y2UgPDwgL0NzNiA2MTkgMCBSID4+IA0+PiANZW5kb2JqDTQxIDAgb2JqDTw8IC9MZW5ndGggNTkx NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIiYRXyZLjxhG98yvqCNhNDlDYSN00 o5YtXzQRzbAPEz6AQJGEBgQYANgU+zP8xX65AEQvEwpGsAq15J4vsz5vF5+2W2tCs90vNqtNagL8 eBLbVbym/zQ129Pi05c+NUXP+4Hpi2bx6R9PoTn0i8BsC/q7Lry1v/1jEYerdZTFOLX9ZRGsgiCy dGLJ0w2d++YFdunHq433n68yhj62aUhWoRcG5t92Zf3/bv9F0qUiXWiZMwaRLIszGiBasArjjQlW No7wH20si8f8wpCFo1kqnM2XvPeXxNP5uOiZJ/oKvcEPsXYp/WWyirzbT+bLUyTnAj4XjuLEIo6N WRwMcQB7iTxiKuYcxHezfKld3j2dnSvJPo9bCJSkiZn/k8TQC+SyGCtrVseAElTs3GK/GJXmzXiT rqL1m+0gNVm0piEkeSB7YHUT03jcjDewsX21zXyT7Ac8sfGe3+e/CpwsjEf3TBHDETDGQgg92CP7 DiGQee3J+Kl3cif58pchrN7djHzn5zMHCkxIg/nt0++mdDx/rgrXr8xjXhyJwtdH+i9y3mvMINTz pl+yBwMDwjYg0X7RmMxUDiHXmdyU1X7v5KJrBtNXL7Jn/GXq7Xha+xZx0hbfTcvfe39JC6YUxoMM qzvPTQDbvMoIzBKyBzF/YjmhX37isWoOpAapKdpQYjQ03zmeGzmXl/r5LCMMJpO9H5FUVVG5hhcG ulzJ3Ag9I18XSb7Tjr+g9zs7kcw2GT0XJ7EI3e7NlfSMvRsc8GtLKljPuD/z05mXayTV2nMP5nSp h0ocEMJMWZTM4OFOOFXCwxGixF7neBAdY680RVvyzJHEKdSoTd1eezI6LcPoxGE5snirQTZZXUOP zJs3EDVl4ix16l0GZ4bW7JzZX+r6ZtpnjgWok8uBM0dh6q3Mz3Xfqnbn2jH37d9YF5slwqPMh9zs LnxhzzGWeh1Fd+r1HE8cqimcC4Z5Xbf8pYuDK03VGIppnDyxFI4ux95JDsLhvcz4yHDUixSOWEMk L0exkN7RKNUoiAyIcVyG84ujCNoIj++9gY9ZgyInASdGOFuJ4c6X4UFXznPlVA9/GSEt5GIvH71T i+dNeZdtBg1TSvZDJ4mXn2QsBRZMe5EsQ2qS8TXZnaTipa9vqzfV4+MagSAHWM0SM5xAGylJSmXe FTEM/Hh5qakckCpKWcFvBm+S5lE6QUuw0Ygjtkz0VyKSeJXYCGZOvNwPPYQZcdt4Dwaxj0VHf/C7 hEjeUVmyHgKE1nf0VwsJhCrdtLB3KCGAOJbTOlzodFMVwoC4DUL96i9RskZZhiPfblkmJ2x5/gFu 3vGA4UDRYDg6RYDnSmCBqVyP8sEhufZMJTp9b1pevjJGNCbvNYCdXlUzoxuQ+o+ClabRHTdCO3NW f4WHyLZrGCZdJe/cFKHMzm9Ho/Sj+MxdikwuUQaLIJ0GAIOE11LRBUaL7Ht0mXydKsXGFUNP/iSp nOFQXnuHqh9k1kmSmX1Vy4I4YM+DrAighQirCDkRvLO9TbWhQu0DSFwr5haPWKBMY2HaMadetVCa b7UIJ6/eQb6CGiSitx8QgDGFrUUqgk2HKrNGBJEehyOVGCpTrjpg80inUCyplltPTjICoCya3xs5 64hecSRaxa1gJg+y8/WRBc2ol6EM44lNNqsULUnMLQ43F1OX1VBz9boVsWlMvU6CBiiRTvEjDQnb xCgWnVASvbVJFI7AlBFA0JUzR/ra27fd6e66nMydqIcT8a/1lnxgYP1b+ejcwScQAPh4r86K34Q2 Wpa9spHAwDHuMnAM3eyOvIIyJcEyUqPKOZZwhVUbq8KEgCy9+BPO5IoN2OjIYcC2I0mRAVYbx9/V 4bjjiR58MB96JUyhW2qSMFOvLF9jKVInfO+cMEuoqUxsMHPOZpJ1dA6zTr2POdsAeW1nnJnxrPVu /v4BZ4vjwRvOY1RAF2H8YK5HpIvpCQMrvAEij0vNHQWSCLfe5s/Y2XHUCAq0bDuqSpwvG6ngG69w 1TP6PHFByUMuO6i3aNb2ndw8kdNxhHM7JGxOFWwj7klTzTjsHeX+jj9a+ehW5uMu9N7RJaFa+0n7 uRfK08R7qZ10jf0gyH6RWlEMVdv05sJnezmrsC29kLRLjtsHy13rbZADvRA0I85XDP+dEb6cBusf lpxsig59zR0u2hM1Q0+44fWtUkbE9O1l3pAUrAv1HLwrgzZT/aDdTE6ayQHtjQQ677KfLv0wb/TS SJvJHdPnh20y6pt5rFjm1dWhkYVyZX4je174iyzJk0ZwOYxW4cauZ3XK3sHHzipVru8Fc5ZJ+1zp U6CUdl6gpDX9sUKml9LxTx2ysnmLdFoV8TZTAwtM+NRHkBkJ8QVqYJgjL/O7YpB5JycvumV02fF7 QykQgZxEXHu3B24B5SgkveZnI596gDpnoSDfy1e4trn3iyrtcHVSN9FOlDz5Iy/oBYdG6gdPsTFh wyDRsr3l+IGqrpGc3NW60A85ngaSlHuK+pCzL78/O3N0+FT0CWHP84zuBrzEzjkvDXK1EkKNJkT+ F23WJrKzVqcWOWJ0LNIGztMnl6BCoabHA1dT7QvwpGnpiaGhhnI666dGRrF231fqHzPFPrxHr/mN sPAnbohNtTe5VmpplB/JRxn3d27qlYTHTCcpDVNFjRLNnlya1Z0MtSiCdxZ/alcsgUBD4wfcSg49 9bDiBu6R4/EEpS3JFVM15I3enGSS8+Wb3tzpBXM5y6RUUQbdUBkYxWR601eIHqRqyROAMI9HPdcq 59dhuxY7202odkYNQIA+mI6Rwx0EMbpSgMP1vZgZUMpezODFRkaSg6o0fx13giRdJbsH2QXp/5FH hOru/kq999BcAsbWppcuevApbBHvK/OlbZ5d1zt6o9DWw+h76tGW1GxzCOtFKTYh2pQ4lOD65pVV T1lUPnBioPuRdpRqHJXYa1XXGi9y7U0OxPNWoh2ooD9uFzH6nbWJUkRjbBBoeNNRAFrQX+wXn7dv in6CWMBpXErHmh9NL87Ejtj6Cm8Ut2rGO+rTCMRkKPXkjYpzNp6kUJBIEOTbtQR35tLIHaWghxtF QVNUXYFClqAM5XKykJMr87PaBU/WLH1rF3SB+gwINYtGQ/NjgIIPMFPXAC76P3dcJCYHZdbO0398 EVmrkVDmwF/gct5Ik9kIaWo2jsvJX0zlxw77JjaAnj8A4Gg91ZzwDsAEPIYFQJBciQDKzjDIBsEa T4ZWDnKdobyQg27ScAxBTryRz0bb4AP3T9SARB7X+Ag0uGWhlxNKhsHjj7qJSdX3oTlKD/Np+XBc 0SZCKtgI2udcBJd1sitcVOTN/HMndyg6kL696DyY3e1O7tTKjVYPuT/dK5BJJoANRoAtLj6oVFwG WkwbP+TAJICntYFIWfXSp+0Wbb3Z7mFFTiEMkm82hYiSQPSewJU4wn+E7OuLRlgGU15x+ULW/rPt BzgNRt6jIFMCg4MVDq/TVLnEyNZ1IIx4k4izwdXekY3n5Rr9DpNnkNuzJ8FIHkipVD9qlmRsBb8h Un+D40//p71MdhtHkjB891PkaUANLIGLxKVuPZ5pdB1mQxk9l7pQJCURpkg2F7tUj9HvMu83EfFH cvGCxjTQgGExk5mRycyIP76QzN2ptI4ypN8ElH1EoRrpELUKzFEaqRoos/eBxI9U2tsR1UvbCI30 oJP+kxGNjsmly1QeqvJ7qnXiluu4srEcg99cVo6xdcosq7GwdSaayjJdQb78spzCX4uX3cpVZsB0 Aw2M55KPTpyScNLkxVGexrP8nLlm4YfJVUJc5PseQQFPm1wE/GGhDZ/rEt69YYKgswjpdCv0fRdQ ZJTVt/B18l0mG7u2OtHCSd4Qnq0aDm68dJmpMCjkkN80RfRQC4yoEq5H1AyoBuR9Iz0nvohQABE1 A8ZjFamPKEZJDsqaL5zvGoRG9m2Z8ctYwqxWJPlbHNyuZNqziC6YwztxZQuMNQGiOQRVMRe6HOFW bhr05gV+DdUi8lDbH55aauussxptK4oxS+JFK5RDG8iwNAELHrAjfbvDhswjU0LiWBs6tDCrndqN 6ZIrQ2uYiiY50Ii7plV1MxfcQ51XON0ch2qGTl9o2deubx63PZAB3PRNr24qKfPiuahwc636BN5Q jTGgv6n6+1V82R3GKljHceDYEs1qnlWynsvihcm5hdgA3aA8z7QJp8yhYPgxl8LKVapyRWPW4pQ9 nTGmGbFYDtFJJkV7D0vtIZJ/giLfydqicJ56349l1w/3ekKR1qby2LZVmaVTfWsyPBCAfHWEdLmM pPone7camVLIxDbVmOsHnJW/j/iQZugHfGraft1gG3SUVYOzyTH6w4pEVpvzZaDLFXxeJKJ0wQfn 2nQinbdNMAmfT97ok5oRgIYHd5IbN5xMcayyqX8U3+DIOChzaXptC3twFtI25yI6QBbAhJ00EOwR ybBMk3BymaFmTrW6GCc9Fn6fqQMFK4BGzp+oc+iambbF2uuS04KSzQejgFLNIkc8SR+RpdmFM8Sy P5eGkEmAHMu9ppDWtw1tJxvZqziPjqSD5K385kZvqJjoMa4ryWwjj6eld7oa55490peuHFhJQpGQ A58i5/kG6Pbzw2e85M626YadIc03k6OFB+VC4Epije/Vqau0Z21LLBSxGRZNFnppiwbK0qFwRd9K O0O7PN3siNnpeM3XXjdXX5Z96cY68doBRV+a55JrperwOK838nDS45VBgoWew1eM0cKOdBkkSfLJ 3i6OiE9nr9lPC0d6oLBEHEm3VOjaNasNy19B1QMinFotb5DyATGCjSm1/9qP5kgIdJW+kcjvIJYH yIV+MyUtcyqG7MJ8Mb0sKd0n0GuujzBwRDNjf+o/qCv8qTZS3f1R0itwv+YsgWA8Lt0Vrjeo7PNx crvQw0arIRe1wRhEyeJYvf1UQgn1pvWN0vs1pbRfn9fJv2YG3loLr5O8dXc3DLUubU58GOJVrEOr 3CuZlwkJ/hjxKcuojhVfnrJqxEO+YRa03Wf8cPIVypSXNxjhkJTeYctrjK2OVdunjUvb4U1dZJYO prJps405tbLKSwR4UlVsmYq8qcBYZx3yw1Dzd488MgzwAs0oq/RCta1FswiuEADNIqDZwfm6Mcfi 1KBRMN9ICsIMvgu++LRFmtIsVa/2tYRUEU7Gpd8BvK/rIVed8aeGfYwSt6oYcxvoj0Gke0aL6gv0 9r+Fu8Hk915ogcNmsn/WGX/t9KEUwc25S6+UJK0fH5Jwv5CHyYLulk6whg8P5qUkMagLSo+ktmm2 nVKJ2HglAXNa9fR+M9FrAhaKpwtXhXyVXdE3Y8dFRz9mF6tZgZcE86bcZLalMm3S3gw4oQuxBIfF SQ+uKiAtt14HFNfdJFZi+BXQuN60170ljh8M2JYIVCB7r4xLOlHx4cmjAUb7zgnEzKHgSqRJg/Rl 0almXthpY6dYvtLJite+falwTnl7q4xQXpWdZZp8ZlXqKrrdVH/Lwm4yVfPvlBVzQiB/juzZphD7 HKLPFSEnwRzaXz6jWziVMVZaItKRM2cKuV++Ajp8SsDSSWBGf5JfCK8K2FM7Y4s08FYhVsiJUE8R +L0gccRfaB+qCqT50s9YSlKuT5MYlJCDM+wYxVRtTRNbiAhnux5DOptW11pBGqY5/CqclaKmeKKs TDvqIWONGt7PoLxXUJbHgTNN7JRQnNqIhPlzqUmDC3SlKpB7Bycsj1f4Fb5xzy6zLETeMm69AYXT 0PPmYJc5yCmIJ7J6XrinJ4T6/9XvjZT+Ffs8juczb/83RG02okWUl9gzftywf1+UVFqtdOSSOq0A UCtw5ltUAcWiXJKpFxQJHQqrF21hGKkR6rEWk5tlcUawYpcSQ0etyNKn7QcxprLqu5FydQuQgvPL fonlevVkT+EI1+w5VbEV/OC9s5IU0tu2Ou8MKzuZ9CiVKCE66X4HhKEIIPK3rMNDq6pYrPNcptZZ VlBM9YwiSMeK5JzLNRoXHYSFtp0p/lIOc3RQDxCVmflGfErHC06PZ/5/sbBs/vXw82euuniyL3Z0 tHJ3ysOyhc0P2G8Gaz+e/YVRRaaWiEY6OYblAWjdnVJOk1XfQEG4TxRE2TovjvJErosecPo9Bxu3 a1jjLNngcSKXN+6wCkKOMr4SirF7zqm8LdmU06HobDg2uZBLOTRzQ+s5bZ7a3B2v0uT05a6vGZcm Mu5oLai1FQCXNydVW8ueEa2YXg2/LllmDYkWSJ9YpE/UaxF0basvKVjQQ9htI3NAkHUIOWL5Zxwy t8az/Jzh/Ine898e736580xp7vwk2oWhCXyKvND4e7rV0Ehq3xNx3/3nz6aex1AsmOvcJEfwTbV+ Xd2d7v79xriMnIzv3FhsL02/HuHzCDb1l8eFUnoHfs/ihic7PfB2e0q814+kdE097gEH/pBSWH/Z eBGlJQlCguD89sk8fAlc75WkJnbhZLmuS2KGdWfFZQKaUm3ga6p9JHesqpHqrlTdaOxBVs1JmpbV wv0+VCeU0uc6VkO5pWgv0pxQkaudkNYmn5yrpcO8nJaHadelN+a1A7vk0hvjXeBG/htJVZHypG/y Rq58UDvGDE4sd/6ccJWZOtHIIq3AOLEwjjxwXbhBlZV2GR7LAe8yjhzSjFGnq206DXvynquXHpNr xsvvDaZE6DxURdp9aYmif+35bOYb29p5H5H0PtDscSo7QWlCrJIAgrieAI1OLR8z6UZ5K15xz8yV g7wzVtXySJdS1jSCXvRFtgIFC4OuG+tSQ7kivCXM5fJQ4IUeoeRWUVk68Rod5RX5qirwUNRDOpnl gX/sEQLxp8LGVf8G3x+U6ynl9D0emg3Hlb41guABZzO+bXB+4JwngZemeeCpJHFIr0WK7k67G51V 6/BMshwZP1rriohqTdPgQTh/2ookwoOjtjNsyG4ApQPfxnybYag6/ZyqiRL703VGsd6bVts6aMA6 coX6RpeeVzFvTw+/vbXFs/UrcKAmNVfd7VXnLr/uZkM1dI4YVa02mz1pIRNoIWNpxbMe66qS4Bgp BxffaE+ca6TZ1filqOfDbktt881+BBMz30eWJTglXcD3qGdO6VHAtgOAE84PAldE5xSXYHtSdi+Q JRJIstn7LuUe36MXPn/CVT8mmhZU9PqvaXFAZN8H5pqXEpSE6zjw0XIHfWvanYvBZFhqlQAOtGCU JMlqzUVkSGBVTfbEAbX1GeSD8CPR9WWWiG4LuZRPjudqJWaf4erC+K40XfP3n77vzA9ghAGgG3O5 ymKakxJJ+1pupUPFdpTOXpW3uco7MYHpKsJ9ea5XMmadIkjUKU5cGDovnGDIACgQ9sm6z6KUf2L4 M0cZKMsnzhOhLRcEjjCMEEx/qyns+/I7f7GjZuiWmc74Z+RrGpq1qk5Azfpq68QQdSKNRgkYi32c Z0V7IubN7LH+ieOiw8GOg/burGjGqpk+QMO32d7bU1kSf0wZE1tYbNTDksQhCfB/jVdBUsMwDPyK j+GGSVLgzAz/SF2n7eAkTJIW+D2rXRXKwIGTFY2tSLIl7WL2pfVkWbNCNZyY/wMzItBR/I0y6ks5 EW/Yn56Blh/JQx+qPQarAf4c7snwwnLgOhGKZ+nW6TUUyWctxXiOnUvaflylT/b+0M1O/JoN/5rQ q0y/LSJYCrfW4zZV/HFxG3c4Nt4ALPOtnl3LmWcDMVMZesBYScS+KFkwOoElV8+cec5VNSJl0HgD DfP+RQpY87Z/tUjQQGW0v3awbr6AVOMVqcAwEvKwlbTbccHYH6QYppks5QM3qjdcbW/Ucu9IBV6U 0yjuOOp4wrszktIBdEi1FwQt+a+cxbp1jzCu6Xk3PymEcZQioVUdOkXuquIVdYmVXEWq5fgexskv YAl+Di69abNvK921vcUohxOITy7I/mEKZW5kc3RyZWFtDWVuZG9iag00MiAwIG9iag08PCANL1R5 cGUgL1BhZ2UgDS9QYXJlbnQgNTQ5IDAgUiANL1Jlc291cmNlcyA0NiAwIFIgDS9Db250ZW50cyA0 NyAwIFIgDS9Dcm9wQm94IFsgMCAwIDYxMSA3OTIgXSANL0Fubm90cyBbIDQzIDAgUiA0NCAwIFIg NDUgMCBSIF0gDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9i ag00MyAwIG9iag08PCANL0Rlc3QgKEcyLjExMTg5MjcpDS9UeXBlIC9Bbm5vdCANL1N1YnR5cGUg L0xpbmsgDS9SZWN0IFsgMTc5IDY5OSAxOTEgNzExIF0gDS9Cb3JkZXIgWyAwIDAgMCBdIA0+PiAN ZW5kb2JqDTQ0IDAgb2JqDTw8IA0vRGVzdCAoRzIuMTExODkzNykNL1R5cGUgL0Fubm90IA0vU3Vi dHlwZSAvTGluayANL1JlY3QgWyA0MDUgMjI4IDU1MyAyNDAgXSANL0JvcmRlciBbIDAgMCAwIF0g DT4+IA1lbmRvYmoNNDUgMCBvYmoNPDwgDS9EZXN0IChHMi4xMTE4OTM3KQ0vVHlwZSAvQW5ub3Qg DS9TdWJ0eXBlIC9MaW5rIA0vUmVjdCBbIDMxMiAyMTYgNDAwIDIyOCBdIA0vQm9yZGVyIFsgMCAw IDAgXSANPj4gDWVuZG9iag00NiAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9G b250IDw8IC9GMSA1NiAwIFIgL1RUMiA2MTcgMCBSIC9UVDQgNjEzIDAgUiAvVFQ2IDYxOCAwIFIg L1RUOCA2MjQgMCBSIC9UVDEwIDYyMiAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSA2MjcgMCBS IC9HUzIgNTggMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDYxOSAwIFIgPj4gDT4+IA1lbmRv YmoNNDcgMCBvYmoNPDwgL0xlbmd0aCAyNTUyNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3Ry ZWFtDQpIiexXzXLbOBK+6yn6SE5ZNAH+5+Z4kmx2xxXvWDNzSM2BIqmIuxTJISnbmvfYh9i33P4B SdlREnuzvm2pSgTQQKPR+Lr7w+vV4ny10qBgtVlEThKDiz9uBKETga+dMITVbnF+2YeQ9Sx2oc/q xfm7GwWf+oXruK4bwCpbLLmJqu4W1r/hsmkPXflpO4C9+gftolzZJnCCKE5Qy+rHhUuTP1qXVZF2 9tJ3YuvGDvC/tZeR41lFkdu/r/56ZGPg6MTTZjFtF887+7wzrIpsWzdV8+kA2nU92j1xkpAN50bg R46ej+aSBjbESoypoWymNC/Cj05CR4UQ4Uo/5kWO8vEMjvY9/PcSzT4RO/RsUsJqr/bVUC5X265I 8yKHi65LD3DdNVnR902H/WxbDkU27LvCGOCLAdpnA/DDt0Hbi83TgUfL2YM3LTkMNbxZoYFBGMDx PxmIanw6Bo7EbD2gJjxRVyw2C7MHy3w8MPr5oVTHEHmx46J7CCF4X3hWEcaODkehnwQO+uxYzNsG 0ektcfzz7V4fI/PR/bGdyh+vYoIkOUUzIPB6YtTH4Gps34mstpVvX9afwA6tvERn00A2lCKpe4cE b5sOu4EFuciHlD9l1UOzgWEro4AO50ZqLxUiVdZc2kvPScyOtUhq7hTSyQbGswvY0y7ZLzBG542Y 8Twxe80a97QusHqwlyF2aKi3EbkW4qisjTloLIkvbzyXewp6GS7gY/C7AzBtGjiRCpNp1ylsVWB2 XeG6xNoW5Inhjg7iW1DcDwUdUFt1WtkRxie0IuqGHlJuDfZSkwDXFWm2NQtr/uY0OjkPx9d7/uLa qhJFdyz8zDdTFImZNGjyhb0MLMoZmBCsy4Z6dU3/RYauwCMMtMmSPDewFNa8BLLjufSH812az50c NrRc4326eBqeu+MmyDpbWUbPlj5lO6pPWeOSj7D6QdwbCRRdf7SbzhqKq0Jryx0Ghs/48S1HJLAS WdnDruBWWqOvoD/0Q7GDLK1hfbwYj1pWA2xESbMTJxMkpLmXaZiE2qo4ttBTM+xG1xKICEII/8C6 LTFH0RHxhG1Hn1vbc5RV5gVdGNCOsVX8sUcJBRR6EPfCudTsNo3Id+gcdrRGR5PEmW86cTGizU1r lYwoxCJhULje99DimoYUiz52oMarzVIU1ED/FUYFIootXdMesO9ne4aGVGUkrWsazgZGOE9n6+Dt 9buLLwBQeeNF0pWSgXzp5OSWIYjovpWKhY4xkmYgJOE1m4FOoEVR7OJ/LaOZ5AXKQdw3w70Mn0Ev amUNY450pw9mkbdlC7GlRPdYrZlbmMG0MqrOCO/hpKNmzWA03IvGCcbLucbOxf0jBwvlia6Wb1oJ 2szwjpQpvDHlKDFKWQfaFsOIwzM2MrN8INk0U0RVNe7BqhsjJLNpFLbylcm9KDV6MDEavaMK9ryy 0swMnMDfHA5UO+ITQMTIQJygC2y+CQ7+x8gr66yiWMgxahhshL6lzOZpLdz8fHEFd9sSB0+XgmiO SV+saDnYO7qb0OSQW6o0BDfJAz1sUm71A6RZJkmjp8ilhEedXMbYmTK1ziGX1pA6MPKs+DH1ER7o InL1N4iP0iNORsNHjjNGQNZ0xSNCd6K0ezEmcP9EaTfqQy+Yi5VvbgcD0cM6azgVtwkHVI65tHCD kpuS5pY/KWUSRUVC+gVsGm5gXbozTKFvi6zclA9Su1Iz9cpSjN76FfGu087hK46UGxvGmy2sf/Hs 6XSYnbWKZlbrMbP7aL0rKFkRvUj5UwlkvrxL4IZP3kTP1DkxDvXhb2umK4eBnEqJvu6HbmYiHtOl WmSZMCMu9shwXoG/5Jl36cGOKFjP0JUYFDrgCSFUpSFDPdyDP8H/KySItxfawxsbAoTY9zE53pXD dqY/VOs8rJQyHVNSKtNzSPcYBy13OIjQgiVP3hTDGIanYW18Rid3Iz25Vi7+W5doyr/24/DIvZSM yb05t1JKWcSeVEhG8xiXNUn39CnOyLEUQOzYEN3K9R3dSmJ2a8HNXmB/D0okc4Jx3SnJqWQ+wRoN 6b8MXGJ0PmKR3OB6T0fWCVpxxdmwAaq99zMRMJyAUqYp6iVPhD3V5HJ4Dt6fdCknsmvocxJcCqWi qxEeVXwqe+G9hkxtSsOeXgIsU+7Upsbe7JH1YBC1TKKI0G5MC2IWMIHZcpOYF9W3vP+afV+4zSfZ pyYOzmHKyb2pDvg0KLI9R6ZH1X1fv8Cdndj7ouvSA73H6F5CH67f9PBSVzO/ktzxSfnjHtMLvSQZ HFWxbOU1JM+brOQ3Ul/K06aWuo0E8xehMg9G58cSya7fPPUU6vtPcXVxyZuK1ffITwKiTGxdT1ke syaR/Iuffnk55+r5bpM5S1JeYtuYLbVFB0/3zLNNmOvgSCw4JUSSEqIpJQRHKSGYUwLRb5r2LRu/ J/y8OW35Jm19qAu4fv8BTJVI8UnL1eJZHOFJm7tzXVamLl/YEbJW61cCsbIu3xOtxsqDuWp4xY7x 9HJdDgKbCKmjG4i+R0QxNA7nx4hHjzX5uORP6qDPucOPFy0vHo2lH2+Ip+IV8Rf3yo0SrKWKK+tX 7iKht5z+7/Ci5rvQ/khEPR/NItrp403gB4vxppA+Joo/iRydQXzGvlEsD6neEYthd/GQliGY4d/y eCHjRt3L5Ql57SXTa8/kiQu6Fivn+9BkTEBPi510G5bJ4Ct6ZmkLeH4pCa5jUTbIw6Pm2dwmXska zETRkT81gpL/TQTd/D+Cvj+Cnl2L/DnjqqMISixKrcpi4u5JBFHfRNC+5WH2DpYmpbkbPwgXGimE 45u13w6X74HVZ8nAumzqoWsqfHxipdik2dcItka8KT/Au3AUfZ+H6Illq8CUzvfEmgci1h2dPraI QyJzpH8MVCSKCC4EFssIXSm+QjCyaQU9HpTVnz2QIyKImasA7yYlBXD9K2L1xSuxCgzR+1lq66O6 S7SYxxt5lIqEXxCBNZ4wGE9IE3NTwHs+oKnuckBq8xH5NUbq5kMeYSNy/fghgLHlBwa/l1WT/bPA pyYjcJBnDWiXuy5c/eXPM+DHKgaaYFU6qWBVhtIjfB/aMkOS2TY8docMKJfVNs/vy1ZmL+dHnj62 cM44nsk4zNIn5tJwc0OGYtrRvwE/LnD3in2U1rnMbTuZeYv0MLTKHCMtFcaDINuYRbtUNONzjkpU 8fk2Hs569a28Orn46TEQjnmQApFOiVmBct5ZzB/X5Q9cvb++eRpqQzf2n5nc5+eJCkcjnISPvy6r ipg0teN7yq4KExYSb2omGHMuweQc+iJr6q/Wvu+xUDLFSLfJQB1gXDsh/sG7tz99eLpz9DO31mrO j7HsHSjbsJh3nLnPkUsUO34/YjgLi4qtA0EJfbNGmFt1flfmtqK4xyAiU9+sFn8sFJSw8LBWxRqC AHNoCNpHj4ZoK8axD12x+O0HqOc5iGHYzV0kVxqqh+JqsVn8/TPlPHNS7rgx6z5W/XiGphmk6vVq cb5ahYCe2Cwok4bsLWlNyxMH0//uS9FBMJufKa5Umjf36a7F98d/GK+25bZxJPrur8CjtGUx4gW8 PCYuJ5vdzawndtU8ZOZBpiCLG0pURNKO9y92v3hOX0CRcpyacpVFkA2gge4+5/Tbw6EGWFB9M9dg t0h2K/xmxXivqMAmvNkQtgmoFR4x/q78q4RqnpyZUwweqkenSGfKRmkZjghWbRT82NSRj/KdgQvw 0WyMYF8jyz55YHTQlLRdL+/rrnoF3GJ/E3GhxNdtj4zjTuQU+VZAUa75VxlDXh5PjJEJ+oazZ6Cc 0AnYum2OpmQ8G2be80DXNqsDD3HnTrYxXSPWrXxxZbWp5jl2ITwcJshh7v4m0cyGEvpCS5WivCSI AVsijLkmTSQZE/kQJpkN8tfTZTHagQKrl/SL654a0pkF15idfSV0pyNX+we/5c8yJ7G4jWiaOYJ7 slWY5ichwliH0FYkPJEnK/51jHiXdK/EdClRJT1u+b3TWSJEUewrv0yjD/fe5HCUG2tKXpYXb91a v5Zqv+f3EA/ixDyd6Qck6ZI8WPmgyDm0BMIoU6DULiUT1+xstZMhspgcpzX14sKl3BzyKEStnujh FOnZYQWR0J0VKRjTZqMJSeqdCNUJ9nszp+OaR+QSKYUl8W81j1mYpSR2+FXNbxy/gWzm0X95irwL zLWYo+lhm4MOv4pRJ7uUPGp4yT0bSPYucgpy9kJtaDsSLq22Iy3dufhttk5U/VrA5MhOQR+TeqDH HQGG1GdI+UA6tGp4tKclRItQ5cmPjLh2C6SIOYzHz3UjZuvAfOTpFS58VHnRqS5S7ytDVAoIazsj miYhr6gJuhQ5xmdIvRwCsdPXBDN4tDMQdWhJCO14coXW8nElC1XzaNb0bNeaTeXqtTyPnRoQTVVM pfjDyIh4Gv1dCaI5gatLI8NGkaltdmMUxPio6hYXjKgKTJEYQ97WTfO1FyRT802/L1UkYmu5dTwc ZVqPvmJ8jQMdxXHqQVjE+tCKZV5QI+vVkdgLQ9wW7AUbs9lB5Hmjv9WqA5v0MufQo4FpVOIH5m7L r3HhfhIh2ARcf9BfVtJSPphdjxizNBv3imYt3IWwVXujrAf53VU7F5xIqPD94aCwkfOxjTzoMaBt iSWxkjj8pBL5K6epFf5hpuFhK4qZEZhF84p/wOjzDJcOWj+1NplUBSqSegkV2bcf/03blVuV4K9R ppeAcaTkTq0inX5Wt54gpWd0picg1ThJOeQygEidqzMRXamd9YgSTlGD7hLwKMElr8F1kMPmgRCG 8MV1fh+eCESHSp/UgFUXFUIwLSDpR4lATx3yl343dIM5kv/mGsKRX+3gpIVLz5xfgfmtQuFYrkPj ZJ1SXvAxbq65GaOxQ5FsuqeVzJ9kuPVJZL3K2BFWIiiSKsxYhJcZw/HpPdm0In9ax6NH+TnK/FqU 033Po82Gl0BJE520dO/0r5HWgB1CO2GTKBpxylB81ma++FYdcTsu1TxtK1JjSObWdcxU0o+RR0RB iuV+2VfAfDnwjxsjc2u0gb0/acNC6gvKkIqSMJ2L0q05URWgjwLzstgjLZZ7mO9beCqbSJ6tZDnQ vWlOmrAgMFBfxuVuT+Ue+dxJOHcuwYGUiZEsAIjveGkEnuEFlVc/e4iX92bvvosX7BLlHdwh4UED wCZjMAzXE2CI0/NSC7NU8waQhVozN6NSRRE7FB6VBiMC5R5ChMrDz5rK0tzj6XnQ0uQfL3LNTDNn 97AKF+qRHl+p/EjLKkpDbcC+sf+9I4ampQZ1jBtrBFiS2dG0/X373HZO7k/NkGZyKeQYUGGr17mu ZRrjmT2xSyLsAm+DqdIa8MiX+x1lacZCMJ9piomMQ/DqtTwYfbFnqwUNElLZxF9b+VQJPBxYYyJg G51y5BXddwhBOu5O5h7kYy2TnOlklnjhdNNziYdGdJkBR4d6jIuRmr+qCZRy4r4l7YtBOrudE2Qe nHxan6ltaK5lOKrv2FdgmqgCvJPu5b4WiFpEoNUMiHke7ORc9P9LWi1EQ9owc61MqIyoBHipzdtR 6kxkl0yYdHWbBddfKR1bdeBEbOpedQPM255/1ULbRE6LlJe9evupfYVS44G3w1QL+X3DgvRodvrg zNrxU7fin2qgr9bJhxfhKnBVhT3drihA3sbL1bfmpl51G9F2x90gAnXpUMSflkBjwiW/WJoP9wcV czgftkaLpeCqm57HJx3io7g96AMkCLa4kZE2ou1ZnmRBWkTj3sKeeosv6R+BNhavtY1hXgTZT/pG XpJz78vsXdUs5nQm1uk71hboTstzl37YKIYZ9QLUFo5bxZ+C49o9EojVuIYEOpA1wgPjICTz8AFi YPOyHFH9lPk/bLmq/aKt6gpIctZ0xUmcnOcE+ZWpPjJrSYH+wayrtmwenYyf55HXuH3rRlJ+EeJz YvMX0ss3R3muAFyyTofwhqY+isgGTfUkoqzABpgOBUXlcqQ0Dxn9pXnyfQENiUiIJlVz/u/JibEw LddmWTkxKhFNsMz/WUWFqOcxgxbKEdYq4HTUCnU9s17OaoYUGwtB9/1Qy+NRmiCxESdUrkSpDUeX G/nlU5Xj924rTdtjpU0gBVZ0QqNU7/ZdJa1cbfaiDp4G4cIbjC5aSGWEwojegtCgpx8IE5ZT7SuU PcBmnkVDVjLAnTRrWQuwrV0LMGK6A8rJu3olLYNHIg5m5vufTIKJA1b7dfVYrWUS2othnVe4e6lx WWa+MSx7NKlyJOrQ+NKrPdJoVcrbbk5si/1aDQZOGsfZKBieedNCwQ+OiSOyemDec0w41AjAbCd6 /8AmlxoCXfYc3zKv4dN83BQKeM7W/NhI2pRfqTvA5itTVw8r/oQT7QSEa0fOnKb+PhOdIXN9af4+ F5jGFTRY5yDvm84xu6WzYJLlL05OUaYYk0ikAyNZoAVWQmYsq5LZt55sjog6H2UGNVjDNTLCiMOq HzgOvM6K1ikX50C1iIC1SZGYJA+KfLi0sBj0K/ED0171MDjEGoLY08nAZObtsdxWnSu7fvoFvlzd xjxzKa9C9uH67iI09EcwbHNUj0mLBPrCRBxDRBOFf3QXm4s3V21qyhasUOAz/U/pv0zNACtgjLSI gwxIHi1xjkgXCJNIVvh2gdVMZXgjnNLmQG6kQxSjwQFHkHGc83a/mb1seHWLTUJK0yCkRgf/rbm9 +uUiMv9A6v6HqSoyT2Be88l8+WNp1hdvPtxG5qH1TtE2Ni8Gp0Y+3V78iou2lrguT2iTAihPB/Jr hEv4nIUmzTN8A2WiaqENFjhCAsY83cxfcTTOp47qdQx7REWQgHH9Jqc9bi/e3V28eR96UVgQR+MP TxYtXwjcKzL4n6aovjAJlcnPvJkyuX8CFX7q665a3G2PbrV2ayTRcfUMwaFaw1w1yHeQJOQq7lAq O485SU90CkF6cy1TyZYTC5cK/5dBBndp8yhC4JPEX2YMvrQF36W1qdzlYEJ3ESbe5mTCV/HiBiiF lmmO7E0Rz5DI6rUbWJzw88vs9vPbeUjo+EnQa0mglfIRh/PNQiirf76jUw37LbwHYQF1FhVI/RjJ W6SWNj5xzuzz9QeeGCxR3EF6WvTj51/1npYkjOgf+ZrHUlA5ZBUKLI0S4l4INDRVdFcxehQ0GLgI tbC4yxBKYkcvUqzkX9T0Iue7GyxsQNw2skAXE8ZTi7iYGtg0mxpkCM/EogB+jiwQiSIfW6RBlNmp RWKjqQXucGqRL+3UohidDRZ4sBNPs4BoZ2JhR2dji7SYGuSjs8EgR5SSsQVycXQ2tohHZ2MLm9mp RWajqUURTRwtIEoncSuAhvGfZJdLciRLDgNvJMtg/Bj3v9gA/TYFn50aBpPY6clyVjYWCmfeLHRi 0439+zeeXvfA9uyXlY0d2BScwPa8vb/Y3pC9f7EpqMCmYH0nG7tnNi4KL6hpnUZQU5B/4z9nROEE NQUd1BS8oCZLjaCmYAY1BTuoWWxBTUEHNWszCtrcoKbAn2jRiFdY/75JTSd9UtNHVVLTAif5LWec bJyktvV44olqYZOaTtWkdv4mCjupSeBjZaPjb1x/PP8Wrj7mdzZWVTZ2UtPdnNRkkaTWejzxNLSv CUVKTWr9d1DopPb+vqSm/X0jG/N0Nvba2bhV2ehYtvH5lv99Hk5qT3RWkHNyAp2TG+ycvKyMf178 rUhdgc/JegOdcxqdXjly/X3B0Ml4D50ZFJ3sPdG5E5X35cjz7+vsTF+vWVmB0skJlk5uwHTygub4 9AVu5cT6ZhY8nazYQyfnHnR659Oxj6Oidf4uKrPZ2QeVC57bV2B0LOXkKSuDp7QMnvZyoXPBU2a+ OY/VnCPbzajk7eLk9EKnT44sP88cWYIGUBu60NkAKkcDqCWdQLX2ACpNA6g8jQ21qVFpAJWqE+iw rH8rCuZsVHYCHdZ1odMJVN9zvgQ6bOxCZyZQf+VLoMNfRyY6L/7j+gIyckGVVAIdNvdA5yRQJZ1A /dUmgQ7Z++TI0vc66OwEquQkUCWdQIcUnkCHJY7KSqBKdi907hnoPBCVyUe8g8MqH+gsEJXMQdQ2 z8eT/yW5/Oa8kjloWueoXNCUz0HTRs9x779vuNlZY6OzQVNWB01pPddz9L8vPb8drTka6140zmYH i6cdB0u5HSwt94HOBkvpHSzt93j9Sn4/8fopqTjznaya6OzcTiU3t1PJ2zFzWfBR0ZJ/jcpKnmW/ D3Q6eZb8njzLfi90ZvJUsnM7ldzkqSQfjvSePJXUXuisicpJnkpu8izrPXiW9J48lczkWdZ7oXPA U3oHT+kdPLXjaEzQlN1B03of6DzglN6B03ovdBZwSu/Aab0XOi856CfQlN1BU1uOxrn8LQ2alnu+ f5L71+hM4LTcBzoXOCV34LTc8+FY7qgs0JTbQVNbjsbLz9optSfNabcPdHbSVHJ6o9NJc8rtM94/ JZU05+AtpGTnciq566LzEue03HNmyT2BKlkJdFruA51OoEpe58yWe84suc+Hzs6LaU5eQ0o693NK 7klUSSVRJQuNDaJy+2bngajcDqLaexC12wudA6Jye9pcycvDa9rvUZHeAVR6r4UOGw2csvvOgW33 QmcBp/a+DzoXOGV34JTdgVObD5zyO3DK78ApvwOnBZ+voAR/G50JoBb8QOcCqFY/gS4LPmZWUglU yUqgy4Kf6CQKBS+BLvk9gSqZaKzbaJwEuqz3HFh6T6BKRu7nst4LnZ1Aldxx0emXE1vwUZHf10Vl 1ULnoHEvf8vbObD1HjSV4BpSskDTei90GjSld9DU4oOmBY/KBk35HTTt9xz58BxSUuBpvxc653vo 3FxQJe/kyBZ8VOT33E8l6010zh3oNHjK8OBpww90Zu6nkg2iNnyh8758BbX5nTM/HkTLikflAKgW H0Af7qEtxSdQJTOBbit+oHNyQZV0At1WfEyspBKokplAtxU/0bkLlZdAtzY/gW4bfqCzVqNzaqPT X6HzEuiW4RPotuELnZ1AlZwEum34nHnxJlJSqUcl8y10Nit3NSoPRK34HFmKB1EpHkSt+EKnQVTL D6JSPIja8ajs/MRVch47DaKSPIhK8iBqyRc6+z507j7oPBCV5EFUyw+ilvxE5yxUGkC1+wBqx8en ipIJoo830bbjBzp9Y+Qjx+8Y+Xy8ipSsJKpE/0LnJtFjyUdFjk+iSur/OiuJKjlJVEkn0WPL58iy fBJVMpPoseUnOjeJKukkemT5JHqseVRWElWyHzs3iSp5SfTI8xUfK8eeL3QWiMrzIGrP58j2fFS0 /LmiSiaA2vOo3NGo9MuJrfn8U9I8gErzAGrNFzoXQKV5APVPObI9j8rqi8o5C51OVrI8eGr1HzsT PGV58JTlwdOWT56yPHjK8uApy4OnNY/KxYLK8vnBc635GFnJzA1VshLoteYLnU6gV5pPoNeaL3Rm o7KTp5KbPK81HxVtfvJUUsnz2vIDnZNAldwEem35/FuyfAJVMhPoteULnZNAlXQCvbZ8AL22PCoz gSrZAGrLD3RebujV5udH7rXlC521Hjo4i64tP9F5uaFXlgdRWR5ErfmBzgFSaf7kY7bm8/lI86PR mW+js2+hc9dD5wFp8y5SUkAqzQOpNA+k9jwqD0ileSC15gc6G0i1/NhRaz5G7o93kZKqg85KpG3N o3LzslTyZozc1nyMrKS60Vm5pG3ND3R6PHTey5Gt+SCqZCZRJTuJtjVf6OAuaml+x1uopJJo2/Oo 7CSq5CbRtubz8UjzSVRJJdG25gudw0oDqHYdQK15VCaAyvIAas0PdBpApXmMY80XOgtAtfwAas0X Og9A9VPlzFr1b6KD112aB8/Lq6gbV5GCAZ7S/Nno7FXo4CxSgrOorfl8OtJ8fugqWQCqTQdQex6V l0CfNJ9AnzU/0FkJVMlJoM+aj5GfNJ9AlYwEqmQm0GfPo3KTp5KXPJ89HxVpPnkqWfkV8lnzA53b /D0vgT5rPieW5hOoEpxFz5qf6HRWZPnkqaSS57PmBzobQKV5ALXmE6hWH0CleQC15gudA6DafQC1 5nNmaz4qsjyAatG/hc5pVDpl8yT5mRNb8gOdCaCSPIBa8oXOG/GZ8rT6L06VZ8lPdNZG5QBo8yp6 lnyOLMkDqCQPoI9XkZIDoA9XUX2W/C9QJxVAncwA6mQHUCd3o/ICaH1a9ADqpBqVFUCdnLnR6VHo vM6J5fiT49jxhc4OoE5OAHXSAVSrJ8dHRYqvi8r6Fjo7gDq5u9HJo6i+haPISfVDZwGoHA+gC0eR k/dyZkkeQG15VDaAatEB1JLPkSV5EJXkQdSSL3Q2iEry56DzVo5syUdFuw+gcjyA3j88QDkeQLXo AGrJD3QmgDaOIid3FDoNoJL8yZEfjiIneJW1+uApx9+FTnyzqfHhJHIyP3ZW8lRykqeSTp7Djo+n o2QkTyUzeSrZyXNY8qj0y5Hl+OQ5LHlUVvJUcpLnsOMHOi95Djl+5sR2fKGzkqeSkzyV9MqRLfmo aPOTp5KZPIcdP9C5AKo9B1A7Pv+WHA+gcjyA2vETnQugcjyAyvEAasmjsgBUjr8Lnd75DkryIKpF B9GLo8jJBlFJPj/jhiWfj0e7D6KSPIhK8iBqy6OSN5GTB6KWfI4syacglWwQteQLnbyKqiT5GSOX JT/RmUlUyU6iSm4SLVs+Zi4tfyJVUom0rPmBzqlGp9O09T+yyyVJkiC3oVcK5593Gt1/K7DaRpaA dt2wZ1HMQDhAv5qnz8dQ88kzo+bZUruaN2GKLYUybKmh5oNnvp4XxPmQQkm21K7mnzDLlhoOO1tq V/MmjOxFUEosvZp3YZbfDlpeHEXLRwiT4ihOvziKmhdHr+bZUdS8OIrD/pUwOS5Mi6OoeY5dw7/E 0da9CEpUC1N8SO2K/gkje5Gh6MXSK/onTIqlOO1i6RU9z3xFTwh6XhxFz4ujV/SCyFoEZdlRv6Kn iaHYjjDB+7tf0ZswY/SWHWedz6hf0ZswzjNDSW9h+rkwbKij6NlQKMaG+jX9E0YWIyjdKcyyoY6m Z0OhyGbk1/QuTOUKM+yoo+nZUb+qF8SrBUlx9Jr+CTPiKJpeHL2mN2GCzyiU4jPq1/QmzIqjaHpx FE3/QphYQUocRdNz6HrLZgTh7QjiYugVvQnTYmjrZuRX9Gwoil4MRdGLoaObkV/TP2G2eGY0vTh6 Tf+EkdUISomj1/T0fgJNz2cUirGjcU1vwqQizaELZdnQuKInBD1fI0hEClN8RKE0Owpl2dG4nueJ 0fO2wiQHalzPuzDDiOtiBEUWo7ief8IkGwqlI4WRxShw9rmOoRgbGtfzJkyJoTjqYih6nms0rugJ Qc/zCYWSnLlxPf+EGXEUPS+OXs+bMC6OoufF0et5E2bFUfxLHL2ed2FCkfIWZF4Is+Ioal4cHV2M YnQxglLiKGpeHEXNi6PoeXEUR/1rYWQxiit6QZYdTfQ8H9G8nn/CBDsKpdjRvJ43YXZp5ETP8zx5 PW/CJDsKpdlRKMOOpsleBAERKkiwo2myF0FoNhSK7EV5Nc8T4/CzoVCiSxjZi6DIXpQ46nxEoTw2 NK/nBZG1CEq/FGbEUNS8GIqaF0Ov5k2YFENR82Lo1TyPfDVPCE7614LIWgRF1iIow0c0UfNi6PX8 E8bFUfQ8h25ez5swI46i58XR63kXhjdLCMUnFEqPMssvEC3vPDFaXgy9ln/ClBiKlmdD61qeJoby 2FAozoZCSTa0ruYF2Y9GLrT80Mh1Nf+ECTYUSrGh9XQtgiJrUaHm2dC6mjdhgg2FUmwolEk66nU9 zzPjqLOjUHxCGF6LIDQ7CkXWorqa55FD9yIowbVVV/MuzAix4idKXvy8ln/CJJ9QKCWGXsvzy0HL i6FoeTG0dC2CkrXCyFpU1/L8dlrXIigmht7Z//ec/xL//b97CBG4VDBT3xOmPYUZTP7LICU+/ltY ERDYzFgLEl8IcpnOTPUTZr4UZp3HwRbRPM7+fb/M4F0wEh2CFI43Mx0mzODt/zCLtPloHCgvTJjz jJl4gtw1lpHqEWaeCbPB4yCRmsd5fzs7Mx4lTMwT5jKKmY4RZobnwXryyK291FphbEKYeC1M5hOm poSZt8JcJ/8ySLbh93M3mBXG04WJaWHuYsZMZwozw/Mg7IzfDxadLGFsBQkLQTJHmLuLMDOWwmzy OFiGll8PliE+pFC8njCxIUxZC9NlwszyPEhN43mwMJULY1vChD9hskKY2hZm3IXZ4nn+Jev/kGLu wjjnJZTkvNy7UoUwt10zsx/7hQR1ngcJ2oL454KEK5Ocl1D6C2GG8xLKNo+zf5fJ/5BivsJ4uzBX n8xUPGG6U5ilwKwPERq/dp3yKDBP8feEiXBhsluYfk+YWxeZ2eZ5cH17RgwyNEoYnydMPhemKDFP 6XnC7ON5kKExxCBDx4RxSsxTQh+Tk4L0G2EmnzA7/BzcAx+/Hv+7ETDj08KkCVKZgvS0MGs8DhI0 eZy7Kq4wbi5MZAuT+4RpS2EmR5hdngdLpfE8iNBcYXxdmLQWpuoJ05vCLAVmfYjQMmIQodvCuAsS lJen5LYw7U+YqRRml1/PbaD8t5Cg1cKEEOkhRFULM98TZp2fc/dUQrBufi6IewkTLUh9IcjdYZiZ 5k8Z6+bHYXB32RXG2oWJr4TJEKQ6BJlvhFlaLushPTkrodCycoLTcnlK0B57SnFUQukIYaZpnId1 k6MSyuOohGK9wgQtsqdklDDFUQllOCqhLC2X9RCeQ4cPir0SxlOQGBekOCqhdAoyw28HyyYnJZTH SQnFpoQRPxGd6YIUJyWUMUE2eRpEJwclFDMTxrOECQ5KKGUhTHNQQpnlebBrclBCeRyUUGxNmOCg hJIlSG0IMjbCbPGng+Rcfg5WTVthvFyY4KCE8v+QrhBkOCcfNk3nt4PkrBLGdoQJd2GSkxJKc1JC GU5KKFs8DzbNj+dBeHJUQvFaYfJzYYqzEgrvXxD243EQnhyVUF6bMM5RCSV8hcl2YfprYSaeMMtZ adg0P3o9UIz3SijOYQmF9yYIxVkJpTkroSxnpSE9OSuhvB5hnNdKKMG7HpQcQfopMlx+UJa3SsOe yVEJxWKFcY4eKEk3l1N4d4DQnJVQ9vHISE9eGaE83mCh+FthgsMSSs4I07xWQhleK6Esp6Vh0eS0 hGL/t8I+/I3/Kv+YD+35y9TfSfxlEB5YS5mJEeTufIw8K2KQbjwNVsd2QXDjFSbeCGMoHma+n995 DHL953f+50/pn9/5j8mf3/mP8Z/f+Y95+pjv45Gv0Xhk/7s9MRPtwtiWMHdd+WXsb2P6ZfA5iqH2 99EwE2IozoIYimVDDMUp48fgIIqhOKtiKE54rDAXib8MskMcxS4mjl4GmTC3+zNj4igCkAxNZKTT yFCaDYWSI0iwoVDMUpiPDc1/u/Uvg07ZFCbZUCjOhkJ5bGii9dgJKMOGQik2FEqwoVBMH/PY0MTF iA2F0mwolGRDofiGMMaGQvmCR86/a9kvg32IDYWSTxAXQ28X45Fx1eWn4Oh/JkjxCYUSP7/zH2Ni KE66GIqoffySEdDxhMkKYXxaGBNDUSHOHyGWdDEU3dQrTIqj6DhxFM0ojqI9xVEcdQ5mKCWOXnU/ YYyPKJRveOZbHAjBbiGOYiERR29pWWFMLMXVkS2NW5no9cRdSk2YYEuhOFsK5dGvCmyC7CiUZkeh 1BMkXB9jWcJ8bGjg7H88MfZkNhRKsqFQnA2F8tjQuJYnQ6P+VsxfBi1fLkxMCeNPkMeGxrU8j3w1 v8IUGxp3gUphjEMXytc88l3f+DVfzY8wqYiLodfyJczHfwktzycUSomh1/IrjIuhaHnjT/BanidG y/cTJsVQ07UobuN9wnx8QuNanj/327cFSTEULS+G/i/Z5ZLcWAwDsStJpH7v/hdLd1ZpZDfDQtny g2korvwHZkCoKg+hg9ciTRaEatMh1JWPI7cynz+6mtzTYHYabXf+A1NdYEYqbXc+lGqCe5EmO5W2 O//AzHzOrV3PjLY7f8EcIitXtJ35AyavRa3Md3wJNbl7g9lpVJOVRjXBvagP70WtzKdRTc7XYDaM qvMLyIRQZz6FuvMfmAOh6vzeYApCtfy5o63OQ6g7/8BsCG3ei9qdv2BGIso8hCrzEFq4FmnQEKrK Q6grnyeevBdpov+BWRCqykOoVj1XtAfvRZpcIhtCVXkI1e5PICN9liKfPsuRf2B2/nZr0rXAzPRZ qnz61OSmz3LlL5hFpNKnJiN9lisfX0FNbgrVZKfQcuUfGNyKNBkptFz5PLIqn0I1WSm0XPkDZnae WZlPo5rct8GcXFFNFpTu338lM6BUyw+lyjyUOvMXTEOpVh1K3fl8Pg59nrl5L9JkvQ2m4VShh1OF Hk4d+gfmjAlmwalDf8GM/OiT96Jy5w+YTaRhdPJeVO58nlidzyuhJgdG3fkHpmFUna94ytOdj4+l yb1A9tdA1jxg8vlpMNLnVOVzR6cr/8DsnmA6fU5X/oIZ6XOq8jiPK3/B4INr1TOi05XPIzvz8RXU 5J4Cg2vRdOYfmEqhmoydR3bm8/Fo+UHsXNDpyJPJ3Zvac+hU5KHTkf/ArFNgKvdzOvJ5YEUePpu3 ounIPzALPhV5+HTk83Op8vnJi5ei6cgfMA2fqjx8qvL5kztd+QfmwKcqD5+u/AWTD0eNx3q68RfM vkD6KyDSDmakz6HIp09NTvocjvwHptOnJjN/4YYjH0fW5IE4aXM48RdM8UVG2hxKfNocTvwHZqdN TTptDif+gRlpcyjxaXM48RfMBtFpU5O58sQOfJ5YO57rqcnJ9RwO/ANT0KnAvzyxA58nVuChU4GH Tgf+gikQuBAN5X3liZ33D8z6CgwuRKN5IRrKO3wWL0TDeX9gFnwq7/DpvOfT0d4HobrDp+t+wDR8 asdzPTUZuZ7Dec8TK+9nglnw6bw/MPPvV2d+qnvo9OTeA+aAWMVXqUVmhM75acdDpyd5GfJk9wPT Z4KZodOTvA3NT3XvQBT33UBW2PSkvg9MXobmp7qvPLLr/oHZ4dOTNTeY6gdmhM/5qe7h05M7Lhh8 LOV9N5AJn+57Hll9h1H1HUbd9w9Mwaj6Pncw7nsaVd9hVH1/C8yCUfW9gQx8dOc9n07Fbcj/31Ug Gj5d93w42nL4VN3h03W/YBZ8qu7wqc2HT/U9P5TyDp/O+wHT8Km+V4EZK4783Pd4xpqc9KnJTp/P fX9gZvp86nv61OTFn0aexOXfg5U+nwN/wOQbqe/pU5O7Nph9Hpi8DnmiqymYkfv51Pf0qclJn5rs 9KlJN5CZPp8Cnz6fA/+BOelTkwWfDvwDM748sjYfPh34B2bDpwIPn/oXfCrx+bFUePhU4eHThf/A NIyq8DDqwueRtecwqsLDqAt/wRSMFm5E82n3R55ZjW8gG0aV+LvBTBhV4mFUiYdRJ/6BWTCq3Z8L zOz4El41Po1qctOoJieNarIaSKVRTUYavY58HFmTm0Y12Wn0OvIPzPwmmJFGryOfR1blD5C8EnnS g0xeia4an0I1wZXouvEPzKoJplLodePz6ajxKVSTm0KvG3/B9AEy88KjyRjJLNyJNMCdSJMFn4t3 Ik0mfCrx8OnEPzAbPrX78OnEXzBwpcS/2BpN7j9m1wemd4GZuaHXkc8jK/K5oZocCHXkH5j6gEx8 v9z49KnIHyAbsrT5g0zhrdT4HSc+anwKPW78B2bXBNMp9Ljx8XSOGp9CNXmzweBSpEleKjWo10Bm Cj2ufB5ZlU+hmuwUelz5B6ZyQzUZK76Dx5XPI6vyH5CdQo8jf8HkHzZHkU+hmryxwZwUqsmCUEX+ bjAjf3GPIg+hivxaYHAr0qQ/IAWfbnx+LEU+Xanx8KnNH2QaPtV4+FTj4dONf2AOfKrx8OnGXzAj H7I2Hz6d+ANm7w9MvwJTEOrG53up8RCqxt8FZn0XTEOoGp9C98dLkSY3N1STk0a3G3/A1AEy8id3 a/VHfAe3G//A7DSqCS5F241/YEYa3Wp8Gt1u/AWzPiCdRrcbnx/LkQ+jmtw0qslJo9uRf2AqjWoy 0uh25PPIinwB2RDqxl8w8wMy4NONT5+O/Adm5Ypq0hDqyOd7KfI7voOaXAh15C+YVUAKPt34fDiK fJ5Yqw+fajx8uvEfGN2ywQz4dOPTpxq/J5gFn278BTPTpxq/8shu/AGz3wdmQagiD6GOfDye9fFS pMlNocuRf2A6hWoyb3wH1+OlSBO8lRqfQpcbf8BUGtVkznwdRb7zyI78B2bnhmqy0uhy5B+YkUaX Ip9GlyN/weTvlwadRpcjH0aXK59H1urnN0OT0xvMglFVHo9Zuw+jrnwaVeVhVJWHUVf+gslbrgYj //BbrnwadeY/MBtGlXkYdebz8SjzMFq8Fi1n/oFZMKrMw6gzn0bV+XwrZR5GlXkYdeY/MDX5OgNG nfk8sjIPo9p+GHXmH5iZRluZv3HmduYvmFNAVhptV/6AGWm0tfxpVJObRtuZf2A6f3U1qbHAjMoj K/NpVJNzG8z6DpguIDONtjKfRtuZ/8CcNKrJSqPtzD8w4+WRtf0jvoTtzF8wG0bV+dzRducvmJHp b4UeShV6KHXoPzANpQo9lDr0qVShh1KtP5Q69BdMbSADRh36PLJL/4HZeYXQpKHUpX9gBpSq9FDq 0j8wC0q1/lDq0qdSpT6foEoPo4MXI03wqRR6CFXoU2g59PF0NLkpVJOdQsuhf2BwM9JkpNBy6OPI mpwNZKVQTSqFlkOfR1bo86Nrcs8Gs1OoJmtOMJVCy6EPoaXQp1BNbgoth/6AwRNU6PNHt7TqX3wH y6H/wJw0qgluRuXQPzBz5pEXb0bl0D8wG0a1/DDq0F8wmdpS6GFUmw6jDv0HpmFUoYdRhz6PrOWH UYW+F5i1L5jiy8yRR3bnY0M1uRvIvgWkPzIFoer8ih+VUuexE+78A7MhVJ3vBWam0KnOp1BNXgqd 7vwBszaQyj80NRkpdLrzIVSTm0I12Sl0uvMPTKVQTUYKne58CNXkPCA7hU5n/oDRXyvBqPNpVJOb Rqc7/4FZaVSTSqPTnQ+jU8ufRjW5aXS68xdM82VwL9JkQKgyn6dZvBZpgmvRdOUfmAmhqjyEuvIP zIFQVR5CXfkLZuTLaPUhVJWHUFf+A9MQqk2HUFc+30uVX3lkVf4sMOtdMA2hqjyEuvIpVJl/QM5o IAtCnfkPDK5FQ5v+hfXhzD8we00wnUaHM3/BjDQ6lPk0Opz5C2bdD0yn0h+2yxhJshsHor5OMfZa BAkC5BV0hQ15Gxsyum1dfxM12hAfJG8m+3U16udnJijFaOmonoelUpKWStm0dFTPn8ZMWipl0NJR Pc+ZdfqtIZuOjqr5bEx7yjr7dHSo5unoqJq/jXGGrpTZHK2a599SzTdHVfPhjdnNUZ1+a8hcqyFj c2TVPJ+xzv6YDWlb0aiWv42x5qeOevOzWv40JtrIavnmZ7V8NoYndKjlF1/BavloDPdBCd78VMs3 P6vl6adavvmpk369Mbv5qZZvfqrl4eetkn/tlIDS1/8DZt4q+CAxcTYlcB+6qndcxG61+yHBbUjC uk5iwkUJAyZeFTs8vNXrSWIbgQUDJRj8u9Xp7xsn4cA+CTE3CYd5EmYaiQHrbrU5HofKHMZJ2PSt qjxJTCMw6Fv1OHyrHr8kNo6ghEXfvC09Vx2OkJOQ9K0aPEk4fVN/07eqb/imM40/ovKmb+pu+lbV fUnMMUkM+la9jRdMtU3fdHTpW5V2kjAAauzAoFXYQSKMgNM2tTVtq7J+5zw6wrBNQsK2U019SHCz kWCw7VRNv7YdtTSA05YaCX6CxBqXhMG2o36Gbafq+ZII2CbBYdupbj4kBmw7OrKw7VQxJ4ndgAXb TrVykBgDg6qU4ZuEgG+nKvmQWPRNhUzfqo/hm+oYx03Cpm91hqMRI/6ZsHNJDBI63MqUr1dIHUwQ oScHYk8CFVMAZid0IXwJHfaDMdTf20iUfyD2WSRcvwJiWZAw/QqI6tyHULvrMH+/Qh4jEZ4kti0S unABmL4J6ArxEkoMvSVfr3DcSaQZiZ1Jwn2RqJMIwjJIDH/nsAqVdw4JmU4inMAeSWDlIjHXJaEt 9CW0KCTGqLvBIZFjkdhJwNcmUMcMhMUlMRbGyE+ifr9CRpKI5STaJ9RNCD+vnRjEuJhCq0bgM5Rb y0jETRK1FYDweUnMGyQsJokxMcf+XP2+XiHDSMRMEn4XibUvidpxQYyLOZR1G3NoX5mbRDRg03pd ROYiMRFxEgwRJ2FMjLE+17jvV0gEqQQdWxKOjJOw9iIxkXFWGw4eh0IPGWd1aUkScZwEv4oyDxFn dYNZJAwRJ2EYPkM7ECJOQi3qIPTQSHRgeRKYtkgMRJwp8xxjKPMQcRIiD4ntTsKNwETCSTAm3PhU +F/E0M0n3zEk1BYOIhBxEhwRJ2Eh4iTMkSQGIm4o8xBxEs7YJCIniY1ekVCXShATh2XU7hUkxnif 2KjrE+ZQ6CFJx89lDIRHklhIOQmTPx/IuKHQQ8ZJyHtIBDJOwkbGSVg3ScxYJAwZN3ThQsZJODFJ 5DwkNjJOggeBhYiTYHeRGIi4ocyb71ssIe8kEfuQ2NNJrEug7gsAbGIMrXUHb48yD1uchETESdiI OAmOiJOwJgFDwkkYG2PMz6X3+xXybBKBLU7CtiSxziQx20eYYQxtdQeD/rz2gUjbJHYDHAk36hro JOwQGAi4ocQzTKGlDgEnIRBwEvgstNMh4CRMLIoS7F3h9tVOl8/DKOH4JJHjkNi5Sbx/pP6/RhCw N99KGAtjKPDefCshc5KIdUjs4SRWEpgrCdjAGNrp4r6E8m45iRyTxI4k4ctJLP7cIvjzsTBF3UUx hfIuNolYRsJvkljhJOYbbyWMizmUd4E5lHfzkogbJHb7CJ+HwHzjrQTbl8SY+AytdBdjKO/2IRHT SfglsHYSmHORGJhCccdvoribk0ScQ2JvJ8FzooXuJAHbi8QwjKGF7uAkKe7eE11C2CHhx0msbSSm JYlxMKnyzmGb8s6CRDRg+yHgtkjMBpgHgWF4GlroEk9DeedOIoyAZxJYTB7lnREYSLejuINrEg7S TUKkk9jvGlmCv+tbCTMXCXsLuISBeDva5xBvEhLxJiEQbxI8jcRCvkmYY5HgoMq7hTGUd4g3CQHn Jex3eyvBh5GYn4DTyy7lPuvZf//1y/jx6w91jtLrjx//Vifq5+NT6b+NH/95P8PeTNR5V2fXyZih OFUY/l35/y999U/5+uX3f/zg0CHALx0l00Momdb7KRLqkgJiXQLVBQDqDQZx9UI+RKXweQnldG4S vieJmJdE3QVA3Oe7ichP6j5Efl4VEPv5bh8iLoHzfDcBepee7/Zdwny+24dYz3f7EDs3idyTxJ0Y VCeHvt3PhRWENyBWEji0TWf+/RsKBYNtf8YIiA3bKolg2ye8Xtsq3mBbBSJsq8jEW1qhehaJbMCF a7c21/dhVNZfAh6HQMC1qhy4JuHCtaotuCZhwbWqQrgmIeFa1SlcqwIG4J/dDICbk8ArXGsBXdNF ia5p16BrtY1cEp5BIujazx3oIXRg6ZrujXStVi8Cm65pnTMncfA3tBHSNUWqbxI+J4lN17So0jVl PV07nwvvQ5zPmg7C6Zo6qAGHrqnX6JrO7zUSKw6J7ZtEzkni4LDZqBp/n0cpc6/GOJwrJWBdKQnv SrlEtLfAPfvzJkfGrzUm4jTmOEfWGgYPS7F7G7PgYil7r8bkasgdHFmL5iGj5TQa4rCylICXpSTM LOXCTRuuPY8TaxuHn6U4zmEpkdGYs/l0qo+B6DiPbMg6ndnRkGx+qpObn1XK9FOt3PxULTc/q5dn Y7L5qWZOzpOfS8HLVDc3hLtLKXG8MSc4svp5cWQVdDO0Gno2ZjdD1dHN0CppGqpj3wytFTga4+2E VlM35DRDVdU01KqsX0TCWqchm4Za1fVszKGhpsKmoVaNPRuzaKiUTUOlJA21qm0gOuc8oFImDbVq bmtM0FAph4ZalTdHVnsHR1Z9ezRm01ApQUOlHBpqqnAaalXiDXEaKmUfb0yGNeY2R9XkhnfQqsqt Md4cVZk3R6vN+Xj4ldTlyXlV5s3NqvOGZHNTfd7crEbnuKr05qY63XZjdnNTrd7cVK3zeFr1OkfW MW+EZzYidmfawasrK5+Nur15WeVujdnNS9V787L6Ha/fVL8HXj8pE2t+KT5XYzZPp5Tk6ZRyN2ae VfBA6lZ6GuL0c1a/W2MO/Zzqd/o5q99nYxb9lLJ5OqUk/ZTCh6N6p59S5vbG+GpI0E8pST9n1Tv8 nKp3+ill0c9Z9T4bE81P1XvzU/Xe/NQZb8Rqbqrdm5tV79aY2+xUvTc7q95nY7zZqXpvdla9z8Zc +qB/NTfV7s1NnfJGRPZPOc3NKne+fyr3cRqzmp1V7taYbHaq3JudVe58OFXuDfHmprq9ualT3ojL rF2qdrq5qtutMZtuSomzG3Po5lK3L7x/UibdXNZ3ISmbh1NKejbm0s5V5c6ZVe40VIrT0PU/sssl N44ohoE3Cqb1ftL9LxZyF1Z2Y4Kwha5Rl2y5f+h0AlUynTNb7jmz5L4GnZMX01q8hpR07ueS3JOo kkqiSjYaB0Tl9sPOgKjcDqLaexC12wudC6Jye9pcyeThtez3qEjvACq910aHjQZO2f3kwLZ7obOB U3vfF50HnLI7cMruwKnNB075HTjld+CU34HTgs+voAT/Gp0FoBb8h84DUK1+At0WfMyspBKokp1A twW/0EkUCiaBbvk9gSpZaOzXaNwEuq33HFh6T6BKvtzPbb0XOieBKnnfQ6cnJ7bgoyK/74fKro3O ReM9/pY5ObD1HjSV4BpSskHTei90GjSld9DU4oOmBY/KAU35HTTt9xz58hxSUuBpvxc69zfovFxQ JXNzZAs+KvJ77qeSPQud+z50GjxlePC04T90Vu6nkgOiNnyhM7/8CmrzO2ceHkTbikflAqgWH0AH 99CR4hOokpVAjxX/oXNzQZV0Aj1WfEyspBKokpVAjxW/0HkblUmgR5ufQI8N/6Gzd6Nz66DTv0Jn EuiR4RPoseELnZNAldwEemz4nHnzJlJSqUclazY6h5W3G5UBUSs+R5biQVSKB1ErvtBpENXyg6gU D6J2PCon37hK7rDTICrJg6gkD6KWfKFz3qDzzkVnQFSSB1EtP4ha8gudu1FpANXuA6gdH28VJQtE hzfRseM/dPrFyFeOPzHy/fEqUrKTqBL9hM5LoteSj4ocn0SV1H+dnUSV3CSqpJPoteVzZFk+iSpZ SfTa8gudl0SVdBK9snwSvdY8KjuJKjnDzkuiSiaJXnm+4rVy7flCZ4OoPA+i9nyObM9HRcufK6pk Aag9j8r7GpWenNiazz8lzQOoNA+g1nyh8wBUmgdQf8qR7XlUdj9U7t3odLKS5cFTqz/sLPCU5cFT lgdPWz55yvLgKcuDpywPntY8Kg8LKsvni+dZ8zGykpUbqmQn0GfNFzqdQJ80n0CfNV/orEblJE8l L3k+az4q2vzkqaSS57PlP3RuAlXyEuiz5fNvyfIJVMlKoM+WL3RuAlXSCfTZ8gH02fKorASq5ACo Lf+hM7mhT5ufr9xnyxc6ew86OIueLb/QmdzQJ8uDqCwPotb8h84FUmn+5mO25vP5SPNfo7PmoHNe ofP2oDNA2ryLlBSQSvNAKs0DqT2PygCpNA+k1vyHzgFSLT921JqPkfvHu0hJ1UVnJ9K25lF5eVkq mRUjtzUfIyupbnR2Lmlb8x86/Q06MzmyNR9ElawkquQk0bbmCx3cRS3Nn/gWKqkk2vY8KieJKnlJ tK35fDzSfBJVUkm0rflC57LSAKpdB1BrHpUFoLI8gFrzHzoNoNI8xrHmC50NoFp+ALXmC50BUH2q nFmr/lvo4OsuzYPn41XUjatIwQee0vw96Jxd6OAsUoKzqK35fDrSfL50lWwA1aYDqD2PyiTQkeYT 6FjzHzo7gSq5CXSs+Rh5pPkEquRLoEpWAh17HpWXPJVM8hx7PirSfPJUsvNfyLHmP3Re8/dMAh1r PieW5hOoEpxFY80vdDorsnzyVFLJc6z5D50DoNI8gFrzCVSrD6DSPIBa84XOBVDtPoBa8zmzNR8V WR5Atei/jc5tVDplM5L8yokt+Q+dBaCSPIBa8oXOfPFOGa3+xKkylvxCZx9ULoA2r6Kx5HNkSR5A JXkAHV5FSi6ADq6i+lny/wJ1UgHUyQqgTk4AdfIOKhNA66dFD6BOqlHZAdTJXQed/gqd6ZxYjr85 jh1f6JwA6uQGUCcdQLV6cnxUpPh6qOzfRucEUCfvNDp5FNVv4yhyUj3obACV4wF04yhyMpMzS/IA asujcgBUiw6glnyOLMmDqCQPopZ8oXNAVJK/F53ZObIlHxXtPoDK8QD6/uAByvEAqkUHUEv+Q2cB aOMocvK+QqcBVJK/OfLgKHKCr7JWHzzl+LfRif9s6vvhJHKyfuzs5KnkJk8lnTw/Oz6ejpIveSpZ yVPJSZ6fJY9KT44sxyfPz5JHZSdPJTd5fnb8h84kz0+OXzmxHV/o7OSp5CZPJb1zZEs+Ktr85Klk Jc/Pjv/QeQCqPQdQOz7/lhwPoHI8gNrxC50HoHI8gMrxAGrJo7IBVI5/G50++R2U5EFUiw6iD0eR kwOikny+4z5LPh+Pdh9EJXkQleRB1JZHJW8iJwOilnyOLMmnIJUcELXkC528iqok+RUjlyW/0FlJ VMlJokpeEi1bPmYuLX8iVVKJtKz5D51bjU6nacuaj69PSfMnZ5bmE2lZ84XOTaRKOpGWNL9zZnse lZVLquQk0rLmP3QmkZaWPZGWNV/o4C5ScoHUml/oTD4dWR5EZfm90Tkgqu0HUWkeRK35JCrNg6iW /XfROb3QeSAqzedrt/QJRB/vIiX7PnRuLmlZ9B86uItKogdSi/5D5wCpth1ILfqc2aKPijwPovI8 iFr0qOAsUjJJdFn0MbGSmkZn5/2+LPpCpyue8tKu544ui77QWTmzkrMeOu9b6CTQJdEnUCWVQJdN /6GDw0jJewedSaBLpk+gSnAZLZt+oXPPoNNJdMn0SXRZ9ais+1A5IGrTf+g0iMr0IGrTFzo7d1TJ zR1dNn2hMyAq04OoTP9tdPagckFUps+X7nq4jBR806gsALXoC50HoI+X0bLoE6hED6ASPYA2L6Nl 03/ozM2ZZXoQtek/dHAaKbkgatPH89kyfe6okkqi26YvdA4rL1+6SiaBbos+KvL8bVT2PujcXFEl L4kqmSS67fmcWJ6vQefkC3Xb8wudzsriYaQEh9G25z90TgJV8vZBB4fR1u6njpVUAt32fKFzAVSr DqDyfGp0W/RRkedzQ5WcfOdue/5Dp0FUngdRe77QWSAqz4OoPV/oDIjqE4ja8wudzcpdD5X+NjoD otI8iDYPo908jJRcEJXmQVSaB1F5HkS16r+HDg6jbdGjMkn0yPO5osee/9DZSVTJTaLHni90ZmLk I8/nPMeeL3ROElXykqiSTqKncBcp0CsUlZ1ET+EuUvASqBLcRceaz4m1/AlUyX4XHdxFSnAXHa16 rqiSL4Eeex4VnEVK3nfQaQCV5gFUmgdQa77QOQAqzQOoNZ8jW/NR0ab/Hio4i5TgLFLSuaJHmgdQ e/5DZ4GoPJ8v3WPPFzoNovI8iNrzC528LBXc3FAlr9mZfICy/MqJZXkAteU/dC6AyvIJ9NryMbGS L4EqWQlUyUmg15pHZX4x8pXlO0a+1vyHzk6gSm4CvR/PIiU4i640n0CvNV/o7ASq5CZQJX1i1a89 nzNr1ZOoktUbnTyLFLwkqgRn0bXmc+TNu0jJTm1da36h02gMeEry4GnLf+ic3FAlF0Bt+Xw4sjyA yvIAenkW/SW7XJIkyXEYeiXxL92p5/7bASOtxxyYXRXsWSTd4QIoKNVPGFmLelue387oWgTFxdA9 +3+/8y/x7/8jUojEpYKZPibMRAlzMfmXQUoc/ltYERDYzPgIkicF2UxnpseEuaeEecHjYIsYHuf9 vl9m8C4YyUlBGsebmUkX5uLtf5iHtDk0DhRLF2Y9YyZNkL3GMtJzhbnmwrzkcZBIw+PYb2dnJrKF yWvCbEYxM3mFuZfnwXpi5Nbb1HrC+E1h0kaYKhOmbwtz7QmznfxlkGyX38/eYJ4wUSFM3hFmL2bM TJUw9/I8CDvn94NFp1oYf4KkpyBVV5i9izBzvYR5xeNgGXr8erAM8SGFEm3C5Eth2keYaRfmPp4H qek8DxamDmH8tTAZJkx1CtNvhLkRwrzmef6S9T+keIQwwXkJpTgv316pUpjdrpl5h/1CggbPgwQd QeKEIBnKFOcllDkpzOW8hPKGx3m/y+Q/pHg8YWJCmK1PZjpNmJkS5lFg9kGE5teuVYwCc5UwEyYz hKkZYcZMmF0XmXnD8+D6Zk4MMjRbmLgmTFkI05SYq8w1YZ7xPMjQvMQgQ68LE5SYq6T+TN0SZOwK c8uEeZd/B/dA49cTvxsBM3FHmHJBukqQuSPMcx4HCVo8zl4VnzDhIUzWCFPPhBkvYW5dYd7jebBU Os+DCK0nTLwQpnyE6TZh5pUwjwKzDyK0nRhE6BthIgRJystV6o0wEybM7RLmPX49u4Hy30KC9giT QlSkEN0jzD0mzAv+nb2nEoJ184QgES1MjiB9UpC9wzBzhz9lrJuHw2Dvsk8YnxAmTwtTKUhPCnLP FebRctmG9OSshELLygpBy+UqSXvsKs1RCWUyhblD4xjWTY5KKMZRCcXnCZO0yK5S2cI0RyWUy1EJ 5dFy2YbwvHT4oLi1MFGC5A1BmqMSypQg9/LbwbLJSQnFOCmh+G1hxE9EZ4UgzUkJ5bogr3gaRCcH JRR3FyaqhUkOSijtKcxwUEK5j+fBrslBCcU4KKH4c2GSgxJKtSD9UpDrV5jX/OkgOR//DlZNf8JE hzDJQQnl/5DpFORyTho2zeC3g+TsFsbfFSYjhClOSijDSQnlclJCec3zYNM8PA/Ck6MSSvQTpk4I 05yVUHj/gvAOj4Pw5KiEYuPCBEcllIwnTE0IM2eEuWnCPM5Kx6Z56PVAcd4roQSHJRTemyA0ZyWU 4ayE8jgrHenJWQnF5goTvFZCSd71oNQVZEyRy+UH5fFW6dgzOSqheD5hgqMHStHNZRXeHSAMZyWU Zzwy0pNXRijGGyyUsCdMclhCqXuFGV4roVxeK6E8TkvHoslpCcX/t8Ia/sa/yh9z0J5fpn8n8csg PLCWMpNXkL3zMWLexCDdeBqsjhOC4MYrTNoVxlE8zJzPcy6DXP885z8/ZT7P+cfU5zn/mPg85x9j +jPn8MjbaDxy/G5PzOSEMP5amL2ufBn/bUxfBp+jGOq/j4aZFENxFsRQLBtiKE4Z/wwOohiKsyqG 4oTnE2Yj8csgO8RR7GLi6GaQC7O7PzMujiIAydBCRgaNDGXYUCh1BUk2FIp7CXPY0Prbrb8MOuWV MMWGQgk2FIqxoYXWYyegXDYUSrOhUJINheL6M8aGFi5GbCiUYUOhFBsKJV4K42wolJM8cv2uZV8G +xAbCqVMkBBDdxfjkXHV5V/B0T8uSPMJhZKf5/xjXAzFSRdDEbXGLxkBnSZMdQoTd4RxMRQVEvwR YkkXQ9FN84QpcRQdJ46iGcVRtKc4iqPOwQylxdGtbhPG+YhCOZdn3sWBEOwW4igWEnF0l5YnjIul uDqypbkrE72e3EupC5NsKZRgS6EYPVViE2RHoQw7CqVNkAz9Ga8W5rChibN/eGLsyWwolGJDoQQb CsXY0NyWJ0Ozfyvml0HLdwiTt4UJE8TY0NyW55G35p8wzYbmXqBKGOfQhXKGR97rG7/mrfkrTCkS Yui2fAtz+C+h5fmEQmkxdFv+CRNiKFre+RPclueJ0fJjwpQY6roW5W68JszhE5rb8vy5774tSImh aHkxdFv+CXPEULS8GHp0LYKSYihOuhi6LU8jB2qeQxfKdAhT7Ghszz9hPFyYw5bG9jxZCkX2IijF lsb2/BXG+D0HzjrXaGzPjzCtSPIRja35FobXokDNB32EUKZKmGJHoSQ7CkX2omjdiwI1z45C6RfC lDiKnk9BTAzdmmdDt+efMC2GouerhHExFIefz2ig58XQ7fkrTImhoXtRbM+PMIcR1LwYipoXQ13W IgghhqLlxdBteZ7YdC+Cgv8Jk2IoWl4MxVHnIxpH9yIoo0iJoWh5MRRn3wQ57Kej5NlP35K/whRn N5TwFMbYT0fLs59Qhv30bfkRJhVx9hPKYT99W54+QSjDhkIpNtS35a8wshVBOWyob8vzyGh5NhRK sqG+Ld/CWPDMqHl2FMrcEqb5iEJJsbR+/2LmiKU4/GIpal4s3ZofYUIsxVEXS7fn+f1s0fPMoXsR lLwlTIinKHrxFEUvnm7RX2H6mDApnm7RjzCHH910L/Lt+RamFAlx1HQv8u15nhg9zyshlBZHt+ev MCGOoued3rJtz9NjQZkRpF4IktbC8PuDcNhPQ8vzGbVt+StMhQkT7Kdty48wh/00tLzMsy0/wsiD 46hzidq2PI+8NU+fIJRpF0bWItuav8I4GwrlFI+8Nc+vB4dfiOIDalvyyvDZM5xzsRMlL3ZuyT9h sl0Y5/NpW/I8MEpe/AzdimxL/gqT4idKXvzckufnQsvzk7suRbYl38KE+ImWFz/R8hy5ti1/hWnx Ey0vfm7LjzD8ctDxcjy340eYGkHiuSCwXZjDfh6UPPsJpdnPsyX/hAn2E4pxwp0teRoZyhWi2c2z FT/CuP7IYTcPKp7dPFvxT5hiN6EEu3m24q8wh908qHh282zFjzAlRLCbUCx54i14nhhnnI8nlObj ebbgrzAudqLgL0+8Bc8To+DFThS82LkFP8K4ELIQHdR78sRb70+YfC6MLEQndCE6qHfx03UhOlvv V5gUP1Hv4ufWO78dnHsi0O7i57Z7CxPiJ844H08oh4/n2XrniVHvbcKk+Ln1foWx76djD+1Odq4y 08K0EOn6K57KHLLTHs442bkKL0OrVFxhok0YIztX4W3IHto9CEG5VwiS5OYq/p4wvAzZQ7vnf9ku kwS5cSCIfYl7kn/q/v91IvokhOdmp+EqliAKFJfsur9gNnx6svoOZswbTIPP/lR3+PSkWgUTP0t5 3zOQHj7ddy5ZfQ+j6nsYdd9fMCOMqu99g3HfaVR9D6Pq+13BrDCqvs9AWvx0551XZ+A05L/vMYKY 4dN158XRLg+fqnv4dN0rmBU+VffwqZ0fPtV3/ijlPXw67yeYGT7V9zGCaQtLvu47rrEmhz412fR5 3fcbTKfPq77TpyYXr0ae4PDvwaLP68CfYPhF6jt9alJrB7PPDYbHIU90NA2mcX9e9Z0+NTn0qcmm T03mDKTT51Xg6fM68C+YQ5+arPDpwN9g2uOStfPDpwN/g9nhU4EPn/pT+FTi+bNU+PCpwodPF/4F M8OoCh9GXXguWfs8jKrwYdSFr2BGGB1xIupXe79xzWr8DGSHUSW+djA9jCrxYVSJD6NO/A1mhVHt /b6C6RM3YanxNKpJ0agmh0Y1WTOQQaOaNBotRx5L1qRoVJNNo+XI32D668E0Gi1HnktW5U8gPBJ5 MlsyPBKVGk+hmsSRqNz4G8waPZhBoeXG8+qo8RSqSVFoufEVzDyBdB54NGmNzIozkQZxJtJkhc+V ZyJNevhU4sOnE3+D2eFTez98OvEVTLhS4i92jSb1D7PHC2buEUznDi1HnktW5LlDNTkh1JG/wYwX SI/7y42nT0X+BLJDlnZ+S2bEV6nxGys+ajyFHjf+BbNHD2ZS6HHjcXWOGk+hmtw+g4lDkSY8VGow 7gykU+hx5blkVZ5CNdkUelz5G8zgDtWkLdyDx5XnklX5F8im0OPIVzB8sTmKPIVqctsO5lCoJiuE KvK1g2l84h5FPoQq8msFE6ciTeYLZIRPN54/S5GnKzU+fGrnt2Rm+FTjw6caHz7d+BvMCZ9qfPh0 4yuYxousnR8+nfgTzN4vmHlHMCOEuvH8LjU+hKrxtYJZr4KZIVSNp9D98lCkSXGHanJodLvxJ5hx Aml85G5t/YZ7cLvxN5hNo5rEoWi78TeYRqNbjafR7cZXMOsFMml0u/H8WY48jGpSNKrJodHtyN9g Bo1q0mh0O/JcsiI/Atkh1I2vYPoLpIVPN54+HfkXzOIW1WSGUEee36XIb9yDmlQIdeQrmDUCGeHT jefFUeS5Ym398KnGh083/gWjU3YwLXy68fSpxu8ezAqfbnwF0+lTjV9csht/gtn3BbNCqCIfQh15 XJ718lCkSVHocuRvMJNCNemFe3DdPBRpEl+lxlPocuNPMINGNemdn6PITy7ZkX/BbO5QTRaNLkf+ BtNodCnyNLoc+QqGzy8NJo0uRx5GlyvPJWvr887Q5MwdzAqjqnxcZu39MOrK06gqH0ZV+TDqylcw POVq0Pjit1x5GnXmXzA7jCrzYdSZ5+VR5sPoyGPRcuZvMCuMKvNh1JmnUXWeX6XMh1FlPow68y+Y 0fNzWhh15rlkZT6MaveHUWf+BtNpdCrzhTVPZ76COSOQRaPTlT/BNBqd2vw0qknR6HTmbzCTT11N RlvBtMElK/M0qsmpGcx6J5g5Auk0OpV5Gp3O/Avm0Kgmi0anM3+DaZdL1u5vuAmnM1/B7DCqznOP Tne+gmlM/1ToQ6lCH0od+hfMDKUKfSh16KlUoQ+l2v6h1KGvYMYOpIVRh55LdulfMJtHCE1mKHXp bzAtlKr0odSlv8GsUKrtH0pdeipV6nkFVfow2vJgpEn8KoU+hCr0FDocelwdTYpCNdkUOhz6G0yc jDRpFDoceixZk7MDWRSqyaDQ4dBzyQo9f7omdXYwm0I1Wb0HMyh0OPQQOhR6CtWkKHQ49CeYuIIK PR+6Q1v94R4cDv0L5tCoJnEyGg79DaZ3LnnlyWg49DeYHUa1+cOoQ1/BMLVDoQ+j2ulh1KF/wcww qtCHUYeeS9bmD6MK/VzBrF3BjPyY3rhkdx47VJPagewagcyXzAih6vzCQ2Wo87En3PkbzA6h6vxc wXQK7eo8hWpyKbS78yeYtQMZfNHUpFFod+chVJOiUE02hXZ3/gYzKFSTRqHdnYdQTc4NZFNod+ZP MHpbAaPO06gmRaPdnX/BLBrVZNBod+dhtGvz06gmRaPdna9gZn5MnIs0aSFUmedqVh6LNIljUXfl bzA9hKryIdSVv8GcEKrKh1BXvoJp/Bht/RCqyodQV/4FM0OodnoIdeX5Xar84pJV+bOCWbeCmSFU lQ+hrjyFKvM3kNNmICuEOvMvmDgWNe30B+vNmb/B7NWDmTTanPkKptFoU+ZptDnzFcyqF8ykUk06 lTZ3Hko1KSrVZFNpc+dvMINKNWlU2tx5rlm7vweyabQ58xVMXGXtfRptyjyNNmf+BbP40NVkhFFn nt+lzIdRZf6sYHYY1e7vgYw5A2mbS1bmeY2199sIJE5FzZV/wfTwqa0ePl35G8yJJavy4dOVr2C4 Q5sqP3kLuvInGJ4HNVjhU5UPn648fary4VM7/a1gdvhU5cOnKg+fz5H/6tQA0dffD2Q+B/6QGNib GvA89JR3vIg91/2S4GlIg/kWiQGLGjRIfAo7HD53vUjsTmBCoAYd/p6b/r3jNLjQp8EZm8SCPA1G dRIN6p5rjsuhmEOcBpvenPIiMTqBRm/uOLy544/ExhbUYNLbikPPU8PxkNOg6M0FLxKL3tRvenO+ 4U17Gl+ieNOb2k1vTvcjMdog0ejN3cYNpmzTm7YuvTnaRaIDULEPFupgHxKnE1jUplpTm2P9XefV FoY2DQrarkt9SfBko0GHtutMf7VdVRrAjUONBuseErM9Eh3arvoMbdd5fiQOtGmwoO26zZdEg7ar LQtt12EuEjuACW3XVT4kWsNCFWV40+DA23WSL4lJbwoyvbnH8KYcY7tpsOnNe/gE0c7/E/0+Eo2E NreeKT/fQWljgji6ciD2IODHFICRhF4Iv4Q2+8Uy1O/dSdgfiH0niaX/AmL2Q6Lrv4Bwcz+E6q7N /Psd1O0kzioSu08SeuECMNYmoFeIL6Enhu6Sn+/grkWieiexq0isNUl4J4LodUi09V1H90Pluw4N qhaJswjsVgRmTRJjPhI6hX4JHRQKy/C7wSVRbZLYRWDNTcDbDEQ/j0SbWEb9PVF/v4M6ReLMRSI+ wW9C+HefiUG0h1XoqHHwGXpuzU7ivCLhUwGINR6J8Q6JfgaJNrCO/ffq9/Md1OkkzigS600Scz8S PuOCaA/r0LNuYx06r4xN4gSwqV4vImOSGHjEadDxiNOgDSxj/r3G/X4HhQepBtq2JBaecRrMPUkM POO6Tzi4HHro4RnX/dJSJM5dJPhT9MzDI677DWaS6HjEadA6PkNnIDziNPBBHYQuGokE5ioCo08S DY+4/7ivmh65biN4n18xRyXATvj9cbStIIiRIDK0gA9BDoEiAwlWMqxRYuTfp5rvsdk1s9JKiA9j QcBqX22R3WSTxWoPzUuUBjSPJA5AqY0ZOSVmJM+EQAoHwLPCufGEL4ZD51NtGgDEhROjkMQBSCRx ACJJHIDgKjMcSZyD5pHEAWguM6PUwIxM7woAaSqJEeiyOPFehRnO2R1z0j5RHhA9UlK3mTFipFKZ EUnlAAT+uyONcxA90jgAtTdmFNI4AJk0DkDslRmhRGZ40jiHhos0DkArgRk1NGZk0jgAqTAhksQB 8D0yw5HEOWhesKcYQO2BGSU3ZuSQmBE7E6RfIIIPlAZsXaPTA80jFwegksQByCRxABJJHIAYmOBJ 4QC4TGmE0fS+sUBtmRmFXByA7CszYgvMCBdTeE9pwNU1SnRr+4hRfWZGviAkUjgnbWBihm9McCRw DornKQuYOhI4AIUEDgDvBTwdCRyAQEYRgLcWLnd4umo2Q4CWAjOqa8zINTPDBpHv6AoTvNU3AVyk NCB4Vt8EqDUwo8TGjOwSM2JlQoiVCd5RGvB0pVsG9C4mZlQXmJFLZUaKiRmR/+5L4b+7SFlIL0pZ QO9KZkaJnhmpV2bEkpgRrLwJ4DrlAb0rlAf0LnRmlF6YkS+mSKExIVh5E8DnzgwXaA5Yuk5pQO9y Y0YJiRmpMyHmyoQQIjMcZQG545VA7kJgRmmNGTknZvA9gaFrlQk+R2Y4T2nA0DW6SZA7e6MFKL4x I7XEjJg9M4KvzHCNMoXeJSob9M4XZpQLQk6NCclHZoQLgk+FCc7TbsDQVdoN6F1KzCieCalWJkRW HuidZ4IjdWuQO6oagEbqBqDUxIxsbaQAydo3AUKNzPD2ARbAkbw1+DmSNwCV5A1AIXkDkKpnRiR9 AxBcZAYnCr2LlAb0juQNQKHKA8jWvQmQnGdGGAKHww6kG3v28vD1/QEyg9vq8A+/Zew1+g1pHv3I L3sw798c8C5hLfiJWyg/8/H86u1B7DgOzf2rw934tRzvfz48++bh9d/fffPj27evX70/fv3v82/u /3XQ2e9mPHRXcGc4YZBO7BxUaIRxbsznxkx/+t1LGfz7+4M/ynFsRzmDfcSu0hnFI/o6iG89+jIe j7uIQ4gdevf68MMhHL/FgIC6/Xz869/c8R9z0Dj+eFn2QWvMy8GAdMO8486lR6edlISrjTv0yCTY 1usF+zj8fBsLjh6v1Mf3Vbbh2Ys//mXbPlSzotD3zw/PXm4YZEPMA/Q5COwG/9v7r/5wvP/qhW6b /JMpAzRW2tXhLccrG1oYsjKRB4Mg5yEXoUnj5zfXNhR5cuS1bqMvWKNED+R6r1jXyIz1w28PPx0y bgRUPGMG2bsQpZPAjkpDChXFXn5/xG6YMqbjn483t5bz4bs1O3Lv47UL8uKIqduRB4PE3bboXF6U 0VuO3NLECBSmFFrJFaKx/q/9vbG1yP5WaQKSKXlxw7itKigwC47Vp2DrvTNWuXXIrK1GuQJ+iXN7 K2uQ/ZwTa4mr9CJm0+f3LO+cRau7E7S283vWUVO/BH6RM3oL+cs+enn34ZjlHWrDy/hWxJ1NAA8v bA4cXwki9uMb5rUQATOif30MQYOTih20gH1W2J0uC9S4ytDUrpEZCCWY2/prX8r5EDwaoBzNAgLK L/5xseC90QO1tYSAX2pjCuxgio8iM/wapYhOPFexgi/OTPAaMRX5ItaBcsAgFfgYs4wEF5dt0eBg UMZslpHqxQEKqWyn4wrQ4DpmIXNaXYSGXpyZ3jVii/HrX8X54KFyzW0pi7riauOJccUrghsFocvy fmMRTl4W72ExE1FEPHt5FNk6EztKEZ0Yy/BpIDP44swEr5EZC8X4ItZxfqSbCSWhwfTUzjTPfYcK 9STbNgbkJzuQUBPeOjxd6LtOvYcnOhC0t9KJ7T0e2rEXP757f/RbPxJhSJr0MM933F21HJgXx9fK mI8dCdODEvOpVCNjHhP7xpR46jE+iuhroKMWMifWR0WDL85M8Bp59IH8EhaE01c8Kfwbg2hGueOs J4uUuL8dc2GlnDIvQ85l648imvRF8G2H4e6Gq7ux1LBXeNfkgvuEvjBKPqGc5C3cgYcFYKOjH0A7 FZkGAoLhhiJKYD8lTB1SswW5AjSISN9tZHI+iPFyySQirUhNhqOAJuL8KY+WbiYyKXsi+jnjziBX gN2SG8kEpwRPboWKmuJkaXSpOopoLhnCjBfKlGdyZn30W+sxI10jdFhuKiFYwZBOoTaTT4i4fsnm s5CZTxDxSjYf5ez5rO8ZXSNdI3aDbish0eSOR9qeZd/wnIsdXAVTRAvWIHwx2IJNziyYfmt5ZqRr hE7QTSWEDYJl8dnqX3D1lJPVpoVowcTWxW4LNjmzYPqt0Weka4Q26KYSwhXL/pSaLVjAe9azLdhC NB+8grnagiln5qPfen5npGuErthNJXSGjat4+B16LDHeHX8dJnU+CFu3AL5Dee7wMOIVGLY7wJxM C+jdcCn7mNzjKXo/B+mYYb+n6VYbPhqBBqw4JNXhYD7svofxHp7b77b6A9nPF/6D2U/GZ+YKGXOj GX0y12fhoxnqgf/w/u6Mz8swiDERpXk6wfzxLZyP3kow8Q7uBJtfenIDxUsOA/90fvHj+U1J1fy8 vyjxzjAJCuWpDMXHhPwpx/FZ+niJ56v4oR2chM/awSA2IvdPqnC56j1FRnqRxcHvi/RkbIoL+/eD +U7YBaMYuaOpctFQJGvpdC1SwM27WkmYa2QG2rubKSCjy7mZ5M5LQBxK0yQZ79sphIU8GES6hWzb BBwITLcouWc0XoGQNp6qB6NEl8gKJe/qbWV0Xi+EJtT9yQVvSArMdLRpmOnsjJWNAhpaH5VLhLfn drI5L+1ctUoZD3mytVJEa6UtgxZr55hiKaLxVYYvEd6fG0vpvORRMwqQPiiaYS1kZrTahpnR5KyM FjLjL6W9RGiTbi2l83rlVtlqOOUSbNkU0bJp66Bl2zmmbIpokfS9vET4JN1YSuflpVZGeBBq6TYj RTQjbR80o51jMlJEi6Su7BLhk3RjKYnND2lZ9SKf2MWCuwu38eaArQ9oNCbwAPfxuKko6D/k+I9+ RBaW0VzUbWCUgUoop1jt9zZgbM8MX92ptG7C74CE13FYb48rkFCymbdCf5sF9gEUSP7Pza5zA2wg zB9x+taKQPHdTuyxv9EA+wiKBKVzKZpIO0CRYElSWZGE4mhiyGVsFthGUKTUTy1UE2kHJNJPh4xX HaXPLZxSgW2MsJW9HL33OBLDX35/XNVMDQH9yghT1UYJ4ESGYIB9xMgIJUjimFOC2TA7uH9LQt8d UJbsCsB4quigTNpbZ/uwGDjrrllgG7LJD85iq+KzK4zx5mmxfR60WqHDET3GMHx30WHl/bpZXQMS RBkGYB+w+MN5q+O+mx48yDobPH7J2ASPQ/dh6/3yv+f3r98cxYDfyVGThND6uBaP98/x59fv/vPP V6/Pu0H/1HLtljlty2hwq31cLKHisRLTWxey7XuAYjYcwFLwf5fLJgO9LEN4eZhk5cAu9kDINso6 9hW+xjLuiRtnR+LXkBWR+DKPaBxOhI95BEeHVNJAuoYSCkb1UA2wjxmh/zcArjetNwplbmRzdHJl YW0NZW5kb2JqDTQ4IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCA1NDkgMCBSIA0vUmVz b3VyY2VzIDQ5IDAgUiANL0NvbnRlbnRzIDUwIDAgUiANL0Nyb3BCb3ggWyAwIDAgNjExIDc5MiBd IA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNNDkgMCBv YmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCAvSW1hZ2VDIF0gDS9Gb250IDw8IC9UVDIgNjE3 IDAgUiAvVFQ0IDYxMyAwIFIgL1RUNiA2MTggMCBSIC9UVDggNjI0IDAgUiAvVFQxMCA2MjIgMCBS ID4+IA0vWE9iamVjdCA8PCAvSW0xIDUxIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDYyNyAw IFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgNjE5IDAgUiA+PiANPj4gDWVuZG9iag01MCAwIG9i ag08PCAvTGVuZ3RoIDUyOTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSImEV8mO 40gOvfsr4ig10irtkudYCwaYutQgje7D9BxkKWSrW1tLciZqPqS/d0g+SrYzq9EwYMXCIBkR5OOL j8fdh+MxNIE51ruDd0iNTz9pxKEX5/yfpubY7T58mlNTzjLvm7nsdx/++RyY87zzPd+PSUG5883x decEvnv8bRcHXh5lMckeP4tIFLLIXpoHFvyP44d7N/YOzi/f8A1cmuZP4gWkxvwceqH73+O/2McU Pgah2KcP/MvijD/koO8F8cH4XhhH9B8dQnFS7PliWlqZuGieh3p5LSZrPtsX2w5jZ/vFfG0W9pyM xTAWxmKMPrFPZwJrOA7ojW+7/tTaYnoera1Yx5cjmUvSxNz/sz/kNanLYhrJxVlDmmgDk93Vu3VL MhkfUi/K30z7qcminD8B+7OPPdobJqkZr5PxgU4wfJgWu0n2FzZp4r29j38XHFkQr4e/RQWfS5jq eaeh3vTSDHTDidO7+4A+xvbStRN9Iufc2NkMtSna1hTL0MkgjYhM7e5DL3PMoEtMh/HWltfWStO4 +5Qi5rVZLqJjuVgJG9+QtdBnFz+TE6xa7ECcpe5WQ+sCaxfYgrdw0lM/jphrZjNiYijtPBvqT9A3 4lMstjL1AJnNJKxcoXgvXh5/wqEla34klDZyanNB0rHTVziLGGeRkzZWVmKsr5vzVVoTa80dLFog 2qiQ7Hu5iMEg9KIwiW6pGWyWE70vPmUc8OzRjpvZ3SdqdrLSubohpWq70M570bpf1d6duewrX7XH SQbtRW9sJwdxKib5Tux05sxz00vj3H7nI3NG6RW8sciBqHba1ra4gcQZTthX5OVZlNztK9tMxylM t7YzTWUpSmBgvjZ8T8sgvTVw9quqN3vx8y3haRdTeSHE2EuklHQmXugs18l6t9g7+JQrtHZ/W8zN UO/3i7vPZUcBX+eFVR34lJ1vmPjCdyjnzuFGPg8QKQt8F4tvZQpTNTVirGYQDTi19gyjKtKLjcWU qqJXaY4dGZhcht5VMXQ0qzAFD8TZlfF+wfCwQI01CO/+fRJKQMQrGueHNR6qLUuctjlLp+jlUz3J aCGdvjKjNCQzM2dCfgVOJ8ejuU3XCCEBkz+hDQuoT/G6WBmbinLLwIe8W9as4UUpoRV6glahc/5u yqKl3FgTLaLBZuglU2SIsgdLugFLvrtyj8VL0eiqUwsJw6Alrcbl5O1NcQ8KwVq5kjyCb9/4IiQ0 fFbZcP7N17puyoZrmGx/MJehre7S3c9CTXdE4mHFZz9e850XVpYzeyn4v2kZdPYJ4inE3dCdMA6I GEUUX3vKm8c5TTJuOqTCQPOtjOw3fBA/3oRDsKVFlCs+lBxGIUFMRFfW2ifazisiy8rQC+bRmTgm KXE3xDK6vFhBIYqjOx6C4iT2Dgns9eZ0j/dmHttmMQ0KzgLINmMDXCftEd+xdGZ02AUO4hU7xOIP cZBZShDooRflxQDhGgoQSp/SbpDGRcXKXEWeGAKWWwGlYiTXcXT5oGnrtV0Ii/qzyMvUIM2aTihx tgTKUBUSne2w3fk+4KKtCmW+ng6hTcLhb07WDC9WOhMHRe60xSjdkbupg7kKHYlsKcWJnJD4kKAy caQP0umg6E+d0kE+BYkhPgW6Bx48q9oC3erpoXgqpgRhtEb0i+03F0zdDkCQpQGsnIEHZhykS5hg irK0rQWerHBhFZhGDIs/WDE9Ue7do4cfRBu+r4FFsZIxQ3DZc8kLgU/2/yq5k2rmnQYd7fGt8PF0 z0dE/wWjWDJO0DeoES7L/J05DkTO6MxVzKs4wzZHr0j0MqOetBQbznej/qkExGt1b9I92NVL8Y69 URKwXscKMFup64Z52Sp6DqoSSxzmvNlA0p07kl4BQ3AvfVOqkGWsK8zcdFDRNvPSlJT1lXQtlLTK c2QIKZw7gvdk9IFvRcFGUtXHomTgR445N56ojDR3BOA1Q3M+d8EXSqFDqvhCYcfxeuawSpxXCn2C J/KG2eAd69w4ZwFVlLsrRqq2t9iRwdcoSxU7ZEupUwIXpOTIt8DB/k6EWqqNS3wQtYZThxkEt15n sGjBbJmah/EiLTlV5q4PZ7VWoTRZr7Nygcd75hVUK7TwEEaUVAqJYrkgCQJX6FQQRkHHNW4Sg3QI 2DkXpX3GNR64jJflFcKFfMrvZkXb1cF4e1zG6wnRsXPww7WXQnrt1WqAJEIQJiuN+YrZZX4gb1H6 rmQGWayk5Qjmxzn5kJGhZGTKjs8zGlwKdU6CmJe0qJmz1FhDDnDNXaReVm7g6HnK5KBl9iKzExUr lsX6AQWWMbSR4iypqolKNXCt0OX8YzIWRStwhnq14zQI9p4U4q30ulnpMpWsAu2zTNgeApyLM5p/ XHWm5GDoRulRqPOjCbp76N5uEW4F/s2t9/c5XnCFU4dvyRHLjYFrBRVPU0uliFApMgdXK5Xq4IwQ IpxneEzkPceWvxx3f+wC05gdnrTECbwgNWHs8zOX85Fcmezul59Mv4lEXmq6rUdZE5r2YbLd1Y/T mz4qDqyu3v179/G4+3A8pob2V++ChOd9+qGF1bFP6EtH0QlvOBgiYjEROS86hGYu+91j2ZEg5aN6 JroeHhj4ePOR81pM1nymitgOY8cs8Su9W3j3ZD+E/cNq/nCzHmVsVazL1GYxUTgIgzUXCBafEWmD y4SoXt7ZXLlo4qf3VHR9DIRRDl3sG8Uu1eZfnefPX/klFDi/umZEvk0u4EI6L7w/os6VvsIk36jw FfrOSbjoMtW5UVA2/xZd1/3Eawq0drFmBkNfDB4DNVMnitkKeIv04+1Jf1TGr0+GhV6UQzv/w3wi asiPO0h1Y6O8n+hDQQSvO0mPacc9lYg05tum/10ZyRObp9dhhbfL6YpX0tmubITzlpvM+SjQSeWT IVromffP0fvE9wOtfsfBzEjcERk7TAuAklKZz1MSt+YHI7cYt4XQ3SEFuFlIjHWmF5Kb00FI8Un0 /UB+QaDACi5ewroFDLaCyyXyxy/HlVbkaXYDK7CGEICLLm2dlQh/mAcEI3p0LWAPtCB0Zibu19kK f+e/EmL9IpWGxLiaSUuun0LtLD2purRm/8gAV0qRxKkWIQRko5S31yJQ6zAdmUoMAuG3VxhJ1Y2K 29vcctEhKSIMu8gA1TIJIWtOmLvqKJihUBrNj02N+rOotums47oSZDBUvQM6Jcq4rp3nYZV5RwAR y+lWj/nkQIQoIR5oG5dF4cH3g8rezuZs0bJ66sROTD2g461AliuQhkDRUEEsTInI537w1yAKHIo2 xiog4Dw33bUtmIYild3jb38DlyF9Al8tPQDmhtCp5tqn7yVni5CZHscJPmVOzbKXx9lbzrOAQzH/ Jb8wRM7NBsxJwjOSh+hGmzieMTvpYuGbGaaEHu7fkyhuZYrrmr2kl56gn6RcS+9nra1NO6DiCjMG lWJHUi2+pkStprcjCBcqsxm1lBcdSjeGF6tFmnIzc/4HFbjp+9DKt9Ban1myY95Wf8XD9mTlO+GB +3/Cq2TJceOI3vsr6kg6mnQDIEBQN0kzdkz44FGoI3zRBU2AJDzYBgCb0/4Mf7Fe5ssCSKpHCh5Q exWrMt/iaHf1ilD7/HF4xDX+r7hrFwEdM/aiRc2+/u1R/7WUocNOtq5rOy2IX5Bvw0mmHu9MEKSV XeePcu93wQzZ5N8pJbz6IJ8ckApWw6+fJQB0wNkMD+wJZ0gODaeS7qi7FfChf9rdLuJZLkKMENtL 9bkn2cH9+oGN/1prMv5bBJy0j+SejFRz9Ey+i7cpqVzBzzxK8GQJX4xueBvGolZFIKfLUVLzKEgK eCu0nhOsPUHrqu/6n5VStK3Oa9jwGjbTNWw05uQ6GvMiWjkwKhW9k4X3TDlS29XZuD/RayQenYZO a8W+PIgZKumVmnfMwXy5N8T9fBKdT7sVid3i3XVdNa0nWWFk/spPpVEViWYJJIEbrYmUcMOYUQaM 7kVbNUwRuy2breq+T51b73ZTC0Z9G/1fNTWL4731rMGTjsVsL3nL8oiHc1W98eSJcpTeFB7Rrj2n 4rELLRpWSdSJEjUy9TY6Ibj9BYYWnsCbLutxg0WlL3IpLUaHElcIUIZ/rAoRlpoo6/dFziQYgo0h r8a0gqQXBBmz58h0YuvIEJWBJwqBnnR1sZpN/m2hc1vOtTTMTHcAqKkh9IS/LdmLJcthwl+OFZR9 353F/mIC+IbZ1m7kXn3JZZ0WfGw1WkPo54WVMv0ShDdEW5ykVyl2tgcitm9UYMpXBKZ8j4W1Y92r J9vMrmMG4USVCcREQi2RUErE1C7szyAl5KqQ91qCNFsmKnFCcLkM/R6fh7vtOkncNojEof0FnVPS K5N/KPBfjoDbP2FwWzuBe5PbvyfwKY6e0o2H8ppv91+PvqpqLFoQtg2FYuEuJwN8irtrgWPuAWhd 2nBnRJAXk8DRadm8AvE9uw45q0iy3IB+4n3NxvP5khZKwUIzXBug6ASimeyGLbEm+1n7m5zjesCQ kmG84IHjBYETtCkQNZJSY8Lt9qqz5s77k00ubnTHrL2Mm8x1NIpnqlAtmqkUh7GlRek0ONEI3M40 vM2YFNc240vXlvQd41ICuXfFPFIcSMtxUlzLiOfTzflm9lGJJCfM53vHvWUrekBWb2BUEEzrlWvY MZ7Zz2aSO6ESFk7XafdiZIzN6rIxpoMsElEkQ4d5Tl4ebkRcGPjDxsZFoLBzNb65E1IgkuD7QSBK AApxKbgXinUTXGqGkUPO0rhX8Ysm7LnIarl4KX2TYNkJUDJudhgtBiTEPESFrt3I/BuIn+EiMuvW XqtfMMokW3NTt/xozIt2KA8HqtieYqu4nj8CnlzBGXsuBJ03eYPgiUn/R4KIJpyAKtenQtj0v3Za EJqS7/8Hv5CBRwJATgNqH/lT4UZF6cKFAjLb9S5V+NBClMRr6P4kSD20CD6FOh7JhPG3UBRtkSIp xuPNEz8+Cv39+QjUezlSPjeFfvtMPyIv5NtIVO8M0AMD9ACAzsHu5Uy1XeX0XrezNBbxHK8lwwsO citC9l5XxBMypvO7miyTQC2+dYW29CW/jekL8FajDTn3Chfta5lzzCCBFZNKEamv2c0Kys7p4k1y 55K9DSKQXsvhfJsHHlTCIJjBD6Euwp/sD9wYRrZiSUZUqBn5+aOrWaslDxdvSzVXBL9QqBM0eiwH cSw47dr9OLhLUVWOqw3vSe8wsQsaKdmyvJyEYFaRhAfWzxyxpyxcVaYS5VKShWlF1e0Q2LUOfWlB /rgEdqq2x7kclztQvnOLPBuzR5OjDYkgfw+MgzS1RFWPB6LGOV4JnJXLz1qoO9lDSrKHipu6qNnS v7lMC6oIsS8RmJ9HM6oK844gXrxw0eOR1VvXZ3EWBjs7VseYkL+QWtC9MmzKnJoV9DUUDK2VNanp 0KAzzXuPEAGERLKNZ1tDPDWE6EpVxIqid5AQARLC4MoO2XnDwEhNXgdGAG8T485PS3mSEggaL06w be3lygRF62gLb3uVahQ1ns+TxEJa7M1KjSj0k7oAc6NzGx7oIFvq+y8ksKVX8Dug1ZBKyxl4MoT7 amODez9SOyXcuVBhHYODSj9aBSJUh534KQnSkJ5alfiGWbFtbNf1zQOH9ufiwCzAszLciWaoHCbx I5yNgA700QM+espHD+TRM/f1XO6/gFJkxlmbqWACUTAtp+Vc13ImYM4Acth7kEUD9VOufS2udwWj v8+3T6EluCkhErsoI3Fa9do5L/JDhGwYR1OI+Xf1GfcMIXKStFDx9EIRdqTgKnp3aanTvixDhdjS BjYjDICYMzFLVGeo8iCF9yMx/MjqO27DniB42nhN35IFBoR86JWoskSOTZYpVtMkDthHL7UDxYzu ZOX8YoVirWM+jfoZzp3O62yHcdCz2mpQv2Sp7F1M30RPdlMqWSlY05lsRLsYdetmBzWfoUS7aEVX t+y0ef3SWOlKo0+dptGhNY0RbCT/BqMpVDhOFj+8h1h4VcvW4zVikdK6E55MS2pz8Y/P1wRYXM9A to0GZwd9j0w5lMhms/cEwrr23GowV3ncs3Ec1tlydI3S8uj/weoKw55Uvsk/eOkFAcCUmXwDKGt+ RV9rYRT1EMnxt1hLy4J40A5q/PDOe+k6+Xn8lOShZpTDYTZPEQBAgl10BcW7WUQmBqoqYnE5R7NA xYoCWeFV7Q3cFS0TxOmjK8Y9Yefj88PXh8CV7sG8X7DbrbcbF26eRIWtZPeN64uH//zNNfOYFMTo 6us5oavuuquHw8Mv76wezosjKnTt66XvBoQyQBb66VloJjF+ir1YZMlmh0+xLKlqMYDbA/FscHPr aBdOJnYmssXPbbOvzoO8OvTnTGK3StSfDIJ0G+ra2ufXC1MLjyhMJtzCGwBrxos+y9byqdAyY3LL mMQrm+iUJlUogKvDWauNWo9My1UJ68Iot+W4msJ+aJXeO9Zm37Mls03Ep74LdhPoBpvt7OliTgSs Ze61rQiYNUhF/0Ns/yHmf8CGndZa1i5FP+ut7cLQdqk088b5oztUxbfyhV3m+CI6Pn/UO0IMQh/s A7mpOsvtQHQ+n0hMWIU9e0Q9rmSwgb0TlJVSR7KrSqXHgX+MTmFDza+HhI4GUwzFLQhMrCD5J+cA lCgKfBvd0fAAua26Y64oUsSa9SJFkNgx8xxqwwaKJpjmXE3NWRmY0iIyQAvsd4eWJdEQsr6sYU0H wRvhPHCPDeKYXFe93DZyK/Eg2prf/GehFyLfdPUHhfvlk64jcNIX/LpP0tMsA9qIRJUVkKiyfihG FmxeJX8LQPxZDrJoO7YWWhupWbrKxsp+B6aJrKlj6qVn25Otq7u6vc1ptPPFn07nZDrdtlr9McpW Hl7lv5qSMv2kiRwQSmEeRfxC7IFeVWWAcSELbczRwkj1jrbUlEzD+l5mx+skxSWHQLsw2E4CJJoO Yy73H8tYxaQInSO4Hu/mUvfPPusINSJ4aHDDxWQfWO09zAdOfoJaITA2Tl38tEVWuTBK11EKXNhC USRE2wm0/3ygcsLXB+nYhruAeMxemxpFiWDnvn74+6c6cB9aAPkvD78PAH7KUD8KZW5kc3RyZWFt DWVuZG9iag01MSAwIG9iag08PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRo IDQ5NyAvSGVpZ2h0IDM1NSAvQml0c1BlckNvbXBvbmVudCA4IA0vQ29sb3JTcGFjZSA2MTkgMCBS IC9MZW5ndGggMzQyMjMgL0ZpbHRlciAvRENURGVjb2RlID4+IA1zdHJlYW0NCv/Y/+4ADkFkb2Jl AGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBcSFBQUFBIXFxscHhwbFyQk JyckJDUzMzM1Ozs7Ozs7Ozs7OwENCwsNDg0QDg4QFA4PDhQUEBEREBQdFBQVFBQdJRoXFxcXGiUg Ix4eHiMgKCglJSgoMjIwMjI7Ozs7Ozs7Ozs7/8AAEQgBYwHxAwEiAAIRAQMRAf/EAT8AAAEFAQEB AQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAED AgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1 FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdH V2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAz JGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF 1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8AXVOh35eBgVN6VabcQsFjQK6w 5u0Cz3Ns19w0/KqVX1Vsb9Po2S8zMm2oaQRwH+JXYWNx7cp2226u0WAP2bg3d7Whu7btjTxU8t2N dfSx9zqrHOdXWxj43OjdtI7kcqYczk2ER1Ol+fdbKAJsl8/y/qf1l1gOH066uvb7hZZW47u8Q4aI I+p31l/7gu/zmf8Akl3VeXgW532SvPuOTJr9PcZlu6RuLYVnFzsO0vwq8h9tryWy4ncDEQHFo8Cn ffMnaP4rfZj3L58Pqd9ZP+4Lv85n/kk//ND6x/8AcJ3+cz/yS7fDy+n25zKMfOtsua5x9FxcQQ0e 5skcaSruP1bCybPTosDn6mII4G7uB2R++ZO0fxV7Me5fPB9UfrF/3Cd/nM/8kpD6pfWL/uG7/OZ/ 5JeiU9Qxb37KrGvdEwD25UsfLqyQDT7gRua4ggOaDG5pcBuE+CX3yfaP4q9mPcvnX/NL6w/9w3f5 zP8AyScfVP6w/wDcN3+cz/yS9DozaMg2Coy6kxaCC0tkTqHNCjjdRxMp/p49jbHbd4Ake3xEgeKH 32X9Vd91kL9M/T82m17W+f8A/NT6wf8AcN3+cz/ySkPqr1//ALiO/wA5n/kl6CzLosufj1va66v+ cYHSW6xqp+q3e6sEF7AHObOoB4MecJffZ9ooPL1uJDS/p3fPB9Vuv/8AcR3+cz/ySkPqt17/ALiH /OZ/5Jd7bm1VWGt+jhyiutawsa4hpsMMBOpMTA+QS++T7R/FHsg93z7/AJr9e/7iO/zmf+SUh9WO u/8AcQ/5zP8AyS7119bbBU5zRY6IbOusx+RTrbk3bvRx32BhAc4FoEkB35zh2KX3yfaP4qOADe9X gB9Weuf9xT/nM/8AJJ/+bXXP+4p/zmf+SXoP2fqH/cSz/Or/APJpfZ+of9xLP86v/wAml97n2j+K PZj3LwA+rXW/+4p/zm/+STj6t9b/AO4p/wA5v/kl3WRYcSv1MwDGbIE2uaOTA1BI1TC5hrFoINbg C14Igh3BB80vvc+0VezHuXh/+bnWv+4x/wA5v/klIfV3rP8A3GP+c3/yS7ZtoeCWwQOYKVdos+hD vgfAwl97n2j+KvZj3LxQ+r3Wf+4x/wA5v/klL/m/1j/uMf8AOb/5JdtD/D8Uof4fil97n2in2Y9y 8UPq/wBX/wC4x/zm/wB6cdA6v/3HP+c3+9dpD/D8Uof+7+KX3ufaKvZj3Lxo6D1b/uOf85v96cdC 6t/3HP3t/vXYw/w/FKH/ALv4ofe59oq9mPcvHjofVf8AuOfvb/epfsPqn+gP3t/vXXQ/w/FKH+H4 pfe59oq9mPcvJDonVP8AQH72/wB6l+xep/6A/e3+9dXD/D8Uof4fil97n2ir2Y9y8qOjdT/0B+9v 96cdH6l/oD97f711MP8AD8Uof4fil96n2ij2Y9y8wOkdR/0J+9v96f8AZHUf9Cfvb/eumh/h+KUP 8PxS+9S7RV7Me5eaHSeof6E/e3+9SHSs/wD0J+8f3ro4f4filD/D8UvvUu0VezHuXnf2Xn/6I/eP 71IdMzv9EfvH966CH+H4pQ/w/FL71LtFXsx7lwB0zO/0R+8f3p/2bm/6I/eP71vQ/wDd/FKH+H4p fepdoq9iPcuGOnZv+i/Ef3px0/M/0Z+8f3rbh/h+KUP8PxS+9S7RV7Ee5cUdPy/9GfvH96kMDL/0 f4j+9bEP8PxSh/h+KH3qXYK9iPcuQMHK/wBH+I/vT/Ysr9z8QtaH+H4pQ/w/FL7zLsFezHuXLGHk /ufiE4xMj9z8QtOH+H4pQ/w/FL7zLsFexHuXO+yZH7n4hOMW/wDc/ELQh/h+KUP8PxS+8y7BXsR7 loDGv/d/EKX2e7938iuw/wAPxSh/h+KX3mXYK9iPctMY9v7v5FIUW/uq1D/D8Uof4fil95l2CvYj 3LW9Gz91OKrPBWIf4filD/3fxS+8y7BXsx7lCK3+CcMd4IsP8PxSh/h+KX3mXYK9iPctTJs6i4Oq x6Q1rQPSu3NndGstPZVW09bbjVs9Z/rtew2WkVuL2N3bmRIAmQJC1Yf4filD/D8VEZ6k92Th/BpT 1Pwd97Eldh/h+KSHF4/iqmDTea9rd4re9tpbFYJg7wCZlCbhsZf9obUWvkkwWAEuiSfdzpygWspy PSc5lodtbtNb9s7Tt12+J0Q3tox7SHsyHucxzSDZuEDk6uiU1c3W4zW2i0U+7mQK5mSZndyZTsZF pLayXMiQNmh92s7u8qm3DosfvHrb2zp6zRAeP3Rx5IgxSWbWGxjRt2va9hd7Q4andryme3HttIz3 PzFVp2YoZZ6jaCHeXpj7od37pVsAO9lbjPcbI42mId96r+ha36WTfzMl9Y0EGOfJWaLBXW1m2Zkg hzNQSXae5IY4iqG0jIanc7/mq2D30Y1b7sj9FS1vuNhYGgRt2iD+cufxvrR9WcO/dVfeAxnoilwD mtAM6SZB7LX63XbmYjcZlFdjXvD7heQW+nX7nObsJO8abfNcji/UnMdWzq1eSGsn1wTWDEHdxv1h S4vYgCMmT2oyNRs/NKRutVsuL9EW7jfrh9W2uLvVsJIcHewa7zOuvbso431p+rGPrW+wkDawlklr D+aDPGirP6B1FlQve/GDXxDxjNJl53A/zn8pRt+rGe2yllllIc57ywNoaJcW7SCRZwBqPBTcHL/v n+X0Rx5dqb2P9avq7jyan2+6N3s5I/OPu5Kf/nT9XftFmU31PXsYKy8s/NEkD6XiVX/YfUmn7Jvx w61u6Bjt4a305n1IlNR0HqDQcVj6C6lrWumhhMcglxfqT3S4MH75/l9FceXXxFHxH2pMj6wdCyb/ AFjZcCToBXPl+8j2/WXoFttN1jbTbjkuqdsggkbT+d3CFT0nqNjjZWaP0byHbaGN9wLS4D3+Savp eY6o5RdU9hYxjXPqBhtbjrtL+T3Q4MH75/l9FCeQGwK3H27p3/WLoVmQ3Ic2/wBQQR7NPbwY3K/g fXbpGKywFl7zY4O0YBHta397yVS36uZFwaLbqDsduaW1FvAAaND9ERwiDomXJJtxZdEn0PCfPzS4 MA/TP8voozymrF1oHSH1/wCknijIPf6A/wDJJx9fuknijI/zB/5JUWdLz2Oa5t+OC0bRFJGgjTnj RR/Y+Vscw3UbXDaYqjTTSQfJLhw/vn+X0Rc/3UHXesdB682uvLoyXU1PbZ6YbAJbIG6HajVBpzui 1dNr6WyrJdi1Na1gc2XQ0kiTuHirx6PkGtzDbSA4ES2sg6kHx8kIfV2wf9qG/wCaUuDAd5n+X0QT k/dBR0dU6VTS+iqjIFVgIc30/ERp7k+H1LpeISaKMkbhB9k957uRR0B4/wAO3/NKmOiPH+Gb/mlH hwf5w/Z/Yriyfuhl/wA4MU/4DI/7b/8AMk/7exv+4+T/ANt/+ZJDpDx/hW/cVIdLeP8ACt+4ocGD 98q4sv7oW/blH/cbJ/7b/wDMk/7aq/7jZP8A23/5kpjp7h/hB9xUxhOH54+4pcGD98q4sv7oRDrF Z4xcr/tv/wAyS/a7f+4mV/21/wCZKwMVw/OH4qXou8R+KHBh/fKuLL+6Gt+12/8AcTK/7a/8yTft dv8A3Eyv+2v/ADJWvRd4j8UvRd4j8UuDD++VcWX90Nb9rt/7iZX/AG1/5kl+12/9xMr/ALa/8yVn 0XeI/FL0XeI/FLgw/vlXFl/dDW/azf8AuJlaan9H/wCZJN6qHCW4mU4DkiqR/wBUjX4rrabKtzQL G7SSNwg+RVX9ju9JtXqththuEMLRuiOGECPLhMkIA+k2uiZVqKZs6uywFzMXJcAS0kVjkcj6Sl+0 /wDuplf9tj/ySzcnp91zWMx/0npOsDzxBLv9ig3pWWIDqJgRIMJpAXOr+0/+6eV/22P/ACSf9pn/ ALh5X/bY/wDJLMHTb2M3PoPtEk7tNOSpDp2RIPoGD2lKgp0f2mf+4eV/22P/ACSX7SP/AHDyv+2x /wCSVA9PyY0oIPjMpDp+X/oylQU3/wBpH/uHlf8AbY/8kl+0j/3Dyv8Atsf+SVMYOUOayn+zXtIB YZcYA8dJ/glQU2/2kf8AuHlf9tj/AMkl+0j/ANw8r/tsf+SQBjX/AOjd9ymKL/8ARu+5KgpJ+0nf 9w8r/tsf+SS/aTv+4WV/22P/ACSiKrR/g3fcpBlg5rd9yVBTGzqzKgDZi5LAdAXVgf8AflD9u43+ hv8A81v/AJND6ljvyqa6KwfVbYTt2kn6E9lRZ065rzSaw6xg3OaWukA8IXG+GxxVdda7qdL9uY/+ gv8A8xv/AJNL9uUf6DI/zG/+TVBmE95cGUglh2uAa/Q+CTcZz6jc2semJJeGuiBz9yNBToftuj/u Pkf5g/8AJpftqn/uPkf5g/8AJKiaNlQtdXFZiH7XRrx96d2JZWWte1wLztaNp1PglQU3f2zV/wBx sj/MH/kk/wC2av8AuNk/5g/8kqf2d7bG1FrvUcC5rdpkgclGqw7LC4D2lhAcHAg6iUqCk37Yr/7j ZP8A22P/ACSX7XZ/3Fyf+2x/5JIdPtHdv4/3KQwrR3alopb9rs/7i5P/AG2P/JJftZv/AHEyv+2x /wCSRBiWDuFIY7x3CVBSH9rN/wC4mV/22P8AySX7Wb/3Eyv+2x/5JH9B/kl6D/JKgpCOqTxh5R+F X/mSi/q7GMNj8TKaxoJc41aADX95LN6fdksY1rmDYS6XSdTAkR3EIGZgZHpWW2WgVsp2FgLiIYwj cG8bilQUw/519M/cv/7b/wBqSwvTxf8ASn/NST+AeP2It6jFcQ7GDa22WkH03OaSW+4jTn4ql1S8 1ZUOsFQZVZY+x3tYW7o2CQ/3FX8QXltLa37KyD6ji6I93x8PBCy6bbXljLW+iSQWOb6nJMnU6CFG ZxgOKWkRuu8kV56cLXV5WjgWEyHaw1u2drvNQ9TooqDBYPRcQ4Vhjy0u7HxRxbk0gtbQLmDaA9jw 2YaN3tPbwRH33tc4MxS9oALSLGiTGo+/RJDSpq6Bc9tFbGl35rdln8r+V8VKs9DZowtb6ct0bZ3E Hv4K2/IyBU2yvGLnGZr9QBw1jn8U9d97rmsdjOYx07rDa0gR5DmUlMKxj+iHY8ek+q4tgET7Wjh2 vZQ6Zh9Wu6Ni0VFhx76WEe0yBYdQXR25Vm8NB9pkeld3n81qN0bYeldLBN270ccxWYZo4/S04/e8 kzJGMgOKIlREhxC6I2PmkIs7pHWGYG3fXcKQCyqtp3uLNWgSPJBsxOu3XMe+mHUOlh2w0yC3zldL mZDcah+Q5rnioFxZWNzjA4aO5VcdXpJc0U3ywgGayBHjJ07JcRU4tWF1u3NFxYK3sY4B72eyJBiO ZMoWPjde32X+hstsaN7XNJHtBgN0XR0dRovt9JjLQ6CZdW5rYbH5xEd0B3WYa132S8h/ENBP0d2o H3JcRU0GdG6vj1W7LqXby61w2uJLj2bogDpfV68avFaWvqcNfY7cA5wkEkciV0VGQLqjZsczaSNr hrp5Krf1hlNra3Y9zmuaHeo1stE7dDGv50/IocRU1acLqdtTbHNqqc7UscXSPj7VP9m9R8afvd/5 FXcfOF7bHejYz0+zhqZ8ELK6r9mufV9mts2NDt7ACDIJ2t89EuIqa/7N6j40/e7/AMil+zeo+NP3 u/8AIq7iZwyh/NWVe3dDxH+vKhk9S9D0Yx7bPXBI2j6IEfT8JlLiKmr+zeo+NP3u/wDIpfs3qPjT 97v/ACKLV1r1KjYcS+uCQWuaN2k+BOmitY+azIc4NY9gbMOeIBAjX8UuKSmh+zeo+NP3u/8AIpfs 3qPjT97v/Iq+7MAofcK3kMAO2IJnWB8ihDq1BEiu7v8A4N06BzuP7KXEVNX9m9R8afvd/wCRS/Zv UfGn73f+RRx1zFPFWQdSI9F/b4hHszmVsqea7CLgTo2S2BPuCXFJTR/ZvUfGn73f+RS/ZvUfGn73 f+RV1/Uaa6GXuZbteSABW4uG2Tq0aj6KbH6lTfYWNZa327w57C0EeGvf4pcRU0/2b1Hxp+93/kUv 2b1Hxp+93/kVa/a1G3d6V0bd3826Y9vbn85Sp6lRcLS1lo9EFzg6tzSY/dkapcUlNP8AZvUfGn73 f+RS/ZvUfGn73f8AkVcHUqS4N9O6Sdv82YmYQh1vG9Pe6q9ukx6Tie3ZoPilxSUg/ZvUfGn73f8A kUv2b1Hxp+93/kVfxsyvIcWtZYwhrXkWMLfpTpPEiNVYS4ipyP2b1Hxp+93/AJFVsxuTh7fWdSPU MM1dqYmPo+S6BUs/Fpvc31QXQCNHObof6pCMZEmlON0ijIyfXNGz6ZLt5I5c7iGlF6icrp7A6xtb 3OBLWhzgNOZcWQEboTa235rYcGttcGhm7QB7/wB1E686xuITVd6VZBD22bw5x7bS6R+ClIQtb0rq L63smkbmkTud3EfuIGI27Ke6uh1RdWPcHbxxp3Ytp3pbT/O8f8IqeD9p3frD2uq2+0VervGvt3fA IUFOWfqnlAgV3emwGSxtr4Ma/uaaqdf1Yyq2OY23R8c3WaRr7fZot79F/wAL/wCCJfov+F/8ERpT h431bzMd7Xtt3loIAsuscDPiNiLf07Or2W2GkNrJcYc4/muH7i1/0X/C/wDgiHf6cN2iyd2k+pEw UKU87kWUZNRqssYWOIOnqg6e4f4NCxejNy7TXVlue7aHNY6y1pDQZmXV66uW079remIZSHQJcTdB PwR6Ptfrfp2tZTBj0/VLiZ05jtylSnMf9Wct9LaTbDW9xdZuOs6nZqjY3Q8/Ga5rXss3ncTZY9x4 jT2aLX/Rf8L/AOCJfov+F/8ABEqU4ORiZ2LlMsHpOtdLg2XFu1rdhngz7lVD8r7U/JNmMX3NDNu4 x7ZgjX4rW6rtFjHNdY0NreSA0vefdWIaHkeKyP2Z01zTb6T/AGGAPRb4Dgb+8pntQ9z3OEcfDwcX Xh3pN6UvSM2j1ntND/UcbXakxp2g+SaujOrwvs007LAQHncHe+T4+asYHTcSx7q6HOxyWEOca2gQ Ylv0lff0VtjBW/LBaIj2gcfByfSHHfXlXYrMQPx4bADmklx2a+PkpXjOuta5/os+yuFh+lB076rQ o+rOFjPFlF1db2ghrgwSAefzkrunsrtFb8lz/tMNJbW0tEaandolSmgftj8mvLDseWhzWtBO07oJ 7qdVl7RZc707N7m/zbtBwweKuD6s4YaW+uyC4uI2jl2pP0vJJnQMbGpe2nIbWwkPeGMbqW6/veSV KQustZBcGNBMCXRqk22xxIaGOLeQHzE/BDurxr2Bt7rbNdzazQCTo33CHfy+Vdx+g1YwcKcprd53 O9jTJ/zkqU1mWXP3QxvtcWn3dx8lE5BAkmuJj6Y5mPyqxdiDEdt+0WWb91hcyoOE6afS5PZU29Iw XAXsLx6e93trDdRtnd7+/wDelSkzrLmloLGy87R7u8F3h5JOtsaQHBjSZiXxMKzVgNyQyz7WWlp3 Brqw0gwW6ifNPd0GnIIN2Sx5bO0ljdJ8PclSmqy2yydgY6DBh8wVXybLb+n3uDAGGqwzPYNd2+S0 sfodeNWK6csNaI5aCTAjkuWfnuqxMbIwmE2ObU9vqGA07mPJiO4SrUKeOlJLakp1j1uO2kjHda/Y 0A+yNXHdOnuHw4KpdWPRxkMdnv8ASs12glzfaHOkw0GSJQun9avyMvIx8Tpr8p/TPba/1xW2JLg4 t7/NCxOt9P6viuzbMQbqy4tqcG2PcGw4taS2Nd3HKr5ceTgNA3p8koiWu268EE6fyp1G1ZRbuxLQ KyG7GuZu9oY2DP8AKU7q+qF49F7AwkSDVqB3+K5vM+sVLcm1jenZL3MeWF9NgH83+j+gBpEIdn1o a9xtd0zPaOSBcWt8OIUvsZf3fxC3jj3eppq6i0O9WxriR7Iq4M9/koinquwD1a93j6Pn8VzFf1tb W41/s3N3PaRD7vd2bIkDiFD/AJz1hjmfszqAAkk+u7TWTrHZL7vl/d/EK4493sL/AIQfStnSNdrU fojyOl9MaLnsiigmpgmQS4a68HusXo3W6utYTsmql1Dam3U7XuDidrKzMj4rb6La9nSOlgZDaWGm gFhbJMkiJ/lcKLJExNEUQuBvUOn1V7a+n3vdc7Ga1jib2Dc5gj6TR3Kz25dRfY39pWuh49npkbdT 3AGi2bXMaA58BjZLieIAKdj2PBLdQCQfiOVFaXNwcllmVsHUDkHa8+js2jTbrujt8VTosqy7K6ae oZIscBJIcJ3MMcugcSt9PAStSBlf2bHfusc4De8vcS4gan84ngLNg5eY1uPn3Vva2NoB2EN2En6U a/xK2UkrU1sfEspbYDkWWF8Q5xktjwDtw/BVs/Dsda677bbQ2xoYGNJhsA+4AOAnutJNAKVqcpmX jdNtrpysm1zra97XWhxbqWtEkkwZ7eabMsx3sxLD1Cyhha5wLdwFvGroiIWumStTzlF+Ga3BvWb3 t+jvO8mfe7QmdR/BadNleEWi7KsvNgBY14JJD3MY0/efxWhA8EkrU1rup4VD3sts2urEv9rjGjT2 H8oKH7Y6dv2etLtpfG130Ru14/klXICUDwSU1P2t0/1BX6w3kgAQ7lx2jt4q4mgJ0FKSSSSUpJJJ JSkkkklKSSSSUpV8n6TfgrCr5P0m/BOhupzuhb/tGftcG/pncifz3+YT/WBjjQHGj13BrgLmgjYD yDscXe74Qo9EAORnTX6n6Z3hp73+KX1g9IUBpcaHFriKWgHeByTsId7fjCmQ7DvV2n9I3j93/wAy WV09tdFzXVYrqH3yxzy3QwS7cfeeeVpOa3af1ccfyVl4zmOtoDcz1Ie4GmK/fz7J/kpKdj9L/pG/ 5v8A5klFv+kb/m/+ZKG1v/ccf9H+9La3/uOP+j/ekpn+l/0jf83/AMyQcgWbBueCJ1AaZIg8e5T2 t/7jj/o/3oWSGtYHGkMAM7jtgaHXlJTjupwPSaPsWS4QIr2P04/4SFdwq6BmbqaLK7IdNtrHbQNx kDfYeT4KqbyWBo6lWDA9wrrknQ+Ks4l7H5IByWZAcDtpaytsn6UyCTo0hJTqRb/pG/5v/mSX6X/S N/zf/MlDa3/uOP8Ao/3pbW/9xx/0f70lOf1X1PVYd7A4VPi1wbtZ7q9f0hjyVQGz0nTfTM6Pin2j 2+PgpdbdcOoYFFNO4XtuFlALRvDWteBMGNQpNw8j0nD7ERr9D1G+76P8lJTLA3utAd6WUAwn02iq SDt2vnn/AHq/6Y/7gN/8DWe3Hvoxsi8VPxbK6XuDw4H3NbujVvEq1j3476K3vy7dzmNLte5E/upK TemP+4Df/A0C1rxk0AY9dbDu3Un0t1mn5s+HKL6mL/3Lt+//AMxVXKsobdXYw2ZDmB0WBwBZI4Et 7pKbnpj/ALgN/wDA0z2AMcfsTWQCd59OB5qmc5/pucBcXgiGGxomZ77e0BTpya7mvbkWXVAmAC4O Dmkd4bokpBV6wsp3uosadgc2KmueSORB/P8ABaPpj/uA3/wNY7ngFj2YxNjYhznjQNPtg+mSr+Jk +qwnJtsocCIAfukQCT9DTWQkpbLY9sltdePo10OFWjWn3HmTMhDwm2Nvey/08l5EtqAqBbrM6dtV ZsbgWgizIe8EbTOunMfQ8lCvH6XU/wBSq5zHn84aHX+ykpLc2KXn7GxkNJ3k1wNOSs8MyiWsFlBL yIO2kul23Y0Ce8HVX3Ow3tLHZVjmuEEE6EH+yhjH6UHB4tO9sQ6BI28a7OySmx6Y/wC4Df8AwNZ3 VRiswssmuuqx1NoAhu4OLHaSFe9TF/7l2/f/AOYql1PHxTg5lzWNc/0LSLi0bz7Ha7olLsp8/hyS UlJTLXpcHoWMz1sui/Ix7c0k5HpWbQ7kcbSj9P6DgdPxTiYwf6Lnby15D9dB3HkreF/Ra/gfylGU JnIiiTX8F1Ds4l/1P6TfdZc5+Q11rnPeGXFoJcZOgCgfqZ0gtDTblkNnaDe7SVvJI+7k/fP2o4Y9 g8+fqN0QuDi7JLhw71nTqd35dUj9R+imQX5RDpB/Tu1nldAkl72T9+X2q4I9g5WH0XB6NjHHwg8V 2NvsdvduO7ZW3+C0+hC39mdMLDSP1emd4l5EmY/gh5fDf+Lv/wCpYpfV8tt6V0x9dddrRTU02yJD mOcHD6Q+ifLlRzJOpNk9UgU7mRPpmNs6xv8Ao8cn4ILxmGtv2Z1W4PdvBnbtgwPb3mJRsgF1ZaGh 5Mww6A6d0Cw59NLRj11WW+oS9skD0yXHdrruUaWM9ZGsY7pjSXADRs+PfcisPUIo9QVSZ+07S7QR 7fTnz8UIZPVJdOI328RY2HfR4Pbk9lLHv6i9zPXxW1Nc4h5FgcWtA0OnMlJTFx6yLPYMd1Zc4+4v Dg2fYNJ7cqU9W28UF2uvuA5G3x7SmZf1P1Wsfit9MkBz22D2jWTHJUn39Ra8huM1zJID/UA03AN0 P8kykpcnqXpMIFPq7XeoPdt3fmlp5jxT3ftIPPoeiWaRv3A8Hdx5wgfa+rbATgjeR/N+qzmBpPxU jk9SDR+qsNhA9vqACZdOvyHZJST/ACl6Gpp9fd2Dtm375lNV+1fSf6voC0bfT27iD+/umPkpW3Zz WtNeOHOLZc0vAh0j2oTcjqxdriNaIEfpAdfzv9iSlOPW/wA1uMdT3fx7oPx+j+KQPWTY2W44rn3m Xl0ToB24UxkZ/qtacYbCYe7eJDZIDtvw1TjIy/WsYaAWNDixweJJH0Rt51SUqo9T9VnrNp9KP0m0 u3THadOVBx6xPsbjka8l4PeFEZfVS0n7CAQ0OaDa3VxA9vlqpHI6jHtxgZ497RH0/wCUZ4b96SlV /tcNHqCgu9sxuHf3H7lJv7UNNoeKW3R+hLdxbPfcCil2VLC1jdpA3gn3BxInygCUZJTWaeo7bd4p 37f0IG6C7X6flxwo2O6puqFbKYLAbnEnR8iQ3yiVbSQU1KD1X1h9oFBp/ONe8O47btOU73dRAs2t rcYPpan6XujdqNPohWkklIP130R/Nm7drMhu3+9Bd+2Cwhoxw/aYPvI3e38OVdSSU0HHrnDG43Op cX8a9grVByYd9oDAdx2emT9H82d3dFSSUpV8n6TfgrCo9StfUAWxO0nXyTobqaXRC0ZOdueWfpnc d/e/yROvGx2IfSLLawCXus2ktPbaHAD8UL6tPtecp42lzn7nE6alzj2UvrHs9Bpva4vh3plhIYPH duG2fDupkOq59W0/p3ceI/uWbji8W1udjVtEibg5shmvuHt1MLVd68HRnHiVi4f2U5VOyy4W7ztY 8uDS73TyJISU6++r/TO+8f3Jb6v9M77x/cifp/Bn3n+5L9P4M+8/3JKR76v9M77x/ch5Dqy0D1S+ T9Eka6HTjurH6fwZ95/uQcoWuqh+1rSfcQTIEGSNElOW5uR+bg1fMs/uR8JrhdN2MzHAaS21jmEg 6DbAbPjqqDj05unr5B+DneH9X/X70fp7sQ5lfoW3us12tsLtp9veR4fj80lOvvq/0zvvH9yW+r/T O+8f3In6fwZ95/uS/T+DPvP9ySnnfrE5n7R6afXc1o+0brRMt9g42CU7X1+g/wDW3ls6u/SyPo8a Kx1pmeeqdOux2Nc+kXknloDmtaC4adyiDJ6t6ZlrN0+32adon3JKabX/AKtlNpyPVccWz9HZ6kBo Y397vqFsYn2/7LTHpfzbf3vAKibup242RTbWHtsoe2sVsgl5bH70Qj49OMzHqY/FtDmsaHCDyB/W SU3P1/8A4L/pKl1B97X1+rkjHMO27C+DpqXaEadpRfTxP+4t33H/AMkgZFZlv2bEJbB3iwPme0Q5 JTKvqBqoLjfXY1hhz3CxzpcXRw3yRa8m/MrsbTZURqwuG9pBI5EgKFVdGwetiP8AU1nYHRzpy5SN WHEjFtB7Haf/ACSSnOGY2qypxzHHYB+jItcCKwRLhHJ581rUZGVkM31emW8ah7eQHdx5rMNeWKxG Kxz5P5rgCI9u33+OqvNrxQ0Ti2zGsNIE/wCckplfiZ9z93qiv2lkMc8c9/ipY1HUKGFpsZaSZ3PL iVUyGO3xj4xjYYFjXTunnR40U8ZjSw/aMV+/cY9MOiP85JTd/X/+C/6SX6//AMF/0lX2Yg5xbfuP /kk23D0H2a2TwIOv/SSU2f1//gv+ks/qu79n5u+N3oW7o4nYeFY9PE/7i3fcf/JKt1MNHTcwNaWt 9C2Gnkew8pdlPnSSSSmWvcYX9Fr+B/KUZBwv6LX8D+Uoyrr1JJJJKUkkkkpDl8N/4u//AKlip/VN lg+rmE9mG7JeA4tIdtEjItI58OSrmXw3/i7/APqWJ+itrPTOlbmWud6FEOZ9AQTBdpPxTZbKG7qV Nvz+n1t6hSca24fpaWuktgzG4fBPZ03EZFza3PdSfUYwOmXN3OA93mVZvrFrDWSW75G5vIkHhEUY 2XSIMiQBEE3wjYeAtx31NfkOyH9OvL2uD2u3t1doZa0PhF+zU5fq3XYVldg94BdG9xZt/MdzAhaa SNrXHZ06iWj7Ha2svLQfVdubLny+J0bB0178KZwMeio+niPJY70awLCSWPLCbNSfzhrPgtVJK1OR X06p9FtD8V4NTWt/nNweS381zoGg7wrGVjssyHk4rn7KRssa6A4jf+j0MiJ/FX0krU5mFjsoustG JZU98NLi8vkHZ48AT+Csnp+OcY4suFPthu46BhBABOvbVWkkrU1B0vDFjLA0zW7e2XEiRuP5093l O7puI97nlp3PdudDiJJLTOh/kBWkkLU02dKwmYr8RjCKbYLwSSTEd3T4I4x6g2toECpxe0eZn/yR RUkrUpJJJJSkkkklKSSSSUpJJJJSkkkklKWd1f6A/qu/ItFZ3V/oD+q78idHdTQ+rQYW5G5rne7T bPi7wVjrpc3Fmu30GEEOY6Q53htd7jp8ED6sk7ciHhnuHMa6u8Ufr7XOoBFQyCA79KOWeXsO/wB3 3KZDpObVB/Rv48/71n4/2z1ad11bqSTuYAdxGsNbry3utJxdB/TjjwCx8auluTS8YDq7ATGQNu0S fpGHd+eElOvFX+jf+P8Aeltq/wBG/wDH+9Sl3+nH3BKXf6cfcElMYq/0b/x/vQrxXtG1jgZ0JmAY Pmjy7/Tj7gg5etRDrBYDMsAEuEH2890lOeT1IOLftFAcIBBB0PwlHwzlG0/aLGXV7TDap3TOh+5Z /o4wLgOlvDZ04l3mQCrnTWVNyCWYzsV20/pXag+6Y1Pc6/P4pKdGKv8ARv8Ax/vSir/Rv/H+9Sl3 +nH3BKXf6cfcElOX1ZtJcA5jvTNT91cAuf769BuIVJteJ6L/ANC/aT7m7WS76PHu7onXtp6r0zfk NqAGR+nIaQ32DsdEYCj0nn9pMJB+n6bPaPb+RJTHphqbc5tW/EIYPfY1m0iG6CHHjhae5/8A3NZ9 zP71lluO/FzA3OZmbcawmkMrESxsOlon/er+I1/2Wn9SYf0bfzmeA8klJdz/APuaz7mf3qh1MUOd V9otfkEbtoqaCBq2d0OCv7X/APcJn3s/uVXN9VhYQ2rEEO0caiHH+0O3kkplgWA4zW1ZHoMYNra7 GNDgAP6xRbSTU8PzGuaWnc0NbqI45VZtGdbQTWWO3wWWtbUdNZjQgzIRaKsulrjkUstE7txFbNo+ Q/Kkpo1NxRk0lpex8V7XlrdoAboCd35vmtXc/wD7ms+5n96ymC+x9ezJrduALWs9ElwedzZ0J1Ag LV2v/wC4TPvZ/ckpo57aXPm631ya3A7GsMtke36Q1MonT9gpcKcj0W7z7bGtmYHiUW3IppcG3Y9N biC4B72N9reTr4KVdjbQXVYtbwDBIcwiefBJS2QSaLA7KbY3aZYGskiOBqq2P07Da+rLZcyu5rfa XAbgCOD7lceSxpe/DY1rRJJczQD5ITcrHe4MbRS55iGh7CfcJGkd0lJtz/8Auaz7mf3ql1Sf2dmy 7f8AoLfcO/sOuiu7X/8AcJn3s/uVLqn/ACdmy3Z+gt9o7ew6aJdlPnSSSSmWvcYX9Fr+B/KUZBwv 6LX8D+Uoyrr1JJJJKUkkkkpBl8N/4u//AKlin0W2pvTOltfZYCcejaxkxJJgmD3iDoo5fDf+Lv8A +pYo/V3NZb0fpmzJNDTUxnplslxre6t/iIcRCbLZT0GSQKiS4sAB9w1I07eaBZmVYuP6r/UsabHN JAkiNx4J4G2EbLsbVSXusFQHNjuGzpKFVn4ghjshr3vdDY41JDWiPgmKW/a3T/Rdker+ia8VOdtd o50QOPNKjq2BkPYym3c6zRmhEwJ8FKzqfT6rHVWZDGPZ9IOMRJ2xJ81J+fhV0tvsvYyp4Lm2OMNL QJJnwSUg/bfTTo20udBIa1jiSBumNP5JR7s7Hp27iSXgOaACZDnNYPLlwTftDAYI9ZjQJ0mBpun/ AKkpv2p04NDzk17CdoduG2TGk8fnBJTG/q2FjWOrveWFk7iWuI0DXdh4OUrupYlFhrtc5rgNx9ri IInkCOylV1DCueK6r2PeTAaHAmYlMepYI3br2tDSQS4wJBc08+bCkpavqOLZUbmuIY2z0SSCIcSA PyprOqYdddNrnHZkT6ZDTwBOuiIzOw7KRkMuY6kuDBYD7S4naAD5lPdl41BAutbWXAlu4xIbzH3p KRU9Uwbm2OqsLvSZ6j/a4ENE+IHgl+08M0m9ri5jXbCQ06O/17ojc7EeXhtoJraXvHg0EtJ+8FDd 1XpzGeo/IYxvi47eY8fiElKZ1TCsotvrcXtoANgDTIkSBBUP21073gWOLmfSaGOJ057KwMvGJqHq CbwTV/KAEmPkoXdRwabHV3ZFddjAC9jnAEA8EjzhL6KYO6rgtcGusgudsHtJ1mOwT39UwqLfRtft smNsHUgBx144KJ9txPSNwuYag4NLwdJPAn5pmZ+HZU65lzXVMIa54OgJiPypKRu6vgMndYRBj6Lv Bx8P5BRmZdL52ydrS7g8CP701Wfh3O2U3MscTENM/vDt/UKKyxj9xYZ2ktdHiOQkppV9a6fYCWvd pOha4GBGsET3U/2rhDHryHPIrtJa32uJkAuIIAPYK4khoppDrPTyXfpD7DD5aRBECCInuot6301z BY207XTtO12sRqNP5SvpJaKamT1TDxbDXe4sLeTtJHG7sFK3qOJUWix5G8Nc32uIh5hvA7qyklop pDrGA7bteTuj8094gwde6B1W1ji6tpl1bTvHhuBIWos7q/0B/Vd+ROjupzehPeyp/psa99ljmw7+ Trp960MrFyMxuy2kFgkFjXbR84Kz+hiWAeNz/wCC06GdEtzC6nb9qkkgFwMySZbxy1TISE5vHoV6 /D+9BbRmMLXBhhkw0ulvz1Vl3SOnuDAatKp2e52kwfH+SFUzsfpOG5j7MdznPcCC0vMuaDt3R/HR BSb1cuXA01jZq6YAE/NS3Zv+gr/D+9CN2K6q2/JEY76mucNTAcP5PxRh0Xpu57xVraHB/udqHRP5 3kkpbdnf6Bn4f3pnfbTE0M01ER/ej43T8PF3ejXt3wXSS6Yn94nxVe3qGOMr7IKiLNzWl22AJkgh 0Qfo9klNcVX7GulwaRoXWRIHxKLXRmscHhhdHZzpB+Up66MDLazFyaxZYa3OAIOjSQ0wQrFnSsC1 5ssq3OJk+50SIgxMdklI92cdRRX+H96jZdl1N3WUsa3iY/2o+P03CxiXU1BpIDTJLtB/WJUOota2 n2gCY4+KSnD6m+3K6n00Mqa94ORFYIYHfoxyTKutws30nD7IAZkM9RsHjU6LD6xmVM+z5bS4tx33 MeG7mmS1rNC3VVW/WVnpPHpPLSdT6j5H0eNFBk5vDjlwzlUv7pO/kGtm57l8MzDJMxkK04ZHfyD0 dmHkjDzHXU/Zv1d8PrsDi6GcGACrWK/F+y0/rV3823u7wH8lcpi/WHcy6mip031PrPqveQAQ1pIk LtaGZzKK2A1HaxomHdh8U7DzGLMZDHLi4avQjfzXYObw5zIYpcRhXF6SN9t/JFvxP+5V33u/8iq2 WcVxBG/Jc0EtLzESRIBcwwtH9f8AGr7nf3qj1K6yqPtOQKQWkgViyTtIdMtlTM6Rhw2Ma1uRaxoE BoJgeQ9qVlmPsdsyLXug7WkuAJ7A+1WGfbixpa6otIEEh0kJr/twpsLnVtAaZLQ6QI7apKc3G+zv tabqnY+xstsDw6HcbRtYDwVd34n/AHKu+93/AJFUsR5quoYzKse8gBlVhsLSHiRO7mB56LV/X/Gr 7nf3pKc3LewvHp78hu0+5zoIJ7at4QsW61j2Vmt1FLtzrXMsOhnSGhiP1IWGyL7jUfSMmr1ANs6/ RnVN07FeZux7jYGuj9I55EgRx/a7pKbBdhuBa7JtIOhBJgj/ADVAVdMDw8WvD2/RcAZGkc7Vasfm 11uscatrAXGA4mB81Vq6s63IZj1uYbLAS39HYBoJ+kdElJN+J/3Ku+93/kVW6kW/s7Lc072+hYQX d/YeVo/r/jV9zv71n9V3fs/N3xu9C2Y4nYeEuynz71/+Dr+7/akhJKalr3GF/Ra/gfylGQcL+i1/ A/lKMq69SSSSSlJJJJKQ5fDf+Lv/AOpYpfV2tuP0jpldLqmMdSx7q3/TLnuLnOaYPJKjl/Rb/wAX f/1LETobHnpfS3Nrqdtx6TueYeNe2vh+KbLZTt21ssAZY0PYTq12oMaqGRW1lL7amV+sxpdW54AG 4AxuPhqiu+k34n8ijkVi3HsrLQ8PY5uwmAZHEhRqc6118hz3YckiSdRqWAn3RrBPfwU812U17m1P wxW0FrK75EEhsTHxSx8Uuu25GHTSwDc3a6XEtLSJAj90IrManIfvzMesXkNJ1DiTGsfCEVMXeoyo MnEZktJL2nRoaQ7Z5+E/NBc/ILB6j8HYCCYnSCyeQf8AWFfuxMS4k3VMedJLgDxMflQz0zpxJJx6 yToTtEwTP8ErUrE2kS70TYIBdVH0o93wT2MaLwIqa10SCBuMkz950+9SqwsSl++qprHeLRHkme13 2hrgxke33uOv5w0++B8UlNMWWj1WC7FFddh3A6Fu17DBERIZ+MIdlmRRUyy2zBDQw+g9wdEQ0uGm kfBSOM+zJLzhYz/0rg+3d79pI7fvEAd1PIxsjWmrCoux2Bza2udt0dtPgYkzOiKmVLr6vWbe7EZe 9k1tbLR+dG/drElR25hkj7Eaw6AddSS3aD5/7ErarL6hc/CotyCXV2Nc4Q2sbgCZGvwUn4zhhOY3 CrefVa5tEgNMFvvJ11b/AAQUouc2qxmQ/GN9TZaD9FrSBu3jTwUXWXPpDt2E7K3Oba5xO3a0OAH7 0gjX5qduO55FoxKX3vaRfLuDADRMayEH7Ne66ben47WveGusLw4lri7fpAkne5FSXGN73OZc/EdV s3OrqM7XD87UcfFLCeamvbm34zw/ZsFe0CYAdI0/P4UGY2TRa5tGDQKnHY5zXbTsLoM6GfZ28ULK wNl4+z9Mxrth9jnPDHbdCTG09yUlOo12KSXMNct1cQW6c6mPmkLsYBzmvYGh0PcCI3QDr5qlSyKC 2nGoFthcLqWPBbs9+0yI5Pl4qdFVrrHUX4ldePpYC124F4OmkDwQU2vtOP8A6VnE/SHHPj5pfacb bu9Vm2Ad24RBmNfkhu6Z09wcHY9ZDxtd7RqNOf8ANCc9PwXCHUMIgCCOwmPylLRSZr2PBLHBwBgw Z18FJDpopoZspYK2kyQ0QJKIgpSSSSSlLO6v9Af1XfkWis7q/wBAf1XfkTo7qcrpL/SxnWmA1ljy STAA0Wn+0LZmBPjqsBr3HprsZrQXZVllbSXbYJHwKv8A2Sv/AEl3/br/AO9SndDoftG7wH3lByLK 8kg5FTbIECS7g/AqnZRTWwvfZcGt1J9R5/IU1VWPdWLK7bi0zB9R44+aFpdCvKdWfY0NEBoAmABp Cn+0bvAfeVn/AGSv/SW/9uv/AL0JgxbLn0Ntu9Sv6QNlg8PPzStDq/tG7wH3lAmn1vX9Bnqzu3ku mT35Vb7JX/pLf+3X/wB6Ff8AZMcsFttzTYYb+ksOvyKVpdOvMsraGtA00nVS/aN3gPvKz/sjP37f +3X/AN6hbVj01OttttZWwS5xtfoB80rU6f7Ru8B95ULsuy5m1wHx1WfTVj31iyq21zDMH1HjjTxU /slf79v/AG6/+9K1Mcn0DZTS9jH23CwUCxgewObsc4nj82VIYTfTcTj426fafTZA459yoXWYZz8N pa/KZW+9ttT3EmfTGkvK1G29O9F/6hoTq0vEu+j4nulwxOpAP0WGESbMQfMI8XFxq/UtzMai6hjC 8+lUzcNoBJ0PgtRjcN7GvZh2bXAFug4PH5yzmZGH9jzGsxfsZNFupeCHHb8VoYljRi0/rzR+jbp+ j8B5IiIGwA8kiMY7ADyDP08X/uHZ9w/8kq+VVdoMPFDZBk2gzPaNr1a9Rv8A3Pb/AOB/3Kj1J+KS 11r3ZbmtdsNYrMTEidIlFLYqrrDP0+Id8n6AgR2+k9SdXj7XbMN+6DtkCJ/zigDB6a6osN7AyyHO Y7ZyJIkf2iiU0YmK1xx8prZ9zmtNfuMefdJTXaLfUq3VVmogF8fSMaPj3wfcfJXfTxf+4dn3D/yS yq68B9lQdW5jn7SXP2ENJ9xBInVpWv6jf+57f/A/7klNa+p5d+rYu0bT/ONn3SIMNcNPmpY9UMP2 nEc586bBpHzcEsjOdS4Bt77gWkl1fpGCOG6xqVLGy/XYXOyzTDiA1/pg/HhJS9lVJrcKsR4sg7CQ IB7T7kq66RW0WYjy+BuIAie8e5SsvDK3Pbmh5aCQ0enJjtwq7Ooudays22N3RL3CvaJEnUA8ecJK bHp4v/cOz7h/5JVepgDpuYGtLAKLYaeR7DornqN/7nt/8D/uVPqhnp2Yd2/9Bb79NfYddNEuynzp JJJTLXuML+i1/A/lKMg4X9Fr+B/KUZV16kkkklKSSSSUhy/ot/4u/wD6lil0aj1OldJccb1tlFJF u4jZBnie3Kjl8N/4u/8A6lil0WkP6Z0p/pWPLMek72O2sEHv4xymy2U77vpN+P8ABCzWh2He1zHW A1uBrZ9J2nDY7lFd9Jvx/gncQ1pceAJ01OijU478WuGj9nPjc3QvkTuq1Orh21+CPl0NfkWk4brg 4CXteRv9hHiB5Ky/JuZSbDjvJDmtaxpDiQY92nESmqzjZQ+77NezZH6N7QHkHuBPZFTVw8aprMtv 2B1LbA7c179xtku0+kYnsnpdZRaDXgWsNmrnbw4Ak1h0y7mPyKxRn+qHzjX1mtu872QDE+1p7lR/ aXua37NkAu1k1mBq0akTH0vwKSkjsq4YzrRjvNrAD6Pck9g6NUB117rw52DYXCCHbgW+3eAOfn80 d+bsqZZ6Fzt4J2NZLmx+8JQWdWD2hwxMpvOj6iDpPbX5JKXZ0/Dvs+0245Zdu3S5zudDI18Ux6F0 ohoNGjQQPe8aEBsfS8AFJvUi5jXDEyAXa7SyHDUDWTpzKk/qGyhl32XIcHtLtjWS9sdnNnk9ktVM HdE6Y4FrqZa528t3vgu92sbv5RRf2dhem6r0gWPf6rgSTL9NdT5KDeo7rGV/Zrxvdt3+mdoEkS4m IGiLXlF9hrNNrCN3uc32+0xzP53IS1Ug/YnTDWKzSSwaAF7zpEc7kU9Pw3UtoNc1NcXhsu+k7dJm Z/OKanN9VzG/Z7q986vZAENDvcZ05j4qB6nBcBi5BLZ4r0MbuDPl+KWqkh6dhmn0PT/Rbxbtl30w QQZmeyjj9KwMZ7LKatr6gQx25xIBEH6Til+0B6ja/s98uMbvTO0e5rZLvnPwSu6garTX9mvdqQHt ZLDADuWz4+CWqmePgYmNY6yisMe8BriCTIBc7ufFxVhVas03G1rce5rq2yPUbsDjqNrXEx2R6rDY 0ksLCDEHy5/FBTNJJJJSkkkklKSSSSUpZ3V/oD+q78i0VndX+gP6rvyJ0d1PnuZ9ZuodPy7cShlT q6n7mF7SXAua0nWfNC/579Z/do/zD/5JUuq42Tk9YymY9T7ngtJbW0uIG1uuiB+yOrf9wsj/ALaf /ctjHhwGETKMbMQTZ8GrKc+I0TuXUP126wRBbQR/UP8A5JM3669XaIaygDwDCB/1SzP2R1b/ALhZ H/bT/wC5L9kdW/7hZH/bT/7k72OX/dj9qOPJ3Lqf89+s/u0/5h/8kot+ufVWkubXjtc7kiuCfj7l m/sjq3/cK/8A7af/AHJfsjq3/cK//tp/9yXscv8Aux+1XHk7l1P+e/Wf3aP8w/8Akkzvrn1ZxBdX juI4JrJj/pLM/ZHVv+4V/wD20/8AuS/ZHVv+4V//AG0/+5L2OX/dj9quPJ3Lqf8APfrP7tP+Yf8A ySR+u3WCILKCDyCw/wDkll/sjq3/AHCv/wC2n/3Jfsjq3/cK/wD7af8A3Jexy/7sftVx5O5dNv11 6u0bWsoaPAMIH/VJ/wDnv1n92j/MP/kll/sjq3/cK/8A7af/AHJfsjq3/cK//tt/9yXscv8Aux+1 XHk7l7P6tdXyupYuTfe6vGdWXNNrBs2g+kdx0dJWyLXek/8AXRoTL9x9sbZ/wfZc/wDU3Fy8fDyG W41gtc9xrqe2xm7SrnaJhdG1mR6Th9kgz7W/poPEErPzCIySEflB0psQJMQTuz6Va99xFeSMwta6 anOiJLdda50/itT9Z/7j1/5//qNZmA17Xk5ND6NCA6kXyeOVenF/eyf/AAf+5Rrkv6z/ANx6/wDP /wDUaq5dlrLqS91WONSazYBvDdTyxFnF/eyf/B/7lWythLfSotyGwdxebgR4AS08pKbldltjQ+um l7Tw5tkjT4MSt+0mp4FNbJafeH6jTkfo+yBR6HpDe2+p2ssabyBr47QpP+yljgDkOkH2n14PkUlN Gu613pvGW1zGFrSyR7yyN0/ot3unVav6z/3Hr/z/AP1Gsdtb9tYfgu3g8t9XawSzgH/XRac4v72T /wCD/wBySmvmPvFsGyvGPpnTeIGv0/dXH3ouE3LFbnENyQ90hznBsQNpAArHcKvmion2Y92S3YZD vWGsthsnt34RsUUNoaHtvpdr+jaLgBqfCQkpsvGU5paKK2EggOD9R5iayFTtwuqPLtloYHbdNwkQ I0IYOefBWJxf3sn/AMH/ALkv1X97J/8AB/7klM6m5TK2MdSyxzQAXl+pIHJ9ipdVn9n5u4Bp9C2W jUD2H4K1OL+9k/8Ag/8AcqnU9v7NzNslvoWxumfoHndr96XZT50kkkplr3GF/Ra/gfylGQcL+i1/ A/lKMq69SSSSSlJJJJKQ5fDf+Lv/AOpYgfVqgY3R+l1W2Xb3NFgFOrCLLXPaH/52qPl8N/4u/wD6 liF9VhdT0jplF2b6b3V+oMeN25r7XFh3HX6JDYTZbKemd9Jvx/gmtj0ny4sG0+8cjTkfBOfpN+P8 E1oe6t4rdteWkMd4GNDrKjU5r22V1i9+TlBjHNYWOa0lxOyHf6+aPi51H2Q2B1traoDnvYQ87u8G PFOMXqUtnNBaPpg1iSZaeWlvgfvVqltjK2ttf6jx9J8Bs/IIqaTM7GyPXfXZc0tqJc3aQGgbvc3S N3zTUdTxawyt9tj3vjaXsIMexuun8qVbtqud6hZaRuZtYwhpa12vu4JKlQ25lYbdZ6rhHuADewHb zSUif1DGZUy527ZYCRDSTA5lBr630+xoexzi3XljhxM8geCvpIaKaTer4j2Ne31CH6tGx0kSG/R5 /OClZ1TEroZkO3+lY0uDgxx0bzIiQraSWimm3quG+xlQLt9jtrfaSDqRyNI0Ra8ymyw1DcHt3SC0 j6B2n/YjpJKatHUca97WM3TZ9GWkDRof+QoZ6xhgubLy5sy0NJOm7jx+irySWimn+1cP1G1bnb3H aBB/eaznjlye7qmLTaarN4eCQPaYJADtHccFW0ktFNWrqOPcbW1b3upbuc3Y4E86N3RJ0R6rRa0u AIgwdwjUc/dwppJKUkkkkpSSSSSlJJJJKUs7q/0B/Vd+RaKzur/QH9V35E6O6ng8Cq67rfVqqATa 6lm0Ax+dV3WgzpPVgCH1PM8EPiPxQvq7H/Ojqc9qB/6LW0OnvDWtbm3gAydGmdSeT8VaznWP9yH5 LIbHzLmjpfUdf0Vkdv0g0/FS/ZnUJ/mrI/rifyrSdgOLGtGXcHMJLX+2dYgHsYjuk3BsbWK/tt5h 27cQzcREbZjidVFa5zz03qEe2uwHxLwUw6b1T9x3+d/tWg/p73Bu3Lva4AjcI13Eng6aTCQ6e7aG uzLztILT7QRAI+fPdK1NEdO6l+67/O/2qTcDqB/NcY0Pu/2q1+z7yZOffIMiAwaeaL9jBA/T2Nc0 vIc2B9ONXDgnRK1NMYPUP3Xf53+1OMLP/dd96s/YXe0/a7g5kgOG3gkGCDoeFFmBc1wc7OvcQPcI aGn5apWpGMPN7g/5w/vUhiZngf8AOH96PkYdV9r7SXtc+AS1xGgmB+KE7plTn+obbg4gNcRYRMDb x590rUzZU9tbxeXBmxxdsBe6N1X0djmnlSbXj+g+DaWz7v0Tp/N0H6XuqtuOa8/p9TLtu51535B3 tEVtiQ5agxj6bicrD3To7ZXAHt50RCl+mVhtzfs+6tzqzBsqdtLRs7i0ieB8lqbM3/S1f9tu/wDS qyH41f2PKc67HyAMawgVsr3B4b9IFgH+pVvFqoOLST0+Sa2ydtOug/lpKbmzN/0tX/bbv/SqqZQt bmYzrLf0gJFQZW/ZLvad/wCkjhF9HH/8rv8Ao0/+TVbKpeC00YddTQDuFjKjJPGosHCSm/szf9LV /wBtu/8ASqja3LFby62vaGmYrcDEePqrP+zZjqnBuLSHkja8VVER7pker8ESiixgccrCrfrILGVN 2j52FJTRrfTWKbW22+yBXUanvkVgD6PqO43crc2Zv+lq/wC23f8ApVZOM128WXVU2UAEHY2gEknT 3b/MLQ9HH/8AK7/o0/8Ak0lNXqLXB4F9jpcA+aq7CB6WoiLYBO7tqhYQZitsvosc7dvLt1T3Tthz tfU0Pu/O8/NXHDDY7a7Ba10boIoBgd/pp2txXyWYAdBgwKTB8PppKZMdfl0HZcwNsaQQanNcJ04d Yqw6G8NDBkn0xJ2gPAJJBkxYOIVn0aP/ACu/6NP/AJNL0cf/AMrv+jT/AOTSUm2Zv+lq/wC23f8A pVZ3Vt37PzdxBd6FskCB9A9pKt+jj/8Ald/0af8Ayap9UAHTcwBnpgUWwzTT2HT26JdlPnSSSSmW vcYX9Fr+B/KUZBwv6LX8D+Uoyrr1JJJJKUkkkkpDl8N/4u//AKliH9Vn5bOjdMZkXVN/Rz6b4Nmw 2u9Mg+72lsAcImXw3/i7/wDqWIX1XOa7ovTH3VUE7A3fd7bdguIZsG3X2QW+JTZbKemd9Jvx/glZ v9N3pkB8HaXcTGkpO+k34/wTXB7qXisNc8tIa1/0SY4dHZRqaH2nO2utGRjGtjtpMO5cGbQfv/Ij YuVDXfacml5I3N2OHAA3eE8yoW/tKwGt2LQ+rT2uedYjtt0hAGNnhpAwMQAtA2BxidQ4Ts4+SKm5 ZkAusDMioDaWsBj2vG6STP8AJOnknoyWigvuureGkNL2OBEnaAD5klQ+w1gvLMagAt3NEam0zO7S I15RKMdgqLH0V1hzg4saBBIDfdp5hJTNuVjPcGttYXOiG7hJkSNOeE7cjHeC5lrHADcSHAiPH4aI bcDCZa25lDG2M+i9rQDxt7eRUxj47d22po3gh0Aag8goaKW+2Ym4N9evc6ABvbJJ47qTMjHsIayx ry7UBpB7T28lD7Fh7t/oV7xw7aJ+9SZi41bmuZUxrm6NIABAA2/k0S0UsczEEzfWIMGXAa6+fkUh l4pcWi6suES0OBIkwO/dMcLDcIdRWRJOrQdTMn8SkMLDBcRRWC47nHaNSIMn7ktFMmZONY4NrtY9 x0Aa4E6Cex8E9d9Nv828P548iWn8Qo14eJU/1K6WMePzmtAOuiKGtDi4ABzok+McJKXSSSSUpJJJ JSkkkklKSSSSUpJJJJSlndX+gP6rvyLRWd1f6A/qu/InR3U8p0HEsZ13qGUSDXZSGgdwQWf3LoIP guY+rou/5z9UJ/mvQaG6Hn9F34XRZNeQ9zfRu9IAaiJmQFZzbx/uQ/JbDY+ZYXHPa/8AQsrcwkav JBAjXt4qDn9T2jbVTuk7gXmI0jsn9LPE7L2+rtA9V49p97nRtHkUgOsg620OBdr9IQ2PxUS5b0bP sfqW1N+1PfMN9R8e47p2ub7dsbUbGa5tDA4Fp10dyBuMT8kOtnUS5hyLKnAOkiuRA2uBndzrCs7f MfekpZJPt8x96W3zH3pKR3et6bvQDTb+bvkN+cKtv6uJPpUHwG9w7ny8IV3b5j70tvmPvSUg6L0t mR9ou6pjVEvtcazLifP+z4LT/YfQv+4zP+l/eqe3zH3pbfMI2hqdXwMSjqXTqcTH3Mf67nUsiXH0 x/pA4K03Es9F/wCpWgE/Qmr3fR/4Luq+Vjvfk41zHPb6HqHdUWh02NDNC8hGFt4Y5pflEk6O9SuR xx7vJK1LmnIOFlh1NuIGY1gDiayCNvGlY8VexLqPstP+UI/Rt03U+A/kLPbZcKranOybRbW+qLLK nNG8AbvpTIjxV2nqrqqWV/ZnnY0NndXrAj95FTZ9bH/8sf8ApU/+QVLqD8N7mCyx2W2HSQ7HO3gx DmjkhH/bLv8AuK//AD6//JIOT1G64AMZdRHPpuqk6g/nE+CVqR05dWNjFmO61oYfbVvx5O4uJIJB /wBSrFObXe17bcmykTtAe6j3AjmWtMIeL1LIqBFrLb3Hu51QjU8bXeaBn/WzHxMM5N2Pc2p0tD2l hMnSY3hIamh1Uwx2YNl1bH7qWsDiHmymAZHg3WdoWt62P/5Y/wDSp/8AILjx9femgMb6mbDTLvay XfRgSbJHH4q7/wCOb0X/ALj5P+az/wAmpPYy/uS+xbxx/eDu3VdOvM3ZjbDt2ncaT7fD6ClQ3Bx2 bKc4MaTMB1PPzYuXyv8AGL0d5Ng+20gM2wxrO5+lBcdVa6Z9esK7fTRj5uZYJe521ntboNffACRw 5BvCX2K4o9w9F62P/wCWP/Sp/wDIJetj/wDlj/0qf/ILEv8Ar5iYwm/p+bV73V+6toO5gBcI39pC D/45XSIB+y5UO+idjdfh7khhyHaB+xPFHuHofWx//LH/AKVP/kFT6o5h6flxYH76bA15I9xLD+7p 9ypn68Y7cX7WenZgxyN3qbGfRJ27o3zE6TC5zqP1t6dl2ZFjashrrGEQWcS1zW7v0kD6WphAYsh2 idPBXEO4c77PZ4fl/uSVH9qVeDv9fmkpfbyfun7FvFHuH0HC/otfwP5SjIOF/Ra/gfylGVVkUkkk kpSSSSSkGXw3/i7/APqWKfRKi7p3SrBiC0fZ6gcgv2lsGY2945UMvhv/ABd//UsUuiNrPTulO+zW Xu+zVD1Qf0bYdPHG5p1TZbKegd9JvxP5E7iQ0kDcQJgclM76TfifyKSjU13WZjai81Ne/c0BjHSd hjcZdGo1UKsvLdeyuzEdWx4JdZvBDY8YRMzb6PuZY/3N9tRId9IeEaDus61lDqK6fsmUWs9rdpcH Q8h7txnxCIU3K8vMe69pxCw1NmsueNth7AEDRE9fJ9Mu+zkOD2tDS4atMS6fKeFS2UlleI7Hyiw2 l3qEuO1xc4S5zjMd1AY1TMn+azBsdAcXvcx3vr90DcPP5FKlN6vJzXUve7ENdjdu2svB3T9LUDsh nN6gLC0YDy0fn+owDl3bnsPvVe9jJ+0OoyrDkNc9zKy72ENazZt9sTypnp9IrY9td8Aua5gtcC1v uG6J18u6Sm1Zflt9Msx94c2bBvALXS32+fJ+5RtycxlNb2Yhse9pL6w9oLCBo2TzKl9jrsxmU2l5 aNpALjubAiNw5+aG3pWM2izHD7gy3aCfVfuGz6Owz7fklopduXm7bnPw3N9NhdUA4OLyPzNOCUjl Z06YZ+Je3xA/iSnZ0zHY9rw60uY4OE2POo3c66j3cJP6ZjPe55daHPcHHbY5uodvjQ8T2S0Uxdl5 4bIwi46SA9o5AJ58DKJk35lf8xj+qNs6uDTug6IQ6RitcXB90loZra8wAANJOh9uqkOl47bPVbZc HzuH6RxE667SSO6WimdWRlPMPxjWNriCXDkRtbp4oYys8tl2GWu/d3h3YHnTzU8jp9GQ9r7C8PaG gOa8tPtJI+j8VF/SsZ9ddZdbFLDWxwteHQYJl07j9HulopfJyc+u7ZRievXtBFm8N110gyeyg7Mz 2u0wXOG6JFjZ2zG6PhqkekYhbtBtaP5NrxwHN7Hwcp39Mxr3bnmwHYK/Y9zfa0kj6JHilopVGVmW WtZbiOqYR7rC9pA0nga86Jq8rPda1lmGWscQHWB7SGiDPmdVOzAosZWxzngUt2sh5GmnPjx3QndH xHOLi64EzJF1g5Dhxuj85LRSnZucLXsbgvcxr9geHtEt098GOxSOZ1AM3fYiTA03ge47dNA7xP3I l/Tse97XvL2uaAAWPc36Mxx/WKNRS2illLC4trAa0vcXOgeLnSSlopIkkkgpSzur/QH9V35ForO6 v9Af1XfkTo7qea6H1Oy3qmb001sbXj1B4sE7iSWc6x+ctbKssraPTAc9xaxocYEkLnPq9/4p+qf8 Q38tS6LK5p/4yv8AIrGYAGNfuQP4LYGwfMtX1+sgR9lqJHJ9TQ69vkiMt6iWs3UVtc53vAfIa2Rr wJJEopZkOJcy9oafoj092nx3iUzbLKmm193qsIgCqskzPPsc5RrkBv6ru0xayIHNkazr+CJVZ1B0 +rTXWYEe8uHeRoFDEZl/Y6S69o/RtJ3VyRp3O9FDcgguGSwgcn0xGn/XElMpy/3avvd/5FKcv92r 73f+RUIyC0uGSzaOXemIEc6+on25G3d9pZt/e9MR9/qJKZTl/u1fe7/yKU5f7tX3u/8AIqEZG3f9 pZt/e9MR9/qJ4yNu/wC0s2/vemI+/wBRJTKcv92r73f+RSnL/dq+93/kVCMjbv8AtLNv73piPv8A UTgZBbvGSwtPDvTEff6iSmU5f7tX3u/8ilOX+7V97v8AyKjtyQNxyWBvj6Yj/wA+Jbcjbu+0s2nX d6Yj7/USUynL/dq+93/kUpy/3avvd/5FRIyGt3OyWBp4JrAGv/XExF7WhzsqsNPDjWAPv9RJTOcv 92r73f8AkUpy/wB2r73f+RUSMgAOOSwA8E1iD3/0iJU24E+rYLAeAGbY/wCk5JSOyzKrY6wtrIYJ IDndv7Kw/rL/AOJ2v+t/EreZV63SsjJebg9gcIdtDHebYEwsH6y/+J2v4/xKfi/nIf3o/mtl8p8i 8QkmSW20keR/Mu+X5QtLA6n9koyMWyhmTj5RY6yt5c3WolzfcwgxrqFm5H8y75flCKmkAkg9guBI 2d6j65dQx2bKaKWNDYZtDhtJcX7gdxPfjyCX/PLqDcYUU0U07WlrLGB25riw17266HUn4lYCSb7O P90J9yXd6TF+udtTGV24jHilv6MhziRYGkNcN5O0bjudHKE765dSdTbSKqW+qA3dDi4NDBXtcSTv 0/eWAn7pezj34Ve5Lu6H7YzP3av+22pKiklwR7BXHLu+pYX9Fr+B/KUZBwv6LX8D+UoyxW4pJJJJ SkkkklIcvhv/ABd//UsQPq1jtxukdMrsfeXGsWAVT6X6S11jd3nrB8kfL4b/AMXf/wBSxC+qosx+ kdNptyXNsfWHioAuaWWWvc3WRrtMHwTZbKemd9Jvx/gne3c0tkiQRI5E+CZ30m/E/kUlGprY+GaH B3r22Na3aGvdI/N1/BABDMbIe45BrLWlp4cRHNZBn4rQVarHyGMeLMg2OewNa7bG0gEFwEnlFTVb m41mVXYx14NhbXsLHAcu0IcNOJJUrczHpNtdjsg7rCZax5iNvtaWj6Ki4ZBD9uc8Mpa5znmkEaFz dHcEiFXGYXO16oQ9u+a/RAOm1v0R4H8qKmeRlY9jy718urcN21jXQAWN00aY8fjKPZkU2YbbTZkN Z6jxuaxzXmA8EbdswO2nglXlsbhBz8zeb6y+q8sLRAAG6B8VYv6jhY79l1oY6AYM8GSO38koKatG biVn1A/Ie1w/Pa5wE7NTpp/vUqOqYrGCn9M81sDnPdW7uAfpRBOvZWX5+KwMJfIsa17IBMtc5rAR 83BQu6rgUWOrut2OZO7cDGgafD+UEvoparqmLb6gZ6k1MNjgWOB2gkaSNeFI9QqFT7dlhax4Zo0y SQHSPLXlPd1DCoeW3WhjhA1B7guEGNdAVAdY6af+1DdHFpmRBBAIOmnKX0UvX1PGsqsta23bVt3A 1uB93EAjXzhDf1XGLHtAuaYI3ek8QZc385vi1TZ1bp9jd7LgWaw6DGkTGnmpO6hiOxvWZcAx8tZZ BOoB7eSX0UjZmUVY4u/S7HW7DuaS4dhpztgcpV9SofjuyGm3YzaDNTgfdHDS2fio19VwWw37T6jn OMEgmACGwpu6rhsaHPyGtBiJa7uGu/ikpQ6hW6q61vq7aW7jNZBI930QRqh/tTF+1NM3iR6e01WB kyPdJarJy6m3Npda3e4thsHXcHFsf5qrU9Qxvtbqzmi0l76xSGmWu3RBOv0eNUlJbeqY9WQcdzLS 9sCW1uLdf5QEaKDutYbSJbdqSB+ieNRu/k/yVbGRWbTTqHgxBBAOm6Qe41RElNH9sYkwG3EzH80+ PpBnJEd1KzqmPXc6lzLS5rtpLa3Fs+0/SAjhwVxMlopGb4t9IsdrG18DaZBJ7zpGqKkkgpSzur/Q H9V35ForO6v9Af1XfkTo7qeN+r3/AIp+qf8AED8tS6LLDtrXtLR6bmPO87RA89Vzv1e/8U/VP+Ib +WpdDmNa4VNcAWmxgIPwVnP80f7kPyWQ2PmUNd+ytrWNpFfDf0ump/q+KVbzTU2tjKhWPa0er4nj 6Hmgvxehtc5r66w4HUQdDMo2PT0p22ulrP0UvY1oOhJEnsol6zIZj/Z211eiAW7TbOh/s+aQhtb6 dlWyyd7Tdzu0P5qDUei21NsLK2l7QYIMjcOJVj7T07xr/wA3/wAxSUsXTU6oNqDHTMXQdTJ12ptP Q+zhtTaoja26NJn91S+09N8a/wDN/wDMUvtPTfGv/N/8xSUw2tGP9mDahVxtF3aZj6KQawY32YMq FMRt9bsTPO1T+09N8a/83/zFL7T03xr/AM3/AMxSUwhvoehtq9M8j1ted3O3xSeGWUih9dJqbtIb 60fRMj81T+09N8a/83/zFL7T03xr/wA3/wAxSUwtay2kUWV0uqbthvrfu/R/NTWMrtobj2MqdXXG 0etwW8a7UT7T03xr/wA3/wAxS+09N8a/83/zFJTBwY6llJZV6de3YPW1G3jXak9rH0spcyo11xtH rcQI52qf2npvjX/m/wDmKX2npvjX/m/+YpKYXBl7WNtrpc1hlo9aI0Lf3fAov2iwdqv+3R/5FR+0 9N8a/wDN/wDMUSp2HcSKgx5bzDR3+SSmL8nIfjOxWmptbgWhotECfLaqOZvGHg+nO/1Rtjmfcrt1 bH4lljMc7NjiLPThun8qEAAlvTQG7z62jJiTD9JSQhDs7uH/AOb/ALFMHM7h3+b/ALFtursHGBa4 zGljYiY3akdtYU66i6/0nYVrGSR6pe3bA3QTrOsfinaqcMHK7h3+b/sUwcnuD93+xdF+z6f3D/nH +5L9n0/uH/OP9yWqnnx63cH7lMer4fgrud6GPa1khm4aBx5IMaIY141jlCypr/pPD8Al+k8PwCsp kuJTV/SeH4JK1BSStSHC/otfwP5SjIOF/Ra/gfylGQSpJJJJSkkkklIcvhv/ABd//UsQvqy7KZ0P p9V+Syux1YLK3w5xa61/pw7zZAA7IuXw3/i7/wDqWIH1Ttvv6H05zzQ7aNv6QN9Tay97W7fgGiPN Nlsh38KnNqY1uXeL3diGxGnj3VtRd9JvxP5FJRRiIgRFmu5s/aUY4CEREEkDrImR+0qSSSRXNeqv MDnerYws2kNa1se4ucQT/ZgKrGZ6wobkUF4Di5prJdALDyCBoD+RaSovtzmvcKm4/plztS4g/SH0 gPKZ80Qpp15eW/Ha8ZuFqwkOLSG/RHuhzgY7/NWQ/KbX6luVj7SNrXlm2XsL92rjxA48io10B9gG Xj4gqcNsQ1xMNG0CRxA4VqymnZWytlPpbzLXARDgQ7YBpuMpKafr5G9v63iOa2NwA15ZxqdOfvRr LbPse420C57d1V5jY4abnQe0HxTtx63hwrpxt9dsN9oMMBbu44dA/IiGjfZ6dlFTsdulcgGGluo2 x3KSmrbdk13FluXiiBw5sEGHuG6TEbYKMy2mpwOTfRDmbh9ESDEOHloVZsxsa0zbUyw8S5od+UJn 4mJYALKK3hrdoDmNMNH5uo4StSCjMwTU3ffQ57RDnAtAJgTHlqjW3UM/RBzG2ugMYf3nA7dB8Ezc DAYAG41TQNQBW0RPyRTTU5/qOY0vEQ4gTpxr80lNdt+MwubbdSbGuA12tjXYPmSPvSGXhk7RZQSQ HEBwOh26/ijOxcVxJdTWSTuMtBkzM8cyo/YsMEkUVS4AH2N1AEAHTskpgcmizeyq6n7RG2vUEh53 bZHKFVeGXOGRkY5HuG1sBwduAHPhx8VZGJiteLG01h4Mhwa2Z+MJrMLDsnfTW4kzJaJmd3Px1SUz svoqcBbY1jiCRuIGgIBOvmQovy8WtxbZcxjm/SDnAESN3fyEqb6aXgB9bXBogBwBgfNRsxse0zbU x58XNB7Edx4FBTEZ2EeL6zrH0hzxHxT1ZmJcQKrq7C6Q0NcDMamI5iU32DBkn7PVLiS47G6k8k6K VeJi1FpqprrLJ2bWNEToYgaJaKXqyKbhNTw/vp8S38oKImDWgkgank+MJ0lKWd1f6A/qu/ItFZ3V /oD+q78idHdTxv1d/wDFP1T/AIhv5al0WVzT/wAbWud+rv8A4p+qf8Q38tS6DMqZc6mqwbq3O9zZ ImGEjjzVrKLnAd4Q/JZDY+ZS1PuNYNntf3aDohtOTbjAWudTaR7thHY8e7ch/snA/wBF/wBJ396f 9k9Pj+Z/6Tv70jy8h1CbXxvtFeDWzbttZXtFZdIlohoJU225ZpscWgWgu9Ns6GPozqeVAdJ6fP8A M/8ASd/en/ZHT/8AQ/8ASd/5JNOE9wm2XqZQoc4ibRu2tHx9v53h5pG3KGNvLf08fzYMiZ8yFH9k dO/0P/Sd/wCSS/ZHTv8AQ/8ASd/5JD2z3CrV62Z9l3ln6x/owdJmPHwSF2Z9k3lkZMfzc6TPxS/Z HTv9D/0nf3pfsjp3+h/6Tv8AySPtHuFWubcv7Nv2/p/3J05+Ph5pPtzG47XNaH3+3c3cWt1Pu8eA m/ZHTv8AQ/8ASd/5JL9kdO/0P/Sd/wCSQ9s9wq17bcxuO11TA+87dzC6AJ+lr5Jrbs5uMx9dYfed u9hdAE/SjXWFeHQekwP1cf5zv/JKpldN6fjZLRXS0MNbnODpcNC3X3SqmPmoTmIAGz3XGLCy7MFF bmMm47fUZMgT9KNRMJW25ooY6tgNxje0nQaaxqO/mhT0n/gNBJnYNERtGA55Y1lJe36TQGkj4hWE Mr7c1jGeg0WPP85JIA9p1H9pG3ExJWdVZi3WOrqxqXPaXDaS0O9pgmNqL6A/7hVfe3/yCSm0BVj9 Hvo3OdZY1znSZaD4N8AqLN3+S9rgw+u33Hj86fwVlmJjw0vx62uOpaGtMfOFTsE1dO9pd+mHtA3E 6O7JIekwrb2Cz7ZeyySDWG/miOCdrZVn7TR++Fz7acj1nl2O80kN2NFLtwOu4kx30Tei/wC0bvs1 m30yB+idzuB4hG1PQ/aaP3wqHVLrnGr7I92hl5r26gfmne4crNtpyC6o1UPa0Om0GlxlscD2pXUv LABjWfTYT+icNA4E9krUlc1gGM7IO66upocC/wDOmTug+7Ud1UfgYj3uebHAvJcdr9upMzorFlVp YRXj2Nf2Jpce/wDVTU1Xitoux7DZ+cRU6Of6g/IgprVdNw6p222GWFh3Wl2hnXXvqofsfBgD1rIa IaBaRH3K3RTYKGtONZu90n0nHXcfJBqx+pte31qi+oE7oocHEbdPzY5SUi/ZWD/prP8At5396Sve mf8AuLb/ANsu/wDIpJJYYX9Fr+B/KUZBwv6LX8D+UoySlJJJJKUkkkkpDl8N/wCLv/6lij9W8FtX SOmBlTLGiplotsPvDn2OscGgEcbtE+Xw3/i7/wDqWKXRam2dM6U/7M67bRT+la+A2CeR/J5TZbKe gP0m/H+Ckou+k34n8iko1KSSSSUwqc9zTvbtdLht8gSGn5hBs6bgWP3voaXSXT5k7ifv1UD0rEMg +pBJMeo7klx5mfzypVVltrNtThXTW6tr3OkkDZ+adTMcoqYDo/SxxjMGs8eA2/kRqsPEqY2uuprW MdvY2JDXfvCeChY2bkXWNZZiWUgiS90FoMTHj+CZmfe61tb8O5oc4N36FomZLjI48ktVNhmPRXYb WMDXuncROswT+RFVN+de230/sdxEkB4gtIDg2dJ5BkJ6M2220VuxbqgSRveAG8TOhPwSpTbSVWvM udaK3YtjQXlu/TaAC4Bx+O38VB2fe230zh2uG7aHtgj6W3dyNI9yFKbqSp259tdrqxiXWBsw9oG0 wJ0k909uTccUO+zWF9m5rqmn3DR3fzjlKlNrROs77W+lrxXhZBAdI27fdqGiNeI/BSdmXNaD9lyH HSQ2O4ae8I0pvpIG60WhuxxYdsP3eO7duEaRolXh0V3OvaD6jt2pJI9x3GBxygpOkkkkpSSSSSlJ JJJKUs7qtWRZtbS1hlpBL3FvPwa5aKr5P0m/BOhup4boTDX9a+rVnUsq2kjiQawt3Oxq8p+PVYXN bumWGD/Nu7rF6R/4setf1D/1Va3Mqmy62hldrqHbp3tAJ0Y7TVWsxqUD2hD8lkNj5ls10srrbW2S GiBJ10RaemY3q/aZfve0gt3Hbrt/N/spMrIaA525wEF0RJ8UOp+RTkve+02VxtZURDWjTw5KgzHP lAGGR4gbOtaLxQ3ZdQ6dRdj7HF7RuE7TB7+SixgYxrBMNAAnnTRNnWW5VPpMecc7gd7NSQO3zSa6 ABzAiTyY8VJy+PmBD9bZlfWV6IJF6IascU3Psa953zLCZaCTukDxRXYVWePSuLgxvu9hgntzB8VP H6c5pda+99nqahp4aCZ01U7sC17NtOS+gk+57AJI8PJNz81h9uUYSrJsNDv5qETacYtQAGumnPgq lOHXQX7XPduJ0cZA1J0AA8VoAQACZjv4qtThOrse51z7Gv4a7WDJOkk+MKji5qQJ45nw6rzHsGvk YNOU0NsLgGyRtMHUR4Kx6TfNDzcW54Z6N7qYJmBzI76jhE3KzHJKQ4oyJBW0wxw7Ha5rXueXO3F1 hLj/ALkDJe6zMrDv9E78XNRMTBtoD/UyH37iC3ePooeS3bmMIOvpOj/OamxGHiBiBxd6Vqgfi9Pb rZXWA7u5jdYH/kQiNpx5L2tEv1Lg0azryqzgb2nfe17G+476ht7tn3aeKm1lrfazIaI5AY3QceKu fqOxW6tnFwcYYzMsNrqa5nqF7hqA73GXKxXittYLK3sex3DhJB/FUqrMpmO2ht7HVMaGAGsGQNNf cnbk5FcNZfUyTAAraNTrA9yoSHM2eExq9PJfoz3TY9kR6T9nxiDP4rNIaW9MDml4OQ32gSfzu0hX 62uBc57t77Hl7nRGpjt8lQ/N6Z7gz9O33GD+9+9prwrEboXvQvzQ6bqsPdri3zt52O42jT+c5RGV 07rNtFjQWHeCx0uG/hs2eOqYl+7+mVD28bavAe76XzU2zvdNzHwww4Nr9nvGp93yT0I7acWBuxLR qNGsdoZZ+7ZHgUm1Y4cwsota7eza9zHQDLYcf0kQpOJgFmXWASILm0mdW/yh8PmkdxLd2QyyXNms Nql2o9uju6Sl7KqJcXYthk/SDD7jud4WeKHVViQ3bjXCIgFj9Na+f0nwP3ozj7nRksaQdQW1aanT n5KDC8hs5db+NQ2rXVn8r5fNJSzqqCMXfj2v2/zW1jz6YkxviwfAqFVOJvq24d7SC/aSx8NJc+SY t/PM/gi6gY/6wysOJmW1H1jrJG53ca6JqyS+v9drfJf7dlPvhzpH0vzNB8tUlNn02f6F3+Y7/wBK JJQz99v+bV/5JJJTlYX9Fr+B/KUZBwv6LX8D+UoyalSSSSSlJJJJKQ5fDf8Ai7/+pYqf1NbSeidP 3+uHe6C2fT/pFsdufFXMvhv/ABd//UsQPqqw4vSOnU2ZDmucxtnosBLS226xzddNTugpstlPUH6T fj/BSUXfSb8f4KSjUpJJJJSlmDLx6Mh7y7KcGPewtIc+uXObMAToJ08AtCuxljdzDIBLfm0lp/EK vZiZjnOdXmOZLtzW7GkAS07fwhEKWOVXk41sMuaGtBIYHNf7tfYRBn4KGU1r7rP0mQwsqDttToB+ n9ER9L/YjMxrxU+t+S9xcAGvAALY7id3Pmnsx73W768hzBp7IBGgI/GZSU1sJu1psb9ptLCKyywt k7gyXke0GPH4qOXZjUtFIOVWzGBH6EOIILZ51LoWk0ENAJ3ECCfFOlanMxWMLnPZblWuZNm15A3Q 58MBIbPOgPaFPMur9lDvtFbrNtxNckgbgCwlrtPDwWgklanIxm05Fg2X5n6QQ3fLQ32ifpNBarGR bT6ZeW3VWZO6gPEhzdm/3xu04JBV9JK1NFvTpLHjKyIAB2l8g6tdruBPZWGYwb6RL7HGkEAucTu3 d3+KMkhakVFBpkeq+wHj1DMal38YRUkklKSSSSUpJJJJSkkkklKVfJ+k34Kwq+T9JvwTobqeJ6R/ 4setf1D/ANVWt3IZc+7HbQ8V2btHESP5t3ZYXSP/ABY9a/qH/qq1t5luRVZjvx2Nss3xtcYEem7u rOcEmIGp4Ifkshsf7xdGplgqYLXB1gaA9w4J7lUw3LGTZ6rmOpJOyAQ4ajaD24VqrImthtG2wgb2 jUA9wgMbm2Xv3UgUkuLLQ4aiRtBbzqJTMBOOROX0AigZaarjrsxspyrhtxHsrsGsvEiI8vNWm4Vu 0b3N3QN0TE94UHDLoG+mptryQ3a520QTqZVqq4mthtG2wtBe0agOjUAqPmeazDJ+pIlChsOLVMYi tUNL8lljm27DUBDNk7pB7zpwmy7sn0x9kLGP3e51gJEQeAPNNW3NdfYLWMFPNT2nU6nQifBD6j9s qpa7Grba/dBa4xpB7yFBDHinMA0TLcX1TZDZZlexoeJfA3EcT3hCoysoWWfaNhrn9FsndyfpT5Qh tMgbtDAkeahQzOe93rVNZXHscHAk6nkSY0U55Tl4/OOG9rlSOIs8+zMuDBhPbUWk7/UG6Z4hE3BA yzmUNa6ikXEk7ml4aeNInTlFlPjjxxFQ1j01tFnqzxhm7nnKdWWn+bbWDpq7ku50hAy/6XX/AMU7 /qmomHbmvD/tlTKYI9MNdukeaHln9cZ/xTv+qaq0B6wuLWazDfU+hja3MJm0N1JP8oqP7Owoc30W gPjcBI4nz/lFWLWttw24bx+hboIJB5nlVf2biw4e/wB8T73dt0QZ0+kVYQyb07CbO2kDcNp54kGO fIJM6fhMe17aWhzDLT4HyTDp2OGubNpDiCZseeJ41809WBjU3C5gcbAC0FznO0MToT3hJTZHKztd vTIaHH126GAPzvGeFojlZpLQ3phcS0faG6tmfzvBIIdYh27+hMI2876/D6P0fkptkPdNDWS0w0Or 9/uGh9vzQXW4u7XLvB2/vPiNo1+hzCKx9RdZtvscAw73FzpA3/m+3x0TlKs3nnErsMiTvr8W6iWf 6wmgjafszaxubLw6sloke7Rs6KNlmKAJyL6xIgbnyNWaH2fBIWUFzAzItsfvZta5zoJlsAyzhJSZ ++T+rscJO33M8TqfZ80OsOgfqbGcT7q9NWfyfD8iex9G5032tM6kOfB9ztB7eyHVbikN25dzhpEu frrXz7PGPvSUl1iiMdlkfTl1Y9L3cNlpmCmr9TfXOHW0SZdvr9vuftI9nfk/FMX0gYu++1k/zOxz /cJMGzaw88a/lUKbcT1KtuVkEkv2Autgnc/cHeziZA+GiSm9u8m/5zP/ACCSW4fvWf51v/kUklOR hf0Wv4H8pRkHC/otfwP5SjJqVJJJJKUkkkkpBl8N/wCLv/6lin0S57el9MY3KZUDRRNJZuJBcZ17 bgICjl8N/wCLv/6liF9V3Zg6N037Q6hvsAAtH6XZ6r/T2wP3du1Nlsp6Y/Sb8f4JyQ0Fx0AEk/BR e5rYc4wBMk8DRK0ONbwwAvLSGh30ZjSfJRqZNc1zQ5plrhII7gqNQsbW0WuDrAPc4CASqoHV27gB jbQAK2jeOAOVNh6n6dnqCn1Ib6W0u2z+du/gipsgAcaJ1SJ6xrpjxJjV8xJg/dCNR9s4yBX31ZPl tEH5ygpOkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUq+T9JvwVhV8n6Tfgn Q3U8T0j/AMWPWv6h/wCqrW1nWWVPx3V1Ovdv+gzn+bcsXpH/AIsetf1D/wBVWtzKyqsW3HttDi3d HtG461u7BWs0jGUZDpCB/BZDY+ZT1ttfW1xrcwuAJaeR5Kxi5Fjnml1L6wwH9I76Jgjj4yp1WNtr Za2drwHCRBgoVGfRdkWYzN3qUzvlpDdCBofmqvMZzliBIAUb0XgUlyrXVVhzGG3XVreYgkkePCZj w5jXQW7gDtdoRPYqGZlVY1bX2yGudtkCY0Jk+WieuxljG2MMteA5p40IkJmKPp+qSvTmB976TU9j axItcIa4zEN+5Nn2v9EGis3vn6DT5HVVqMyrIusqY14dUTu3NgaHborAvrx5fbIBBgAEkkDdAjyC XtRxH3Ym5R1pV3owFNvdhT4uY64uY+l9GwcvEA6lun3K6CDGvKzcfNpyn2NqDwazDtzY7o+8eY0m BHh2rxRVJM/JNLWFlT7wSdwrEkQPBJDzMynEY19wfDiQNjS7gT2RgCeAdVYx1GIFoKsS6+/dvxrK NoBG+NZJGn3IWW0jLZIj9E7/AKpqvYeZVl1GyoOa1ri2HjadPIqr1D+mV/8AFO/6pqz8OeUsoiYg bryNECSSSvLVJJJJKXHIWbuLW9NcCAReNTJEe6eNVpDlZpE19NHH6Yc/BySHWOVkzo+mI7tt+lH5 JUhkv3kuewnaQyBZAJcPpf2UP0z+8370vT/lN+9G1M3ZV/5llR11Lm2iRLfDylMcm0wHvr2S3cGi ydsiYnuo+n/Kb96Xpn95v3pWpK7Ksk7bGQToC2zQSf4QoMysiBvfVOm6G2+LePlKj6Z/eb96Xpn9 5v3pWpmMmwCrY9g1Jv3NsMknXZER4pMysnczfbVtk+pDLdRJ2xryBCh6Z/eb96b0z+8370rU2/td X+kH+Zb/AOSSVP0/5TfvCSFlSDC/otfwP5SjIOF/Ra/gfylGSSpJJJJSkkkklIcvhv8Axd//AFLF PoTbh0zpj66KnA41Ida4gPgEkgD+TyEPL4b/AMXf/wBSxT6Ljh3S+l2nF9b9XpBs3EbdpLh7eNJl Nlsp3bWMsb6dgljpDge4IKnoeEPJANZBaXzI2DQnTj5oNlmRRj7sfG9Rxe6a90GPcd3HcqNTbSVP 7dkCh1v2K7cHhnpezcWmPePdECUqM7Itexr8K6kP5c/b7dO8OP4I0puJKg7qGY2rf9gtLhy3c3iS CeZ4Eoz8rIa2stxXuc9rXOEj2kloLXeYBn5JUpspKnfm5VVjmtwrbmtna5hb7tGkRuI8SPkpWZlz bnVMxbLA0A+oNobq0ujU+UJUptJKgepZI9Qjp97vTjQbJcTH0ZcOJRmZVr8U3nGsY+J9B0b/AIaE hKlNlJUhn5R/7Q2iAeS3sHR3PMD707c7ILyPsdoAMSduolo3CCdPcfuSpTcSVTHzMi57WPw7aQ7l 7yyB7d35riedFD7flby04Fw0J3SzboHaaO59v4pUpvJKi3PynWuZ9huaxpaA922HSQCRDjwDKNjZ Vl2luPZjkgQHwe0nVhcBHCFKbCSpOzspoJ+w2ugwILO27XVw/d/FIZ+VvePsN0NcGh0s9wJguHu4 HPijSm6kqlmZeylloxLXue3c6ppbuadPaZdE/NRdnZIEjCtPOoLeZMaTPZClN1JUhn5JL/1G4BhA aSW+7XUgbuPinrzr7GWO+x2sdWWDY4tBO76W2CQdqNKbiSpNzsx1FrxhWNtrYHMY9zQHuM+0OaSd PEhDb1PNLTPTbw8RpLIJ0mDuSpToqvk/Sb8EFuflkicG0AgHUtkE7dDrGm48eCRuttJNlLqNujdx B3Dx9sowGqnj+kf+LHrX9Q/9VWuhdYyvKx3vcGNDiNxMDVhAXPdI/wDFj1r+of8Aqq10JFH2rHN+ z0w6ffEAhhIPu81NzhqN9scfyW4+v94ugx7bGNew7muAc0juDqEm5NDrfQFjTaASawZIAgHT5o4a 0AAAADgBV9tPqOcwN3yQ5zQJnSQSFlRmMmlVWrJswz76qKPUtdsZIBcePwQGua9oc0y1wkHxBRcx tT6gLQ1zdwgPAInXxQGxtG2NsaRxHktXkoVi36lZLdvUZNFh9GuxrrKwN7QZjtqh9QysfHrY6+wV hziAXeIBP5AiYzcYAuqDPU09UsAmefdHdTvbQWg3hhaD+fEA8fnLIExDPxUTUiyVo02lrmhzTIcJ B8QVPHzMbILm0WCx1cbwO0q0GMAADRA4gBUqhjBz/QFYMnf6ccyedvmrgyjNoBw8P7VtUnfk0YzS ++wVtOgJPJ8h3VhZ+Q2p+xtoa4ydgdB1jWJ8k+9/7x+8pp5E5PUJ1fgripnTlY+RPo2NsjUx2BJG v3FV8v8ApbP+Kd/1TUOr0RJp2j97ZHynaoOJOYJM/oj/ANUFdPKmA4uK68FvFaRJJJNSpJJJJS45 WY/+b6d/xw/I5aY5WXaHGnp4a7a71hDomPpdtEkOnA8EoHgq8X7tn2pm/wDd9MT929S9LL/7kN/7 aH/k0kpoHglA8FXaL3EhuUxxHIFYMf8ATUvTyv8AuQ3/ALaH/k0lJoHglA8EBrchwluSxw8RWD/3 9Jzchol2Sxo8TWANf7aSk8DwSgeCAGZLgCMlpB4IqEf9WmcMhujspjZ4msD/ANGJKTwPAJKvF/8A 3KZ/22P/AEokkpnhf0Wv4H8pRkHC/otfwP5SjJKUkkkkpSSSSSkOXw3/AIu//qWJdFtx29M6UXB2 70KR6jS2Br9F0pZeoaP+Dv8A+pYsxnUqen049eVkV0txWVVW1GysbbDW6JgzL50B8ECLU9dkXUOr I3yIMhh90R2QtuPkUlgufWG2OJLX7XEiQRI7a6fJZguySJFJg/ymf3pC3IHFBH9pn96HB4qdRuLj txzjjIsgnd6hs98/1k1eJRXVZX9qteLA0bnWS5u390xpPdZnrZP+hP8AnM/vS9bJ/wBCf85n96XB 4qdRmNjsdY4ZFhNrS0zYTtnWWjsQmbiUNxvs4yrfpB/q+pNkgg/Sjgxqsz1sn/Qn/OZ/el62T/oT /nM/vS4PFTpZGHj3l5+021GwyTW+IMBvtkGPopPw6X47aPtdwDXl/qCyHmZ9pdH0dVm+tk/6E/5z P70vWyf9Cf8AOZ/elw+KnR+x0hhaMq33WNsc4vBcdo27ZjgwmPT8Yls5V3tjT1OdoAk6a/RWf62T /oT/AJzP70vWyf8AQn/OZ/elw+KnR+xUi1tgy7hDw8s3jaYJdtiONUnYOMbfVGTaw7txDbIB93qR xxP4LO9bJ/0J/wA5n96XrZP+hP8AnM/vS4fFTp3YtFz3POTazcSSGWQNWhsRHlKiMHGkn7TbJkA+ pqJ3DmO27SVnetk/6E/5zP70vWyf9Cf85n96XB4qdut1TGBnqbtogFxBOil6tX74+9YXrZP+hP8A nM/vS9bJ/wBCf85n96HB4qd31av3x96Xq1fvj71hetk/6E/5zP70vWyf9Cf85n96XAO6nd9Wr98f el6tX74+9YXrZP8AoT/nM/vS9bJ/0J/zmf3pcA7qdx19LQS6xoA5JOil6jP3h96wTbkkQaCR4bmf 3p/tGX/onf57P70uAd1O76jP3gl6jP3gsL7Rl/6J3+ez+9L7Rl/6J3+ez+9HgHdTu+pX+8PvWX1f qHouY2lzXPiXiHEhuuo2A6z4qt9oy/8ARO/z2f3phbkjigj+0z+9IRo2p57oLnO+tfVi/wCmagXd tSa5Wx1GnHzGim5l8Vua9rqgR7gI0d80cOta82Nxoe76TgawT8Spetk/6E/5zP71LkkJkabREfsC 2Iq/MlrTb/3Iz/v/APMUCvDqqvdkV257bX7tzt513EF2kRrtC0PWyv8AQn/OZ/el62V/oT/nM/vU QhAbRA+i62jfQ3IZ6d9ufYyZ2k6SP7KTMZtbG1stz2sYA1o3HQDQdle9bJ/0J/zmf3petk/6E/5z P704EjQaeSGjRjMxy80257PVdvfB5ce/0U2Tisy6xXkW59jAdwG4jXifaB4q/wCtk/6E/wCcz+9L 1sn/AEJ/zmf3pvBC74Rfek21W+o0BrcjPAAgCew/soVeLXVY+yu3Pa+z6bg46xJ8PNX/AFsn/Qn/ ADmf3petlf6E/wCcz+9ERiNgB5BTn5OFVlNDMizPe0TA3EciOwCJ6R/02f8A53/mKuetk/6E/wCc z+9L1sr/AEJ/zmf3og1shzacCjH3ejZnt3c+8n8oKs0BlLzZ+tWuI2/pZdAmdOFZ9bJ/0J/zmf3p etlf6E/5zP70eKWxJ+1TD7SP9Fb/AJhS+0j/AEVv+YVP1sr/AEJ/zmf3petlf6E/5zP70EsPtI/0 Vv8AmFL7SP8ARW/5hU/Wyv8AQn/OZ/el62T/AKE/5zP70lMRlCf5q3/MKp2AsZ04PG1wuEg8jRyv etk/6E/5zP70jZkGCaCY1HuZofvSQw+zY/2j7SdbYgGdAOOEaR4hQ9bK/wBCf89n96XrZX+hP+ez +9JLCrGx6bH21iH2mXmZk/6hEe2uxjq3wWPBa4eIPKb1sr/Qn/PZ/el62V/oT/ns/vSUxx6KMav0 qRtZMxM/lT3005FZqtG5h1ImOE/rZX+hP+ez+9M5+VZtb6ZaN7CXFzeA4E8HwCSmVba62NrZo1og CULIxMXJcx9zdzq52mYiYnj4LS9Wny+5VM99zgwYoOkl5BaJEEbfd9+iSmr9gwv3B95/vSQ/T6j/ AKM/9uN/vSSQ2ML+i1/A/lKMg4X9Fr+B/KUZJKkkkklKSSSSUgy/ot/4u/8A6lihR0/ADRYMaoWW NabH7BucRBBceTqp5f0W/wDF3/8AUsRaf5mv+o38iSFvRq/cCqXG6sPdj4v2k+oQW7tsNDWcT8Ve VBmNgX59/wBru9FzB+jcQSBI9x/dHzSCln5GQxu49NcY5AeDA/ipMddZW11mGccl9YDS7dIc6CPb xorzOmdN9dm3KrI9QTSWjUbj7eZ14VUdL6D9puNeQWW+uQ4ureWtdvb+iBf7In26eKNKRDIO/Yem 3jSZ1I+Z3Jm5TLJYMG2p/p75e10NlpcJ9yv29M6KcTCIfFez2W7HuLxLPcY4+atYXTukHIs9N7ck 7RIMOA1Pdo2pUpyXXBr3tOBY4MMB7dxDh4jUKdW221rTjuqbtcS18zI2R3/lLoP2Z0//ALj1/wCa Ev2Z0/8A7j1/5oSpTjfZav3PypfZav3PyrZ/ZnT/APuPX/mhL9mdP/7j1/5oSpTjfZav3PypfZav 3PyrZ/ZnT/8AuPX/AJoS/ZnT/wDuPX/mhKlON9lq/wBH+VL7LV+5+VbP7M6f/wBx6/8ANCX7M6f/ ANx6/wDNCVKcb7LV/oz+KX2Wr/Rn8Vs/szp//cev/NCX7M6f/wBx6/8ANCVKcb7LV+5+VL7LV/o/ yrZ/ZnT/APuPX/mhL9mdP/7j1/5oSpTjfZav3PypfZav3D+K2f2Z0/8A7j1/5oS/ZnT/APuPX/mh KlON9lq/cP4pfZav9H+X+9bP7M6f/wBx6/8ANCX7M6f/ANx6/wDNCVKcb7LV+4fx/vS+y1fuflWz +zOn/wDcev8AzQl+zOn/APcev/NCVKcb7LV+5+VL7LV/oz+K2f2Z0/8A7j1/5oS/ZnT/APuPX/mh KlON9lq/c/L/AHpfZav9H+X+9bP7M6f/ANx6/wDNCX7M6f8A9x6/80JUpxvstX+j/Kl9lq/cP4/3 rZ/ZnT/+49f+aEv2Z0//ALj1/wCaEqU432Wr9z8qX2Wr/R/lWz+zOn/9x6/80Jfszp//AHHr/wA0 JUpxvstX7h/FL7LV+5+VbP7M6f8A9x6/80Jfszp//cev/NCVKcb7LV/oz+P96X2Wr/Rn8Vs/szp/ /cev/NCX7M6f/wBx6/8ANCVKcb7LV+5+VL7LV/oz+K2f2Z0//uPX/mhL9mdP/wC49f8AmhKlON9l q/cP4pfZav8AR/lWz+zOn/8Acev/ADQl+zOn/wDcev8AzQlSnG+y1f6P8qX2Wr/Rn8Vs/szp/wD3 Hr/zQl+zOn/9x6/80JUpxvstX+j/ACpfZav9H+VbP7M6f/3Hr/zQl+zOn/8Acev/ADQlSnG+y1fu flS+y1fuflWz+zOn/wDcev8AzQl+zOn/APcev/NCVKcb7LV/oz+KX2Wr9w/itn9mdP8A+49f+aEv 2Z0//uPX/mhKlON9lq/0f5f70vstX7n5Vs/szp//AHHr/wA0Jfszp/8A3Hr/AM0JUpxvstX+j/Kl 9lq/cP4rZ/ZnT/8AuPX/AJoS/ZnT/wDuPX/mhKlON9lq/c/L/el9lq/0Z/FbP7M6f/3Hr/zQsjqu C4ZIZiYwDNo3Oa0D3ToQ7cIjvolSmP2Wv/Rn8UlW/Z/Uf3T/AJw/vSQUmwv6LX8D+UoyDhf0Wv4H 8pRkkqSSSSUpJJJJSDL+i3/i7/8AqWItP8zX/Vb+RCy/ot/4u/8A6liTqnW4rGNeayWt9w+HkQkh Og4XrDMyjXiNywAC5rokaaBpd4qGNi5FLy63KfkN2wGODQAZ+l7Qo4/2f7fkm7JfiuAG17JAiNST wISCnWay03Vl3S66yLGu9UFpIknc7Ro1HKVjbDkOrd0yu2ovH6T2d3avMt8NVBnp/aGbepuP6QTS fzvcYb468KsG4H2m4szr67PXIc9wftD97f0QLxtidNPFOU6GS63fsb09t7KpFTiWgCAwjaC0xrp8 km5GYywlvTtpcDLw5uoG4gGB4/lQLhhnEwiMm0VBn6OyHFzxLPc49lZwDjnIsNWU/JdtEhxBAEng tACSkuPkZdl2y7G9JgDv0m8O4I26R3VpJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklK SSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJ JJSkkkklKVTI/nvkFbWR1m2ysvLHFp2jUfFAqbKS5z7bl/6Z/wB5SSU28L+i1/A/lKMg4X9Fr+B/ KUZBKkkkklKSSSSUgy/ot/4u/wD6liLT/M1/1G/kQsv6Lf8Ai7/+pYi0/wAzX/Vb+RJDJBwRk/bs o049eS0Bu4PiQY0gk6T8EZD6dgjKzsp3q2UuYGgOrMH3BIKb4F3r17umsA9QRaNvt1Mv0141Q3M6 l6thf0/Htq9U7WhrdxZuHvLnPiYk8K03pt7bW2DMtLWvDnVkyCAZ2oR6EwWvtrybWWWWG0uBmJcH bRun26RCcplc3NNGLOLVZaG/pG7QWsPt0bLhH48KxjHJNzzdjspbtEOYQ4nU6EwPyIdnSmPpx6Rc 9oxxtDplzvo6kn+qjY+H6FrrPVstLwGxYZiCT5eKSmwkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJK UkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSS SSSlJJJJKUkkkkpSSSSSlLF65+f/AFR+VbSwOv2ubf6Xt97AWyXSQCN3DSPxQKnGSSSSU6uF/RK/ ocfxKN/mL5ySSU/Rv+Yl/mL5ySQU/Rv+Yl/mL5ySRU/Qmb+bxHpX8ccMUavW9Jn859Fv+i8F8+pI KfoT9P8A8J/4EidJ9f7TlbfVmWzs9Hdx+dv0+EL53SRCn6b/AFv/ALtf+yyX63/3a/8AZZfMiSSn 6b/W/wDu1/7LJfrf/dr/ANll8yJJKfpv9b/7tf8Assl+t/8Adr/2WXzIkkp+m/1v/u1/7LJfrf8A 3a/9ll8yJJKfpv8AW/8Au1/7LJfrf/dr/wBll8yJJKfpv9b/AO7X/ssl+t/92v8A2WXzIkkp+m/1 v/u1/wCyyX63/wB2v/ZZfMiSSn6b/W/+7X/ssl+t/wDdr/2WXzIkkp+m/wBb/wC7X/ssl+t/92v/ AGWXzIkkp+m/1v8A7tf+yyX63/3a/wDZZfMiSSn6b/W/+7X/ALLJfrf/AHa/9ll8yJJKfpv9b/7t f+yyX63/AN2v/ZZfMiSSn6b/AFv/ALtf+yyX63/3a/8AZZfMiSSn6b/W/wDu1/7LJfrf/dr/ANll 8yJJKfpv9b/7tf8Assl+t/8Adr/2WXzIkkp+m/1v/u1/7LJfrf8A3a/9ll8yJJKfpv8AW/8Au1/7 LJfrf/dr/wBll8yJJKfpv9b/AO7X/ssl+t/92v8A2WXzIkkp+m/1v/u1/wCyyX63/wB2v/ZZfMiS Sn6b/W/+7X/ssl+t/wDdr/2WXzIkkp+m/wBb/wC7X/ssl+t/92v/AGWXzIkkp+m/1v8A7tf+yyX6 3/3a/wDZZfMiSSn6b/W/+7X/ALLJfrf/AHa/9ll8yJJKfpv9b/7tf+yyX63/AN2v/ZZfMiSSn6b/ AFv/ALtf+yyX63/3a/8AZZfMiSSn6b/W/wDu1/7LLH6tu+0H1PW3w3+d27ee/pe1fPiSSn3f3f8A Bf8ARSXhCSSn/9kKZW5kc3RyZWFtDWVuZG9iag01MiAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9Q YXJlbnQgNTQ5IDAgUiANL1Jlc291cmNlcyA1MyAwIFIgDS9Db250ZW50cyA1NCAwIFIgDS9Dcm9w Qm94IFsgMCAwIDYxMSA3OTIgXSANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAw IA0+PiANZW5kb2JqDTUzIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQg PDwgL1RUMiA2MTcgMCBSIC9UVDQgNjEzIDAgUiAvVFQ2IDYxOCAwIFIgL1RUMTAgNjIyIDAgUiA+ PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDYyNyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgNjE5 IDAgUiA+PiANPj4gDWVuZG9iag01NCAwIG9iag08PCAvTGVuZ3RoIDEzOTkgL0ZpbHRlciAvRmxh dGVEZWNvZGUgPj4gDXN0cmVhbQ0KSIncV9ty2zYQfddX4BHMhDAB8Jo3Xzqu2zrjRkzy4MkDQ0ES W4pUScoe/0b/on/Z3QUoypYSvzYdzRA3Etjdc84udJHPzvJcMcny5SwRWcoC+FEnikXCQiXimOWb 2dllH7Oyp+WA9WUzO7ueS7bqZ4EIgiBieTnzqQtbPc74P+yy3T511Wo9MC//A0+RgT0mElGSZrBL fjUL8OV7flmbovP8UKR87kXw3Hp+IjQ3ZuF9yX85sDESKtPKfYzHpdPJIZ3MclOum7ZuV09MBYHG 0zORxWQ4daJQijjJssk7/DyUuBMZxKV0Nsf2VKnoa2hUFgsZsyRMRJjaT2UIzggVanjqTFFwrEFq si2jfW939VD5+bozxcIs2HnXFU/srmtL0/dtB+NyXQ2mHHadcQaE1gAVkgHQECx4vLV87/loOoVy vsXIwQ4/5WBgFEfs8IkGwjYhugEzKVnPYCfwqDOz5cydQWshOAwBf76qUpboVAQQHqQKAAe+2sVU qHhcDLNIQMwOl+nYKDl9JMwfH3eRH5LnBZJkqAxHLPbkxKhQ9F/E4zmRIkckf2IS9JI0tKxkXswL ZGXGa8+XIuJ9a4e4srXdzgvg6eYfPNgq5dXCDg0r3ULTe34MK4C/27GxTfnECtddsIWxvb5ajS9J ITnr3Xznkxp8ZzuYpAL03EpBhXu6aWk9eKiAWWxoWQ8B8EJQ1IKVu35oN3bUoVtw3t94NE5s65ba J8/XIuYbGEhumoG1Szas7TtssG25pgak5iUi4a01Ln9jTZDZnpP3fPWEes64oFeAlH/NJKuYRT3W CWgIuB0gpL6UQocI/ec3rBnfiJCKm3EUi5jVz5bqkUJ2cb/Xnni/Ox6Ngo5GHtme/RbywfdETSyJ iVUfzNJ0poHoPmfVCXrG4JCMj+kpE9rpXn55kR+VUEkipxRnI0lBBWmhxn+GtOr/Zh5Mjclj1RWb TdWs2PWuWpjn9gQYgzAAW9xmWu83cyy/assd5FzFN6ahdvB8xdn73eYrDU3nRfwdC2Ia+R+vfRhL L0kENZIaXErGVD06Ehwx9Ftp6rQsyd4ph+rMyTL3ZJByA4dKJCE2mO+ps0IFZsDfBHjB33oa1Qpl gBa1lQ9YnijNfCUIzqsDOKxx9+o1TI7D+MmTGaig8qCmcAwZhdFGtrBpoYaauNnSTNsYakFZNy7q dqJbFqVhc09L2GzwJFQb+JxeXdi2e1kSHcZ6cmVKBMolgk/zG3aOKUjzuq4KIO5bdltAucHYSNow s7xlSSY0VH+diVRhMbe8lRNvD4W9HgYPUjokwxDsfXd2RqPHx0fx4KUQiN7D/FIJmm47mFMAER13 rJRIoe6+rRT9PVSsuxHhN7/6le0VCn42u6I+qYspZnqKWSifCUM7YWhEFL0ZpaFJGoCPE4d24oAZ kkfMpY5/QE1IJM0JUYSvJqrJLunsumn6oduV9mo3WDK0DZsbuBX68T6N2vURKvYawU8EwIElHViS 5Ie104ElESysoQ4syf0Ptz7NUBILKYlBOP5HWSx6DbD9lScII2vVxx4LCVR6Rq5dtk1jAB1bFjDV 483nYtefRsiWGX6+3dZVWQyI9Pt2oJJ0FMUpgerkAEIEBCHEliDUDkK6T3U2zbBA0dg/f++T1BSg 5+NVKaL59CWGcCn5oZCLX0NOTX97tIPunN3VBYAUQeJZthipCO5vdG1ly5YC18FmcBmUAY0Cdv2V OlvwB+TXQ+lKIdqGJodH943d4k/S653dFv+v2NveEayHMYa/NP1r1xE5MlAp68bndQVVIrTgK4wy Z3dQ+fgW0D860kYgPcwBNgOM3zv9W+qkljoR9z/fAXEiHoBzHCfUf5oxcGH+dwAVFZMzCmVuZHN0 cmVhbQ1lbmRvYmoNNTUgMCBvYmoNPDwgDS9UeXBlIC9Gb250IA0vU3VidHlwZSAvVHJ1ZVR5cGUg DS9GaXJzdENoYXIgMzIgDS9MYXN0Q2hhciAxMjEgDS9XaWR0aHMgWyA2MDAgMCAwIDYwMCAwIDAg MCAwIDYwMCA2MDAgNjAwIDAgNjAwIDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIA02MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMCAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgDTYwMCAwIDAgNjAwIDAgNjAwIDAgNjAwIDYwMCA2MDAgNjAwIDAgNjAwIDYwMCAwIDYwMCAw IDAgMCAwIDAgNjAwIA0wIDYwMCAwIDYwMCAwIDYwMCAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw IDYwMCAwIDAgNjAwIDYwMCA2MDAgDTYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAwIDAgNjAw IDYwMCBdIA0vRW5jb2RpbmcgL1dpbkFuc2lFbmNvZGluZyANL0Jhc2VGb250IC9KS09GQUwrQ291 cmllck5ld1BTLUJvbGRNVCANL0ZvbnREZXNjcmlwdG9yIDY0IDAgUiANPj4gDWVuZG9iag01NiAw IG9iag08PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL0ZpcnN0Q2hhciAzMiANL0xh c3RDaGFyIDEyMSANL1dpZHRocyBbIDI3OCAwIDAgMCAwIDAgNjY3IDAgMzMzIDMzMyAwIDAgMCAz MzMgMCAyNzggNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgDTU1NiAwIDU1NiAwIDAgMCAwIDAgMCAw IDAgNjY3IDY2NyA3MjIgNzIyIDY2NyA2MTEgNzc4IDAgMjc4IDUwMCANNjY3IDU1NiA4MzMgMCA3 NzggNjY3IDc3OCA3MjIgNjY3IDYxMSA3MjIgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIA01NTYgMCA1 MDAgNTU2IDU1NiAyNzggNTU2IDU1NiAyMjIgMCAwIDIyMiA4MzMgNTU2IDU1NiAwIDAgMzMzIDUw MCANMjc4IDU1NiA1MDAgMCAwIDUwMCBdIA0vRW5jb2RpbmcgL1dpbkFuc2lFbmNvZGluZyANL0Jh c2VGb250IC9KS09HRUQrQXJpYWxNVCANL0ZvbnREZXNjcmlwdG9yIDYwIDAgUiANPj4gDWVuZG9i ag01NyAwIG9iag08PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL0ZpcnN0Q2hhciAz MiANL0xhc3RDaGFyIDEyMSANL1dpZHRocyBbIDI3OCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAw IDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIA0wIDcyMiAwIDcyMiAwIDY2NyAw IDAgMCAyNzggMCAwIDAgODMzIDAgMCA2NjcgMCA3MjIgNjY3IDYxMSA3MjIgDTAgMCAwIDAgMCAw IDAgMCAwIDAgMCAwIDAgNTU2IDAgNTU2IDAgMCAwIDI3OCAwIDAgMjc4IDAgNjExIDYxMSANMCAw IDM4OSA1NTYgMzMzIDYxMSAwIDAgNTU2IDU1NiBdIA0vRW5jb2RpbmcgL1dpbkFuc2lFbmNvZGlu ZyANL0Jhc2VGb250IC9KS09HR0MrQXJpYWwtQm9sZE1UIA0vRm9udERlc2NyaXB0b3IgNjIgMCBS IA0+PiANZW5kb2JqDTU4IDAgb2JqDTw8IA0vVHlwZSAvRXh0R1N0YXRlIA0vU0EgdHJ1ZSANL1NN IDAuMDIgDS9UUjIgL0RlZmF1bHQgDT4+IA1lbmRvYmoNNTkgMCBvYmoNPDwgDS9UeXBlIC9Gb250 IA0vU3VidHlwZSAvVHJ1ZVR5cGUgDS9GaXJzdENoYXIgMzIgDS9MYXN0Q2hhciAxMjIgDS9XaWR0 aHMgWyA2MDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgNjAwIDYwMCAwIDYwMCA2MDAgNjAwIDYw MCA2MDAgMCAwIDAgNjAwIA0wIDYwMCA2MDAgMCAwIDAgMCAwIDAgMCAwIDAgNjAwIDAgMCAwIDAg MCAwIDAgMCAwIDAgNjAwIDAgMCAwIDAgDTAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDYwMCA2MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDAgNjAwIA02MDAgNjAwIDYwMCA2MDAgNjAwIDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMCA2MDAgNjAwIF0gDS9FbmNvZGluZyAvV2luQW5zaUVu Y29kaW5nIA0vQmFzZUZvbnQgL0pLT0pDTCtDb3VyaWVyTmV3UFMtQm9sZEl0YWxpY01UIA0vRm9u dERlc2NyaXB0b3IgNjYgMCBSIA0+PiANZW5kb2JqDTYwIDAgb2JqDTw8IA0vVHlwZSAvRm9udERl c2NyaXB0b3IgDS9Bc2NlbnQgNzE2IA0vQ2FwSGVpZ2h0IDcxNSANL0Rlc2NlbnQgLTIxMCANL0Zs YWdzIDMyIA0vRm9udEJCb3ggWyAtMiAtMjEwIDc3MCA3MjggXSANL0ZvbnROYW1lIC9KS09HRUQr QXJpYWxNVCANL0l0YWxpY0FuZ2xlIDAgDS9TdGVtViAwIA0vQ2hhclNldCAoL0wvby9jL2EvbC9z cGFjZS9NL2UvbS9yL3kvcGFyZW5sZWZ0L2QvYW1wZXJzYW5kL24vdC9wYXJlbnJpZ2h0L0MvaC9J L3MvXA11L2kvRi9zbGFzaC9EL0EvVS9SL2cvZi9PL2h5cGhlbi9QL1MvQi9UL3NpeC9mb3VyL0Uv b25lL3R3by9laWdodC9LL0cvUS9cDUovemVyby9maXZlL3RocmVlL3YpDS9Gb250RmlsZTMgNjEg MCBSIA0+PiANZW5kb2JqDTYxIDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGgg NTA2MCAvU3VidHlwZSAvVHlwZTFDID4+IA1zdHJlYW0NCkiJNJN7bFPnGcZPILZPUmYC7EThnPWc aZ00iU4iHYyJavRKyVRIgiDk4kJix5f4bsc3bMc3coMOVIhNHN8S+/hyju3ETpw4jpMUAg3NILSi zQYD2sBGxFRtVdU/1h1HJ0xzKk3ff9/3vd/3e5/3eUqA0i1ASUnJ9veP1te8d/jVtzUSnry2YXOr soBsq/yQFq271+WM5e0/7Bj62U+v79w8Af9/CygpLoAFAGUlABsAKljAbgD4BRPYUwpUM4F3AOAw E6jdCpwsBTgAsL/4EfAy8PNizTslPSXOEmLL3i0tW+5v/XBrpvSXpY8ZGca3TJL1G9Y4a5n1d/A8 eBV8VsYue7mssexJ+aHyf76k21a7jbst/5NB9kvs/u1btr+3/fuK31ecrOBWPN9xYEdsx9rO8Z3/ 3dW4q3vXN6PrjMp1xsaFF4zCBdaGsfADVBBvPN8QF54z2RvH2M2FVQu09CUvLpqQ5nYTU6Hr/uXq kaoeoV1qUdIQ9buqf8znl+7B013j8gSakPN9HKSZ2yWTYhK5WciFDVf0bi3q1uGKUdFJNVeu6gCV Yiu/DW4JtKb5KCe3pPkLMjXh8qewlH80Eh+daJuQpnUgvVrwQg5vt6d/COzzXHAPwbhrxO9Dff6g K4xERnosfszX5TqrhQ19RocZdZg1Z4V6fr7qXxt7oS6VuqcT4cr8SR2mS9oTcTjsigQiaCAySsyR 1G/p01XmTp1B1QWyNyDqGi2C9lDVHKqaeg2+7bzj/RPq/tg/F8x74rH5yXvgMWbdwdaDyoOg5rDt 7UPw/sCBsYNo6mD23fk6cJm5+cLFK9DYauBvz+BHtvuaFVS52rpat1qsm6qJcTzKkVb/aTcH9NY7 6+pg+jUOXb2HrkaXmfO3s39Orf6IsEjJoDU6uo+Ksoqir9ghSrBuZBxm0oIXRsYKk00x7kCcyZua L5CFGS9ZlIqMTQUWwMD1q/eewiv9txxZ1DFtGTfFjXEtrvSDPqXEJUSauFaVBBOrOgXmJtDc1F1z AKbhyJ65evRuIQGlImOBKSSbMgpIjBB4D9HlMF1uPaQWoAKVxMhH+JKRSRWmnrQ+osphqtz3VWIG ZRfAdT50gmmRd8pEUpGUq+LowAMsYjDpS4dSQTIYCoIbt9bW+Sw29epTaNDv8fv8Pl8qsZC/eyM/ TSSJZDDuJsAhcoCMw4tn5/kZNMNvGKlBahpMYj7WLtY19f3heXdV3pOORdFoNOXJIVOjdm0Ui2o9 SjEstXaoRahK1Nj8xtGWdmGHWq6WG2U2Wa/xvOGSASwon9L/3pRrBhJNLxiXkS8+xXOzWH4mfOMO PGfP6JKoLikNcgfHfJFgIAoGoq54Ah7rTppJ1BTXhKUBMCAVu/jIyQ+6pEJMKNOecRxf66py5rxj 4RCIh0l3GkmRDgOO4QZ3pxTmWxSKs6hRITknQs73X7zUh3W/wRiIhC4HkKmUTR3DiE6PlA9zrWKl ElWqxFYeIla4cS2mxc3j567ts1cN1Ec+yApBdmFvJfXmt1/vKQjeZdFfbQgYr1N36TfXWPTn1BWI 0lMPGPQDWl/UtTRX7O2G6TPk8XL80zyWmRtZ/Ay+Z1jk5tActxGvRU63WhRcLEOdYlCZpzTFPLJR +sTuCQ0HcM/uoXDUGUdmJywqAiOVXn4L3GjhKWWoTNnRxUM6FO6wpojWlerN7+0tooU52Y4i2pH1 /VCy44z/BPJWvbqhFWs+1vkrGoPpivC+2VPoqbkl9X0klxkMFY0ZJBIjGXBkcnA6vwnVXoRqb8GP I1Jpj0WBybs6tQbZpRXXoj/jn8TjRAj04VEXiaQTNk0E81rcGpf4mbOqd1Gf6xgF6QH6ayhOpLxT yNSYVUlgMZVH0AI329rVClTRKbMIkU6t01cMudcUspGgjewrjnPWmyFJlP1X6iGkk9sFp+FavCnH Q3m5W4YV5MtboWwOy03jC7fhGUdGN4rqRqXhNm/aS4wEIkVDXI2PwQvGGeEEOi5sGT6G1LaYxCJM 1GFsa4IlVxUBDTqsJYwT1jaHRK+Vg1QZNQOFcNKdQsZIh77oC71bLYPlDrXBgBr0aocYEavcIT1m wB3kGJxwx3Ac1dNLEEGkvVkkl7aqSIxUe8U8mGeVqNWoSi228RC1ZsCjxXQe07AjAtrDfZEonPWk CQJlN39X+ZBSMKhPmE9oBeM/THpmnct4hUmTL7iM75nUscIlyJ/3zA7ODQkCLXjdA5pTRV9gPqZE DHYz9V3lbOayaxRLumJDIV/IP4x746A37kym4Kx9/Md0SEJcTyoQDfkJMEC44snNdBgTqDHRGZZ6 QZ+0zXkKofEXXCrGpI+sb4OoV5gL4xd6Q1ioN2B3m0C3acCghTV9BrsZtZlNDm0P2G9SXOAh9F5K waRvllKvM/Pp8z0RLNozYvWcBb1Gp1YN6/sN3Wb0nMlus3Zbuk29+vPgh3b9H+UIfYS6yGRfLgxS LEguarU0Itx2d7g4EVyVMudB02z3jdvwnHPWN4P68rH0RAwkJmY9nyDzk3ZtsVFdRBho+gavMn4u uc4ZByc49cOHkaMnrMpGrEnZzlOdBJUN1vffgms8R6PH0Wj9xJl5OSifX+56iNxfDmYXsOvZ8aXg o19Hqmz1mjMdCpB9mVqrnCmqOIalXORQxB/xh/AgEST9Kc806Jke+PgmfLd70XgNNV5TZYVJZVQc aB8EnUruRw0IfbEonPt/JFdrbFPnGZZQsc82hFZt9txzpHOqSau0jbaDdUVDLUMjUCAUEgIJkIvj OBdsx/fj+92Jc6EdJLHj2/EtvsXXBKexc3FuEENUAqTAqlGpW2BDdCo/1h8Tx9FxpH1hP4++H+d7 nu99Li+NOrhD3G9oq9N9lhg2YUxKIm1QlOuqPQJfsDUbO1BTh0aowHU6hUlqhaySzv4mhHq3PEsD cbzF3KxUkwNlbLOCkZLyoc2KZ7u1nKLvfZs8xiS/IZ9vUs9JeZm1WVFtt35P37u2tYvMMiiYrtII te06SNfO7WlDmtijIQ7GCQnSigKkKJhvrsPLjqJ/BnXGvJFAKDgW9aXdkDuVGykgkxmbMYElTWEt oSSUbrGz82mEZSpqpuRJeZIfbgOeyWmyNyBVp/Wi89gFEadFdBYSndGfOg5XeU8nzqGJczPskhAS ltb1j5DlJUdgAVsIFMfnb0Ckn1o9SHbuhB5Zw9xq3ff6ypToSZ7RlSlq7iL5Gw4feEVfOOrJQN7M yNwaXNbvq1jpbQOiXjVqU5v0WjNk1qj65IhANhrUYOqQ5cbgrQ9NrKtVxIUMcK+L5EdM8nM6EOpu 0k5t7ybfpFH3y4fJFbKwm/o5jSpT4ID8/5/LPiYIkK094KtcB7yWTh5ill/RSW7l1e6nNLKj/HJ3 5eWLrVbqZ3TqSKVPc9HU0SN9qydintDNUx+Xr7OoX263vqDtXXtOHmbE66ZbVgQQf2VNt4F8edub WMFuJvOFRAlKlLz3/go/MqyLS6h4lTtTn4ZS9WeJk8g7f+SdqMaqTwjeo34Cf+o5G69DSUb5t4y5 hVL4AVLMm+Q5LCdP8ANsCITYxVr4fbyq+RJ6qblGVoUcq40uNGNNi/jGM/hV5ElxDpgFeYRJzpKn 6T88DOWnsKl8YHkNnuxN65OoIaEOy31yQuTsGoaGZF1/aUSoMCCBtrXnDbKaVkgO9nuxaG/Q4FVA XqVdKoTbjAIpjuIytvkMQn1KOgDMrRqykeGfd6zceY1mFRWXAJoUQFNDnEBO1eiF9Vh9N5ctqoVE 5wynjsFVnupEHTp+bpq9DGS2cke3jqzf2WFmibskWtaM32N1etrC7OTkRPwL/zxE3TvGyPSkwF0h o0hg4yFVNdHFZqx5AX/8Hfwy/Hh+AS3O3Yk8ROYLJvmN19QEW6EAe/RSLfwr8Z/OX0S7Ui1jFwj8 OAvo9s9M8hG5ix7xXx0cxbz9HpvX6rESOj/uw8P88dbvqV+zyB/TqJ+SDbKcNC2JvmV0qV0y14Zj KZzJQpkJorAET1kmVRlUlQZuCPTBvzxcjVAPX9P25hukkrYyZVYAZ1O4JDwYtymMKtSo1ujlQMQy fj8bodikBYj46Q+MaGdWNKOG1DM3rfeQpTlH4AtsOpCOhTLQWNY5mYNzlqwqiaoSwggnIHbXE4d9 h32NPo0PUvusoRiccEdjITQUn3beRm5Nm/BxLIETvKGWFyOswbw5p8goMt3RHWVymxz1SCO7R9eO cbVCuaobUgos/E6Ybxf5JKhPGsWzmrhhTn9ff09XMAV6k6aQwa2D3NoRlQJW9CqNGtSgVunFQGRi QV8Xwu0c8Qgwvlfu14d1YUuyf/JAD+vzRndrFHSYt8lXzK09pHmzsn6QNG/vAYq6Xi6Qq4z9+jOg ZHQLL+uOgV5pJ8SYmFCFTQnInLTN3oXL+/dVDtCPOM762aifneLncQgv3DI9QL665Y4XsHwsMeHL Q0TeXnoMlw/sq+wHSj3E/I5mDvaG+seggdDg8rcw+SP61NX4gBe1RaxBI2EkVG7xKOQUdw2xkZZ2 m4mH8YxSrQbXKIzCns5nJpbjhjcWBJEWTI7kkZmsRTWG+Qx2WdfAZz0mmGdqsBzt4fVL+zT9eK/S qjaqjXqtSQmZVTa5DG71dqVAVqdmDCUkmxl2JrGkKxXIjF+TDSkdakhOqhntfSKLGjVJ1SqJHtJL hb085IrU7tViGsIaiMDe6x67C7W7XQ7vsHckNjw5tO4oOoHpCnYMkNz+N0OJi8w8pPUKkZJgkrRx 8SH8lWdxPIWm45PELJKIWrUhLKjxSu1XnrpZlmV8umscSnQ1e+oQNsei7MA6lSKBhgOpOdbL5+EP xk4WmtDmQgl/hKwWfZkpLJeNzjnu/MHFsrH1AlwJap4KOPDvKSddP6byycB0y8Uj3Uhrhxm/gvEU UoGWA2k51qYGuH60KdCGBrgxAVjU8ImceRpZL8aWMtjJv9Opr8vvMtLxNLFT2bR8sFrwPQ1VcLWx UdKNdkv4unakg09kwABkDAsP4A33YiwN1opd/2RocEmPAGF3eZMiTJTSFQZKUPkXtNHP7EPwM8V9 9jw6z66LHEeO1sobW7CWRsUnH8AHx07NNqFNM2v435C1BW8CgErEpz0rv3OxjJ0aCa6FqBryH6Bq 7TTI2UktbxzzK5yC62yIytOuzXonx+PQTvQcZZYb/rPxTpGeGg45najTGRiOIT7f4IAfcz/ZPSyU XJMhHcJegxJTGAxqqwKyaQekV+DzH3/yTaXhX/S9/6U+Yohzi4YvwXo2GpjAJoOxGJGFfFl76Vu4 fP5QNX2Reyl6BmnmmnEwhrh05100HGvLJfho8MxUA3px6pb0EXK7GJ7NYecGO/q1aI9Qr1BoIZ1C ANK6Q2QnFJjOZQn2xz50sa7W+Tk5CXS7/DVgOktMgVVDJwAtUuBprIZPGnaYFkh4+jYgtdezkzIs bMB3PfPxFLqXfI9JTtKnh9KjYdQR9oECCLnDkZEYMhG3/K/ksgtt2wrD8KCzJRjkag6JBNLlLrYO hnc1xm46aLt2g40uS7Y1zfLTZK7jf1u2fizLkR17ECdWbNmWZFu2ZUdJnLiJA0kL6Q8tuWmbMLqO sWaMYXY3VnYlD3kwJbk9fOec94Pnfb9zsBJawjK3bkD6cUc7Bu7FtukGQtcDslMABafN+FFeHfZ+ M45qvPW/MaPtHqu92+1ZXlnf6gC93utd0doTz5bfOSHptMYYocaNFeDuUiujIFlFKMkGWXKVq8HN KhMU0ALGOSYh/c+O9hB4mNuqKUittpZrwbIUjwqowPD0EgGmyZRnBtJfdrQucEDtOlcQ1TVR+Aq+ PDT72Xcoo+IVjwiK3luGxO/tc6TRM+HHCA/404enis6aPizsNapIrbGeuw3XyvGIhBaZHMnhIBdK uaYh/aijPQfaSTUhInElWgkXw0VMcPMg73ak7fCFa84vptAXZwe+OrB8u3fgew7f2eFlgzpZVcvb YHkre/8Q+s33ZNSAdfTz6gX4ypfByVF06Lrr47cNB17au44cav9YmmpL3IV3W4RNRVWb8PUV6CI5 4rAhNsc0fsNwgNg0HNAk959Bz4R9tYn09Sza+X6tBtxe2siuI+kyLwo5kBeK6RIsyzG6gq4dm0r2 2YwDDgRjNI7ikaAHuwm+PBOrO/5eszg371FH8E6LK6yjzUKtLNVBqZ5prEKrrEKVEaqMCV7ekx0r fCqN8e7laIpMR5bZDMhm5nkeKmZEKY/kJZVrwxv1OdIAheQDi64/jPTYYOqUTJZ94iwP5uzT6QnY 5Z6P+VAvG4pSTChMEgxmpGY84IM8aW8+gOQDJUKhFXqXekrcpVeZ/BwoRTIEBvmZYJBAcGx2bgIe t2dKftRfpBrxzfepgey1ynjLeWpW58+WMLOwyKLsYjyd4MDEclJUIO1x58iqXQasQ8aj7pOLT/X7 wNDiDEcgHJ4LFxmQkZT4OlyqLKQVlP7FlCTCP0Thvm6w36BWXwVG47aoF2F8RMhHgWGfh3XDLj+X D6F4ni7GqmBCTK7dgbS2VX8BTC24UjiSdmf8OTwfKpP1CEg3VmJrxrRSD9roR7+eBvhevzbSFU3v mXVQ/5GaithY12CkFdmkm/o57cnAebM23BNNv5tPat/Qb1pWaly+jMqFoiyoOVncrjzWhrvKgNWs n9MfUVP0JDM5GNkJt6kt/TXtwcn+kV5xPppkk/FBeibqj0VZmonSMZCNEAkMpvDUUhDNfmBi5dK8 BPeRQvevfXP3wZv/jlv+B8En/fUKZW5kc3RyZWFtDWVuZG9iag02MiAwIG9iag08PCANL1R5cGUg L0ZvbnREZXNjcmlwdG9yIA0vQXNjZW50IDAgDS9DYXBIZWlnaHQgNzE2IA0vRGVzY2VudCAwIA0v RmxhZ3MgMzIgDS9Gb250QkJveCBbIDAgLTIxMCA3NjEgNzI5IF0gDS9Gb250TmFtZSAvSktPR0dD K0FyaWFsLUJvbGRNVCANL0l0YWxpY0FuZ2xlIDAgDS9TdGVtViAwIA0vWEhlaWdodCA1MTkgDS9D aGFyU2V0ICgvTS9UL0EvUC9zcGFjZS9yL28vYy9lL3MvRS94L3UvdC9pL24vVS9DL2wvUi9JL1Mv eSkNL0ZvbnRGaWxlMyA2MyAwIFIgDT4+IA1lbmRvYmoNNjMgMCBvYmoNPDwgL0ZpbHRlciAvRmxh dGVEZWNvZGUgL0xlbmd0aCAxOTU3IC9TdWJ0eXBlIC9UeXBlMUMgPj4gDXN0cmVhbQ0KSIlUVHtw E8cdPoHvdDMBZQKRq97Vdy6PdJoMaTJA24GEKYRAIDwNjcGAsY0xsmVbsmQ9rLclWzYOYEnWW6f3 w5awZWQZY6A2b7CBNEMHEshMOw0ZwqTNdDpt6Z6zYqbnTv/p7B+7v93v29+3u99veUjJAoTH472+ /ePdW7d+8NZGeWNt86pN0ub6nfvn53/EkotKP4UNc6fnWtBHr4JFr3l/gvOXzC8t/j8swuMasgxB ViDIGwjyJoK8jSDvIsjqhchmBNmCINsRZCeC7OYh+xYiB3mIiEuLlCEUUoHcQr5B/s6jeX0Lli74 fMGzhXsXXi95r6SypL7kGroO1WMUpsYe8lH+oadzaOkcWux9ibK9/KKGfSFkxcVnRTH7DBMIbrMf zNUI4SoMZl/WoGAVdgf8CgUFbBZy3TsYLMzVoHBTcbPwexD6Gwyh8ADGcSTg50K5rMlUT1bWhsea 6Ka87t63xJ+Z2eE8lR+eCF8l88NmVZpOK0OtAw1g+YhId1N+QZLFr+zfnFpN/mxd07ad9K5tzW/D VwiIZlfPbKe2zTyR/IV8fC+cn6KnxkZvRb+C5RMiU6W6XqrABf3sy1KwuLgcfAJ+AIvhD2A1K+Ti 9MsadpwvAI2lczVw5csasJILNoDa0lPsDCgvzqCAxsAydgYtzgCCg7Ty4ZKiHgpZPQpbODiBCfpB aymIf8e/P3XGmaOTjqQnwSSZSCKYwYOZgXMXiJuGi7JRSjraGK/z4E5ZRf9qEurnU2EP2OfC6dzJ XoZO9ITNAS0e0A6oZITK1mHWUWad3qSx4l2a4z0V5Hug5gF3b/OprgzxRxK9tgAdtPk7/Xq/ISnO 7/sHfEcENmJrQLn4umxMHfuxKiaPNIdmXZdiZ3N4NhecvEpMdJ5TDVOqYWlc7MN9jfscG0h48786 2OclAMVujfb1eTgloU6fHvcZHGoFobR1dBooi8HQqe3Gu7VHe7eQ5WD7/JkFU8Layw9Uz8i70y7m PH0+dDYVH8Xjo578OHHRktdkKE1WlmgKNYYqmQ+ZD4NHg5ogbvB2+RkiPBAIeCgmPuw6TxYyVl2U juh8MkcDWGkXnfxMca16DC8c+SjyLvnbw1ZtPV2vbVWoJLhK0tl4gqiIHbpwjMpKrykea+7oxzqD 3UkL0+k24W6TXa8jZKb2dg2lVog7j5BHxZ5YGy2PdeSsl+BPDSLX+qFdv6vDBZXsq6Xsc3CCe/37 cDEQF5/PP/rth+CpcJ19t6uOckp9bdG2iHxQndPhutwV6+fkjYvOQI7O+Qcj0UQ0Gcg4c/jAaP+d pwS7CK4slvMrTtb1KKgehVGl0uJadbP1GHlM4gq10+2MPtE9hPeGThZmCVbEgZfwBeXsHtYgTDcc 8O8gN+xSHKqmqw+3f7SW+GV82+Qh6tDkHcWX5O+vBrNjdOFs+pJ/FpJxUdcJU5tOj+u1qq42Uizz JVW0KtU5MUtcdxeiCSoeSXtHyFS0yxikgwa32i4DZEKkuyEbb0jjgnLwHCBCk76jW0VK2jxxjhs3 Z/vGcfBX7PS/VE+qp/Hpo7tSG8gtFYoqTk2VklOzidkzcpjac+Gzlmfkzcu+VJ7Op9P50BQs49S0 mTV6Mw5/DSqFefdQOEbFIglPhhxMdKrCdETlbjl1DIe1mAAcZ78WgqWwDC4FZfzi1yVsEJYVg9yY W5qvuTLOgFxQyY6DL4SF3qwtStlilrCRMTIav9yDe+RSewu5ZW/r3mr6S7h0ngpM/Fv9Y84Y5Yz6 mDBn5XDUmSDDQZvFR/stLqNDhzt0Zxr2EZDhwF9wmz8CmDBWO9w8ocRVE5Pmy+Tju6kr0/T0dPL+ V8QT+b2D09T0we2p98kDR8ztdXSdUtKkrMHba83V1cRuz8F4LQVWgKAwncj4R8lcxiBL0gmpt/4A UWk6ppBRMnmLQUyeaPGnFbQ8bSpME1e8Y8lBSgDT4ChYI/ym/5ZzkBpIeyI+N+7xMfYwGYlaDQn6 PHgFZVpbXBJSqbaZtbTWrG5XivFH/zvnGs4q/8wIW8dvGP5APrnNjHCGyEUKl4kLhpHWBNWaOBDd GNzE1PhMLtzitA24CY/d7XFS7kDKfo4citnM3CdhduscaiBMiIyTilxjHI+LP/FuJjfu1zefoMXN HceriYPR+nEpNaR+oAQL5QlboNvZhTu7zljNhL7bZLJQxg5Zl5iUyJ3+DrrDZ4p0pyGlEvmq0hwN F8A/AQkbFIIdfFi2Dl2xA/LuQjW/6pTkjI7qb3d0uI0uo98cseKWSKwnSRZGnf6ztPkFapF39BhJ i/W0vZvu7rc5+pz4SWdfcoIADd8B3qp5S4yVzrsFSvm/6T3cpaG6NEadxogbO1TdClKttbsMtNFt 8dkY3BbsnXxIACsH/iO/ylHvk1FeaUQ5yNXLYNaaI0eGB5gMnQ0mY+FB/H2wlLtXsK70BVj7b7gW BesxuB+kwGbQh8K12Jtw+S/AchSux8BWaIe7YQQFazGOUNMntLSaFToNrtErLBJSqzndr6S95agt mepNk6n4GXuUjjqYgYDL7/b6PEFP0Bv3Zoa/FYGP2R4ULsPg4mIJfI0tQeEbGKgqMqhAH2C/n8JA 9vW5t4T/GQCfyszLCmVuZHN0cmVhbQ1lbmRvYmoNNjQgMCBvYmoNPDwgDS9UeXBlIC9Gb250RGVz Y3JpcHRvciANL0FzY2VudCA4MzIgDS9DYXBIZWlnaHQgMCANL0Rlc2NlbnQgLTMwMCANL0ZsYWdz IDM0IA0vRm9udEJCb3ggWyAtNDYgLTcxMCA3MDIgMTIyMSBdIA0vRm9udE5hbWUgL0pLT0ZBTCtD b3VyaWVyTmV3UFMtQm9sZE1UIA0vSXRhbGljQW5nbGUgMCANL1N0ZW1WIDEwMCANL1hIZWlnaHQg NDM3IA0vRm9udEZpbGUyIDY1IDAgUiANPj4gDWVuZG9iag02NSAwIG9iag08PCAvRmlsdGVyIC9G bGF0ZURlY29kZSAvTGVuZ3RoIDI5MjcyIC9MZW5ndGgxIDQ5MTUyID4+IA1zdHJlYW0NCkiJ3FcJ VBNnHv8mFySRywTtth4fIMoRwiQQFBBrCAHjcklCRNu6TsJAornIDCDiAdEqaLW0RVSUiloFFeuF x3atxbXPAy+8Krq2urJuvYvWW9B+A+vZuvvevrf79u3M+97M//x+3//IfwIwAIAnKAFsMD5Bq0n6 85c9kxHnOgDioDRtuNxzTAQbAF8x4umNVsIR2X5wMwA7hwOAfWssoOGiK5OPIbkFALfrOY5ca1Cl YxUAfbMQ/U6upShn4J/aGwGIR+Y5LBNJZO9+IvcB4Jv9iBFlQgzhVawagAE0ogeYrPSknKEJCvS6 CACBv8VuJLCboAcA9RyEZ6iVmOTwSBZfRvb1SB/aCCvpPHOrCoBdAxCemQ47RaNzoGsXh5E7nKTj LX5AfwCkOwEQqRAP67qZJxAjHIA5F/Pg4y4xl8cPmTVi1n0PzI1V6xLdw12i2ywMk3niPXju3RIW lwvw8TxBKA/jYK7BLIxTm4Gn45KXOH1W9CvpA4Z23WnAAChgBxZAAhqtYcyNw1f9cbwXeh7V2eqJ baItdW1RDdWaWpfXu7iL1YRWMEssKm88Nudy3bdfK/YtmVfW3L9Zq/8E93iOFeMgSKWfy/rjfXns TI5A1EtPOs1ac64N6pz5FA1TSbrQ7pwo6437MgpCkeczBQnU2IxSmQQP6RYEvLA0W0mopQmrw2zL hVrSWWA2kjDDbqdlkbi8Wzs0NQ0ma5TxmmSNbgxUqlTqdJ06QQKDjMHRg+Gre+D9entED8YVMjk+ GEfXWERGy+QRsn+Q//sHKF32cswxLmCXzkNxL2eVloITUthumiIJk5b22cTbXCfc7uMx+qy2Nb/t QETI5pP3+O9F/nyl4gm/R8tf3hn7x8M/3ivbVNM0O/Da1CxvasKkg3m+nXuz7gWvyxpXxekMM/hk lfZpzqs85Z8VfuqQmDsz6qvKtY0pI6/cjPVfr188zW+pZVbTyKSFExpXR53q4IedaIxewmKjon6t JNgIV4zP0g+5w45fKXlcfGrNnYaiDm7Hgri8gDWhQec/EpHlTySzsY/HVhuafepK7mzfJd5+TL94 ortBvXfFqrOK6Vz/H5xhnFncuin8Xp+JVe33e6V85zZ/ibcl64lAsbC5fNl5jmNpyFRi/u7Lwrzq +n05hvi4BZX+8kX+5XMeZbsPuHv8Earfw2hFsXzB1z7VZ1U3/B4nZs0sb04sqwi8KR7//1fEDbJB eGC3437/HMazkwrfeNJ/C+Kz+Ah+FR8f3IsRuIncNTaadNpIGi+t+VVJz0VZmM2U9DriRuP6eRVJ FecafcaZzwmmGyp4ssNHnpZ9knhaE1N55STv3Zr1KyaNvf6ww6hO2yG04T+tiFoXxj9/yz5onceo 8VxF2vQjurSW7ZL4VmHLvB3jnm4raWmrapzur4n3tpxYtBHTr9xzVLos5s70+qzVp/3JSx+tm7R0 55mkeNN7YVM7t7Iw9m8UtHX848V/+MK85USxI9QQ0C8BjtoQ4LuPZj3U3B709vsNs/IU7qH3Pv7h wtaqy3Prft9G7R/Br9l4du5Z30+b2Zf4gXrej6lfJK06Njrx5BD9Xb/DewbGhgXKjyy5+M3wpKut 1qSCS034Sq+SI9NbY6fVPlwQIgv1fbRffOP7jVcylY7EMMk03MVfjZZXLZuFsVjeRTlVthkbW7Zh PW01TY1k3suIWaigid+I+pszFIHLuhMe8rwiVHYrmnBGM2GBWnsOXUg4SZieb7CYKRPppKBK2VWS Q/BIWRSOPy9JhpRHKKIV0WNxF/bBfxyELBFP6DaKKywslBYgQwoZSo12aziawHbKTNudReGqdC2z h93pkEJDEcwgc6QSpq6lyboEppajZMPwod1+FAnmXDONNtQkQJWFoCgYAcNgitnotFMIwgscesJi ziZos90GC+QyIc5n7HkiVqZWJsJ9GMJdJBhNUCbUerTdJvPGPbtD4ZZBZlvttmxZP7wPw2GLfV+4 VyGMdmeX22dy4RvkKMDw9S5yYR4A8d1ZLgwDjRXHB9Zn//2a756n1mJlmuChPSTviPQt7Wp51IWT pr8qOjU9W6s6yKNaMdzFOTD57gGHtfL6oS0bQvBqedaUbWsmBuYubrpYeJV76ae2qvvrhb9b/eXQ mY6LD+zvp021e2Wo5/ieJs/FQm5b3HLLwhhPYaDoht9BOD96smEG90DA2x0ZNQ01yVWnh6ZmxbmK b/IV+q2mpnj1iljZysetCx5n7pPUr9wTnHbkzmft7P7Ft3xj1jxYmz6DazW0zxWVDTnT1seT2s0b /lXQnmuHP83btytn83Kd/3fC3CkPZheVN+QI1o561On065j1wd47Iz2vZxEBKS2bYrIviD4ft/9D a3KvDXFuqJFXurjf4y7uma7s9BVxWDjAhcyrF4fDZnFr8dIyhsI4pSX4tBLv4qq/HVN1mhb9POSQ Lfa20LXc+F9oJBeXhT5TMdyPQcLBsKec3rgYZ778XnzZ9WKz3EoAyjZSEXB4OALPG467OFEv6QgY UxcnALH71waXDDLRtIOKCQ//F42x3MXeUepiN+pMZgoaSSdtzjEbCZqE5q6GYYqNpJiucZI5pJO0 GUkJJGzZ0ExTMJ9CahSkaKfZSFuKBFS+YQJppCFtl0DaRMIXQXjul+mXdCdhpJmBiEYTTVpJGw2D EJJgAYJJMQoyKY42KSDMFsJgYZC86u3FASBBxwjedNBYBrU6zIrcID2Idghzknn5JEVTw1/VszsF SPWZ4qs5lUC5IjoCpZFAE1JZQCJGij3fRhMIld5MFkpQCmF0JB4ZIcjUKpGeo8hpzjXRzJCURUdH veYOQqXFAjMYDQr9EFFoJpPZUqhSZ+iUmlTBaGVGhjJVp1FrYYJGq0pWalLUCVCZmvDSHE7WpGjQ GJYKGO1UTWpSDNSNUMNMrRqmJaJXjbbLnSZRo1Lq1BCRWl2GRqVLHgO1mfEj1Sod1KUxJgK9OkOD /nil/sJ8lYdFdV3xc+57MyJoECIUgsvggqiIgyJqFBFhgInDIjMoEEgEHdCKDLKJIgoIKG6IYojG qoiKikKsS9BgFXGNUhVcPkz8XKjBNoohNnEB3uuZAcTS9vv6V7/Onbfc5Zx7lt8597z31iv9/WQB ge4eGqWHguiIga/CT0Ni67dQqtVBtJ/MPUjj4x9Ishh3Cqnu1ECm9A1QKTtkVgQHBCrUalmXVmQE Pw9VkKeeS9eoMcntqwj08KFup5b+gTIvpcZPT+5F7+6yAHeS0SNI5R4oCwgKDPBXKxwMm8xSqlQy P3+N8TSFwUgqhYHAw99PrZgRRMIr3VUOROKn1ChndtB0CutPWgXKPN193b0VakeZWqEw1uupPy/0 PDwVtEqlJkt76Cj2Y8lluqjuWIyen0BpQTtXFquL1cMqar52rro9ENwTKTIikyiAjLUpRG8Ad3JE TJJWljAvgnAQq0uURWplc3Q0NdfAJCJBFjFnTlJ8ewRG6eIXGmLGOLn9uKEVhFS9BEp3R+Nil3Tn /ybMO8djdNE6x+j5UfKMcn0mkfEZJfJ0ebrUZHaOD+a8VmAPRBqwlxpRVpFIKINa9vuP/MlI8sh3 K5l8ptzCsls+lFOxgh+5dg4OSzBYdn7XSfwup8hi5kdEOspiEikW/rm6BMNPbvleprPhjeRSynb0 71b36Cu1LardS4LuJYatHXpun+znmIqjqV6pO3YuPbVI6mNhrr0WPvz1jEm5i478ve+ElHt5ZSbp LhvDfQovwARj9Zmp48U1Hw5bCN7Or3xUjvG/XKxb3uapG5R3c9POhoLnjSJcOdcU369+Oxd7ompO 6pgUz0k7ste0ZOWMt3ds3Ddh/JRTrS8zBztRWqYcPIZUlyf9D86Pf1MM9pIatRuFSSSwK+Os3Pqd lXpyTu8fLDzVGF09E6dux458YBch72TO97k38fjNzW/N7R7XnxpaHGe1Rz73veW9nGbKNbsc0keA B+ggCeJhPmjpLgM/ei6m5zQaj4G59BZFb7GQWDQkfZAeYR0AW9hZ6BgQlhifpE1cEqcd3a3M4TMR HB2jyzwbJjYmFja56gL+YllVGX52lCmeMx/nl5B2pPZqyTi3Zvv0j21Cm2qDvsP8S9GNYxzuW63J /q2mPLhh59qefeNWxRcP2NroNWNl00GzS9tu3y51nFg+8mFB61aLt56u6xtGL6i/3GoeOnnrifsF ksojf3Lb/8aqqLfSduACf6cFi1obCtFtk6vYf8+nv2+ES4I2BmPNI0/allv2uRq30/5rF/8s4x+3 +n3z4NIG5ajQv+YH3/J06+dwR9G0OCv5KSyPs+n1eM+SMwdXln8U8sOPV+bdcNlR9VvzlCtls19r jMd/8MqqtGLylMGCvWXzugMhRQvdbPJePOE+H9zYr+r5uIZ8/wB5RlEm3qBK71qXf6ROmXiahk7q gZdR8X//Tcss4LTZtnsez21bvIKzcr/zWr1xaFPf2d3AGyK3eh+7Ju86PZCg+25G4mSq/xxxktP3 h9zJ2WlM6L9Ad7sQ+eLZ7a/77/nzrC+uZ10v7w6qjHSrMxfjcm4t7JMbknJwzGeTvrd+a3sh5cTj kp5R5prm6qrIM3i05ssNASZ/PPsm21L0aTieZmrm8cii9uZN2xF557KbA09UH1Pn8h47b1+IaVu7 cYm51/SWHT4FB3xi/OX7T4+cF8m+elr0csPeiWOt5705+PTjIW4nf64P/SHIJNTok8KCgev1iQ75 GlYJEgDJNslY6vZvf3IREMXMJRLWQ9qTMQnjeYClq9Lbk6OR/uari9VRXMnEVomZoAGQHmDRUwFF UdTP8o10bQIbeg7gImEAgPig43osLDfMWwhtAOwuLa7puNp/UVCDw6ivb1/AQbqH0LUKVmEOWhtG N8MBui+FLCgABFNYARyMxmA4BMNpvB5GwkwopPaGeuZwkeZrxGbKBXWgMay3p7FC6p/HNNafDQQG NfxQqKNy9ic05/ZCMq7Al9znxL+QOAjsjKiEQMiG7UYOYhnYwVRYCMsgH/6ApjhIjBXrQQqWtLdC 3CtehgiaPQIVeJgL4NPEnUSppsyzCY6hIz+bv9LWIKwUdWIt9IJc2IcmaMtIAMkIcRb0gwngBmFw tV17lPHD20ThvniE+I8Ed+K0gnbNh3NwA5rRE+t4OwkIKA4Ur4r3oAdMIdotyFHrg4PQC0vZ77jr 3FvyrhV4E3UYZcVoyoPxUELtEEn5Ap1xHHoyTxbOVrMtrJrbzKfxy8kzK+BbJHDgCJyK01GNpViL tWStJVyaQM4mzw+nrKsAFYSTvnnkqcsGqeuhjeDNYRTqMA2/wl1Yg4/YeU7D+/A/iVFiFujVNSd7 2cIwcCUOGvJvGRyFk0T9iHa0JtnHohvpl8lULJlz5gK4T7ll3EZuL3eLn8WXCc5Ck5gtFomV4h3x e/E58TODQTAKppOlNRAMqeS5fNhNXKvgLvyCg3EaxmImFuBuPIxlWIl3UGC9WSnnwm3mTvDIT+W3 8BcFM6FYqBBeiAoxRGwl/SJhJawmtBXDPkLcMeL2AL1RhTMwFGcTxxzMxRKsxmeMZ2HsOGfHLeKW cqncFu5Xfii/lL8tSRbChc3CSVEuJpDEq8W/kaymYA3j4ROS9DM6r2IhDpIhhWReRjbPJMmzDW09 aXCY9vwGviW7PIRn8Cv2xN74AfZHObUJOIW0CsZEXIdbcQ8+xkZ8xZAkGclcmB+LJn8WsfOsjj3i NNwhrpKr4+p4S96XDyIUlvBlEpCYSV2NrrXUt5a3fdm2TWDCcCFc7CHaiP1Eb7FcrBbrxSaKXBk4 EC79KKaWwUZCTQV56ioh8Ab5+gk0EoYkhDczHIJ26IthmEGWziFbb8diagcIOeVYQa2S2lm8gDfI +nfxIT7BFiTwMjs2miQOY1Esle1np1k1EzgTzoYbTPaczGnJpmncKm4f6VDLNXOv+A/4D3k7fhKv 5TfxpXwVX8+3SLwlvpLFUjPpOmleR+boyif6JKdgzsSf/YP26g+Ourjib/d7d4T8IBd+XH6cid/z ywVCcolUKTGGcHB3AQwCCQm9C0znm5BocDKU6Vg7MmWMtTPKF9RplbEULGBp+eXAHtKZ4KDFkXEY xxsRq+AvqmPrWERBp6ityW0/u3cJSTu2/ae337f3dt/b3bdv39t9jyXg//nQ+O/5SzwEj0j9H8pm 9hWdZgvpL2wYVr4Z5X76GH70PR5hH8GSnmJz2S/YHm7wXvCepN20x3iavckfoK3w/lr6BDXjfayW PcSvw234c/4MfQjLSMFfPueLgKdw0iWUMlJsA33NvmAP02XsxcYDdyc7S/XsIRalfl5FFt3NUqQj WnfYxdyrcd/eqe5e1zZ+kW9jl2kR36Vl3sq6aDergr2l2Go6wv/k+q7rOVhpM7y0DNxt3MPuhW3u 5C7ax1+C7SbhZ8vgFU/Ae3fDTxZA6pl0N0VYKzH2FZtIRWwzrP378MzNkOcQHWLDRhprNctnNXzM b4Sdb6NfQrzjNJ0OykfoedYNPz7GcmknfUBLjb+5puHFuOIqd8ckT3fTedlKL+PG8hoXaDG9w7bg 3lhMbzMf7ZD98mZYY0omIOfPqI863AvcFbiNu3g/vTBht+eCp9EzG8nDRnePu83d4o6457pnu6vc AXepu9Cd67rses91xvW8a6/rp/DdWtc0V75xAfdn0thubDF+YNxuzDdqYZPlhov/nX/G/8rf5ef5 SX6A38cEpHxHnpbb5Qo5T86VU9Lp9NX0i+nD6R3pbelH0gPpDWl7+NTQe0OvDyWHfsu+HD6P++sF 9nL6G7wBP5Kdcqn8Ev42VT4m56XPsUexxyANw79ewb36GM5lL3Qbxw0X5ouZl9J0lT6Fht4E/Tjt h439mGxa5Wmn5TjvSnjmA1lr7MVduw8tA2c1GS/AfGh8Kc5kDXHc0jPw0p6ip+UeowNzJLWz7OOv MjP9G5qBW2Y93qcW+pA10UWUY3Rs+FdYbb9nH1Y97jlAVz1PGt+Eb1vV0b6yrXXF8mW3LZnfNK/x 1oZb6ufOufmm78y+sa42VFM9q2rmjMrgdOuGgHl9Rfl1/rLSkmLftKlTJhd5CycV5OflTsyZ4HG7 kLxRTcxqtk1RaQtXpbV4cUi1rS50dI3psIWJrubxPMK0NZs5njMMzjv+hTOc4QyPcjKv2UiNoRoz ZpkiFbXMQdbZGgf+cNRKmOJTjd+ucVelbhSgEQhghBkr6YuagtlmTDTf0+fE7CjmS+blRqxIb26o hpK5eUDzgIlia0OSFTcxjfDiWEOSU04BpBJlVjQmSq2oEkEYwVhXj1jRGo9F/YFAIlQjWGSt1S3I WigKqzULRfQywhMRE/Qy5jq1HdpiJmtOOlsHvdRtV+f3WD1da+LC6EqoNYqqsW5UFG/8c8m1Jiaf HIk/OJbqN5xYyTpTNR3nQVPsbo2PpQZUnUhgDozlwWbbacbSW5UWS+ogiBJfbSWzqV4rpnrsu0wx 0Vpo9Tl32TiQMkdQ272Bo2Vl4ePyfSqLmU573AqI+X4r0RW9LjmVnLZ7nykNm6XjKaGapLcoo83k pMIskl8wFukdpWlMsyuspW1UnUxJZC2BGQhzrQlJ4hY2Uq+q3npy1taDDb8EwyjRg2NYJyZGbMfb oPrVeOEOei3TuUo4duvTS+N7urI9nqAXPnpJaQTBwoiBgT6Ci+pqMWuWsosJERwkZGzS7TmhmnsG ecra4DXxB/XRijiGJRrqoPNAQJ3qlsEwdaMhBlrjmbZJ3f6jFK6rTghuK8rJEcq0DkUZGKGMDrct mO8xvIdE00RO5ehX6PVNifU1COb7D+TeDL1lpdXS2hk3Y46d1W1L+7hWhl4/SstiYkokbvh5FuN+ Q1NhiWtGmVUjni9cQXwebck9gxNyYIq6h5nNwmsvztSJ3EDgfxw0KK+oUfrv2rCsmKKhenz71nHt ceLlOwYEdlXylvZOx8kdL/qyapEfFBODsApREBSTND4leNQ3qaPaFJPsIC6QwtFaVczbEf+jP5Aw 46Zon4WbpbHkSt2VRrEC7i7ygrBXVbv1XIW6LtCTTguK4mAJ8zYONd4yr67k/SuKLTeoli/UdU5Q eIOiSOO+4NHSIiVBkV578mitKvo3CZQA3sb/LkOh/oqDojRYQt7GnCHKyqLvB8Eyyl8Rt/1dCeV5 6nMHO+LCo9UbUNdoVl+T9BJe/WWmbYffiuXV+OClifsznhnIDBvzwwxGJfMuuTVUYwEjjZmVFj70 KKM0bbhh0Kn3W4HEoJS2ulW1ArgdNBXZsYFaYuUsRa00/bgO7MoEhhngbcZT4jjNltns2E7XoBzo tkyv5Rw3fIbP2RCzR5x0UD67xS+atyZgl32sIUTKgTwHhrcj6krhxb/R/aR2qbE/w5VCVkaKQ8eq J1gOctvf0a+RDX3Ay+kL4G1sD51gr+IN3w9YTw/SdsQ45xE7HaBzyLAelx8hX2mns3QMmaUfGWo5 IvceRGUhjFiPnqh8W14Bz0ZEaeXINNrIJ19DPuJDZvkES9NBRBv75BG2lxLyE2SITbQQkcJCKqMB EsjS7pcX6CZaJS8j3upH1Pc45idkSdUoSRbnDHHfJnkWq4epQq/kQ2R4rfwQc2XKQLZgttFSkS3P IR45iLXXsjm0iUrlP1AOIbuZTlXyDcy4mtqw03asWY7IMoK8dglNQO5RSDeAXkv72Qn5lo6GNkHm RYgC79AyVSFTfBNjX0RWeAZZx0zsf4eWfSc07mUboZ3ziD5ToJyhmRhRoQBlf7ZU6eLTZYBdz/KR pVrIYZ5C9hVATnk9RbGn+6CZJyjJmXwXsqr5N0oVm7/CVrLZLCz3ICImfS4LMafiDkMzCprkEX4K ayYUYHdNmKECXAqiyCCyAM3epACyrAJXvwY1TxtORIEPIxRACg1NOO/l1ApLeQ155h+oUx6hHWwy 5OBs0wioGlZSRavlW7yCMfk5L+flqs7ASGGbeLnizrS+Df/2guyjU/2r1akwC4eRV1aqk4YkC5Bd DqCvn3bhTDspX56T53gemwtvOA16Dauhw2yO1tGI5ka0pGDBGAjBdkOUBz0PjIP1sGc/rGP2iD5h Rcu0Pkd0mtHnT0Z1mQV5MWvv2/Q5vaEtspalVP8IKDq86SOs3wn/+kxekl8jGzrEdtHraA9fK3RS e2q+PivlpX7MqHx03T9ZL9vYKI4zAM/M+iMQUxxImrZG3JkaucG0awwhzQL1HU5qQZOswdiAwfYB BsyHGQMhfFZYVUmiCtVXqVKppcikrRpQ0gaOqIVKBRMUBQytrGICSVDWbX+UNooMEahN2+j67Msa 44gf+dEbPTO7szvvMzM7u3tLP77GfTqPPpRxl36iJqif859+AVdwiz6rnuYrZ4qeycj3s/ddVU6f q3Scvr/K0+Bp5qRapbTD1gJI0e8sI00wqkPyLDDcyaOJfb8qlR7wbMA3UY3iCyS8CgtVbvY9evQI 7KJdeOZURlrAPfaP7MXsAHcK85e9mu3nKmyU9k8y3jF4HyCtUPfxtfF1+lPK2t9C+yncq2W0T4Tt uab/ps3c7F/VDHm+PME5P5EnwpHsP1n1XyHCFL51nyBNZmxLzWQ9X8/T80yJ/i3pgD7A1ndMiZnJ OA8Y5aTVCX1BpVUjz7+F6nvaU1lGXsyqqeWr6cf0/in9JdWrHuJ786Q6o/arrXwRtTLTm3mWzFFz 9E+ZW481Vqtqsz3ZHs5bF6W0pLsjD8d9SmK+wbfQnXic0cixM6rFVOn9/PEr0Sf1SfUKKH1Rt8JF vQ869SXdrcNvuT+Sx9SHGP7EN9Y2zjxkZug3eRYVqRvqL7pg+FVBq+uSTusefVTXsQoU0dbreVzR 27/cqPyANRP+XlRrht80UfkYYz5Mfw+T1pJ+RXpNfcL91hDVt+o9uDr1Kt0ZtXSiskz4P/10l35F 3nDh9knG+2f9gt6p3lbn9Uv6vPQzPDLAdjQ+vkhn3RnrUPmBOnivUm/Tk0NkDu6eh+H5cEaUn/29 rt4fUQ7NbZu6PSv3kcLfD7g7Q1+DbpD9DtZ+uP8H+hr+GI+M5TFWdvibw5urjfuxjacy6A+52qwL 7qbtXM1LzHsRK2CfbuWJXSRXvTO6GntYU1ZbWrXpflbBad51L+qt+gxP31FmElv1aidPkv+GT2NJ C1gdt9scIL2h3lJv6Tbdxhvybd4oY3jfbVcNegcr8FP2b6c6tUmPVh+pj7gKL/Fk+Y+uuWu2h2Yh XClro/kLR+uTGrk/An2e6/UjqsLnKc9NndZN0EVKcwek9fNQpsfzNG/STc52/rO8nH1Z/1C/JkfX k8aQytS/9Bfhb3dSWqdH7A8nXz8MZUPvz8/LiHfHvRh6Zwy9HT4vn3lzjKBsOEkfhuLf41xdyFru B3Ui2+PcOubNruhLPujc4j9kWvKx5C5Ugg+d8DrkqYRzMzOqoCJsdzPzuFeRHB1uqdn8feigrKVk /9iChRWx5EQqKsGH8GAf5BL3pkpBGsKmOdhuYripumEwrCHEx5mZnlg+zjyzqCL5TLhFl6dLeTEq fxOVP4vK56NyX1RuisrWqKyPytqo/FZUzonK2VFZEZXTonJyVE6KynhUxqS8kamdnmawN5i4lPN3 1Q4d4Kga8rtr0nAQjkAP9MEoIlyXCEXOdYlwjfOvcf41iXBtRE0aDsIR6IE+51pm1Lh4MuF8X5VD WNZADq26aNVFqy5adVGjyAshDuWQgBrI48hljlzmD9KAc1FdB/5OkhdCHMohAbkj9hznjGnmT2fM +YVpzLTEXOYgwwXPcMEz9H3A6SdWv8TqJ1Y/rftp3U/rfok1vOc4DRmnJXbceTNTFRanjxW3xMYm pzlVhK9izVQxoCoGEXfmMkk95APAPz1yFxKQgnbIdaqdMp6dMWe2qVePUs5iPyw9Z6qUj0flN52y zKN4JjnlRClnFZbT8bFOKXul7JXKXgl7JeyV0M1y8hJallJOpyxxvhrucxHjmfFflhUbzxRPjja+ UVHxe6fY1KlZckrxsSerK1LJ+50J9HMCvS91itRlMBwsykyrkGZFmW9XRxsLaiuSDzgPm43iesjc YsnFnAcpH6EcH5WxzMS5sRM6aZZwFRTrqIDZLmCqCphf/h5BDaSgHTogDQfhCPRAn1Nw7AvjxiWO m3OZkundvzNn1aA5m6gz8WLdnTuYa7pzBnNMtzPomG4zaMypvFP5JpZXmdecZ/M683Jj+ZX5zfk2 vzM/t9JUOr7xnZz4xPikeGl8arw6t3BiYXHhpMLSwqmF1XnNyXVmAxex2VxV2lw1lrddTHWY96mL m3fJy8kTYFSKvF22OsjTsnWQ/Ihs9cjZYZsO2S+80y48sw8GwJF6aWveNRvFFjdXsFzh7CvKMVfM IaktNJc5Et4HYV4OCaiBHHPZdMk5h8w76jhcAce8YzZwY8XMpcyMsbHkp+aSqZf9C6TzpF7SOdJZ JnSs0CujOkffz6ksOKqS+hS0Qxp6IJfZ6WVsB80Fcpc8ASkIz+9VnXAKHI6dhV5qw1jN5FrtNXvU LnMU016zA3bCLtjNDbTXPAvb4DnYLjXtsBm2wFap4WPF8FfCbAIrNa2wDtbDBmosjtXisDgsDovD isPisDgsDisOi8PisDisOCwOi8PisOKwOCwOi8OKYz4OTb4DdsIu2C31z8I2eA62S007bIYtsFVq NkIbbAIrNa2wDtZDGN+T+B7xPeJ7xPckvkd8j/ge8T2J7xHfI75HfE/ie8T3iO8R3zP2aI6XzCLw EHgIPBG4InARuAhcBK4IXAQuAheBKwIXgYvAReCKwEXgInARuDIAl/gu8V3iuxI/kPgB8QPiB8QP JH5A/ID4AfEDiR8QPyB+QPxA4gfED4gfED+Q+AHxA+IHxA8k/l6zloX0KvyaxbXXrIIWWA1r5Hgz pGAFrJSaZbAcGqFJahbDElgKDVJTC4ugDurl0q9V6/GsFo/FY/FYPFY8Fo/FY/FY8Vg8Fo/FY8Vj 8Vg8Fo8Vj8Vj8Vg8VjzNeJrNYdWAK7xZVkELrIY1crwZUrACVkrNMlgOjdAkNYthCSyFBqmphUXJ LHkdhCYfk49pvph8TD4mH5MvJh+Tj8nH5IvJx+Rj8jH5YvIx+Zh8TL6YfEw+I/Lx+OKpxOPhMGyt ghZYDWvkWDOkYAWslJplsBwaoUlqFsMSWAoNUlMLi6AO6mXdrVVTxOHicHG4OFxxuDhcHC4OVxwu DheHi8MVh4vDxeHicMXh4nBxuDhccQQ43hNHgCPAEeAIxBHgCHAEOAJxBDgCHAGOQBwBjgBHgCMQ R4AjwBHgCEKH2aN/aXb/j/Vqi23juKIzy8euSNF8SSJFl1wuKYo2l3pTkkkuxaVESpYYWzQl26Jr x4xlxU4ht46lqKiDEv6Ii6aFXbZoXActYCktghQBkiUVJJT8Ur4K5MdA0Y/0p3YLA4WBBjVSVQhs PXpnSfkRy4A/Osv72HsP79yZnbs7g21QJQ+hWh5A1cxBbcxCjVyBWjkONXMQKmMAKqQPKkWAimmF umiC+vBDnXihXjxQFS6oDg6qxAnV4qBOQMxXIeYEehhzQ9YPIPs5yHEWcr0COR+H3A9ChgOQaR9k LEDmrZBfE+Tph3y9kLcHsnNBlhxk66RGxHrHpW+Os28DnQF6HagNqBmohG1iJ+yMHgLNAg0ACUCt QF4gD5ALyAnkAEJ1dXBeMhkZMWahIhTsA+Bodl3mv5D5RZn/UOYvyXxA5iHRktJdT+l+ltL9IKU7 mtJlUrr+lC6U0l3F6ygHiH+K9pzunZzuJznd4ZxuKKfrzeliOV0wp+vK6VpAd+J/YQGA78n8ksx/ STic+wj/RuZ3ZP6yzAWZO2XuwEJRh6pK+L9FLgLjXi5ywyC+KnLHQPyxyAXYa/h9xCkxYvEfitzL YP19kUuDOFHkOkG8WuTaQPQWuT4QsU+4VvYBV1JiUc/+nTvD/pkbYiUuyM4RW5G9Iru07BmOZyc4 H3u8bD5YFn1EfMpGuA/ZprLFX7bsN1eZq/IlvCB20Pk/0fksnW+l8zyd99H5RjrfQOdZOm+naxgT Y2C2MdWMhmEYNaNkKAYxNaWNO6IfjrioRm0gQq0kXCnrBopwYMARhRkKDaHsIhWBbUKkQHVLZkWS So704qS0NI6Sx5zSyoi7hDX7Dkkqdy+WTEmUHO3lp6xJqX4kKY3sOzRWoiLSuXjSCU2qT8u3S/GM 1CirJYxAb6/oIuihin4O9IGKDviM1M0nS/RGWtrFJ6Wq1HfHChhfzMCdRP0UooyOlfAGMZ3fLpn6 xhYQxuz5C9uJ3Dh/IZNBdTNRa9TUYwz2x7dg2QrnHzfrY5X0nfqRWM1+RLMJmu2gWTdN7MkRMOY/ ovMJOg8Pomy02qVLyZExacMOA6soSXhqI87DYwtUlIok4gtUDxGZsYX6WSqaSBN7/SwM8hEOijMK OKjNaAWHPASHPN/CuagegvMSUca5ZJzrKVxhgEvECxy3iRmQMQNPY2afxszKmNkKRlHGcE9gzLsQ J2M4865nMK4XwHi3xPDPaxO9z3U92fACSuPbhfBMYsKdyLoTE0BZ6eczJ63SuWNO5wIK49vE5ZQU jdlj4yeJfGWihG+7J+JS2B13FtIzz/qlGeJOu+MFNJMYHSvMiBPxYlpMJ9yvxDPzwyeik0919/Zm d4XoiS2CnSDBoqSv4ckt3JPEPUz6miR9TZK+hsVhua/Ea6T6UmMFBvVm+g6X5Tyl1cCqz27nMr11 htM9cgmEOWtu+6IS4Q+Qls9I1e5eSQdEXE2xphhxQeET1zYw6ysuay7MbV/EH1RcBjAb3b0ISuCZ loj//69puU29QHsRJNr0T1sTr8Wf/MlFzU/zU/Dj33gUCO4gMJqqGKaneARzLFZnvVl/dkCRdWQ5 amoqQ4zX4VRFTj3kfIXBhqcRLL7K1MAfKw2ilBVEwiFigdi4LEiKEGoRIUUOgmTw1PQbAAS2Zdt0 yCh4O8NbWgUX7PRoFBYdavo+2FTK+wqkUavuKxSUrYpW3seonkm+aeX3GpaFPWvCXsOKsMewJqCo sCYQamvljJzRAww+AmjVqVhaFVXoIXIql+BDcHZDVO5V/Ril0QHcJZ4xpk28oSptatMwaVOARmlT CNsHbbzhwKCtTTMyaAvQuwdtIezoZ3nD/n62TTPazwbogX42hH2Clze0C942TYfgDdBhwRvCFn0D brjHG4xGu93h8Pl4UV8T5ZvaNFVVBw7s39/e3kY2H+0BmmFGRkZHOzoCBBBoCsHgd+8eGAiH9SEc uveSGEvFsrHTsTux+zF1rHtVKFGHiv23Bm/CpieNT8LAmoF7wcjesoFP1JhWdadalFElpSzh382P Td228oaVI8vLaytrdw0yRy1HhOXXBcPmtcY/1le2NgNc/63W1oo72utqa9RuN72pKNS0Wu12NXYG us1P3xDR1dHRvamYu7q7uuS/0Qq4qai0AmIp3mkdivYMifoGIgJWvE0TsO8MU9Z3rUqlttPpD1OW 9qFodCim94AY7LQqVWD2CZTlslUZ9PMCVvznsv6y4rfB5qbgHcLWZ5mo1RVpZhw4tT7XqXF4hBat De97BMDZgM7eILRXW9Y/xtndoYhfQ1vW/nEHtguUfX1JcU/lRg4UE7VnlZg2WkyamlV9aWNpvl4f 1ZeoD0UjQk7UikSURaeRGtWzowv4b0hem0f2rPHLsCqjMGFHcKD78cDVVG2NySLPnMvbSC7KHuIP xXoa/YJ1cnx80ir4Pd/Z0XvU3Y2//nj+rfemOwWffUdh/Ysrs+tfFLwOn2B1ny1MSWRT8/X6EnVD zrJT1FmMtKlGs6oXN/OrbkFRdBTdhPVic5ZwonCB5LbyZG6Qz6Pn1WXqDFBe+Um1W+rIRd14fmaf vDU33SX4HN4C7pq9grsKO+yQmevNwpkCyex9XFS6VdtgeiZFm93sRM1es9ZrN2uRiuG73V8yTN2v 9ch5FY+jeljN45+p6j83qz7Xmq7CZr8amamjn1a3alNaSlvC1+bbvvcuLOjlI8JXhvJ113AXRZdh ud41WYLYaAqagsBgQGRCyyOwyKKutra7PPNqmq5Me6PX+2jQ+GYharSGPdaWQrC5eVehta4xvLOn cGqH4GN3Ok99n/U5fJEdCiZYY7E3+CKG4CJZhItBg+DzdNQGf9Pt5AWb/9Il//aIn+2GkeO59c8U u3ENqkK8aICX0JcI30DUr9A1RGN6kcojDb5RuCjX510YCmpZM8BbC3O4khHVhU3rf7V5bR4a16z9 pc1Vq7eRuLc2bisU6N9Iizixuuqm4n9Ul39sE+cZx9/3zr/PZ58d++w739nxrwTsBOfHOakTJ740 UJNA0ixtimCYMDRA7UiDiSpAEBHERGirDbYwrV23jmordEPVKKGpExhqJ9S11TYi1kFRJTaqlP3R eS0TY4ySsOc9O7STcu/je+8up/s+z/N5nofhQOYPDYJ1BuvxslLY9RRhJi3W10VdhnLONfA03b9y ZT85trb09rbAQfzzq/suXVR/HFWg9SrHo6vosoVmrTSFGXgVQYrPwrgsFsYCGzqnSTN6m94puk0X XQX87hvEITd6uRsokSi5wJMat/Usi4/bRi9gR2MjwK4O5zGG+Cor3VR2hI6dHxZcYjTW5qUmhApf JJbW3b67K8m501U+RT8OP1qrfEDr1+5/oqvSJ5AdBdELqqXLlbXq5ayODZ6FYZB09xvehE8Rw15y bkYCnJtMZiE0MY0HUblEkGgpFQmidaZI1Fl1yg4NcBNVyUdtUWeVr8oQDUTdjDeOKlgujiW9EEd+ OhjHHosrjh12WESjHIe5EhatK/uqiu3HbhcFH0glk4oTPs9pVKqrwiGjwe12efjGhuampK7q71f2 nnzxxpU9J1/6Uy65Mde6doPyrfWta6n/Xn9v4YdDOPrL67/Hw9sWPn71xOiK1SO/vv7aXmKIlxDS VYMCIvrNNBLvv61yQjDjEbeIO0XaLUZFSizc/+I0LyiAJdXKY5PZwlhZm51zzFA/oV6ifqqy/i5k NhkNeh34Fi3uuv1djn0u7FKzSZcaiiouNdGggFuH3kR6s8nqOU+tQjBBUZuQA1i4STU7+rgj3DGO 5s5R3ciHJvBVpEWwlpCQiulMEcTIpeLx+joUz+dAtnJ5CJbZ7yjHQVMzdfEiyaH5H5H14ls1fHUq 1qlPfPkyYTI56DV11vbapQknKPA0KOACBaJYmkYW+MrWbHJ35b7wvsjeqC7KLA3HI9nIwci7lguM cZVlAG1DmyOboofR7ajRGeLCXISLzoZmw7OR2aiJJfBuzyjEqvaW5M+Db7OzLD1mwQZMF/DcJKZp XMD/OGMIR5CnQDFnuKxfbyZPPZxVNLv6Mc2efjxpLlA9UxhljSYrO0NtRUFsm9puwAax2lWgtqpm 8aYJqdUdCio/rtmux8DCVWgIAqbDMMAKVTP4KN5QLhokSkFG7lZRw/StotbWfApbmWLRkUphbr4t lfAi7t/cBZTfQcTG+RwCuaPBEuuCSQQRp2gRuMi4pkX+GfAJ/E40mGi+t46KjbQcGHq6q8pjqwes Df9l9Hd3suNP/dHfvmrTVfz+gc70qhE11BmLpJekz2z77MTAD8Y2gzfGISNV8EYbOqcyZujFqDv4 PwJFvk19JFGvfIg+Fihji9fsaXlS2FK7W7/bvSuVbzObTWabgkLZgFQnUZL0kNGmMqxis7myRtZe H6in6uvj2Yf0gQCR6W+T4agm1xmvT0FLCtSG062tnhnIcRpeY+bcCk1nFIWBO6Y4l4IYzCRy8caE ozERLzYmio3xuCMFpW++IZEjSxwqQyJfJNUhnsvHUS6PeaKHVoAfVLvGBqIbKR+lveZ26oGO5fpY kpF+/pvrdn7y1j93dbbG5EBNdfrJyWO53trvNDanl20xLumrHxk52uuxucVYev3B98/fWE693v6L zUPTg92xlpo2l99iyw1knql0GulUrCaNdTU9SzsGnxCMTLpmRcfgRy88+iwkHnoR4t4J9VNEMtWr ivvkw/LPZDotPSH0SVuEaUHfJGBZbUnKhftjk/GBjEzCy7WkZJe4iB1TH19XmzGJelkUl4phOSV2 i6o8KD8jHpVflafky7ItItfLH8i00ymFRJ8iqVVJKcQkpW5wzl4JV8p18h6RZmTsRMYyQr5iCCEL IY2zwuXmPV/ftdtYK2Mxm0zG8u6Uv0vwSrJcoHaqVkF0CYIoyrxX9pG4cXC+jM+P/Uavx2NUfVWK 8TzVj3hkwseRDUnUIZVFos5uswqPek95KYD9N+CqjjqoWkzYaDT5PB4enQVUScgEqBIlxFfydbzK 9/Hb+TH+GD/Lm8kpxZ+j+qBTmtDSjbudL8FrsdmdI/lHQAa78+kFrQ0uQjdMmovU+LK4bhRyzpny xrWsgzlnGskgddqvSa6am6WMrLqs5OzaJIhJ7FRVUgRNtRtsPi4jqnBBDDE2RXOTxVG6m3Nr9g17 6uvz0VrI7Bz5QWa2sDQGTpZU8LCkgnulOXCtNAZvl8bgzZIK/2vxOW3Is8iqL6z4yAJbQInS2JbP 4R3YUSKz+/8BnQwmcYUD0xMd7RkVju6FIgF03/yf8WcPL1zR2+5dS9XWtvS31JYo3X+SXn7vGr6z YCL9xHc1MthQDN1V7QKDTQKSvBB2upAJa5/v9ir4pi97hMbDNKZn8F0UoOTT4ZjGDpsYziAyCyGi ECrg45ORsI4r4AnV6s6a2cHq4ep91XT1DD6CvNQG1bnRsN0wZjhi0G0EQxnEGnwWGByCzAH0Avcr w3VhOkyerwiwCXaMPcLq6liV3cjSrBCfwRl8qMTcPGBWC4ReEhE9xTlooObnALugFrSX8/lccQ4c 3rlb9fKiziTqvHHMm2AR9D5oEIxu0hFAP7B/P2iM3cAIJ4gaXCTLA7AQkBCMOIIl1fHMjtxv784v fHnjYG9bLNxfq3575tCBrcPfr/TCqDNClNd13IosLPzh0udrGjqWtnWyFTv37H5upUNtpPqI/oQS H4HqA8DjSlSDXlfbdX6XPxsYYNbY1wR22p/V/Th6ImpRKvEjzBpcsBTs71k+sF9m/lozx3xec4uZ r7Ga7YK9298d0AVjEShMvaojlqVps8N7U8o69BFQvppw141tk4YiG5yhejSFPds1RY+xp9gvWANi ibKga+0MXo6fe6Dr/KfQnms91/wcQTCUMNKikxiEv6ayVFrvpDgjhMLloSgcAuZW8A+UM+Dj3QdX v/Kv6++8MvvUJSy9PLqiNh3z1vqETZd6kobKoc2bh0Z7279H/Y/xqo9t6rri9973/PX8bL9nx47f S2L72Y4Tv/fifNj5xMQPtjYhEALpRom2DJgK6ci0wKgWCoNBSxtatIIqRvlQ1WpSGdM+OpUGDGWD bWjaJrFqKyuMgWCFtfuoNegYndbY2bm2E9L+Mc3Svfdcy/e943PP75zf70x35zT66fFrB3DHuXdx 87FmJdkw3+8c27SssHjzyvWfe/TZLTRXD04XirXVg75l2JH1k5VtMtCHOLs9S64azSKqEEVk9zg5 hNxB3IgJftlmZZ28KFq4DbZzNmIDRowsGyznLIxFqgDqOdvMKT0qNqJMuj+/EUD5OjbkVoqGk5Du mKY7hSsUGmjtE06gzqZt5/20uiilzt2qePGMTmG6Chrbpic6mS2F173JqDZfYBekW7v7TlyYinbH 03W+JsQAq3+nyBclVIuaUcGYb2GtnK3erNbX1Wk9jtF66+b6cfVw/fMqO2HaZXu17lXtlumW7Z7p ns06VD+kjmpMj9Vp+OSUUxeLyAyBjSpjyBnvGYhgVyQY2QvAijTW9AArg+4tn4H8qMROFCNfOM7I yRDdi7DXYW+XWu5z8f5ckdbQpZgTEJph6MpF9UZbdAllqYbmqqDbx3K2WlMs4AlpqNorazhh1TXU ZI5pOOiu0XCVD6YGrlFDzSxMc0n5TvjQFJvT5Ysdvb3c1+l3dcWs8lbQDPPMsZlnBgbWXt616+La gYEHHrx95sztB745vnbd+Pi6teP+PSMjezZv2TpO9s4/Mjzyg0ce+eG64SPzjX3LXrx588Xl+64t GR1d0j86mv9g+ZNPPmSsWkXxeQnuYwXcRxDq4k1j2BGujqX+xr/n+rv6b9NH/D3XR6plwrqbP+A6 6rpsusz/3vUXk9URqAn0BlcGR1wj9RMmS5afDP2Sv8r/NnRFyfH/4a2dfB8/hD/Pr687JB4TLU7k cJBQJF6Ebzje08h8gznLvMn8g5lmzEFmjCEM4470cCbpTk2P2xEqY/g1Zy5Goe3DTqMKmYPmJrMB 9dRUKqsvm39kvm02m2mpnIX08Mb+W7l8/s/FApmjnGr4PqQh4MPA+mm4SZkrub2CZS7HSrZEPbHZ YDMT/Tt6Xvnws4+99cI76/955sbXP52Yp/kDddoRbCbKzoce3rJ1YA+RF7Zj6/lD274/WfjeqcIv fvJ8i9Kmz3NVvIX/+Nz4U1/Z9Bz8F3xh+irDMHuQHVWiVoNnztrM3rMuTuAxn8VBg3O3C4D6i2bJ fxqbcGImHYfv5obLihBXlKkyuO2ZYzN4sLd3kA4yYzBM19KlXTDydWUDPNg/XcesZibAAy/qPAXK 9H3DVfQjCIrgIvouP+3IkhOTUEi9ku80Xkykckj787mSF42f8AIreAb5qwd7ewaXw6sLP8emwvXq KiliIYWupQNdnQNL8x8UtMaA6PAhPP0uYtmt7B6oa7tPIQT8T5VcmVYPVDbUwNkqOOThbB5q28HG nN1jxzaWtWGLxw7uPWu4EHcpZOEExK5md7AMmyVvnkQ7XdwqjnBZ8pvj3t6tQJzuDufylClJcj59 q7MT2BF2V3ZOWBN+zQkcadag2kTDJRBCFmA8I0PwPnKwRemOV7VNRZhrbbLarbSQ3sK+aj2sZQIk RmI13VpYrwb8xHGI/Q4zhhygOeedsDYgSwPCWZIzfF5ng8/V4PPakYQluYZ1S9WPZ4sxLdZd1Jju p+zuHm3ttKKW4lpqvszHdmxgaj9tt8yX6TzHJt+eEaSF7R2JBFiJDsijz0CU/1qM8nYj+j9DK9g9 DmyzzIbWwQkudozdWwqtIaKdiFvNbeB2cCwnexcfpu6D7Pu/w4vLJa0Sl3OlrZ3J5B+F2KpyG3Nt KjITW7yBxra7Jn8lfyXQrRdjO/07UBhT7I9RHEr1bmNUM1yBTExr10a07dpe7VeaOaLhY+Kv9T+g t/El4W3xsnRZfk/9UOIelkbIl8R10ia8Wf2aPiE+Ie3SntIPqQd0h0l0SDbVpHeI7ZKBF5BPORYI veIKslJ0qH54vkhfUgFcF+hwdUoIwyTSSaKtpgOMSilOYqIq1cq18ZjaKnRIEwKXVpM6UcOUHqpa HOuaRgwvtnF23gECRBDLfftkYJERM6oMH32Y22HYDN5wWJRwJFobq6uPowVC6XegARZNn0MyjBiM Khg+GDyc4h1m0C1lQjAjaUR4rstwEMlPGYrHLQpzxU5YCQUDNVWyLN13Q9NFjZAsGTU4QawADyUt HqfbkCxVwC9FXUr5iVsNI7ceRi6MMY1LI6xZkjfstrCicOCHdEHMkiHDxmqPaUTThDjdcUgW5Ki8 SmblN8gdlECEDJ3UhAeFnwmMkCV3jjfs6yihlA53p9Q47M9Bxy2pnLsbNWC7RfWigwIB5aFTJQJv L66LY6UVFAZdXytRFCApQumMWjqjls+o5TNq+Yz6sTOZW7kJE7CabecnIGdhQWJRPmmaRUinLek0 pLA2vLHUtqF7QBfRsGJJzpUllbhcEU24zA9n5IqdMGsKzpYWCtfC+32ZhUvwwqfpBr+BD/ZWJrqL 32b6Wp5+5Sju21aCcqKLMGFYOvGUKChtJXTjPnygsB7YUxUg4gVARAi6dQo/YQgWJx60Ikmuqq4J BEMIz7332TSZoY2GEVjkUlJJAwKUpPeZ1MMpuknRTUoPu19SsEsJKquUl5TriomaGWUAttcVs2K4 W5Us2W7wmqpbNV22Etnqyk7fOB6IpWDdYXBNLSlIFZerKZYlKyd5wy6keIj3pNue4S80nSYrkRsy WLR5UqvdG9zELbepipJKaVmywuBwE1QuqXXwZJmb9ueL+UDrjdafB7FT7OcgEDMZgdbNu3AxXy1e uVK6coXSVvgfSllpDqVzkJEwKHMrUbf5kRbOX+HxenyeSg9rTtRGa1uEpijT4G+K4nouFsURZyzK NIvJKBYaPXoU1dnjUVzrCEeR04WENJVcMzROpYKqXYzMrdQW2kssoA1ms8CTbGkvagQFdFXZOh+i 1w7wu5FqXbMmIseS+8fyR/syxqLcnx5f1rZurPAv/MVtybrD/2W8WmOjuK7wvbPrtdfex+za6/X6 sbt3dseP3bVnvbMes97HXBcF5KWER1paS3WByFLU2oUYRZQ0RdBC26i0DaQGlRCa/EqRorTUDtQx EFBFH7RFpA0SlEgmVfyjUkqjViHqA0zPmZnFdqEPW3PuzN1z75055zvnfOfgwl8um2i4/O2VOzMD xx5/dKUaTvQZmPhbsauobbgzJ7dmS7vAdhyY3LP2d0g/eZuzXf00gulonHyOjnaMdn2+/xn6xcBT Hbv63widbqtTpDNQF4CW0iJ313f02Wp/ahNaOpJOggHsdSge3bPOs9mz3bPH4/CcEYaJg1QL+6bl 5lzwTXjqhR4XZfrehdNefzaSpukZ+sfpFdtegcAGh1nt6toPC7dGRINMw/881rk1J73rn+ZSKtvQ 3KN0K4IjIKvtzammBGnIBhMkpLQkSGOmPkEtuoxWHkkSsxtrDFj9F/4jT3MEDKbWr/WbPxu2RwWh z+zYGm0n6rubIYq6u0IhV3Wg67vlz7yw89r5Het6stF4sKuUKG75younn9/5ymFaMzl8zP5sc3Op /MOyHgzqiWC3tv71L39t8ucRf1+0vpRIpFd1amsK1Hb0wMs0cKQL+XMbROQYRGQrROQfePMb7JLr UrttE/tUx7Nu2yOkMdiEwUmWR+YDDR13hYfCqWAiVS0Ea+Joby+JgSdEr8ibojoRL4iC+JtUog1D xQe+xkmiwPmhJN9vRkzSCBnL+BAltxD7aHAPGFyLdDoDbo/LU+ep9dgd7XKHLDj8vnpfg8/mYFJU EhydzniCRgKxBJU9XQkq+cIJbFvACwn4QzeQkX6fWdCrMo3BsIDeQHubUK9CP2hgd3RN7MXBEiS6 10bPD6Q2pz/9nD760sIooJ66b3yptGGjPHDoC9cB2jTXDZmunEsemRx7/KuX9oQVgPYAjfV8Z2Lr 1qEdnwS7QS0k9nGwsCac5fXe9kj7Tc3mJ1Zp9fnrKyashyLYxmt5nc1MhlhWz92vp2WsnY20u0fp zah9mkYGXUt/I21wtcJVi3p19gdrrDtcJi3NlQp7flmhduKiWqGnO5VMdMHny5VF8XDZr6Xa/QQu rxyRdXmdvFl+Sb4pV+Mj3tplTKoSpUKqLpZqFupqvK2RVqXVdq+Vtpa8Tio6o84nnTbnDN3Ga3t4 qK+nG0Q3gqSd9ABIPO1RLa1xbb22RavyazM0eJrGZZkgD93EG+rT/pf9wnP+835hnZ/6Q/0bTcDs mLifZMWPIJHykMaBjWt7G90ggh4QDS4QkL3NajmCwEqKSWiz5kcmDITdxXo9AotPydzp1WWr6hqj 2GKMU5Cak2Y6xkPaCKZnEG4QoEo46BHe0ke4pVip5bxNQ1UNVTVU1VBVQzUN9C1Vc4AGD1fUteEK owDU4CvAaLfGamt0WGMVUrA2uImidgRFGEUbHsdQmDu4rR3c1g5uawe3uYMfbqKoHUERRpF8yN8w JDAfM/umgK9CECq1o8pntlV9zKeajWkAM5nRmNJJoQ7T/Z081oeoUTls30OyvyC97o3kunNiVMtF vPQfC29vN5jGRVS3OMTCL4f0Unls4fr6YK9e/tPKoNIb3AAxNQoxNQUxpdJTkGPikbhAaips1beU VUI4CRV2waSlsZBMQSylM6pKzi8LJC/Ggig8SD4w8S0S1IcGEIZPZ4ccj8cqi5LhMks1+eMp1R9L qTpZRzaT7cTuJRHIfaSmSRBTTmdNTRIBAaXrVDwFdyksYmI8oirqFvWCald5i6irs3QbYfBDHdDb 5j4pFoMAOSNsIj4igkNdjVkRHRuTjZHXtUSyRExD2g1lZ+mr9D1iZdlkcpGaLBTWinc/RL6KRAMZ 7C0dWUqFwMbMcIhZ4WCOAWP8sYngCm2Nm5pxSzNuacaXad7HOoBpGQf9H1CykHTjdwY+BpcA6WeI lbu3TSDlelYAjv6+cLXSVFZA9AsE0fjCNRNEZd3E0AnAkAwYipD3eRDaj2Ye4jK0N07HIpQG/cvc HLKaGtlqbJxmY8Nd3uomC2WE/v9rHsRYyGiEQvAu5ps82BDVhoewswHM+ND5hIjCptNkM71ABYp+ d0L2o83syJ+NVhdcu9aopgV93rT9f7a8OS1cvoKWvXsY5RXjXhgzbP3Bnbl/MyxGMVY4ZPXXwJLc Psa37lf35fcXD0mTygvpSfUHpUvSr/R3lduKKyENZMqZ4cwu6emMgyjOUp+yVhpK35RuKNWi1Krv Ln09/a3S4d7j+eOFmgAb5xfZVTbPbjOHs7dWX8n2s7fY73UH0OR3uZ4ayPol3jmQLUgF5bh0VHk+ XaVIZ6XZwpniVaVK4m6fPq5Qf5zJpe+TY+xHmSpXwVV0lWw8rShk1nQMdwWF/EBuBfJaNbOM4SxC QBROLHEn9rLQBZB6uHxmupjycDduCGE41cpdZ+EWujjSifu3uZvup59Z4TpuNA0+ds8YCBA6uxJG HlLSgw3LULP0GNE8hnjMI7mrtWYpck48JDudW/rO3BPiCQESU7scj0kSvMc5Y4k3PJTmCpEUQvjq x7KGYT2qliU8vxrEJ0azwKbH+DeZ1MDQnox76vU+tooNszG2hx1gx9mr7NfsHfY++ydzeVkLNFtX mJ0xqRhNgGdQ5FEUo/oj8Agij6LIV63OFlDkURT5msfgEUQehV4sZOw8LeXtKu3KhrKdnU3CQD6P WZLM0I+4m7D1bC87yOzVjMI7n5xa04et09QADnundGOYftT4IPh2Xy28uLsRhKvB7LHqQzpjoZr8 LD1OVFCphQlVwroszdDXprcrVDFKo5hTcDKtcOUZxUZwWtjH655S6Rb1SXWvalOBqpz6GCMkajCV Wl9apGJocOMHiy2gQU5GRoBkJJMjSD5uEWjnlEpdndhxSzdyMcj5eerzB3PB3NLC+w17Dy417z27 L+LqXFNlQvQUdl+EfGpQGGwk56bxc43vhjcvfBZYUFECAVNXp0PM+GkajYGjZQ9kExkc0S4zsIXX mJ+bcvuWcoFhaGMm4DJOytyb405PUJc4CMNaHbB7ksPp3ShSKBQJhMQNgcZFcpHGg/pbzQO9IXze yz1wI6F7JGQwMDX3E0CalALxECaSnBihwP1GaOC/Z7KYj5pkP2g+08bGoLUihu1XBz1UNgrKpcWC QvtRlul4tEkv/xbuVy4cfOLUqn4sILP846Xta+nJ9x6SBRfeorlgZ5syAE/dAwtv5v86jRpHD0w8 EfkX39Uf28R1x++df8WOY58hyb2zHfv8K/5xd7Hvck5i48SPUAIEARFQKKvSRmOt1GpSCROd2DqR qGVIq7SkKjSDlYHUwR9bW20EslDWgiq0tWujMq3qaJlGR6OtUucRFQqrRMK+786B8GON7O/33fe9 58vd+3w/388XGPLmJ8CQs8CQmuW1EwzmMIvp86dkHd7D5xPFvIqLeRhOkJ+DglWpjN2svaOd1yw2 vlZo4AOC1c83CBk+IVgX5SjtMdTkSDQBIzA54hdhBMbLIOzNcVjEBJ/DjhFmJPe8+rx2iDmU26/u 115nXs+9qr6qnWZO5z7FM5h7TH1S2w0LXlQPaK+ov9I+Uj/WXB/yf8MXhE/Ui5rtFhN6uTuEUJXU KKuZ0QagNSfoLQ/xWpPzvJa7UyZ5TNa7v7aa5y7OuzBaZa1IRJyPOqEC5tQVKlKBsMZTmq7Sd6kX TV/eAJ69QIJYqMdY4BltpYY0EZZpBNZoBBZodIGGeVjAC2pO41GObMgfyqEcQz1UNF7Varw4DOeE a3i9UffrAqvCti9JLZJrUskkpSM4w0+PDeQNt8F0fabrMV3JcOPdy3TqSXtHQbfievwdvBcfx9P4 KnbU4zjeiJ8zAmfxh7gmjnUI0BX00oHhLGl6jUMnY6SZE7qZbLacZbNGbyQOQVFkmQgXESM5oF6S BvZDnxNOB05CiMA2RGCLwU8C5yXdy3Uvycj6iBeFvVkv6xVa3z1q0tWgoQyBpkpUNwyWZoF3SgKQ 1fZbDMRgk6242Wul8tWr075Cth/4aFFhuwQfZAwLe1oMZtvzo7N7WvD8EM9rPzTYz9Bb0T+DSjAV rT1lbBBBZGk5R8Aw1GCDxxQeQmAYasxQqh5CYBhqcJVJjKkmN51y0ykwGq5dBCMwOWqMFXVeOuml y8Dct9eBf3G78bTSPTrVV2UUhExScfjuoiBLDDWbrHKlt9y1tK293PsPxKNFn/WWO/JLuyD+5apy edXqL45ZcrMHbzOJrSMDVDI7xj4JDJLpsN34e1Ex59itszPAIDPAIG8Bg2TQ8ZOGdFliNJ9gHMI6 hgiWBJMR8kxRsAaYeoFtw4VMN16TWY/7M4/jJzIXU84Fmfzmwqwk7kYUicbiieZkKpUGubMwY7mq zFlsqtZqBtvvn8G35MetDOaBFDjiI4spLdiiETEcagoG/MICNYuZTEYs5jM0J3kB1wsCxiiTFkYg DVcW88yQgITJm5PEX8wL0QzW+ageifBsOpOhOejPGtNGghgewC5QsIvp9EBqW2ooZUmRJSU95Zfv kxF+eBdEbdXDRqNEFmN9hFZwiewwUmJQ6pdoh0RzoiqmzQvmdtHmpqEiS4PwgeoN8Kfov4V3gHs/ s53C/R4gVWsVj+6qWr4YenwBgIyqVGHdRgjVQYi8ZynM7jWRIxerNejGn9gnqsVIKd7wQW+ZvnnJ etR6galjBOYwkfehfbYDzv11B7wHFo81jAk1q9nltuXO1e5+9kHbRufD7ppOX7LWwictTs8k+9A4 4w/Ugyd1Ycc6x6MOi0PwL3na5Ik1FXgXa6CnqJQram71b+r6dpIWJDibbYlFrvo4w7k9cdRohRFm YbS4xhdH3jowDXY+zggIDH03yMy2YXhD/YhjaIvn42jHx1j05ljU3lDf2Kq1WY/OHZmeOvL++0em ptHDU5dGRy5dGhm9xD4yd3lu39gplEGZ34/N7Zv7z6mvrr3xxldX4cl/AJnyC8iUKCOhFsK/1Hwk wVrD1mY2XbNQ1nvuwDnV17XwdZsdGnG7bPfH+L0dWSS0SgyKEhOXozE5CnTjLUPJl2TapiEZMJqk L7JJDOaCJNgXHAhuCw4FR4OHg87R4JkgG/QrkgHGmI/hRAAi4fq4AW4bN8SNcoc51yh3hjvHWUQK THkS9fz2dyY2+w19uZaqS3oYpUp5ehb4WCpVuFlAIpCxAcBlO0nInw41hZvEJos97U/GUSICJhXI xFFzUzzOMMZZZIZBRX6zpHJ42FgSziQP5xNDM0ZvOPfAAvF0/tyVdPiFsWfefuvHB3c9/W90+C93 SaXPXvlWX2nHkqmdD678LpxUE5zUf+GkFKaDtZNvN4faQj2hTaF/qddVe7vao25UN2lbNRsfbZdX yJvlZ+XdykttR9tOiu+ILo/kkR1aQpLkgtIT61U2xTZLj8W+FzsiT8h/lL275J/KbEsNEYiflTK0 94nHYuH7d3in70YCcXv+j0a59/TdoVXhrPJsGG0MozAlIFBj4CfHW4vUvzyR1fSz5hQhyzbo4R8q rylvKhaFLMsr4oo8HL5CWVyRswabM3K2hVamlpYa3C4LHQaMMpJEyS5W/X3wL4+3aLpxDfehntTD jw/FJmJnY5bYVJ80IA1JFgkmjm/IS1d0CsH6eeidCdqC14ugWwGnCxqXwvqO240LZ3YulVlpsGKU 63nOm65wFaOFKUE7U5Eo60kG/8Ga7YOMcVkFnphr84e0VrWVtbf59TjKhcDkA+1x1NqUjTOhMMOV quAbppKeItD3jaLe0cg38hpving2CWhsb6vi8cV7xfy5jy9vG1za27J2raB09e74+pfvHd7S88jS Z77/Bfpgbu4ubP71wMDBzsKWwk4u3KEU0PDaqUC8L1ncCmVoF3DpeuDSHvTnE0kcT+gJUO3EE0vo CIMx9HodPQOBDoKoy97dFPR1NXY/F9gd+0nn3m5X1+TNGQLEqAc5t1d3+muD1k5LjDZbsKMTPGkG veKPgnkqvrW8M7wrPib8rDTR+q73D63nvR+1/rPz68C1Tk8nvUsr7PHTe3YuwQFrQwcWARMBarAI aAuYppjH8DWW5H3xSdRJxHwyYikr65RHlaeUEeWiYs8qSHm7mSWuPteAy+KaRJZjlhqGrnX5kg84 w/FsnIWtFYI1Al2kluIF/RDIaSICyLWsxoIkHiautDeDbgITdzUYJWOAbCNDZJRYiX+lh0IUtoI/ Pw676fUE7B71IKgzwyc4RgQiOMVuYexAAg8RzIXEEHs5NBNiQ10Oxp6zf2C32K+v+PVJEOdYAkSW QKkCBAcrVKNR+ltTgUgJQAqByiCUpelypb9cGYQv1Ga+YNYZRIdqDsiOillakU1Rm7DbKcIoxDRo EBsbKaQAUcnmZAtrRnlqGijkov+jvNpjozjO+M7ec3fPd3t7e2/f3u7t+l6+s8/2nbFN8I1LEjiD gbQlGIgDag0ECrJNq4SmJDVRSdSglJKkClCJpI80D6UiNRBcaApSVKE2UkIVKkCUglrEo9R1pBDT xPjcb3bvjNP8Vdkz39zN7N7M/L7v9/0+UjbGK9nJ7zP7CCuS59HcsBJobG9v1JpCzsiLvT/sbWud l9z1+lv9E39Y+sycZBJcLRuv9fncke8sHthRaImhuW8MfutHf13+s7wsFEvPdhfjK/koxon2+Hyf KxTtfaXvhYuqliiW9ncX/e71vnh+Q1t8gejs7D6wZe/qbSkIXRBkfzcfA/5sRL8+dNuG3CCh33EW 1GFnwQ/DEWfBZxjBMF7DeAwjEsGtOgsaLE9Cq4OWgBaHdok6axqnrlgvs5Yme1cYWFGsaMD09LCe K6u60A8NFDxRpBRZF4ImQKslLBpx8m7BI3p9/kDwBH1uFsn6ddlJV6pEOEuVTl0gGEET8S5njYNj Wab6fRa+F0FG1uIITpM6c9ilC0s/DgDHh3EIC7xO83qxeMz4MfI2Pp1Ppdx0bcLMxJTj9IMU/Nj0 yaMubx7dbgroUtHNUkyOoRns8eaZ2zki/nSxN0UKIeiJ0rmHv3XPDK9pIZm22+xWO22NypJMW8OW oEZFTIqGQvZajZLp2pm0SqitWj5ViiggORH0DriX2+C2OoPyVLcuecD9vkh65rnl8ZNrXtvZ3dXZ uYhowGJ3977NC59MBu+qQtP41PHflyfmP/Xco/R9HdmGNkRIbeqNh567tys1l14xIw7h+KhcPmk6 bXFSbqoPc1Q1Dd4FgWS6L+c/0OocyzN2gSSNVdjFMBQrszngjaDw0pFq5uDJfYEy1sXvDJm7FWNA v79dZ+mjaCGx5q7JxZCG2q1LCBGDR0+VT9If6jt7+P/dmcDYeUSRnbEME2Ub2TWE0WjxkIdsjhDH 7K1ZqlcMWzMGNK1vDZXKo8R+23y4PdvQ/tmIsbPpg1P7LPHyetDTGq6xZZE9iygu5DIHnaOo6Tdv kuNf4a9Sjff0ADnB0StvNc5tPjC5Xz/v+lKxc2ofObL+WqC+ldN/M+81vUalqDlAu4W0BeUakKXV 16q2FtPF+mJmXnaLc7uTsche+SX7e9Y/ymesV6wTrXaKmuXuxj2IUsntyaXnxCj0dAql0nPyDoEl GaNRkvM8kDww/TBLs8qaDFqaQZlMSsTZ5ry4TuAVyZZih/Mor5i5GrjFFYeVNTEUIw8zUC3FQu3+ Z3Kj9HIs2EgmiNpkW45UBW3Fdwzk63umxio1kh4xQ8Xi2PyHejEUWNlVRZ5IG57oGgiAlWP1oB+G to4Nba2HJb+lWMgRsIhs9RCs0y0frlivbkeMR+FhqLHa3e38v4jwIGMAk+obQkN9SsGg8rzW0uwn miBmMz63QkjpFF51R5M+5xX9eriZoj3HFr/6AbJd73t86cDqPa1Sql3U2hcfwCc+UglqH3/vkSdW tYWbV3QfL+VSqYObdlwUmxo6tJq5DaG4n/cGX91dXkXwRAOBeYlkRFA6msGXtwKyuwDZemoc95x3 fySe1c4nbghXxavajcSkOKmydpFR6VZhnXuDsM67PjnpsHIOJJSEnsRK4aJ4Xrsp3tBsoWCNg7JY PcGwz1HDM3wYhUeRcjhGPZ6CDPr5YV5J2ZhR1I0Z2upTYpx1iURQ44OFQemyRC+TTkMqDWU9OniD cUTF5XguPhg3x4OZD7Yb4A2Rmq68FUC8opd1xSmoa/mxPnLFpJao5M4+AihvxzW+Iks6hnRhgg64 hA4OMkTc/yTMajVXgQFSpgIThTwFn0y/qktkIBrSEW+g4YEn9xx8/b3hB3IPqul5fc+WJ8Z3Hkba zeXPmzaoxdIPujsDwkA49+ZT23aF+J7O9L3zVn9z57ULKCqTSOqcvmS+YXFDhkmjXtzIcnanxWu6 5UQ8F/VGZT4tc43eRllOX4hfSN+M30zfcU/JdzSXjFkun9Y9HQYyZlxF/VMABmHsiYVxska1z6Kd d2fXC5DGECVFasMhUhtUIzEgldin7T6PRMUUj83OJpUaDrRFlIHIwi5qAA0i+iS6jGgUytQRZEJR fim/hh+Auu8SP85P8/YTRJLXl3ZXqj2C0IRR84EKJyjBP4mDSk4KqAmnoAp1USrhhE5zx6Io7kpG K3loxw6q9PXvYj6V5hxpLqmaU46oijgWgQKnZmZlRfTK3phqUUSY9fpmZgm4fQiwnaF0VY82ygDR X6iwqSc/A3areZ5awhA99+/76rXyVZT8y7L9i/R4Ukd2DI+88vyen1vck78jcdOcSiPu1GkUb2qa JqR7Z//33357+9CePYDqVwDVTRBFEUpDP8XsqDAqHg2fCptBb1/GpVop309vFk9Zz1rPieeC16zX xevBT+hPrZ8Id8T/RD9TXa3WBVZa2ChuDGwKbYquV1+kX47+WH0r+kv18yAXsVlMnEeTkJ1QTboj Tyx2BGP5YftpO/2xHSaQ74gg4UhBjypXBIhUQlgalujdEpJGUQAXKCyoRQorMKgtRCnkopZSH1Km aeAADGofilyF0J9C6E9RfDazwnPSKL12hHqMAxF2SL2/qNtFcWLh91Utf5lDXCiuPQapdi0WPVgt RD2DHtqDa1x5T7CutFl3i3pCu1eIYwA+PbfGiFtM1de7oTrrGyL6eEw3ELZHJBxUiuQMh8SkYWHT ulUF3Y4kqwz77z6Qx+BklbBHfTpJ09NnMOP2F6MZ6KB0OTMCliwnAQ/OoRjSuRLg5ru+AX9eQzTb zBvvHJV/sWvru0ukVJuULP9p90T5PCqefuLPLQsb5X807t34yN4cenjZN5rEjkyytm4+8r1/Drl6 W7q3LO5/tHfFil6405/Ahb4Acd6CerBiC/vDifCcsHlfHNEuXmihMIcdNIlFr+gR3Hw1Ir0gIFkQ jjBrtjNVZdHlmB3LJBFRDDSOoOAwE22aa2puodCJLywzpukvC5EuqaTh+xbkNdzzNegKHdBBgtXW JZUIJfRnW6j+bCbDB3IBHFgWWBsYDlgDVlc/w9D9dpaqz31qGUX/xA5ZySm0EipA0YIIYcgh3rvN Ueax6CgO8C/zB/kTvJn6L9/VH9vEdcfvnX+ek9hnE599duw7x/Y5P/wzsUMSm/iSQCGhkKylK6GD pUDpSleRsAEdbCNdJtoNUKtNXadNWjppQNdOGg0rTYAJtkqo08RQ/ygtSMNoimgZtUBVYGJVnH2/ d5fgNHSW7r13796783vf9/l8vh+2H6qLrJ7l0xOEvD1H5XAOpthcEeKnmKOpKYUtcmwxPwx9M9go FudzURbZJAfcvhOyUi1J01KX5rkUqVkzRxqhI8Cdc/ncUySEkJ55Fcu9m7Hc/LezjxXyrfVLpP2b t60hOeyjz5asiHRFJT/Hcu2Bt4XWaCJr4pfF1OwPsF5ap/+L7k0qTKXILrnNGqFTtKnSVRlwpBxd jglhIvC+8H7gXuReqoL1CmHRmwj/onJa+CLw38gXjdOxO6mKCLJ3SuFyaERGgNBT6HOqoOGWg/Ve OeELqiD3EULr9AajCU7DXPwC/p5ql+So5jwJHxe11QeCJmovTYyJgK/CZpX2EPALj49bKCUqQcsY 80fmLHOR0Q8x55hrjE5gEkwfo2M8zf2OQQftOB9Faq8WxD7xm+IOcUg0nBWJyDf1PD1H6jPXN0KU hlVeh/wU5BfNBjhYtgjCq0ivkuIgwzfE/bUNtVGBivuhaAzUCyQmJL7M8MmUtyblTQT1yRopSLye BQxvDdVFwvVBQ10InoUp7VkZvWea570I8PvcAWhqyZTTfTnL61bdVjj9iTO7P8XGvzZ9a/nh3g+A 8D0frD2cP7Zr1zG8dH3LMMgz3Ld/+12k+G1rt0ajxHXhH8QVK/UMHz06vPPIEfS0HkD3HwDdrdRn Ml9giNHIGSNGHVo+WnWTLrebP0V/NO8H6hQXmUgmU4uEWfWR4AfM5QZCzZtrAwGx/DVUKxivdHNT KqmN/ZO/p5USJ8jvZRu54wvoTfV1dXY7a+HdGH3W3MeQITgA1zDg7VQAO63J5EiKCCmS4tv6ntYA qXgixOKwmhoD4NhcvjhdVOkW8yoC4GtRMWZvcqkBwK1f2uKypxXEmRb1a7EhP5dHu7cffW6tO9nR +++efJJfE0p8Y/kzA32uVL73Rm8+5V6rqK7BXlothVf9endpv01oQyi2Ciwh3+kTGzPrSyNlfbo9 Gh5HIBarIRY6qoZ6bxJM0LkTFVUdNMLHCY1+hshVspVWqRRDs5Amq5Qg0FWVFRaVKsuDoNcyJmd1 mYtL0Hm6j9bRp+jHQT/PyVXWtryOwOeNEEXDaeitpmhAIHleryRSTqdYnawerNZV874Nv7tvQacB Pmj18sOggMoew+EGlDiDmfue9EssRx+fJuxdhcxWYnn3CGYvBvvly6V9M50LyQvO6QuwNw/D3rip H4JTva8o/9+pKgdtkTYx/h43DNZ4xWNnZbBcCtuLbJIdZF9HkufnFgjarJ6jvLqyr1zQhQesRk24 8NKiTGavUpSB6N6gunQPyVzBRo4a3/K9FT3tm/Sfjl7w/T1qdpgwTfAE0wQjH3AG044dwo74fmF/ /GXh5fiYMBYvCIW4JWUutBbydB5HM9Z0K45eAg2HDAWVzrQsbW1rz2Zzf6bHFsJU2w6bzdppLX9G cXDZ4XLAxeJYm0F1vKIg+B8w1qaOwzlypcOgwjkRj8dOqUPV/e/qlPMdy3K5rNY77u+xTULzV3KN P9aQIaYuT8DSENDvsZi6jJl0Ohx2WiC2EJt3XJzclOFwYV4pw8n+9vRFrsDd4mY5/SA3xI1wr3B6 BzdBbst2vygkBVrAKAoYTwHmn4w4JHiBhC8ISRlJeYFUkG5Js5J+EEzZiPQKGDOcI+EcCd40TsXi qDo5Nqu4EikzliW27OvZQvZa9nbWcFFp6JSH0Q2xfFZelk9n5c6udHakeyW0Vq2G1sOPQqt/HRRP bExn+e68lkBqv53DGxtXP7L+xI4syU7SJaobztmA4jXugjIghDCHlGSuKo9//gTnU2q5Cj4oybwN Cs0CNg7kIAPdmLuLEzicoGyXC2ZwOJDDgRyukMMVqp8fUD4Byck8PeYRwnbFfbatWA5/DQM0tuJ4 3ZPLB5QpBCVL0UXR7TNX1YQrw17G76N8frOJr3D5iM/s8encVR4fUfQR39qIKqmls3ncS7CvtSNQ pLColW2OjhQWeILHodb+HKWsfpIywcJhHKIAa0DF1RPVXuV+HGp17DBwuVPhcheWLmR0TVFRNU3I 5GX3929V0No1Vm9o+lomtr4h81zbzpWb5I6O3vdqg7W+cEZpBoOhh1IyoHqyN9/R2dmR79Udak+F o9Fo47L+H5Uy7bFYG/1iIuTgV5S2qDfxcKxbbasshi1gsWZgsV+Cu8oQnexFqX3NpyswBYFW9FZj dY5zlQulFEHFjcXjiUV6q8htBertokcRBbiI2wWiq0E0Ede4ELDoR8m1kztekNyMEZwDy9osLg7h Z2bAiDF4nhx8RhNfG0MYz1I/JSgCHI+PJIiQIAm+ZaEA55Q8a5471UMGIqxpMAGB0AJXFjItJg+W 4PlYvdb6Yt/J7eswDkpAQolNK599ZE5/k+4+NUIrksnhDT8rjc5LyWi3ULd0oDRq87er0mvT4kJT XwfXuw/iYgPl/au86V16wnjJctl6xfGh85L7Q/6K9+OaT6z/oe8Zq87z5720o7hkynmdv+nVX3Ff qrlBf2K8brlpveEwbXVvrzliOMYcrXiz6g2b6Rl6m/Epy7PW7Y6tnLE6UGnyBPQVLCapFopiKZG6 Rump0/QdCJuLfuxdwZw0D5l15kno8UECU8QLPWYRBRV+AAu5wltrY/IOLJyICKh5qMehVhGB2U01 GsIQbhdssJ4zqTuqZpD6faOlmcOHZqkDL80ePER0P76w8snfHDx15ic/PUPe2f3P0Reufm9f8aWD N3+w5dGh8V2Dx46BFb0FTuFV2B+JSpNzcmJGmK6dqZ+JTSen00aj1yLRJwPnAx/XfxT7tP56zCh4 WSnhFSW9I4aOIImOwA0Nv+xr9MpNoai5TMAX5jAMnl7LA6went7FLtPj7+Hd1IFQY8DnucM/7zO5 jU2BEKQ/1gjucjApymK/qKNEVhTFa6L+OPgBT4t3r8fD85T0OWiVkgLwdopF6b/IFthb7CxrGmMJ y2e2fF/zDQoz566jd2OnVAOxRkl4ikCcU2yR/UwhO4Ue/c3pugZ/sF6qlRr8EYE0B6GoExoFkg40 zZkHJMZ5/xCWklJTUJ8KJ4KwwQv8gyMa99bEwnFvY9AQrYHnc/4CB2g0mQR6tNjzSYX2wYXFZLiL YxFDdxbHYo720XNsDH9VBtOs4JFy/o/v8o9t4jzj+L3n33fO+b3zxfZdcj6fEzt2Lmeff5yDUwdf GpyfhQQYaKClsI2i0iJI2B9D+9GlG22l0pYKdaOka1VN29C0asmgHQlMChvtpA60SWWg0kmQaVXG P9B2Dd3YmmTve3Zo03Wz5ec5v68s28993uf5fnkX8h5xkI9bDbRKDXjwm1jXLCHjafY3WQr3/b6J jW+BxOTR00MTJL/u6R3Ht3dOPvrdX4wtTVlnDtkO20v4qiejL/11+sKhfSnwjPrYtq8N9W96YQKd uj5E1a0aVWdN421hIbAoYK4+1D/Mu2jOKZEnhJngm8GrySvaLUTWfMYNOVmKcGnJziUxW3nMFmux 1YDZ4pNu3Eotxxmwfb5MlCNKtKk5hkr9/8VjJNzPZnlVaXCFb0dkBBZPQbALscX9HYZluQVidLzE fjAHyFFwDpB4Mr2WMYBYSJ8htxAh9CMaM4YcGgrtCO0PjYauh94LLYfcsyEQEoz+IzW41PU3EVJq 1ZNiwuYRWYulmi9FA3mFrMa2TL2oxQKxNhG50Ew9CikBcaUHV3FVxSqX5/x5DmGV87c0AY5djVWi tVFKxhMSwqq1Ee1L4c9g9VoSA5THdWTQRRJDlMABL51cIaoG1H9LYmxeW+JV9xpc8biuVUDZ723u L6+1gCoPfGPwhaHTRydB4tLG430f4PUP1j1z/8Q2iydy9uOvrAAFhlOpfYcuTANJz/TgxVtVoDZP TGA3uxfNV9ynkmD36QgAzzsBZ4nomGhQcACSk3CSRRrRzmBITNr0mnUOQWxolMIYii7vql5Eo5f3 rq+yi3fbzyp3UXW3SCOvrArhfm+dm2MjWjrPml29KCixPMuIlpDRs5asPxWOW/lXvJAHSYZGf8hU GGx6naJAEe4IGgXD7p1oHDifdQO3qAKCYDkMHBsllIiiK8PKTmVUcSpC6zQAv/zWihmzENoA5w+M WIZs/c0aQdUIsL6zeKpy4IOkDZJMk8NnY5sIyJIAWMLNImVkDJNg8hDrSBYHyyOxONRGzdjdEc7j lmFNbeV/2KPSo9/v2nW/2anGv6CoPx8HzZZbqt7+ARxtT42PrB3I5ts679u7d+nCZywgurvH0JQu obvbS/7GNDyc0xC4gLFbf1z/gf7j1Kup86krnj9RVzLznr9lFrwfpVkKuBwuj6uQ0Avp3mRP2t2M WRilfWXCRIEifMDd1E6sTfYQzjTR1Jww0j3p3icyxzJ3iGXwzyaKc9A2ryft1YM075VCsiDqXMdj 9GH9LfrPaWa++JeOO2lbJAj05qAtl/JShF11NSsBr6CTqQi60zoO3unluVOpbJ6qZS8+QR0GVU3W bqFY3UUZ754a3ozfW9naHxiq7qNsfboXf/pMNc2ZdLehoy+3txCVjtp34Gx6xJZ8R8nmpahpcq9Z 0VO8rqdsSrtLrnyn8l7F5qsMVUi5AipmUyxfMQtG5UpnZ8kZNBu0fPAgRHTNKTZCKSukckWkWhSe NolpcufJrg0qHq7sKByHz8IpeA7OQScU+11nUdPLEc3kTpMOSxvkXCSn52w5XHOP0pTPCX1D1Z6n jqxfKCG/gdoemqMLN0uWxhkbeVdFQvGm5Y7KN59gUuq34euEBS5X5IJFdfXjAFtEOAfxzhjieWQM wyoSJlVX7sahB4cKDutwiOKCotxcy5FaVqzfhy50bJ6syeFBlikd9QnlOktgCeWm6eqMjdayUssR a+aii27cLXtx6MGhgoP6eY9tAJ0qFffMlV4YDOBnoDZ0W3DnjBv4wGTxci7bXjCQesNPSwTXfE6g vvYB27rsvtLXe+TWyP6Lw3sOfPnwtW3Hyr4op6OzE8sy6UNbn94QM4yf/mPz5pFHLvZ+r+RXmNY1 MNIeW0P+EA0xFv0A6GtsjB3duG/gYTlcx5QHKgPlZDaRbAuEEqLIiQP9D+/r39XQyKCtbHcolcJn 8Tl0Fs/Y/0C0Ea+cFNzKNDhpyrEAocRjMcnpue1QWHpUAILAa8kkGPXOeUmvVVpEvJiKNROW7opL 4XqCj/A6P8zv5Ef5Kf4cP8e/j+YsWsQL47yDF7QzAACDWNFipaoa2wBvqSNsMY34SKNet37xXewy FpFAs4Yl5Pyk3YYkKJAI0u+QCDwekRvF/xcX1ZpJLiyT48Zd/VMte319rYWR+YbWvS8+lpMS90Qy S9e/Ojtr9akBqytZcoicXXrg3nqlWyypCSk99JOD4DzenMF7M1bbAkQYVeq47SkiSdwxo1SU8Zc9 JgoUIzJ7qD2RjyKOJLOGeSR+Hbztu+FzVqULWFEjn8gRX7jflMAnU2i15YvWmQGz3uRNv8mZrBk0 Q2ajKZk+76cHVNUIUuF+JZwUnC5KwdaP8twOK17aHY0q6HSbPmIUTCJJYxtHVRdV5SzpIUSiAZs9 lh3ngMwBTmhdbfbmLU2M7wvEZ3kByeJSTbdgn4fnTs3hGRbfLZ+qOWupgfaV93YRu7fzX3y574Hn VLmqM8tda4/sqY2IxS5s2dKJxJbBwkZg1Xjxpa7OjAl+VKu3ijTACVTvIvmlGYJdvmGy3YYvUjZs ITRzG3Bon16+gQcwOsY3zHZ0EWj7bdt13+U2e19DT9tlx2Xqqvcqd5lHxi/xjv4vHz3o2+477Lvg e6PNIQ+XDcksG3h4nywbxenlKbOIsnuT4SLc4XawhznIOB6Un5fJeiBIgnwJvMNck67Jl4ruP9Jg iN5BH6En6VnaQdNMGt/stfXBfDqtEX5g+of94/6X/VN+h98PkybaSCYRuEXYpgJN8skMLIYlTWYA I8vjW3blR2Qg497OqYBHRS5qkoSXN0lAwsuvwCIPYREwUAq7g1RRm1Fn5HA25vw98wb8nfqm9jGz gLrxvzX3UfVF7WfMCfhr5hR8VT2rXWTOw9fVC5qXVcOaoqa0nFrSutX7tMPMIfi4+qTm3cpsh1vV 7dpu5iG4W31IO84cg1SQCUFebdAGmB7o1NyDhqb3GtDdgV7dBowMGugXQrtYULODhqwCxm6P+gpg uQAKBTsuBTdo2M1oPD9kB9A+ZT9nt+HlU5DL26t9uSFvt98TjYqWLh02/sN+tcVGUYXhb/a+bZkz e+mFhZkuLbu9bLdTeqG7ujLb0lTYFrYUSkFYG5FLKg2lq4A2mhKC9E2MIoqKIPIAJgYvWCES1ATR qFEfMPBACImAESUYgQeNbP1nZpuWoIFoYnyYs/n+88+c/5yd85/z37b79vgO+T7yfeOz+uRUqE52 1cmhkOph6+TUgBocQq6xwJFODwyoOdHNixdjan4diw1bq0Op0PBTJ4ari3SGUePqiuSQS5tfl2Xo FqfVRalRmEnrnpzjCvQrrd3bxjL7LY9cIKhfb83NFDaOP9jsZnCNkYiS+DGhhMt2vSpXzEr8kFAi Ea4mc62hUUl8TA9PDhJzPKE0zuTOZG6YoyHKheTpjTlbt+bVlsnk2yujZi7vkiVaSQNV9wbW9JbV qS6/ImpRvXOIKqsDZANhsym+tZn14VG2jVlYPFxbD5UsFjdK29jT0guilW1WX+4kwjaXBIgjsp49 z/axozjMTjKbRfJKw/xO/jPJKnPVfIWwU9wh7ZdGxC9xUrwk5bj3gPOzGayJdbI+dghvsau4ypyl rIENYYg9x87CxtQD25TbUCUExRjfyrrZA0K3tBa9/BppEIP8QRxkP+Ey+w2uKYJHKuVK+AhrZS3S GXwnOd1+pz/Hn+vP80+S3bJH9sr5TtmluBS34lG8Sn7Sk/Q6kq6kO5nf4+px93h6vD35DsZ4UkU4 LGgeNY+zZ6tBnt3qOWmooLBIqwJEaczZusjZCnFmCgTLyisqQ1VhTEz6b3PO75P4WNmZZ846aEFg TTm3VBQ8gakygll3yf5iSZzg38OSKDCes9uDQjh8xHQ27pRErySJPGPqkwjOCybQpnQ5OIKUIjjo a4IBnqLkQUiml+KCKGSWYS1MGN7LOJbhVSefu17kBHFIPC+ayTW8ODJE307+/Rj3CqqhcKcpulIy NnAlNXBz8vVU0ZXUBeH6FbWCUAvSGNnQsKM6ZKV8TLUVPS0rjBbplmAXHDFHTHX1qRTlYEchknst LFakI6Onsv2597xTFJH6D6gXSliUJ/4dlk3plpJhhgZSaW2yqh+eZiFBQZJtVolm7UxScIFqEKYR 1S1QYkb9uRFaksVzoxNyLFpPM1eObBXpADfBFm2lHk/JRGvkstXLWL3CXc/srq1XEh9SvGn59Zdm ijqfzFVmNmQq5xXVKIlMkxqHvrKbjtgi5dVagZKp4E7rxQpZ3x8rWHFUr1Ux1lb+NUzP3A5zPeFr imCf67D6s1gH2NyA3Qs4CgDnfiCX7vek4wCjOcIjVB+2AO5TgPcewjEgvxkoIPmCA0Dh+nH4tgBT XwMkGiveCJR8AQT4cQSX6AgN6pBprRk/A7WXgPpndTRGgOi3OmKOv8E+HffFstihQ1mnI34OaD4M tJwEWvcCc2hPiRqgrX0c7bTXDtr3gjeBTvrOLtJFdxpY2gEsPws8aAN6No5jBX3vapMBAwYMGDBg wIABAwYMGDBgwIABA/9/wAQOavPCrHKcj2DDHZsZ0KRy8yaBweX2ePMLCosm+6ZMFaVi/zRgeiBY Vl4BVKEaNTNq69AwExFt6izE0YwWtN4/Z26irR1IdizoXLioa3H3EmDZ8jv/93/SLHibaBB+4mxE S1FJe5mFVsxFGzqwEF1YhhR68BB6sQFPjI6SvCpXru25SZObh84Jcg+jD4+Pjo5+f+df9lTuppnv KOHA6ux6ZtD5ZnkL8b4sbyOuXr0BFie9CWJ+ljeBx2NZ3kwSW7K8hfiRLG8j/nKiLdna1B6a3b8h 3bsqPX/Vpo6F4eb+vpXzFv2TESRId0nSdRPaEcJs9JOG06TnVUTnE92knUAncWtopI90m77LOWG6 e/00YyWdzd3+z7+fQ1q28kQUkrGSVgXI6Abs2z2zSYu6DZp2vTxy7cKJHha74XA6tGN5o6u/Se3f bTs/bfT13xdYdzs/pUf1jLRz+3MAgnA/uwplbmRzdHJlYW0NZW5kb2JqDTY2IDAgb2JqDTw8IA0v VHlwZSAvRm9udERlc2NyaXB0b3IgDS9Bc2NlbnQgODMyIA0vQ2FwSGVpZ2h0IDAgDS9EZXNjZW50 IC0zMDAgDS9GbGFncyA5OCANL0ZvbnRCQm94IFsgLTEwMyAtMzc3IDgzNiAxMDA0IF0gDS9Gb250 TmFtZSAvSktPSkNMK0NvdXJpZXJOZXdQUy1Cb2xkSXRhbGljTVQgDS9JdGFsaWNBbmdsZSAtMTUg DS9TdGVtViAxMzMgDS9Gb250RmlsZTIgNjcgMCBSIA0+PiANZW5kb2JqDTY3IDAgb2JqDTw8IC9G aWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3NTkgL0xlbmd0aDEgMzczMDAgPj4gDXN0cmVh bQ0KSIncVglUE2ce/3ICiVxNwG0X9QNKFQhhAgQFxBpCwLhckhBTa12TMJDR3DNcRQWiRfBERTxR 1IoXrmjxWN/WpWufKFWKV0XWVleK1XrUtt6C7jewitq6+96+t/v27cz73sz//H7f/5j/AAYAwAOU AhaYmqhSJm+OW9+FODcAEEalq8Ij1nktswPgAxFPYzDrbBGEuw8AC+8AwFhgyKfg7sY5LUheCICL b44t13zl8+5oAPyqED0k11SUM/eJ3gxAbDUAikFGXJf9l7qVlwFYMgP5izYixqCloB6AwEZEv200 U4V2uzYD0WeQvdhkNejAt8sbACipQyDVZl2hjZfhLUX2k5E+tOjM+GDNinYAFiM546DNSlJPETJE l9JymwO38ZNZSQCEsgHwXIR4jL6bfgLhMPQUgr5LOBhzCgVct5DyceX33RkuzDqnkI1YgMlgSDyw QVzXfgmTwwHYVC4vlMtgM5wjmQx2XSaWgYle4PhtHFrqB0b33elAD0hgBSaAAwqtMfSNwZf9sb0C 9pyerRi+/c3Jfp1XWno6uuucnu9iTmYzWsFMoaCy6eS8q1s+/1TasmZhReuwVpVmCeb+HCuDjSCV rZMMw4ZwWVlsnsBXgzsIFZFrgWpHHknBNJwqsDqmSwZjPrQCX+DxTEEElRaDWCLCQvoFgQOWhBmH KkpnthGWXKjCHfmEAYeZVislicIi+rVD09JhilKWoExRqt+DMrlckaFWJIrgCENwzEj48h7Y0MHu MSMxqSQCG4mhaxIiYyQRkZJ/kP/7Byhb/2LMGRzAKluI4l7JLCsDp8XwtnGGKExc5rebu2cLf7+3 +8ROVUde17HIkD1n7rm9H/XztaonboPa//rbSX888d29it21zXODrs/UepHTCr+w+/Qe0d4L3qGd UsPuDdN7a8v8Wu3VZwO04WePCzlzog9Wb29KHX/tVlzATs2qWf5rTeXN45NXTGuqjz7b4xZ2uilm DZOFivqVkmAhXLHeaz/ijDl1rfRx8dltdxqKejg9y+PtgdtCR1xcIMArn4jmMhZPWq1v9d5Semf/ IeH+k5pV0131iiMbN3dKSzgB3zjC2OWcLTPcfJcJ5bfv+6Z+5bJojZdJ+4QnXdFauf4i27Y2ZKZu 0WdX+fbVW1ty9Anxy6sDIlYGVM57lO369t1Tj1D9nkArmukDPvVe3Sm/6f84STunsjWpoirolnDq /18RN0iGY0H9jof+cxjPTsp/7Un/LYjP4sP7RXy8MU9a4CJwVVoo3GHBKays9hclPR9lYS5d0jt0 N5t2LqxKrrrQ5D2FuMAr0VdxJSfanlYsSTqnjK2+dob7bu3OjYWTbjzsMSjSD/At2A8bo3eEuV38 0Tp8h/uEqRxpekmbOr19vyihg9++8MCUp/tK27tqmkoClAleptMrGxmaTYe/FK+PvVOyVVt/LgDv XrCjcO2fzicnGN8Pm9m7l8lg/UpBm6c+XvX7j4lPThfbQvWBQxPhhF2BPi0U86Hyp+FvTW4ot0td Q+8t/ubS3pqr87f8ros8Os6ttrFzfqfP0lZWt1uQhvtd2sfJm09OTDozSnPX/8Thd+LCgiLa1lz+ 89jk7zvMyfndzdgmz9K2ko64WXUPl4dIQn0eHRXe/LrxWpbMlhQmmoU53erR8qxjMRlMpldRTo1l dmP7PsYbltrmJtz+ImImKmjdr0T99RmKxCT9CQ95XhFyq9mMOwyEzgRV1hyqQOfAYUae3kSQRtxB QrmsryRHYVGSaAx7XpI0GREpjZHGTMKcjA/+4yAkSVhiv1F8QUGBOB8ZkshQbLCaw9EEtpIEZXUU hcszVPQeVodNDPVFMBPPEYvouhanqBPpWo6WjMFG9/uRJhK5BIU2VCZCuUlHkjAShsFUwuCwkgjC AA6NzkRk6yjCaoH5ERI+5kbbcwXMLJVEgHnThKuAN1FHGlHrUVaLxAvz6A+FSyaebbZasiVDMT+a wxL6DLiXI4xWR5/bZ3L+a+QowPDVLnIy3AHiuzKdDAZoqjr1ztbsK9d9Dj81F8vSeQ+tIfY28W9U 9RHRl84Y/ybtVb7RUdODf6kSwkPsYx/ePWYzV984/smuEGx1hHbGvm3Tg3JXNV8u+J7T/UNXzf2d /Dfr/zB6ju3yA+vk9JlWz0zFPJ9z+IU4yOmK32BaEevBDxLc9P8CLor5UD+bcyzwrZ7M2obalJpz o9O08c7iW25SzV5jc4JiY5xk0+OO5Y+zWkRbNx0OTm+7s+w2a1jxjz6x2x5sz5jNMetvzxdUjDrf 5edBfsYde3DE4esnltpbDuXs2aAO+IqfO+PB3KLKhhze9gmPeh3+PeUfHLkz3uOGVheY2r47NvuS YN2Uox+ZU3x3xbugRt7k5HyNOTnn+7IzRMBmYgDj06+ebDaLyanDyipoisEuK8VmlXoV13x7Ut5r XPnzqOOWuJ/4zg2G/0IjOTnMJvRXiPnTSNgMxlP2YEyI0X9+A392viymSylA2UYqPDYXQ+C5YzEn O/oFHR5t6mQHIvawuuDS4UaKspGx4eH/ojE2OFkHypysJrWRIKEBd1BEDmHQUTgk+hqGLjacpLvG gefgDtxiwEVQZ8mGBEXCPBKpkZCkHISBMhXxyDz9NNxAQcoqgpQRhwNBeO6X7pcMh85A0QMRjSYK N+MWCo5ASIJ5CCZJK0jEGNokX0eYdHoTjeRlbwMHgDoqlve6g8bRqBVhZuQG6UG0Q5gDt+fhJEWO fVnP6uAh1WeKL+dUBCOkMZEojTo0IWX5OGKkWvMslA6h0hB4gQilEMZEYVGRvCyVDOnZihxErpGi h6QkJib6FXcQykwmmElrkOhDRKKZjGeLoVyRqZYp03gTZZmZsjS1UqGCiUqVPEWmTFUkQlla4gtz OEWZqkRjWMyjtdOUacmxUD1OAbNUCpiehF6Vqj53yiSlXKZWQESq1JlKuTrlPajKShivkKuhOp02 4WkUmcq/M1+lUVFcWfjeV1XIllEggCJgqUFESds9OooQhbZppLWBlga3cQFkEQO0IiBKVBZF0TFR 3ImKBI8SFYxRE3c0ExcUHVyChmRGA3o0KmogCi50zW0UYTgz58yvOdOPourt3/3ed+97jy5ewR3a a0KCRV2oUhWmUampHw0QpA4OI9imKTR6fTjNJyrDwwJDQgmLZRtIfZsFoiZIp9W8xayeqAtV6/Vi u1VEQrBKG+5vGqW91JJwB6lDVYGUbbMyJFQM0IQFm7oH0LdS1CkJoypcqwwVdeGhuhC92rN1kgka rVYMDgmzHKVuJUmrbu2gCgnWq8eFE3iNUutJXYI1YZrxb/u0gQ0hq0JFf2WQcrRaLxP1arWlyU7T fmEaw19NrbR6YlplIN9PoiUzxHbWYlz8XAoLMdFikiHJJKvY+Jho/RtHUKaQZ0SlkgNZxqRT/1Zx p0UmpMaIc2dGkg6SDCliVIw4w0BV0a2DRM4VI2fMSE1+44GxhuTEVp+xTHuz3VALUqoJgUYpsywe mjnkv3HztvIEQ5xBFhcfK8/aZ4okIp+1S54pzzSzisgNxNxmNXZBpIL+ZuYUVQSBIqiD838cn0iS R71ryeTj5fYOneKhnA4r6DSirdB9biuz8e078buYIibER0bJxIQU8oV/PV1C60/u0CHS9eTN5WYU 7eiv07nHdFJbr/1ifnhNypSVbt/tFJ8mHD6QEZCxrXDB0Tlmgfa2MZVTPZrH+eTN2f/7+17pNZ+V WWUOXT01cOMZ8LLUl/sNk1bYuSfC6CFNgVpZcsPZa4ta/A19PruSX1i3rv6eBBXfPU52/nELl/TN 6RkZf0z399m2dMWrJbnD+svu7fQaNvLo68bsvops3p9isB+ZLk/9H+wf/+YwaG1m/oYUJgiwPeuy vMc7liw4RceNhaczRnvOStFp25H3au/IK2z5bhn1RQ7FT9c49rz96rpHYfl8eXKH5taKaHnUdu9M L1CBAVIhGeIhhv6LEEzvefQeReUJEE1fGkiBSPqOhxmUi6XyJEgp+iCzj0lvb+WW2HbsadVbSnJq TMr82TGDOh16+GwEq6h1XpeHX2nOWPD1D9VlGYV78iwSzfvu8/G9UCVzqy89E/g0uGqMrKXLvudh Ib7652UjlkxbbH8k7lzUt+m3VbKlBvvihqunQ6PWvLSZN2LZqaDNfZuG67ov6PP1ijK75xucnx7y 3rbt+JmFXzUPUO3POHTT9eeuA0cecx20w3ff/a3nLq5Sb+InW20ePOppy6/b6wsvpy8q9c19dv9v aY5Tcgb7zfmhodrj2BC71AfGyJS5kXaKPZIu/6uIHd62TmlLN3x7/1CtsOejl395IdtyTLhxIebn yhK/U69efG/zyGpW04kPvIPEsUXprpsb6q6sdJKdvv5Lj4gLqfsjxhY+u7qpFPeui/99QMNhvldR NlbRua+yfbXMFNl4goqOmGSYdfj//obL7OGETUGNqr73q4CJS/IuBCxf7fb4/YhOUp4k795RyVbv Ml2QhPyuRlB0NV1OFHK6jcgVQxR0G+ks5PRP57444z58pdWE5c4rbVwOdRZVVmZydsUpz4UW+Rf8 JndX7d5sWfvIAqo/3Ppw78Vgu4vbusTNSnXMvWPv1//mlsKW28uXOry3uOBWZc6HdrE98nfX5zU+ OTwox/pAw6zoUmcu/xOj/mzsDS+PwZVJxWM+LcndqYoq8hmZ1cPaFqel3VSIkl9dkG23u1Lkk56+ 1+4ELJ5c4ulNZ0L+EjsOAoBQIAwGV3Rpfeu4SIhltoLAuphZMCZY8DyA5TLo8AsyJBmgN4jSa8HG GAZg9iWL8wMsv9VkquXv0ZMPPentykWBK4B06+1Ta1z0pt7YIknsBjU+//Z587tE/noJ1tJzHipw Er11lDsCl2E9VIAl5RMprQWEDHwCp+E4NMImqKHyruTvVaCGAsiDPNRAFfaUfoMAOAYfYwDshlNg T9FhEuRQ3T5sBDcYCApwgo28N/9QagZ3mA85rBcrB09IgzXwWjKaSmgGI4zj+5l70uxd4c9wCZ34 reABH8NZqOMrpGqpFhhxWEEYmnEj9V4EBWiNCWjAdFyIJVgiDAJHCIMIQnocKqEG/0A1e/AaW8RN 5yOMOWBGvWLgJ/RGP+ku9Ic/wUxYDjthHzzCHfwntEAilWphP5zEbsyFm84t5r+X0gmPHXQHPaWp kIoijfmCObI0Vs7+KnRrqTMeljaCEgJhHKXxFCfnwRJYg7aYxVXx8WR1BPSFkZRUEAJTaIwEmA2r oIw4q4A70EBWjEIt5uMvbCov4yfwOXyVsFhykIYS/z1gBGFOg42wFUrgILFxnhgwgoSeKKM0DL3I +s/xGF5lbmwg82GzuSFcGneAT+UPSCDtJtYYsRJGqDJhNRTBF3ASqqEJXqMZOqIzumE0xmIaFmMt tnDDuUruGaHI5kv5Kv614EEI+oEPjCVeF0AGWbYNdhGOeniCgObYFbuRpdNohFRKebgWC/BHtpow 7OZteAda9YP8WWmxVCwdp7UfDGNIaXraJTbQKhXA51BIo5VROkFcXIafoBYe0fqK6EucjMcIzMSr WMdc2EF2gnPgZNxoLolbzz3iGnlHPoh/KYwRPmk5abxhrJH8pHXSeukc8KQgH2LbZPN40k8iKTYN FpKat0ApzXMZrsB1mukuPIAWZIRehnKaLQB1GEqWxOESXIWrcT3uxTI8iuV4Hi/hdWzEJobMjgWx YBbFstkKtouVsW9YNfsHe8ABF8J9yV3hfuWecC95F17Fk+b4MgEEdyFUmCk8NK9sKTAOMIYY1xkb pDnS3+E98thepIx+xIsfqW48TKQ9NJbUQTsoLCNP3AB7yfeq4TH8Bg3wjNCa0+3QGh3QBXthb3TH ATgIh6APKgm/PwbiOJxOnMXQaszGOZiDS8mSNaSOLbjd5CF4CqsZT8mKdWdOxOoApmBDmRf7iI1g ASyQaZmOTaE09Z+MV31QVNcVP/fet4ALwiIiH6vxbV+WVHYXYlobgiSuwlIjowKi7hJn+kBQtE5q NGPGjLZqY7RPUmujQc04UTNpbTKjd9UYjE5qtbVSpdMZ7T8d22r9SJqq2Y75VOPr775lEZKxk73v vHfuPffj3PO15/BFfAnfwDv5q3wH/xU/wc/yc/yv/N88wT/jdwQXmsgSw0U+2sNirIiJZ8RqsU5s FL8QO0VcvCt6xGm0XnFO/EfzaWO06dosbYn2rLZFO6l96Aq7prpMV7trhWuT6zVXj+tmmidtWtpG 2MCfHA8f8IMt/5xVitXchdNv0za+kNJFGZ3XLrKo+IxdpV1pv8TNEiKmzdPmiSas7k3GNbx7HPwv aL39/R5o/5vM2UU72U/g79OBLeOwXP532kkX2BREvnZ4wzj4xAFYVReizVZEkXvYCTYalj0H0WYd 7eNbWIKN5ovg54dYiKVTPj+FNps9iJh9hA6x50Qz7RIH2TT2B/Y5fOI8n68FtRpmixB9xDfTWnjm o/wS1fIH2Bz+PvsHT7DTmpcF6BFErn30eyUlV1hjrqf4fPufiPrfUxGfr2cbxU12RhQ7s9pEDb3C 17Dv8xB9yH6Eu7+Dr9s+oPnt8/YSUW/XUULbTB/TVfiPHxE5iLj3Q0RcFTU7YJ/vIQaqOKYi2F52 kXawI1SEGPAz7SRNYRPgd8/SSnYKc15hPjoBi8Vd2Gny0kQ+n4axOtaIndeKqdQjziIWnqR3OKcr YuGdm3dnididrruZzAJfp+gjWo243AP5jxOHv5xxdz7+mU5RAiOKOoka+E8RgZZiD6I2nEz4N/OD v/fStqZtJQpPmT1rZtOMxob66dPCE554vGp85WMVj4777nceGftweVkoGCgd8+2HSvwPGt/y6aMf GDXSW1xUWDAif3jesFxPTvbQrEz3kIz0NJeGooeCEaPW1GWJKbUSY/LkkOobLRhoGTBgSh1DtYPn SN10pumDZ4Yxc95XZoaTM8P9M5lHr6KqUFCPGLrsrTH0btbcEAX+Uo0R0+V1B5/q4FqJ0xmKjs+H FXqksKNGl8zUI7J2WYcVMWuwXzzTXW1Ut7tDQYq7M4FmApMFxuI4K3iCOQgviFTGOWUMBVey2KiJ yCKjRrEghT/S0ibrG6KRGq/PFwsFJauea7RKMibJnIAzhaqdY2RatUx3jtEXqOvQBj0ePGZ1dnuo 1QxktRltLXOiUrTE1Bm5AZxbIwuev1x4r4vNh1VH1w2keoUVKVygq65lrdPlzoboQKpPvWMx7IG1 3F9rWrU4ulNJsbAcjCj21VWSl2o3ImrEXKjLIcYko8NaaEIhxZakxuW+/cXF4cP2BSqO6FZT1PDJ CV4j1lIzMj6crMblB4rCetFgSigY9+QmpRnPzulDsoYORNr7aQ7mTFdYXWO/OJniyHgSZiD1uTo4 iRq4SIV6tVeQNbcC0/CLMaySbVDDAjmk2rQ8lWpcrZcuv8fQrU8IajeuXxs80tI3kub3fEIKVcbR b2Cgp3AZCMjSUmUX6dVQJHh8wumPCwWXdYtsY7FHxwfio/oolsUqyyFzn09pdUN3mFrRkasaosm+ Tq3e/RQuD8QkNxXlWIqSP1NRVqUo/ctNA+Z7EBkPUb7MKOl/cjwj8iIdlZKN+D/k9iS9boZR19Ac 1SOW2SfbuqZBvSS9op/Wh8m86qjw8j6Me4VDhSXO6Z+sOtEsqfnxpDmW3NadngFTdEaYXis95uTk O+b2+b7hom47oVY5n3vL+tiUlYHB/fGD+oPYy7IEGNZKeF1Ts2W5B9FqEXcsq9bQay3Taum2V7Ua usewDosXxAvW4oiZ0mi3/e4Gr6ztjOESHawS7Gf6YZnq7fLLbL/Mcd5D/XKIg+Mp8MsifyF5qjLu UNVjj5cXXkg4XihZ8or1UdPbElP2rR6Xf2ZUpjmX8KlgJbOcrbKdIzzOk9y2Cd4hpwfwwBdiq5P2 70suG/DDDqKEeZ4cHwoawMjB9BIDD0aU6nUTxu63KryGL9Zt26aKXaYf8ZKbfl2RLROoIWeUKmqJ 7oXTmSUxLBNq7rSA8huZ7q9VrOLiGX6F5KWkkaN4LiyfGT3n9UFqgSrmSZRP3p/jnhnwYXvZVAqO 1eXczroc553hTySnVlXJ+sB9ThnmIMP9Mt8RS67zDOs/q8rztdPY145LCvUrx6lkgalK8sttqBB7 7bK7I9PiqDHTaVDSpfXSfKfGdHIx9jG7RqdRKWawAn6ML6bfsUV0Blmmwf5FFstCVv00vY5M9dfI Q1cgr77BLrJsakXFsIBtoS9QbZWh7liOSvA55FBh5ElrqZxm29cxvp1CtA2Ul+lTVENHkDmUMk5d qGhO0p9ZnR3mAVpv23ScNiLD2gOops3ISGK0xak837T3IENbRW8xP3KK39AbNMG+RHH2W86Qh1y3 r+D03dhfnXQZecW9dhx7JdvmvqYq2FQ7mWxsHi9iY7B/F3ub5YLXJWinBOd59Lz9ATKas6hn2qiT DUfOdJxuIQ8x7QQqigiyv1xkQ13sRWpEztiMms8HTl6kpQ5P27HuIUh1PNvHlvGD7AvUrK/al3D3 P1IearIdJKCpO7yRzYNsbawYqwDtaF/b7rTLTtvMbrNr3M2DyNQ7UcPY7Bz3oaZ4Ge0t3DCOZGY5 8jYO2bwEiZ1B/fgDcNkALbWi6lB6Ufmrmr0b99jtyPu4iOHM9QqweqOjwS4HZqM+SUEZ5KZgO6Q2 FpJSoPb5FBpRcBlyVAAuHHgaM0/j+zlyxG7WTvvsMjrLOpFfcrYyBepNP0a1+JR9g0naY/8X9coo 9U5CqrGVfJSanezdD79/Q27arL44jSPjTcJeWkEl9i37FjiZSN24D0dd9hrLgRbH2vtpPD/GrrEM 5MocWf0hyPVtR0YpyaWkpGDnAAjDdhUcha0NhLWw53JYdLhfnhWwKSXPlEwdeWLnlCxTcILecHS6 x9HTB7A4Nxl8qRpPgaLDvs5jl2bo2qQWSH0rW8V3sU32VdjIRFRdh3DLvWyq46lZDt/KS8vthOOj z4CPibD9GPTJqZTeR9V6FFgcGtzEC1Ghbqe/QZObmBu9LTQdvnCBRcF7C7L5GxQB73u5B9ibgL2o XA5g/9dxK2XHa+2L8JM94G0NtH0FkigDlcCFm4pQfQSp1b4NPsJ9XOzGbmtQZ5Wi9z/Gyz02ruKK wzNzHe8aWHDM2tkU7OuscYAYc1NC6iSizO7GJC0rOps4RElIg4ECiQNct1QoCRQbaASCJF4eeQB5 e6GPELpsUdmAKiJK6UtULVRUqtRuClX/q4iEhCqEuv3uyTqkFX+wo9+Z2Zkz55uZe+7Vvf9SLZQb uFKDytU/oucRIi5kBZ3sIa1u4d5bztXMqri6EPpscv8Nvs7WsQKrrld/lPl31f/DnEE1Vy2S54vD 54g8EdazjkX03MeM61iBI3Pnqfv1q7pDz6Sc1A9S1uv13pd5Nu7Wb+tec9ic37RPv6U/UEU1qt7X MzjZun5Tt6l/6k91Sj2sl3Kvf6LfUX9Vf1F79AL1nu7F3qijvX2fqEYbc65eoq7TR3SKc46+UPcw dqoUpUxFfkMfIO77jbifRDH15dzfn8Wr4/swT+e9ZrHexsvfRexOSWaRQWaLWWbWmAfMpHnHvGiq 6KjJm1lmtnnYrPDu57vrWnWhWWBWmjsot1IGGM+T/1GpTBXzoKme+f+Mka+bHrPV5KeeJF9U/3MX fZ6m7p6p++SL6v/voTMU3StTkjVMxf8cX3OBiUVF/03xgTruPVppmTdepTpnXpBNe4/y9D4P66MA DaPjaNrpHocm0OvoQ1RHMe8h82ey3vfGvQcqnX4me8TbogrIqG7s3KjlbTEH40r59GymZ7PKoAJq 8jafHtnEyCZGNjGy6bMRb5M5JB4Z7x5WOFdsd2S9e07PHaav7I2y3lH1B3QCnUTTeDUYVa1ovDHS pIrenbTuZH0F/mt1vhcSISRyqN5FTWoUO46KyDs9lkEFNIymeWFjVe96I7KejfhslD2P0BrBewTv EbxH1J9Qs7exsZ+RxqpbWfV7yOA/jO+w2og8b9jzG7tay8haTm9txMqc7bdZYz1nnNfEV5/nV+at vOJUY/ZlVxzzfHOwssLvzrZ4XczrYgVdROuKaMxt9VvTrb2t/U0nXtXr1Em9LnOOKfiF3kJfob+Q K0SdBS/1cqyQ1qPZ6V6KA0hxACk5gBQBUwRMsZ0UlyZlDlX6/WJ2kdehDqLjKPLrYLyDmfzzOszv G9toZ3Y7s9uJ145/O8ffzoG0m3caHkk8kngkWUOSGEk8k3gmuahJoieZkVRnecloRsUfGM4u9mL0 x0jBGGTrNTOrmQvXzMxmRpq59Odhz/PirKcZnxtpadK4BTtB+3VkZDxAFnm0mmnFOPIWSpwSozTT W/eM3B5GYmi8NLeDftkb69MT2br5lfoJeh15asz8Dq8x2mPm1+g36Lek1Zg5il6EOmZ+hH6MjqAX ZOw59Dz6Afqh9BxCh9EkKknPPrQfHUAH6QmFFEIKIYWQQiGFkEIhhZBCSCGkUEghpBBSCCkUEqmM DqNJVJKefWg/OoAikhOSg+QgOUhOSA6SE5KD5CA5SE5IDpKD5CA5ITlIDpKD5ITkIDlIDpITkhWS hWQhWUhWSBaSFZKFZCFZSFZIFpKFZCFZIVlIFpKFZIVkIVlIFpIVUiCkAFIAKYAUCCmAFAgpgBRA CiAFQgogBZACSIGQAnMoW8ceRpOoJH370H50AEWsmtmGimgn2iM9R1FEqUGpQalBqQmlBqUGpQal JpQa+6nBqMGoCaMGowajBqMmjDF9NXnxluTXG+gX6E30S8mdZ9FeGduN9qCn0TMy9iR6Cu1Eu6Rn AhXR4+gJ6XkMbUPb0Y4oR6CFQguhhdBCaKHQQmih0EJoIbQQWii0EFoILYQWCi2EFkILoYVCC6GF 0EJoodAcNCc0B81Bc9Cc0Bw0JzQHzUFz0JzQHDQHzUFzQnPQHDQHzQnNQXPQHDQnNAvNCs1Cs9As NCs0C80KzUKz0Gz2JXhWeBaehWfhWeFZeBaehWeFZ+FZeBaeFV4ALxBeAC+AF8ALhBfAC4QXwAvg BdACoQXQAmgBtEBoAbQAWgAtEFoALYAWQAsiGlk/SZ5vI99vI+9Xkv8Xmxf1PnNU3072fUoW/p1s vJes3ELu3UUO5sjFq8jJhWRePxnYRyb2kpE95F2a/JtFHvrkYyd7mGTV21j9bexiJbu52Owl9rPE fobYTxN7D7F3E3sXsXcS+yliP0nsJ4j9OLGLxJ4g9g5i8wnK2n3zWGagc2HPxf4slEbz0QLUjzrR AA91fYD3UK1aeP+MqxkzeGVsmx7PZJNmg5mtSiphuiLLW25ka2KfF7tD7PpMZynxQSnxSinxYCnx vVIiLCVuLSWuLSWWlhIDpcRr+h983SX0/MyXComHColvFBLXFRJfKyQWFxJfKSSuLCTmFBLZHv2h 7sDrabE7xU6I/abYhZFVn4r9WOyw2FP9s8R26o5KQrVU9aFK7nI/26L3cUpa+XqvysWj+plK+jW/ qjdWctdSjVRy36H6ViXtqG6qpC+nGq6k+6nWVdKXUl1dyS2l6sr05ub7/05n/RPp/f4L6TX+c0SY TH/Vn8i97W9L9/n35a707/WrTfpn/ndzd/h3Rc3MDP/2XL9/W/qIf3Mu8Fem5/hLmH5VLho721/A 1PmM9Ue+Fb+vh+oV//qelp6WgeJrpknFVFFfkpkbKy6LFefFipfGipfEirNjxYtixe5YsSuWjLfF W+Pnxs+JnxWPx5vjTXETV/FktX4ic5niCZ1sbo2q5qbINkm71UQWg+WTNm5457/x52YDf2/CjpoN L5mB8vke7/1DOZ0vH79F5W/uLn881FPVZy1bU57Wk9PltrzKr8j13Z26O1+eOZQvDy1bs6pqNpTH B/Pd/Mozl8vf44Ory7OlWdWK9hWNdob2okZ7nPbSRhv/1eWBvnw1Vl9eXtCXL8cLN6x6Sesdq/lX No8QZcWqqq5HXVsvKLctXnVMae1v3X5BVNe3bl+9WnXcY1O27erpC5cMfo4Zbti+z36pM9r5wubs 2dwzHifv64/EDopN/TTmfzt2ymkociqKU1GciuJUjJyKDadUZ3lXfmhVud7JthuNfFX3DnWvZdE5 s+GawWPcXVSrVx2LzVG5a5ZH/bE5HEGeNBA/s/GU30jDb2b3f2mv1uAmrit87z70lrVavXat9a4l Icl4bUu2ZcmyZWvt2EAeBmNaXhNNGF4F3EYxJqTlkbgz7ZgMP+LOQBta+ppMKC7TjF0XECaZOi0/ QhpCh05LaEMDxHQogybpDMOEwYaeu5YTJu0M/dNd3Xvunvvp3LvnnvPdu1Q/wVH9YuXDOMj2fsDB xPtLOBTU7QW/hAtR2wguTATBaSik40Ki9hBufFeou2s8FJq3tUvH7CrZwt/WMYpCMIqOMR9Gio5R zId1DI2/wChzGFfzPMbV/B+Y8H/FqI+6NnU+EqJf3VtJKPeuHjehzjWPPT0nvdxz7XoI2Ze1/9A/ if5M30RWdc2YJdQ5Zg11omxWULkMjuUMtjED6IxQCLw1ILzon2QQPqrDbaC2l7pqO2o7SBekG+kq A7Wj1CW82BrwT+KjpS4O1E4Y5PMZdv3/7sFHXzv0638AEuggErq3dn3+m9MODqrqINw7oNJR0FZV NAjePj3/OaF58nD2yVN5Os/k2bwhb8xzeWf+LejNw6dDHj4kHINrMLGzA4M5UkP1PLFOWoNEifXf IHgOemAEQmJQsfoHK2RhuyYZjKOgY5lRGlkM7ChNU+VmIzOKkWj6xim8DwnqUu52pmc2s5S7k+nh ZjMom5nNkFIfDzgDzjBUQJdoppKemtFYdA9VMlPAlziEbzCvwSZOo6jmwIimVIT7qDHUR5ezBYzH dxLLd3qmZ6dRbDbDgTkcSAWY3TNHq+jV+MZpYuPag49oCX2CrCh40vAGsnJmDNsVPUGLthun8F/n JtdTzKFssT7OBiNNiWRjg9fjNlDrO7Jbezu0rYHW+o4NrfGOjfDmtgfXmItsDPEoghZrNqMdC+Ey Nhhm7Z4CdXBiGY/503g/qgJqOKhZs6ZlJqrXhE1itIDvjb+sj5Ub6ClytweKMCAZEg1go8FoCJGR U6kk0gc3JpsSkVAQOowGj9vb2JBKpph34urI65cOTTriNTh58dDkh7aNPbmnBhbES5K6e/W90bcv Xkkvuvo+3nLxaktXKr5v11Pbj10tSdhy3kKIaYf5S9ivVbrcdm/WxPvwqKvgYqI4yqfwYrzYdRC9 in/gMvkLDz7V/P6aRLP0I4nySqukr0kvSC9LBcngEha2JCTY9ia84pysCBN5Y2JhjMgPJuINRE5r QmNLwhUPNSRcErSQ2WK12cs4J++apN6nzlN/1OzBlchiNhlYhoYgKmlPBFfBZCVcoEY1G+9y87zL Jb3kxd4C/oUmINZitvEVVS6ee0XEotjLD/EjPM0XaP/xCt7HV1gm8WZ8GZYWCEXl7uTSsZzemoLA yxZz6fQwW6ea9nJnADFPCViFtcgNqJgUem4VDKGAvizJxkZXaYmSKfqfn5zvjrcqi2YPdNW3VC4+ f+LtOl+wunkZG7v3k+po+0KPGmmv8tKr4taaSCzrhhd5Frx+BbweRZ9pLciKPbZoJBk5hU7az6Jp 66dW0xO2x6MrbV+1r4lutG22v2Abso5aR20nbTar3W9fgWiz/fUwhQoPpibkSEKX1XVEDmm2WEvC KlmsyO3lxQIlahY+HGBpzSol6AK+dhJOmWGzxQbY5zW72MQhvA49h0hKEStugVi5MmG2gKQ+nrCY zQ4Sx2ML8IJJvBtW4K5miVnill4LbRGrCvjWfBD33J7Nzab3xARuVlXBZXpKc9Nqtlh0ptPONHby afAqZORADty6PRyYSyujMZBCqbnwNnwR+MlS0jH4Av6dGgjXmj0za+uo8b3d/evWjtR63YHqBbGW vpnho2c23b98TlYDnqr1l/DHe7qXdDz9leVRhxALxnsH95wcfna8CB5/DfL0H+DxVnRe6zRwx2pP 1/6hllnCLvFsZbd4LqGb6C4ynhLOCpQv7I54Wt9lmSxKsknPMsR4URhR5ehdkRKra1sSsPMQX2mO 6oYE5/KXISkcVGI4RkLRmgyGJcmohpNsWYHu1syusNGOULrK9yZ8L9B4LaoCb6bL26yT+C5wwrWJ hoZMWwFvIG4ED8WmpwmBFW8XyQPKzk5ni9AocsWcM82nScHqAFIHtoMjwYvgSezV/RQKRktU5QN6 SBKHRuGe06XaqRJ/lLxbcq7Ulvne/X+9d/nrbT31FR2Rls0jh5c/0b5wY2310sQ2W/yZ5me2HFgX r1kQW//zy0eOb6J+Fd/z5I7ruzvD9fVLG81liS2tTRtEp4FSQ/U9lLF5bVWqZ6VaF3q8K3/0xU1v wM6A/gKRfoQFH8HLpjUXz/+UwVYGIwdJebfXJ4gP5z3nKLNZIflNxnltOLiqQhQEGRtNJiSWGwW5 As6CcrkR00yljKgqSVZ4hYTukhUJXWqLiLwy0ZjVpVYWqUlYFRxSGpUVCq0UaEUz+yW33y8hkwn4 5IQgu2EAP0keJcRne/1Ykfxg3a+UY6UiXG50iIr4kviKyEA+ndNkjnPYJMT0Cr3ykDAkjwgjskGo rJI5wSdUAtP8DH9YYhqVUAzOEZLJQIpkICMysK6QCr50Th2uU4FxhusEki5wwU59XOG99ixM++yE RyJy6tdufxb61gzvPaPO/1VwOIxcJkMK0NRArj7+2Grtu6vlb/n3yN9h98sH2EPym/7fyufkv/k/ km/JM3KZXNna5JA9bExukxm/FMGqlMJpKSUvxsukPmlbxTeZndJOZT+znx2S9snfl16VDypj0in5 N8oZ6R3598oF6QP5gjKNpqXr8nXlrhzEklk2KD7kwwLrM3lkVW6WLcTh461NEKI5NKDmyFHvuEw2 FbIVaGbRkVU0t408DWku0sgIVVlprS+SlXo5P9FPnXT6spJmdWTx/NEMqWswnSTxGjV+mYVTgRSm XZg58suW+uWLnK1x4N/7t3QaXu6c/dMC6sdb+u/3s2Uzf8c1kYYncZ8aaVvo1au+Y3QXqD+7byLn lpvAD9PADyLkegN2aZuTdf8mu/pjm7ju+Ht3sZOz787nX+c4v86Of8bn3zYYn5P6KF0poJWwwgKo bigFQkq7kLCGdWyCdR2QpiqogmqwSoDKQsRG6UTSBMaPdQNBpP2uVNi6gZAYDEE0/oBo2oa97zs7 Tapaevee33u+e/L3c58fXc5+51vmXc79zqPOE6Eapt4TWWXqNr1uGjDp74h3IlNoSqya4C+JlyOf oWvMVfFq5A66yzAHA0fRkPUD93Bg1HkJXWH+wDFBZrGuQ9el+yEeZHfx+9ABjuFUUEqNR/gmT5pT G5rT3A6QRY3EGW8Spog+kg0BGHCeGKIbEVfnOxm+EKby4aXh7eFSuCoc9rt8Np0faKZlvknjmLuo EXoHvQSlIW/sRwKKkSvuHG03/NFAGU6D/UmBCN4CVhEeAtUQ4/HYDJrYO5nVeJoArfLnE5qBTy+a 4RlN9DRiqdCIL1mhb3Am9MzYIVbZUskfFUv7xs7394XkgX+/efT8xuLAt/d1roLWNPDOqy/0nWhp pfbEtjzVc/27Q2+8/PuvJ17JdV//wS/e3DBq27mydcXOjrYVj8++1r6o69A3MlKUeM2bpb/Rx+hB 8G8ONFdtRB/q9ZYPWc3GvW+iJZqify7Ysf19k7MW/NzOip8DcSpono5YLDzL1dGzHd6kmt+4DFze 36EtU9Vualsuoa7LxRa89PjF6RE5A18K0D+ld8EZ7Ch3iuWs7DgeV41mchjtIPR8Bj+NODyOrFhF IjqnHUSYgn+bHCI2Sf7mLx8Eu3GFnal78GhyjOIlrC9uC9SLDSaqv5U8P/7kuuJoUY45TVwjyFAC fPf8qnMoT9WpWXBD9pZoNvpMtENcFe3GG6Nb5SF5TJ4QJ0J8RtwaGsJXQ/8Q74SmxKlQDQLbBSRs tdnFczQmXIua0TcBbSzwX1NjfZ2z1iHaz9CURsPG5o5wPtImoxAGD3ZEDdpFm90utkh+CtMoLsSp eDwkmxRJyStLlSpFQVivmpryesLIrJDW/5JejFjkgfszMO0BE5f2jNOLR6SwnJdh0yjMyhEN7kBU eQTah3oQbUISOoToG+DXKaSypjTiWkIRKdFEUTjCcjV2NSjaBSGFU+RBRiGdGqfeHY1cFjI4U5nJ wIxqamtTjVy6TXX702009pPnsBZjXvJjvwqb/GST0OnCrsuChE9KF6QHRCugEhwr0XgfjWmyjSbb jMzlGJtnKfbg/NB53IYw9S4SobfDPeuaLHkToE/1+NLbob+hMnaHXTUs76soArx3cp+MIaHA6OGk 3NcLwtD3sDAp98qaQ4rB6CH5Nu1PIRjdetwKSyD3MXlShlgjTMKNoBGPUNAulbe2LCk4S8bZ2vLb 24tp97SdqqZn/Ou0E9DR+umw4aZTczPTtuwLK4ZLKmWsNS2MemLMgv8pGrm6jru0nj6woLzgKDbn R8zWkOKJMkneHprnibL4P8VPexbnI5KtpXhR41y6WQ5Ah4tXFj8RhulNxWvtjkRYsrfcf7I2FpHs 84hniIBneASo9qMEtqlSjQWvtq5KdFs3Jk5bTgeuWK4Famblhguz0YtMpLBmaiZAnCsbCVjuIEsc bqivI8i2WS3T4A5AuAgkMFg4i2yVE3mct+SsucSIdSRhGMSDlgHrQKIqUQZ+Qzl8JCL1/kgwyNST J2H4tVWXskTGqb2qHJPy0lKpU9ou7ZH0kpSyJINWAUJI0qBafmWhllpuWCiLJZVcfqjs+HoLM1bB nIoVJonEE8tQ9n0kmUBNC73VRO0rFa3+ahz5opzllWooaoDERI2OPfifkXJGKS74Uv3wX8Y+yYZy r/7m+++dW9u5cEl39318+NNKaJlVsI92d61bEu9Y+Ltw8yvptg5Spd2lG1Un6WNQLQWfUMV5upXM cvfK5MtMd3aL+/XsJ/gmNviIAVvNmfMMz1qqlRCeQDobFaoK6QJuv88f9SsrfMujy5X17vW+Dcn1 Sr+3XxEOoLtAsS5bcxqpcMGu0BykhuZg1aSkVadaCwAJh1qCAZ/Pe4b6s1bBZHMH5qIKzyOsRKMo qiicn+G9tcagko3SGc4Yb/F+7r3npb0+mf+cv8fTvnHq8BjmbRaMeSNhCiAd6P+qmoSsatxhpARj u5EySnHCFE1Cdml8T5zqjGPCddvjdDyOOmtxbZdNkqrxOB0bCUaQIXqGziGFfubjjEQb6zelx6m3 VbPeiXNBXtiB4ZMzxLdqPIAhf2oFfxaU6TbY/Ie3863yfVCGyQJ5nft65UloMhQfLJRqxCpwFa9d iCdsMGueUC7wBBkIUASQkcvv/EWwhdUC36pddK2tfCsYKFyR8j4SzAruzHQM8KaSDpK9AjPZgMxp TDENMVpbA2mHVJGhmww/u/DOsPIsNg8932+gGv1dL+yf53KHVSx1DR+rXu3RUPbBa927v5XveGrh xIr4sr3PL3lu8/dsCYPBZ6v3cmFvcn5ucJ3LV1yt4Qz31C5q8TUFsilAVakEqCrqzED7Mu5Rcw4B kqgOYV+NjwmKc2rmMHPdmWAX7sfH8LA4hseMl/Bn6DZ+hMxz0dOoA21A/Wgn+rEDqlKaOgVmOkQK WD9PSX8t1IE72fd0IzWPavQbMK6qEQMHgzTZp7K8NX+IxSyBGCY/MJIB28JxiGfOAq00QKvXqIXW ZNMCsumYRh9JLkhqaihrZmV2BEiF4wBlqkt02ETRwRpcmJYQ8kt0Nc8ZXJLBKIaDDlHwnKHeRnq4 eaTOm27X4816rD8egRhnENVMNm0SJfGkeEGsahd3iHvFw+JHom4zaP049dtT4UWHwVXcLpAAAXh6 VOgDgagIxyRQCDSzpgtlEgHsyRd3EdC0tiKIDhAiSZQsyMSw98rgsrWiUyRMVnu+Qi14ls+jvvPi 8SMf3z5Q/NPw0W3GBxqZeM56yqSSHJ54q2ffrR06czG99ubQnuK/jjyXLPPJVq3770/ODL608/ru lZsRuJhfl64DVx9DMUydRjWlB6rPXpf2ySpSY+2oPbaGWcOu5dbwTBzhGHoCbWrcjrbEdJpXsDUq 6UYHamo2NUp1vGA1gnpL/6e7aoCbtu74e7IU21JIZNmxpNhGiWzHdmQnTmRIDA5RC4UUCOGrCZSm yfhctt0tjBJoc6NurxQIcKRXOmC0pe1oKd2tZXwMJ+tWbqUbjB2F3co4uK2sl1LokVu2o+1gJez/ ZCdku+581nvWk+0n/f+/L3OBTSqfljmVmBU9xJ2j8oqVMk4kgBzXHsFKpCRiRNIROpLBG4x89cPC jwupQmMcnyjM4H8ZhXEGdzJpppc5xNBMnUroAdIJGQ0VOgWpvFqixlVDnau2q2n1nGrnYdKp9qon VEbNWGqPVK0hhfmS1OUm2GptNX8HBtN+3qgHVteIbCezgS6ZFJII0IlaIctpeFR/AY+hshFsmvgb lfE8k/cFAlW6LVYG+uvlp1doohCckf5gTdPWQxtaEqv8gcpl+4c/GfzbT3HFzxZus6zyxxRn5JmZ UyShpsZT9fyK1Q9/r5hvjAca6jtOvfg81g6UEF7fcfdjZh4gsARF8R5jY9CYMCkxJTg72Cavd6x3 7nJ+KlpnB5pFSpE9QYozPIEESw6c4ZJg5pITswItuFlcFFgS7Ajk2XA+ZxV9wS70OO6S1gffxJ9L tyVucrAhMDP4bbQebWe3cGn3Zukldg93EP3J/ZH4GRoQrro/k75CN0UXRyApmjEJJuiert8DH6hR ieLLom/kLKu2cAFRYiWWJRAUMXJhjLjScWKoSJYlqbukJIyQlLHMNopCSpGVtbOlyjhOrAjgWBhh vpy0ip0n+BviMZ/BQ7+IYRHHWMIORyC5mixROr40wYNvqMftuBOncS8+hE/gc/gK5uYC3V+qiPfh HuL7rwLGTP9H7F8OoaTyJkrhcLVeS1U+cUuqTFWinJPLInZTQeokyD7KCf8PCI8jE7Gj/OzPsblA nJtY801gZeZdI8hUGoa4l/f//sprb2x/ed9TE7NgHUajYP33u1rZlLC7esHZPTuw8q35S++Wh7Jg 7Vn+7F+3tHRCd+wCfj4PWPWAofrCaJjtm1o6VbV0qcddJ10WhsIv+vB0qplaSfX5Tvm+oPJUr5dA 5YpqEVQVCQpuw1Qhxnfh8RA7j3GhorittpwCk9Eo4pM2YORE2tZro2x1tFLIcXXeDLUbCiJ3ypRc HMDkE/eO8B5YKdn/4Cwz47U2Ds6B59s4OACCOkAeeP0giCnxzSCifQiT/3CZlTsO/4WN8YWmjKbu mMtqdgsm2mGFjD/nk+SC1SlMwhoCWSbmq9RtQjGb2mj/KBKhGqEy8sSt9NGvjxds2/bY7xYopdEl w29vvnD9IE6+/pt/sGc8z3Z0vHU/frRpWZVL8+tN9//5wFYsHbhwIqJ3LVzSsojw4ZuQ6rYDAmvw JKOyRcEhXANt1OPcg/Y4+9EvnafRaecldMl5A98QbqPbTt7mdCMRu510DeoHoco3ww1VGa+q1hMT axD+VRYVIwHPgce457FLI98c657/ONY9y2Pd8z0AVqIK7HX6hArikV8xJgs+8Mi+thAOva4pJchZ g7rjlV5PHqCsM4ADAV8FtiSF2rCP+OJatlNIC73CIeGuwAgZfOxILSkoQco9XywmwRkTU5xKQSBK EZ9EEEKkDOeYNGlig08BUFa3ApdaSv+vR9azRErqRziWlMw6cjV1uwNnTcydnSZAujuWTqtOljQs c3j//uuZF2tnVQplTyxd8bDdgVMmqKj3hgtyjhnQg/+plaUi4pzN73grAtWNVrkuNsfUPMKtu4YX Mt+3vIXCKIFbjHSbfWV4ZWyT/iOdobXl2mNaWuvV9sby1qCN6AW0U9sd249+oh1Cx7QT6Ezx++Xv a2di59FfigfQ5yWDpc5IoDxYy04KpGKT4g3szIKGaGNsXXBteF3iGfZrfCt+q8oRYcuj5THLCx4c Yiey07XFaAvaGN6NDqI+ZLcTtNmh572EZE09dcIk6vV4MKRaC83k2aBTRg1NsydbX43lXCzLVSpl Vq8SQdBNbDemqDDOiygKJ0jdfAE7IcyxvLOumngbFQ8Z7ARWhHeaw9y71B/QRBTHG01mbM3S4uDA qG+ZuugYL+G5EmBtMfAjYUYeqBGlTGKsHxwpvKRtAov7w5Mo622BFVsJNeKaUWa0FFD+0ZqDe63J JV0TrmMJ0jIQHHqgCors3yd2X1x7bVoV1P+TRzc4ihp3zTx6eR/2v3Rfx/DbPReeXtpz4SnL8rAW mhwR77i/82qXWfkVTcuj0Y9eew5LB5U7gQ+fbk2f39D+JMHyVMiyHwCWU9TjxiNCHhjXdaWb8C78 Bj6Gf4svUPYFzDK6i7nEXPcxEW/EF07UFtcmmvFK0+IeRxkmY+sr7vNkvBlfn9qnn1ZP65d8RR6b x+tJtNgekVfZV8mnfDZTj1wFkJBEw26wFoA2WFRJlov7La6cJDYbbliFBJUxWYDRorGKyni1rifG OlnBwReMy2ftdtt/gf+oy5AM2fwmR0e18nCoLAAP938IwoFRanKylmQKfeRH8yGcqX61xI/yoOWg f1jZ6xJk2Yv8fvh4RE+49Mzda4ae76qHvagaVsAip1Ig0Ha7LPv9ut4dDUc1uVsTBAery3Vhr5zg hXYZyxmLbKi6LOqirNexwlwdn9Oxoc/V2/VOPa336if0c7pNz+CvjtRdXAz9dnNEDXTS+zGxXiep SiekD86OjIcdIpEFiFd8CviHH2glEYyXiVzIhkwOYkE9PIkbh0FNslemzN6F5oXJIMzNhk2ZL0Qa GLo66TA13RT1Csncggw3LcBNe/kiLxxcHjg45dxPkg632njIb8S1EwtAHAAQ2+rc9r8kYmYnKQc2 TkbDns/X+1jYPjTD0GHIPmbs0xaP+HqrpVrMISMLCtGZg8A3rIzghjrQ2rv5x6+y8+YV+VLjZ1x/ IF6nzG+yTm+atva78+HcZGXG9WlVU8YvyJl/8PyzZvV2haLDTzqksMmKRgTM1xpFLq+dsGg4PfZs Lg4AM+4EnCwHnFiQgj19iIHbSZL7ou2iTMtiGT2deYhexWyle8S99F7xIN1P9zF97n7xDH1GvExf FovQvWB2H0udHaNqAryLSHe6LWZn26ygbv3ZS4xCtcVwYnpMfDubi280w5BulbPxDQiOht2J3Qqd 5+4ugASHMnjKYUsbhsGI76DgAhFEs/Q/jFd9bBPnHX7v/BXfJbZzvq/ENv5IfP64FDvxnYmJgy+c Ez4ClFQlfFSoLYxBKFvTrgjabFo6pLGiaEyrui8VTVobhNZqULKyOGuXaaNrOnVtp04dgY5mFWIw NaOdoBN/kOz3ns9xKFPXJHfvvefzm/fe93me3/PwobjggfQWgvgGaNH4jfwD/CBkt3nerkFu48Oh 9GuiDFKWArt/W43LpbbPXp/FKAJbCH/wSN40gmWNA9/naFrmXfB+d5Y2y9ml15f+5gf/KbbCZt3q Mbbk072jxdZccI2tfnp6buhW1x3FCnRqK6z/v2D9s+QNbZZJc6rUzenSDm4Hv0s6w73OvcdRXq5e jXKKulItZvvVTdlvcyX+TYm2cc+olxtvNFqddCKbodtYhStEl0srsmslLbZS7ae20AP0APuV6MPS 3uwR+gj7LP0sO0qPshP0BDvJT0ZL0hR9nj7Pnuev0Dfpm+zNbNQWDfJBoUHyqwl2baxX3Rbbpj7M f5c/xv8k9mP1F9IL2Ul+QirFXlXels7GLkjvxy6qF7OzvH9v7CF1iB+KPaGO8E/FRtSf8k7QhExK LIhHxUnxmmgTs5IUi0YRQlGO41mWeAXQUQdHI0aIy5JOLQV1S8Ri0uRiaUMu/HGY9AeWBEPhpuao dIepqlbMOz4Cu+RxA/ZoqiKKvshmPoqYjbD0R2EaHCI4HtxjiGYK0vj8jEYBl30Scb9ESBiEdFZl s1IUzuUSvKtcggkavpnlJTUWpUMoK3FWKjoU4GcCfjs95I17WRQbSqkzqXQaKnScpOTOEBavkAaj 3x26FiLvDm0MHQ1ZQo3tFP6AwmKoURupQWqYskJ0+qtGe6hlcTgJ1DJqnFj2ElizKmZlKN8ysaEc dNdfwlo3iwwNBPTKHgxluARkE4yQO1xONDVLRRk/blvoYH2l0UGXUEAH6/gCGJGZ0zBBLF2HXd84 a+ifw1OTr8njsytPpLantgMbHgWfB4ehh9z8R5oTFDTLwokDccaqGMUr6QUScixENmkDDMrjV6dA LU/TblMfUVkjm+60iZZlFe9giqONWLg0nomRjjUfGxxrMuXv46dfqQMf8c8idhO5ufcJTydQMdjz UXercpLYNPeCIXim7t1a/2TEA0bC6Pxx7pxJzEz6twCLZ4CRu4CRPqJeayugFUSBKXhXEYNokBhk Br3DaJgYZoa9V5ibjBvQTBAM8grIptVpLo3Tas0aX3X6IIqLrT7gGQWg2tWZj3psVddvgnQMpLEW 08MDR73h/63os/4fhNLLMBiTAQIBOiEZojgYfcIfRx4mBTmP8FNY8AA1sHELSQzQhj3LGC5TuIUN wu1pAKBZUzHAAEByAVVEUDSdHpj7z1HAv1+5Xf1eHcU2fRXOt1Xlq1QeYv4TSFsNkGh7LYWXGDs2 IocCdykxm0STPtFXjItxOSfm5Fxxtbha7qMHiIPEcfSio+QqiaVwSS4ppeKUa0qcCk/JU8pUcVqc lv01Yo1co/JuKAMRPsmrvB53xcNSJqEkiu2unJIrbrEN2LzdqB8Kn4V20SIt0wpdtPlcPtmnWBhY infHAi2GKcetYe+W4AtFVVGn7tRo2Ga3xlvznSsKWtdKXS92eW7bYKFc9RALB13ZQMYOm+cFi+d2 u7oabxM4YX4Ynh82nsfgcFc33qigoI/Iiceg6GQiLkWbmyKRcBdv4b74GKcbNX5iYZjaTtMqqspE eRScJRHqXbt6VU93sahXEeZyuw0VFERWEMRwJByMjFuWaM6kzCaTMlJV/Gm7XmRhGcJKZzpoDQSd TquD6ITh7J35fDKZSAgCT+nr4qIgJ4u6R9AAeWlBE0hhgjiFkmUIJmGdzwAEU0kiOU6c0kJMSE/r G/UH9GH9e/rb+jt6jX5hnVMQkoIu6OuoT0rEZWQqoozdpYFv3TBjbEHHBkDHW+eCf6avhYF1Df6L ccvp8UEPRA96w6dB92TzZytxHVT1kuENPHkzFeU95i9cXcIGAWQ1lzN5AYZSrsGtDS5cJlHwfM4e xj1ISKB0hsqKFBQYGZ8cGGFAQmhnxmCaRguztGNjS7tXYFXEX9tq2E4stY/Ixsuh+Q81Zx23oohH UfHToKiEMW9HFoymkF1wm6ZUmi7TYf/cW5i+4DtNFhMXHF33pXfoKw4sH3jc8WBHGnzm749Yff5I sKW4pdL1+6KRu7Ryt1Rs7evZm0+D7lpGOtukzS3yY/f7Q3Mq8D3BkYf5elZkxJ65nWafq2cbvA1F sy9Lbb0E8e+WKLZDoL49oL4nQRU6yHe1PUyffadtv/07xI+IC/arfkc/2uTsj2xSdlO7xYORUsO4 fyIykRlXpvxvRN7MTPunA+cyV/1e2Sf7cw3tkdWR/ib7CaJEkAPK04hsgFDToFicEG6cQHUrIr6E HkPPg7k0yB7FpH9Lq21frtyLBhH5F5D28fm/jaValWrIg4inCWbIE0SxoctVTnmLxN1tch804Ewd pD5BEyfKUqDV1lKLsp+ZD6vZj6YoZ8WnBHENgJri1hjNC3VFhAzZ4Kzmv+q3gbkdy43ktxD9gLmf yXjOcsZzUBS+K/pYEd9th7ui6Is0ESgYtDoUZaijI47sFCWKC+lPNNOfmI8rGZ8I8U8kRBz/ghlB FOA2xZzMTGZIHP7eyVgq+c+aARMzlj93ALLfp9sXwtMXy35m9BNx9BMxl0VskkScrhain+f/Zb8n roo4/9VXAqCrQlR5gaiYn488KsvG9DS3D0dBH46CPswxg1sVFkIANF9hBuc/gMrFsbjRGuyFFvug 2kIkXVdv+Bz8aobfMVkqV5l6G0lN+sH2xf5nIsxUmEludnZ/ve/Yz6i+Ku3usS1J9PUc+HLf4kC4 t6PV4GK30nL0a8nWuUOLiHZI5GJCMLtt7lA1Dnor9CPRz+c/sH4I7HMjP+rVvAnbAfIgZTnAEHyw xuEJIrpxnBzR6JPWSes1q8XaEPDivnOwlqhtXLIGLCq2pOtnN4AgrwcTOluYxeuHttsiErwE0wzv Di9HWmNtFR3iWJ7c+c0/D5wilj+3/609o3Ov7T92+fuPvzi044fh3af2PEmETux7ed/I3I3n//TG Vx8aGd69e/NTCJHzJ+butZEw0xjKkKT2LeZ44HjzL5t/lfhd8+sJe2Mq0bI21Zu+L31P2770g22H 2l5uo+zI2uyIOVP2tl+n/oDOoffCH7Sdy9C01weGvbm5OapG1YSaKWa2EJv9z/lHA//4L99lH9vE ecfx5zm/cWfHdz6f7fh89jlnn19y9iVxHDsOIb5sIQRajfzRGFiXQitIxR+TkrCmZVm3rKOdYGxD HTAoE7AJkLb9UZYISMIkqAqdtJdC/2hV0KqiiUlFLSuaughVI+z33JmE0m2x7rnc4/Pb83x/v+/n W7jLLxQ4ezQdLUV3t/2g4KAxzTsKARTAAb6xPY3S6RLqly5J/4o2FKB3kC0vEPT1AOMeASyLs13F KFEInCXyBA3/IMOavWi4yVVbVJIwQxPck+CImPhoW8bHRzKNiL+Ei2YPkP4LH0pWZmmGbsXz/qhf 0mXZ5fdPRiQpE3Fm5BTD8xhPAjV6+WIGopJGdtMzquBBBR9XTiuUQr4mF2oqKps7+BDP8Ea5UuTJ JB9tKrL8IP86f4W3838tvn8cCp2kEsKPn0FVDd/WHlio9m2zMokeSF1y9cLkKw/hpQaWyXW/eKkb me6njWMLOcfB/8aH6wa4MAMNCxbyI4IMZEGnCcWSwlL/D5i2u6yac9oTSrkuPKI7/P2Byb42KJvF A1aUuJxYTSrnjvfEiXMfHVu88tNjl159d8/ovg9+PLZ4WktVM4HmNAkRR7UUlEv/0zeOv/j5kb+c 2bjtlT8Pr58i7gWDowKq1HD/eRDpDcDcG4aRY3NcEb+MD+LT2HmSm8eUHQloQBlCNd8pNMedV1b0 on78NNqBnsO70C68H+0HNJrBb2HPQYRhE943IvDLMcexPh8SCYR6qLAYkaKxeJOSeARAPXA01M3I bQGg4fE7xXCjqQ8f97BukOkoBCof8g6fj+imrCQERUkwqxq4EjAThxvAIzQNDEJRfL7JjBhmlFwm wbnySkhhBpUtypSyT7Ers1RwJtf6I0sP3ZqvXXtUB5ophkpF425+QQJWzIRt1wj3DI91di41TCfs ptkem/7nPlOLkYO/7N34yvq2VF+TemquFydWQ6fsv7ff3N7J7ev6CpX4WtveqadWfTPf9rXHn9i1 +KflZIL/aW4r7OJvoQv+Hnaxnzo3Byv4iXEOFt/V6WfFdrEY6lTZbKG5vbmY7hxw9Lv7Ozc6au7t jmfdviZBr7QK1cpz7M72ncWTnll8znMWVPUuveD20pxboCV7xd7l7M1yLUK8UhVaK4fZw9Kc9Efp mvRer+8sno/OJ85+5Tp3X/hcWui8U1noZXIKG6se0T/WKTWn6qVch25P6lv1a/ot+pbnlu7M6XzE E9DTdIkue655nFmPqm/37IR/Hbq5i2D9NO3J6dk2D+118rRHz9lVG4oXuoos6BN+r0EzRRRPtxWR XEEKvqrcMSv/huFu6Soq8pPCxwIlkKIPwY3CUPBmBVfIaypDK+Nyq0zJxMn9wSI5Gzo8IcsltaWv 2kd92PdpH9VH7u3r8610BhmbXHKpss8tCEq4UulBznlqL2rDhwz6onJVoW4ooHZ81+BPh3E4vOYI wlfQh4j6FL7keXwX9aAsNCi+2rO+Z3OPrWfVlBdz3lEv5Z3FgZmBtZtM1hi7OQyQPjw2brnQ8Nhn t8PQa1rIgRqJJ1WrvkoLmD6Z0bQx7hNtnPu3Nn4bprjbhAY0Hx+qmD2Hvj81UwhXadLEAUbg/LcZ MHQ435xuYHssU4f3qZDjh169jhKc/hRgjl6SfFV9XYSr6uT1UEM6WSk2XD8L1hlcA86XyPta1yFy vjwD0cS8BqDQzc+17p/mAkuRxaIKQjbwexFpmMNjUDcaTlk9LhQMxaiAAI0vlXZadVI2CyoUDLYX yiZ0kAcgSNmcrtOJy0nutr2jPbvqmT0hecf0yWcWL72z6dVOVUm30Cy7Rlcz9tR3aj/fkG5tfe2D 1atHRnYdWvPdkibF9RVuDp7WqV/IckeE54JcuPTC2p9dlGORvCxkVz/Wky1ksm1BKR0K+hq7up5c /5O2HnCkfCyQLayr6kDdKtTf2/a3UQm9YeRoREeGqCHbNmqbbQJPUBO2b4l7goeDJ/FJ8Q86uyaP I0lVFZGeJ7j+jzP5QjFv+V5AVAVRVDN/1yMlpLToejKZcLpnbd2G5JL9brGcUUVOlsuNhVEv9naO ilPiPtEGhDNztkyLIbHMzOLE7zbVUyY0M+xrH243RVN3tns3rXx4rxuCIdl9shOay9Hd7QKOJfY1 jG3mNpDFrjsUbEaa0FB52aDKD6jQ9aC7UdMbnY2ZbxzdX4kqObVj8fKOzbXq464tj0ErkwfWZWAH Ei10Bk+ajkVdWNwmCxFO/KqYT7YkCkPx0Nbepjh+U0uBX82tq5LFndPSK62M9Ras73XbXpSnnjBe 47/OvJDY3bDbe9h7OAno73LTyXDS3uzN8Bm1kx/gh3DNtyFSk2qxWnIEj/hG+JHIiDQSG0lO4Oel 5+WJ5HzDvPc+vcgsuiPH6KMM5WBCOExL7lDEgeJQ+yoZImTgzcFNX6EpOgFB63s0ZhIQsJg4oWUC Rohe4TLp5ot4ExHDFt34HsyGICBxEI1YMEOvA+VzzVnTyB6yMUsGdFIVgO5AYiT6sLwA/HKdFB9P WlwzfDDL8vl8JCKKJPvQQER0hl7BNMked5LVM2qSh9CTxEkSeprYZIgNwTSkHvYCSxnsILuFHWWn 2H3sVfYOu4IlsUffMWO1IrOHsPXUw5LUw9Yrnv1y6uGs2ONOksSTJIknSRIP3Gzes5R3bhMnNSGK rxArJQ8iPk1zkIgDCaduqCZKjWtmR8poBvSPZjJkyJAlg2ZAb2kmQ5YMKQNa0FJXITYMfyaBmV8s xijQmlQBohFPBpWBTsRbA7wa1yPVJryUbcr1nrOsdFINUAyl5Sn79QMrW0HTbzJvHJjY5xpOmAq/ 85Kzo6N6aOcmS/C2vfd6TS23DL68VVLwnHlx76jsl/OtvfhX5iUo+9fAXy+BslP4lJHgr/oxK6j+ jNDq7xTWCjW/6yrChg8vw/WyxGooGpMBptRUakl4YaVmeIwmI27IBm+4nRZ5PyrNWFQCtCLqfDDL Kxt4f9Lf56/5J/zv+Rf8Tv+sTTZohAUov4AgEFlKKAVXKb/A8JMMSC41GQtMRmmGiUWdgVncc4ZN HUtRqfMAgwjxuMdoMNbjQXwMv44vYAeexSem/b9BxHEbAIKBp9AoOo7saBZfmP4P+9UaG8V1hc+d Wdv79Dx3dmb92Gsv3ll7/di1kQNhyQ5gO/iBvY0dJ7S1TJoYimrF2E1wIarwjyipVKVpKgu1ldpI aStFUf4EK7CBKCS0RWpFWtRQov5pUgWiCmH1IVKpFd7tuTOzGEjUIKFWqrRjn3vP3tfMvfc753zH pINvkDrQU1FDXJtKrV6biuqrBoZDHZOyLHNZq85fLuvyL4aaqTIPy6RhnrjgBYSr0ZSzX6TrNAc6 3reiIkIVFd+LmUUgpxRKFywfI6hJjG3MrFgMw9ZfWT61LkfijrH9+RhGNHIjbIHN20mz6eCg7Pni JM6XsWG3VTN3+COydSLciCyOGH2ZTXSwuahePNNgY4MofZmuZmPon+Qs5rSIA9vPrW3jTtuoSJlN fSE8evgZYuMIYiPJ77V2yqAsKUsaLyqSKoVFzdPBmWaOy6m58KQ2bj5OHucOkAPcwcRhM8RxY0lO MInFW/KXyDSSdwaU+AaEinlbdhYiNrQESf5U4hYiAb+vhmVuPFcGioQ+LGCFOBprtPO3iOb2nGh+ KGFeMInJkBLSIqqmRZJa+ANMPAu8bvkhidhBYSHv18cb5dx5gir2BBVVVRSV5/7AEY5NHlFkbJAV 0PiwqBJLJVRNq5aaV/eoh9RltUZVkwEzmSSE89NYLBDwV3O8TFQFEnEzEk5qEG8TIrEIl4+QSAGJ mih/WyNUs7S8tkc7oFVpBe77VjN0oFMYk6flOfl5+UW5Rj6EJ/y0wnUpOWVMOaJ4FBz2OjAPaENJ QjK0B/4CnAjngQNoaz1JXrIha3O1eUwk9TUXgkrpeytGN8PT1ZW4zOrzKwx/hdKPV9BJ2jWDIqsx L2T1MXxP2Y8Zl6Z00VnLatQsXElbwunaMs7VRnGiNoqztNEbU9iMeanHZnWb5c0uu0PqaMd6p2Qf iZQrG7Fz2HnXguZTz37TUcr1ukmhQWFOs+BsSWNWZW9pyd3SH1ca7RpDBX4XMO+vFZxRYdaqsOEW UlCNFUlW4N2/ykipWbix2lVLwWU4xjvNXuSdmoUFsW0XFZX9SrIiXIsnYPZikSyU/s5O0eb3tagQ igVH2bkUSldWnPoqO1hc5yQjr/i+3xzDet2Ub3vAOUbCx/mE6/dd41aUHkUpW7yT19WQOPfGB+9E Mu1oy6f7MVMb8f3yxObl0XADNrzTn9l5X/Hnb5HDxWe401x73LbobKtWPEV2FVdIv6ybdlPHYNXa NkxnPipOVD3Is5yiaMViE3gaAWiP9UgD0iKtiogkncmABEQSfYKPbTmoEK8TDwRBXLfLSUuyZE43 onX1GBditNzTgD0RS7OiVt1SPdpu0BK9yda2VHtHVzoDN4eTT/EYtGn04RhH7NeGPBgzbEIjiTdH EyQxLRviTZTGyq06YzKQSZBeMkAmyT5ykDxLjhKvTW6aBFHFD49RmdJuup2O0xl6kB6lZ+lF+jH9 Bw1QFnkMUVJFURJFIROTJEEgT3l1w8BoRgtEsQLpp5KttbGevESkAue3pPcEEhKmhTnhiPC88KJQ LTC7D3aJOZETxZ7ur7/rWunUJZZsST3MNNaMy7oTWtZsA7EHoG1gWEHEv06pYuRoofQmCyaUARZj if07EnNqrcFpD9ez+sMVDBysPoHMgloBYT3l2V0OV96yceEj/qLGK2arsiBmneiVarkFewg90nwr 7LojDiabyu3kk9+mkoi5U/2Z/PBzZCKbxkDzdl9mYOvaTD7ckI0NFC2MOPT+czVcoaqtmeEu0T1U bCXvt7dkWyOpROdg1fWvICJzyXCb6TCS1wA87yMeo0S0tG9FyV5YBO49IHIoCjLQicmNwHa7c9Cu rfotuY1Am1s2/hSOA+eDj4FLYB40AEdZaMerNIMhNRgMRUNGMACih3gu+wl0+AP+mEzky3qotsPQ q/3T3gJZXjH0rRq7unAgCIFo6AXDqIcXlgIkYNQNDuupUfHa/K5VqUdcZf5NvHYJ/5Ee4P2tTrmV ZLs/5uLQ2bFzZncJ1j31zItfYRkqMG+MoR9uykx3o/fLpMv0wQohgw1ZSBhD6GBsr7EbEyOYamla T3vuIU0szjsZalMNt4HsE/tT8U6vef3pDdxzxbOy0rol3ulL8/n4u/duYpnk8Ve48AS6DVT/9DI4 z1fvUl5F+Zcj5CQAn8bbewmgOgrgPXOr+Gdd+StA4Bt3JrWjdy7CtbsXeQhAvQ8gfA4gcgXAwHXr kgANuB+6HaDpjCMtE8hE38Qo/DuAzjwK7j/zXUd6JgF6LwJs6gXYIgJsbQfYJjuyA8+mP1iRilSk IhWpSEUqUpGKVKQi//8CHBA7r1SBZxrBvIlUw+c+/M0/RAkUNaxFUK2DhsYb7cn1IT23L9DXP3D/ zsGh4REYHct/4YFxeHDyoYd3fxG+PPX5L/9fPB7AbBZ0EHGrXqDQCRthE2yBfsjDfjgAi3C4VMIR FDogjT332j2PwNdgAQ6VSqWPPuvPPevPfvBIS3/7j9/khb3uCjy+F1zdgzp19WrULHaTHh+2JGCP q3NQC8+4Oo8jll3dg/oFV68Gi6hDw2NDO0ZSO+aeXNg/szA6s5gf79g+N/vY4BOPzO5/dNfE3fbD EAzDGJY7YARSWM7Bk3hi+2EGy1EsF/EUx+EB1PZhzyye6MIdzumA7dgzC4/BIDyB82ZxxKOwC+70 nf+9+fZN8ctY5HBmFd6GCF3wMF5XUPiObXfs9rgf/DBx6tzlaSH7idfnta/zJxO/Z/cMx4Y/bCl1 Xr9e/ZqXdfjcGfDvAQB8+RrHCmVuZHN0cmVhbQ1lbmRvYmoNNjggMCBvYmoNPDwgDS9EIFsgNTUz IDAgUiAvWFlaIG51bGwgbnVsbCBudWxsIF0gDT4+IA1lbmRvYmoNNjkgMCBvYmoNPDwgDS9EIFsg NTUzIDAgUiAvWFlaIG51bGwgbnVsbCBudWxsIF0gDT4+IA1lbmRvYmoNNzAgMCBvYmoNPDwgDS9E IFsgNTUzIDAgUiAvWFlaIDU2IDUyIG51bGwgXSANPj4gDWVuZG9iag03MSAwIG9iag08PCANL0Qg WyA1NTMgMCBSIC9YWVogNTYgNzc5IG51bGwgXSANPj4gDWVuZG9iag03MiAwIG9iag08PCANL0Qg WyA1NTMgMCBSIC9YWVogMTg2IDY3NSBudWxsIF0gDT4+IA1lbmRvYmoNNzMgMCBvYmoNPDwgDS9E IFsgNTUzIDAgUiAvWFlaIDE4NiA2MTQgbnVsbCBdIA0+PiANZW5kb2JqDTc0IDAgb2JqDTw8IA0v RCBbIDU1MyAwIFIgL1hZWiAyMTQgNDAyIG51bGwgXSANPj4gDWVuZG9iag03NSAwIG9iag08PCAN L0QgWyA1NTMgMCBSIC9YWVogMjE0IDIyMCBudWxsIF0gDT4+IA1lbmRvYmoNNzYgMCBvYmoNPDwg DS9EIFsgNTUzIDAgUiAvWFlaIDIxMyAzODYgbnVsbCBdIA0+PiANZW5kb2JqDTc3IDAgb2JqDTw8 IA0vRCBbIDU1MyAwIFIgL1hZWiAyMTMgMzI2IG51bGwgXSANPj4gDWVuZG9iag03OCAwIG9iag08 PCANL0QgWyA1NTMgMCBSIC9YWVogMjEzIDI2NiBudWxsIF0gDT4+IA1lbmRvYmoNNzkgMCBvYmoN PDwgDS9EIFsgMSAwIFIgL1hZWiBudWxsIG51bGwgbnVsbCBdIA0+PiANZW5kb2JqDTgwIDAgb2Jq DTw8IA0vRCBbIDEgMCBSIC9YWVogbnVsbCBudWxsIG51bGwgXSANPj4gDWVuZG9iag04MSAwIG9i ag08PCANL0QgWyAxIDAgUiAvWFlaIDQ0MyA2NjMgbnVsbCBdIA0+PiANZW5kb2JqDTgyIDAgb2Jq DTw8IA0vRCBbIDEgMCBSIC9YWVogNDIgNTIgbnVsbCBdIA0+PiANZW5kb2JqDTgzIDAgb2JqDTw8 IA0vRCBbIDEgMCBSIC9YWVogNDIgNzI0IG51bGwgXSANPj4gDWVuZG9iag04NCAwIG9iag08PCAN L0QgWyAxIDAgUiAvWFlaIDQyIDY4MCBudWxsIF0gDT4+IA1lbmRvYmoNODUgMCBvYmoNPDwgDS9E IFsgMSAwIFIgL1hZWiA0MiA2MzcgbnVsbCBdIA0+PiANZW5kb2JqDTg2IDAgb2JqDTw8IA0vRCBb IDEgMCBSIC9YWVogNDIgNjIxIG51bGwgXSANPj4gDWVuZG9iag04NyAwIG9iag08PCANL0QgWyAx IDAgUiAvWFlaIDQyIDYwNSBudWxsIF0gDT4+IA1lbmRvYmoNODggMCBvYmoNPDwgDS9EIFsgMSAw IFIgL1hZWiA0MiA1ODEgbnVsbCBdIA0+PiANZW5kb2JqDTg5IDAgb2JqDTw8IA0vRCBbIDEgMCBS IC9YWVogNDIgMzk1IG51bGwgXSANPj4gDWVuZG9iag05MCAwIG9iag08PCANL0QgWyAxIDAgUiAv WFlaIDQyIDM3OSBudWxsIF0gDT4+IA1lbmRvYmoNOTEgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZ WiA0MiAzNTUgbnVsbCBdIA0+PiANZW5kb2JqDTkyIDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVog NDIgMzMxIG51bGwgXSANPj4gDWVuZG9iag05MyAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDQy IDI4OSBudWxsIF0gDT4+IA1lbmRvYmoNOTQgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiA0MiAy NTcgbnVsbCBdIA0+PiANZW5kb2JqDTk1IDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogNDIgMjM1 IG51bGwgXSANPj4gDWVuZG9iag05NiAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDQyIDIwMyBu dWxsIF0gDT4+IA1lbmRvYmoNOTcgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiA0MiAxNzEgbnVs bCBdIA0+PiANZW5kb2JqDTk4IDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogNDIgMTM5IG51bGwg XSANPj4gDWVuZG9iag05OSAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDQyIDEyMyBudWxsIF0g DT4+IA1lbmRvYmoNMTAwIDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogNDIgMTA3IG51bGwgXSAN Pj4gDWVuZG9iag0xMDEgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiA0MiA1NTcgbnVsbCBdIA0+ PiANZW5kb2JqDTEwMiAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDE1NSA1NTcgbnVsbCBdIA0+ PiANZW5kb2JqDTEwMyAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDQyIDU0MiBudWxsIF0gDT4+ IA1lbmRvYmoNMTA0IDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogMTU1IDU0MiBudWxsIF0gDT4+ IA1lbmRvYmoNMTA1IDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogNDIgNTE2IG51bGwgXSANPj4g DWVuZG9iag0xMDYgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiAxNTUgNTE2IG51bGwgXSANPj4g DWVuZG9iag0xMDcgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiA0MiA0OTAgbnVsbCBdIA0+PiAN ZW5kb2JqDTEwOCAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDE1NSA0OTAgbnVsbCBdIA0+PiAN ZW5kb2JqDTEwOSAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDE1NSA0NjggbnVsbCBdIA0+PiAN ZW5kb2JqDTExMCAwIG9iag08PCANL0QgWyAxIDAgUiAvWFlaIDQyIDQ1MyBudWxsIF0gDT4+IA1l bmRvYmoNMTExIDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogMTU1IDQ1MyBudWxsIF0gDT4+IA1l bmRvYmoNMTEyIDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogMTU1IDQzMSBudWxsIF0gDT4+IA1l bmRvYmoNMTEzIDAgb2JqDTw8IA0vRCBbIDEgMCBSIC9YWVogNDIgNDE2IG51bGwgXSANPj4gDWVu ZG9iag0xMTQgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiAxNTUgNDE2IG51bGwgXSANPj4gDWVu ZG9iag0xMTUgMCBvYmoNPDwgDS9EIFsgMSAwIFIgL1hZWiA0MiA3NzEgbnVsbCBdIA0+PiANZW5k b2JqDTExNiAwIG9iag08PCANL0QgWyA1IDAgUiAvWFlaIG51bGwgbnVsbCBudWxsIF0gDT4+IA1l bmRvYmoNMTE3IDAgb2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogbnVsbCBudWxsIG51bGwgXSANPj4g DWVuZG9iag0xMTggMCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA0MDYgNTc3IG51bGwgXSANPj4g DWVuZG9iag0xMTkgMCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA0MDYgNTc3IG51bGwgXSANPj4g DWVuZG9iag0xMjAgMCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA1NiA1MiBudWxsIF0gDT4+IA1l bmRvYmoNMTIxIDAgb2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogMjM5IDc1OSBudWxsIF0gDT4+IA1l bmRvYmoNMTIyIDAgb2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogNTYgNzcxIG51bGwgXSANPj4gDWVu ZG9iag0xMjMgMCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA1NiA3MjYgbnVsbCBdIA0+PiANZW5k b2JqDTEyNCAwIG9iag08PCANL0QgWyA1IDAgUiAvWFlaIDU2IDY5MCBudWxsIF0gDT4+IA1lbmRv YmoNMTI1IDAgb2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogNTYgNjIzIG51bGwgXSANPj4gDWVuZG9i ag0xMjYgMCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA1NiA1NjggbnVsbCBdIA0+PiANZW5kb2Jq DTEyNyAwIG9iag08PCANL0QgWyA1IDAgUiAvWFlaIDU2IDUzOSBudWxsIF0gDT4+IA1lbmRvYmoN MTI4IDAgb2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogNTYgNTEyIG51bGwgXSANPj4gDWVuZG9iag0x MjkgMCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA1NiA0NDkgbnVsbCBdIA0+PiANZW5kb2JqDTEz MCAwIG9iag08PCANL0QgWyA1IDAgUiAvWFlaIDU2IDQxOCBudWxsIF0gDT4+IA1lbmRvYmoNMTMx IDAgb2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogNTYgMzUxIG51bGwgXSANPj4gDWVuZG9iag0xMzIg MCBvYmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA1NiAyOTcgbnVsbCBdIA0+PiANZW5kb2JqDTEzMyAw IG9iag08PCANL0QgWyA1IDAgUiAvWFlaIDU2IDI2MCBudWxsIF0gDT4+IA1lbmRvYmoNMTM0IDAg b2JqDTw8IA0vRCBbIDUgMCBSIC9YWVogNTYgMjE3IG51bGwgXSANPj4gDWVuZG9iag0xMzUgMCBv YmoNPDwgDS9EIFsgNSAwIFIgL1hZWiA1NiAxMjYgbnVsbCBdIA0+PiANZW5kb2JqDTEzNiAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSA1NDkgbnVsbCBdIA0+PiANZW5kb2JqDTEzNyAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSA0OTggbnVsbCBdIA0+PiANZW5kb2JqDTEzOCAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSA0NzYgbnVsbCBdIA0+PiANZW5kb2JqDTEzOSAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSA0MzMgbnVsbCBdIA0+PiANZW5kb2JqDTE0MCAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSAzNTQgbnVsbCBdIA0+PiANZW5kb2JqDTE0MSAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSAyODcgbnVsbCBdIA0+PiANZW5kb2JqDTE0MiAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSAyMjMgbnVsbCBdIA0+PiANZW5kb2JqDTE0MyAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSAyMDIgbnVsbCBdIA0+PiANZW5kb2JqDTE0NCAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSAxNDcgbnVsbCBdIA0+PiANZW5kb2JqDTE0NSAwIG9i ag08PCANL0QgWyA1IDAgUiAvWFlaIDMxMSA1NzEgbnVsbCBdIA0+PiANZW5kb2JqDTE0NiAwIG9i ag08PCANL0QgWyAxMCAwIFIgL1hZWiBudWxsIG51bGwgbnVsbCBdIA0+PiANZW5kb2JqDTE0NyAw IG9iag08PCANL0QgWyAxMCAwIFIgL1hZWiAxNjcgNjE4IG51bGwgXSANPj4gDWVuZG9iag0xNDgg MCBvYmoNPDwgDS9EIFsgMTAgMCBSIC9YWVogMTY3IDYxOCBudWxsIF0gDT4+IA1lbmRvYmoNMTQ5 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDUyIG51bGwgXSANPj4gDWVuZG9iag0xNTAg MCBvYmoNPDwgDS9EIFsgMTAgMCBSIC9YWVogNDIgNzU5IG51bGwgXSANPj4gDWVuZG9iag0xNTEg MCBvYmoNPDwgDS9EIFsgMTAgMCBSIC9YWVogMzYwIDc3MSBudWxsIF0gDT4+IA1lbmRvYmoNMTUy IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDU4OSBudWxsIF0gDT4+IA1lbmRvYmoNMTUz IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDUxMCBudWxsIF0gDT4+IA1lbmRvYmoNMTU0 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDM3MSBudWxsIF0gDT4+IA1lbmRvYmoNMTU1 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDMzMiBudWxsIF0gDT4+IA1lbmRvYmoNMTU2 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDMxMCBudWxsIF0gDT4+IA1lbmRvYmoNMTU3 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDIxOSBudWxsIF0gDT4+IA1lbmRvYmoNMTU4 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDE4MCBudWxsIF0gDT4+IA1lbmRvYmoNMTU5 IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDQyIDE1OCBudWxsIF0gDT4+IA1lbmRvYmoNMTYw IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDI5NyA0OTYgbnVsbCBdIA0+PiANZW5kb2JqDTE2 MSAwIG9iag08PCANL0QgWyAxMCAwIFIgL1hZWiAyOTcgNDI5IG51bGwgXSANPj4gDWVuZG9iag0x NjIgMCBvYmoNPDwgDS9EIFsgMTAgMCBSIC9YWVogMjk3IDMzOCBudWxsIF0gDT4+IA1lbmRvYmoN MTYzIDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDI5NyAyNTkgbnVsbCBdIA0+PiANZW5kb2Jq DTE2NCAwIG9iag08PCANL0QgWyAxMCAwIFIgL1hZWiAyOTcgMjA0IG51bGwgXSANPj4gDWVuZG9i ag0xNjUgMCBvYmoNPDwgDS9EIFsgMTAgMCBSIC9YWVogMjk3IDEyOSBudWxsIF0gDT4+IA1lbmRv YmoNMTY2IDAgb2JqDTw8IA0vRCBbIDEwIDAgUiAvWFlaIDI5NyAxMDcgbnVsbCBdIA0+PiANZW5k b2JqDTE2NyAwIG9iag08PCANL0QgWyAxMCAwIFIgL1hZWiA0NCA2MTEgbnVsbCBdIA0+PiANZW5k b2JqDTE2OCAwIG9iag08PCANL0QgWyAxMCAwIFIgL1hZWiAyOTkgNTIwIG51bGwgXSANPj4gDWVu ZG9iag0xNjkgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogbnVsbCBudWxsIG51bGwgXSANPj4g DWVuZG9iag0xNzAgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogMzgyIDMyMSBudWxsIF0gDT4+ IA1lbmRvYmoNMTcxIDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDM4MiAzMjEgbnVsbCBdIA0+ PiANZW5kb2JqDTE3MiAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZWiAxMjggMjQzIG51bGwgXSAN Pj4gDWVuZG9iag0xNzMgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogMTI4IDI0MyBudWxsIF0g DT4+IA1lbmRvYmoNMTc0IDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDM5MiA1NTYgbnVsbCBd IA0+PiANZW5kb2JqDTE3NSAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZWiAzOTIgNTU2IG51bGwg XSANPj4gDWVuZG9iag0xNzYgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjk0IG51bGwg XSANPj4gDWVuZG9iag0xNzcgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjg1IG51bGwg XSANPj4gDWVuZG9iag0xNzggMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjc1IG51bGwg XSANPj4gDWVuZG9iag0xNzkgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjY2IG51bGwg XSANPj4gDWVuZG9iag0xODAgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjU3IG51bGwg XSANPj4gDWVuZG9iag0xODEgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjQ3IG51bGwg XSANPj4gDWVuZG9iag0xODIgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjM3IG51bGwg XSANPj4gDWVuZG9iag0xODMgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjI4IG51bGwg XSANPj4gDWVuZG9iag0xODQgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjE4IG51bGwg XSANPj4gDWVuZG9iag0xODUgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjA5IG51bGwg XSANPj4gDWVuZG9iag0xODYgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNjAwIG51bGwg XSANPj4gDWVuZG9iag0xODcgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNTkwIG51bGwg XSANPj4gDWVuZG9iag0xODggMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNTgwIG51bGwg XSANPj4gDWVuZG9iag0xODkgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNTcxIG51bGwg XSANPj4gDWVuZG9iag0xOTAgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNTU1IG51bGwg XSANPj4gDWVuZG9iag0xOTEgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNTAwIG51bGwg XSANPj4gDWVuZG9iag0xOTIgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgNDMzIG51bGwg XSANPj4gDWVuZG9iag0xOTMgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgMjEyIG51bGwg XSANPj4gDWVuZG9iag0xOTQgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgMTYxIG51bGwg XSANPj4gDWVuZG9iag0xOTUgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNTYgMTM5IG51bGwg XSANPj4gDWVuZG9iag0xOTYgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogMzExIDUzMCBudWxs IF0gDT4+IA1lbmRvYmoNMTk3IDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDMxMSAyOTIgbnVs bCBdIA0+PiANZW5kb2JqDTE5OCAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZWiAzMTEgMjAyIG51 bGwgXSANPj4gDWVuZG9iag0xOTkgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogMzExIDE2NiBu dWxsIF0gDT4+IA1lbmRvYmoNMjAwIDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDU4IDIzNiBu dWxsIF0gDT4+IA1lbmRvYmoNMjAxIDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDMxNCA2OTQg bnVsbCBdIA0+PiANZW5kb2JqDTIwMiAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZWiAzOTcgNjk0 IG51bGwgXSANPj4gDWVuZG9iag0yMDMgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogNDU1IDY5 NCBudWxsIF0gDT4+IA1lbmRvYmoNMjA0IDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDUwMyA2 OTQgbnVsbCBdIA0+PiANZW5kb2JqDTIwNSAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZWiAzMTQg NjY4IG51bGwgXSANPj4gDWVuZG9iag0yMDYgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVogMzk3 IDY2OCBudWxsIF0gDT4+IA1lbmRvYmoNMjA3IDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFlaIDQ1 NSA2NjggbnVsbCBdIA0+PiANZW5kb2JqDTIwOCAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZWiA1 MDMgNjY4IG51bGwgXSANPj4gDWVuZG9iag0yMDkgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9YWVog MzE0IDY1MyBudWxsIF0gDT4+IA1lbmRvYmoNMjEwIDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAvWFla IDM5NyA2NTMgbnVsbCBdIA0+PiANZW5kb2JqDTIxMSAwIG9iag08PCANL0QgWyAxMyAwIFIgL1hZ WiA0NTUgNjUzIG51bGwgXSANPj4gDWVuZG9iag0yMTIgMCBvYmoNPDwgDS9EIFsgMTMgMCBSIC9Y WVogNTAzIDY1MyBudWxsIF0gDT4+IA1lbmRvYmoNMjEzIDAgb2JqDTw8IA0vRCBbIDEzIDAgUiAv WFlaIDMxNCA2MzggbnVsbCBdIA0+PiANZW5kb2JqDTIxNCAwIG9iag08PCANL0QgWyAxMyAwIFIg L1hZWiAzOTcgNjM4IG51bGwgXSANPj4gDWVuZG9iag0yMTUgMCBvYmoNPDwgDS9EIFsgMTMgMCBS IC9YWVogNDU1IDYzOCBudWxsIF0gDT4+IA1lbmRvYmoNMjE2IDAgb2JqDTw8IA0vRCBbIDEzIDAg UiAvWFlaIDUwMyA2MzggbnVsbCBdIA0+PiANZW5kb2JqDTIxNyAwIG9iag08PCANL0QgWyAxMyAw IFIgL1hZWiAzMTQgNjIzIG51bGwgXSANPj4gDWVuZG9iag0yMTggMCBvYmoNPDwgDS9EIFsgMTMg MCBSIC9YWVogMzk3IDYyMyBudWxsIF0gDT4+IA1lbmRvYmoNMjE5IDAgb2JqDTw8IA0vRCBbIDEz IDAgUiAvWFlaIDQ1NSA2MjMgbnVsbCBdIA0+PiANZW5kb2JqDTIyMCAwIG9iag08PCANL0QgWyAx MyAwIFIgL1hZWiA1MDMgNjIzIG51bGwgXSANPj4gDWVuZG9iag0yMjEgMCBvYmoNPDwgDS9EIFsg MTMgMCBSIC9YWVogMzE0IDU5NyBudWxsIF0gDT4+IA1lbmRvYmoNMjIyIDAgb2JqDTw8IA0vRCBb IDEzIDAgUiAvWFlaIDM5NyA1OTcgbnVsbCBdIA0+PiANZW5kb2JqDTIyMyAwIG9iag08PCANL0Qg WyAxMyAwIFIgL1hZWiA0NTUgNTk3IG51bGwgXSANPj4gDWVuZG9iag0yMjQgMCBvYmoNPDwgDS9E IFsgMTMgMCBSIC9YWVogNTAzIDU5NyBudWxsIF0gDT4+IA1lbmRvYmoNMjI1IDAgb2JqDTw8IA0v RCBbIDEzIDAgUiAvWFlaIDMxNCA1NzEgbnVsbCBdIA0+PiANZW5kb2JqDTIyNiAwIG9iag08PCAN L0QgWyAxMyAwIFIgL1hZWiAzOTcgNTcxIG51bGwgXSANPj4gDWVuZG9iag0yMjcgMCBvYmoNPDwg DS9EIFsgMTMgMCBSIC9YWVogNDU1IDU3MSBudWxsIF0gDT4+IA1lbmRvYmoNMjI4IDAgb2JqDTw8 IA0vRCBbIDEzIDAgUiAvWFlaIDUwMyA1NzEgbnVsbCBdIA0+PiANZW5kb2JqDTIyOSAwIG9iag08 PCANL0QgWyAxMyAwIFIgL1hZWiAzMTEgNTQ5IG51bGwgXSANPj4gDWVuZG9iag0yMzAgMCBvYmoN PDwgDS9EIFsgMTMgMCBSIC9YWVogMzEzIDMxNCBudWxsIF0gDT4+IA1lbmRvYmoNMjMxIDAgb2Jq DTw8IA0vRCBbIDIyIDAgUiAvWFlaIG51bGwgbnVsbCBudWxsIF0gDT4+IA1lbmRvYmoNMjMyIDAg b2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDExMiA5MCBudWxsIF0gDT4+IA1lbmRvYmoNMjMzIDAg b2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDExMiA5MCBudWxsIF0gDT4+IA1lbmRvYmoNMjM0IDAg b2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDI1MCA0NTAgbnVsbCBdIA0+PiANZW5kb2JqDTIzNSAw IG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAzMTcgMzM4IG51bGwgXSANPj4gDWVuZG9iag0yMzYg MCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMzcwIDI4MyBudWxsIF0gDT4+IA1lbmRvYmoNMjM3 IDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDM1NiAyNTkgbnVsbCBdIA0+PiANZW5kb2JqDTIz OCAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA3MjUgbnVsbCBdIA0+PiANZW5kb2JqDTIz OSAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA3MDMgbnVsbCBdIA0+PiANZW5kb2JqDTI0 MCAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA2NDggbnVsbCBdIA0+PiANZW5kb2JqDTI0 MSAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA2MjggbnVsbCBdIA0+PiANZW5kb2JqDTI0 MiAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA2MjggbnVsbCBdIA0+PiANZW5kb2JqDTI0 MyAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA1ODQgbnVsbCBdIA0+PiANZW5kb2JqDTI0 NCAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA1ODQgbnVsbCBdIA0+PiANZW5kb2JqDTI0 NSAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA1MjggbnVsbCBdIA0+PiANZW5kb2JqDTI0 NiAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA1MjggbnVsbCBdIA0+PiANZW5kb2JqDTI0 NyAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA0NjUgbnVsbCBdIA0+PiANZW5kb2JqDTI0 OCAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiA0MiA0NDMgbnVsbCBdIA0+PiANZW5kb2JqDTI0 OSAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAyOTcgNjkzIG51bGwgXSANPj4gDWVuZG9iag0y NTAgMCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMjk3IDYyNiBudWxsIF0gDT4+IA1lbmRvYmoN MjUxIDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDI5NyA1OTcgbnVsbCBdIA0+PiANZW5kb2Jq DTI1MiAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAyOTcgNTY5IG51bGwgXSANPj4gDWVuZG9i ag0yNTMgMCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMjk3IDU1MyBudWxsIF0gDT4+IA1lbmRv YmoNMjU0IDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDI5NyA1MzcgbnVsbCBdIA0+PiANZW5k b2JqDTI1NSAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAyOTcgNTA5IG51bGwgXSANPj4gDWVu ZG9iag0yNTYgMCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMjk3IDQ5MyBudWxsIF0gDT4+IA1l bmRvYmoNMjU3IDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDI5NyA0NzQgbnVsbCBdIA0+PiAN ZW5kb2JqDTI1OCAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAyOTcgMzk2IG51bGwgXSANPj4g DWVuZG9iag0yNTkgMCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMjk3IDM4NyBudWxsIF0gDT4+ IA1lbmRvYmoNMjYwIDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDI5NyAzNzcgbnVsbCBdIA0+ PiANZW5kb2JqDTI2MSAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAyOTcgMzUzIG51bGwgXSAN Pj4gDWVuZG9iag0yNjIgMCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMjk3IDMzMSBudWxsIF0g DT4+IA1lbmRvYmoNMjYzIDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDI5NyAyODggbnVsbCBd IA0+PiANZW5kb2JqDTI2NCAwIG9iag08PCANL0QgWyAyMiAwIFIgL1hZWiAyOTcgMTk3IG51bGwg XSANPj4gDWVuZG9iag0yNjUgMCBvYmoNPDwgDS9EIFsgMjIgMCBSIC9YWVogMjk3IDEzMCBudWxs IF0gDT4+IA1lbmRvYmoNMjY2IDAgb2JqDTw8IA0vRCBbIDIyIDAgUiAvWFlaIDQyIDg0IG51bGwg XSANPj4gDWVuZG9iag0yNjcgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogbnVsbCBudWxsIG51 bGwgXSANPj4gDWVuZG9iag0yNjggMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogNTYgNTU1IG51 bGwgXSANPj4gDWVuZG9iag0yNjkgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogNTYgMzk5IG51 bGwgXSANPj4gDWVuZG9iag0yNzAgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogNTYgMjM5IG51 bGwgXSANPj4gDWVuZG9iag0yNzEgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogMzExIDczMSBu dWxsIF0gDT4+IA1lbmRvYmoNMjcyIDAgb2JqDTw8IA0vRCBbIDI5IDAgUiAvWFlaIDMxMSA1NTgg bnVsbCBdIA0+PiANZW5kb2JqDTI3MyAwIG9iag08PCANL0QgWyAyOSAwIFIgL1hZWiAzMTEgNTI2 IG51bGwgXSANPj4gDWVuZG9iag0yNzQgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogMzExIDUw NiBudWxsIF0gDT4+IA1lbmRvYmoNMjc1IDAgb2JqDTw8IA0vRCBbIDI5IDAgUiAvWFlaIDMxMSA0 NTggbnVsbCBdIA0+PiANZW5kb2JqDTI3NiAwIG9iag08PCANL0QgWyAyOSAwIFIgL1hZWiAzMTEg MjI0IG51bGwgXSANPj4gDWVuZG9iag0yNzcgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVogMzYy IDE3MiBudWxsIF0gDT4+IA1lbmRvYmoNMjc4IDAgb2JqDTw8IA0vRCBbIDI5IDAgUiAvWFlaIDMz NSAxNTYgbnVsbCBdIA0+PiANZW5kb2JqDTI3OSAwIG9iag08PCANL0QgWyAyOSAwIFIgL1hZWiAz MjUgMTQwIG51bGwgXSANPj4gDWVuZG9iag0yODAgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNjkzIG51bGwgXSANPj4gDWVuZG9iag0yODEgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNjA2IG51bGwgXSANPj4gDWVuZG9iag0yODIgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNTg0IG51bGwgXSANPj4gDWVuZG9iag0yODMgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNTQ4IG51bGwgXSANPj4gDWVuZG9iag0yODQgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNTI5IG51bGwgXSANPj4gDWVuZG9iag0yODUgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNTAwIG51bGwgXSANPj4gDWVuZG9iag0yODYgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNDcyIG51bGwgXSANPj4gDWVuZG9iag0yODcgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNDQ0IG51bGwgXSANPj4gDWVuZG9iag0yODggMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgNDI4IG51bGwgXSANPj4gDWVuZG9iag0yODkgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMzkyIG51bGwgXSANPj4gDWVuZG9iag0yOTAgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMzczIG51bGwgXSANPj4gDWVuZG9iag0yOTEgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMzIwIG51bGwgXSANPj4gDWVuZG9iag0yOTIgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMzA0IG51bGwgXSANPj4gDWVuZG9iag0yOTMgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMjg4IG51bGwgXSANPj4gDWVuZG9iag0yOTQgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMjcyIG51bGwgXSANPj4gDWVuZG9iag0yOTUgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMjU2IG51bGwgXSANPj4gDWVuZG9iag0yOTYgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMjMyIG51bGwgXSANPj4gDWVuZG9iag0yOTcgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMjEzIG51bGwgXSANPj4gDWVuZG9iag0yOTggMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog NTYgMTQ2IG51bGwgXSANPj4gDWVuZG9iag0yOTkgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9YWVog MzExIDcyNCBudWxsIF0gDT4+IA1lbmRvYmoNMzAwIDAgb2JqDTw8IA0vRCBbIDI5IDAgUiAvWFla IDMxMSA3MDUgbnVsbCBdIA0+PiANZW5kb2JqDTMwMSAwIG9iag08PCANL0QgWyAyOSAwIFIgL1hZ WiAzMTEgNjUwIG51bGwgXSANPj4gDWVuZG9iag0zMDIgMCBvYmoNPDwgDS9EIFsgMjkgMCBSIC9Y WVogMzExIDU5NSBudWxsIF0gDT4+IA1lbmRvYmoNMzAzIDAgb2JqDTw8IA0vRCBbIDI5IDAgUiAv WFlaIDMxMSA1NTEgbnVsbCBdIA0+PiANZW5kb2JqDTMwNCAwIG9iag08PCANL0QgWyAyOSAwIFIg L1hZWiAzMTEgNTUxIG51bGwgXSANPj4gDWVuZG9iag0zMDUgMCBvYmoNPDwgDS9EIFsgMjkgMCBS IC9YWVogMzExIDUxOSBudWxsIF0gDT4+IA1lbmRvYmoNMzA2IDAgb2JqDTw8IA0vRCBbIDI5IDAg UiAvWFlaIDMxMSA1MTkgbnVsbCBdIA0+PiANZW5kb2JqDTMwNyAwIG9iag08PCANL0QgWyAyOSAw IFIgL1hZWiAzMTEgNDk5IG51bGwgXSANPj4gDWVuZG9iag0zMDggMCBvYmoNPDwgDS9EIFsgMjkg MCBSIC9YWVogMzExIDQ5OSBudWxsIF0gDT4+IA1lbmRvYmoNMzA5IDAgb2JqDTw8IA0vRCBbIDI5 IDAgUiAvWFlaIDMxMSA0NTEgbnVsbCBdIA0+PiANZW5kb2JqDTMxMCAwIG9iag08PCANL0QgWyAy OSAwIFIgL1hZWiAzMTEgNDMyIG51bGwgXSANPj4gDWVuZG9iag0zMTEgMCBvYmoNPDwgDS9EIFsg MjkgMCBSIC9YWVogMzExIDM4OSBudWxsIF0gDT4+IA1lbmRvYmoNMzEyIDAgb2JqDTw8IA0vRCBb IDI5IDAgUiAvWFlaIDMxMSAzMjIgbnVsbCBdIA0+PiANZW5kb2JqDTMxMyAwIG9iag08PCANL0Qg WyAyOSAwIFIgL1hZWiAzMTEgMjU1IG51bGwgXSANPj4gDWVuZG9iag0zMTQgMCBvYmoNPDwgDS9E IFsgMjkgMCBSIC9YWVogMzExIDIxNiBudWxsIF0gDT4+IA1lbmRvYmoNMzE1IDAgb2JqDTw8IA0v RCBbIDI5IDAgUiAvWFlaIDMxMSAxOTQgbnVsbCBdIA0+PiANZW5kb2JqDTMxNiAwIG9iag08PCAN L0QgWyAyOSAwIFIgL1hZWiAzMTEgMTY1IG51bGwgXSANPj4gDWVuZG9iag0zMTcgMCBvYmoNPDwg DS9EIFsgMjkgMCBSIC9YWVogMzExIDE0OSBudWxsIF0gDT4+IA1lbmRvYmoNMzE4IDAgb2JqDTw8 IA0vRCBbIDI5IDAgUiAvWFlaIDMxMSAxMzMgbnVsbCBdIA0+PiANZW5kb2JqDTMxOSAwIG9iag08 PCANL0QgWyAyOSAwIFIgL1hZWiAzMTEgMTE0IG51bGwgXSANPj4gDWVuZG9iag0zMjAgMCBvYmoN PDwgDS9EIFsgMzIgMCBSIC9YWVogbnVsbCBudWxsIG51bGwgXSANPj4gDWVuZG9iag0zMjEgMCBv YmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogNDIgNjE2IG51bGwgXSANPj4gDWVuZG9iag0zMjIgMCBv YmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogNDIgNTI1IG51bGwgXSANPj4gDWVuZG9iag0zMjMgMCBv YmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogNDIgMjM4IG51bGwgXSANPj4gDWVuZG9iag0zMjQgMCBv YmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogNjIgMjE1IG51bGwgXSANPj4gDWVuZG9iag0zMjUgMCBv YmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMTMwIDIwMyBudWxsIF0gDT4+IA1lbmRvYmoNMzI2IDAg b2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDkzIDE3NCBudWxsIF0gDT4+IA1lbmRvYmoNMzI3IDAg b2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDE2NCAxNTkgbnVsbCBdIA0+PiANZW5kb2JqDTMyOCAw IG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA2NSAxMzIgbnVsbCBdIA0+PiANZW5kb2JqDTMyOSAw IG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA1NiAxMTYgbnVsbCBdIA0+PiANZW5kb2JqDTMzMCAw IG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiAxMDUgMTE2IG51bGwgXSANPj4gDWVuZG9iag0zMzEg MCBvYmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMjk3IDYzNiBudWxsIF0gDT4+IA1lbmRvYmoNMzMy IDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDI5NyA0NzggbnVsbCBdIA0+PiANZW5kb2JqDTMz MyAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiAyOTcgNDc4IG51bGwgXSANPj4gDWVuZG9iag0z MzQgMCBvYmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMzE4IDQ1OSBudWxsIF0gDT4+IA1lbmRvYmoN MzM1IDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDQxNiA0NDcgbnVsbCBdIA0+PiANZW5kb2Jq DTMzNiAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MTEgNDM1IG51bGwgXSANPj4gDWVuZG9i ag0zMzcgMCBvYmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMzEzIDM5OSBudWxsIF0gDT4+IA1lbmRv YmoNMzM4IDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDI5NyAzNTYgbnVsbCBdIA0+PiANZW5k b2JqDTMzOSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA2OTMgbnVsbCBdIA0+PiANZW5k b2JqDTM0MCAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA2MDkgbnVsbCBdIA0+PiANZW5k b2JqDTM0MSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA1OTAgbnVsbCBdIA0+PiANZW5k b2JqDTM0MiAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA1MTggbnVsbCBdIA0+PiANZW5k b2JqDTM0MyAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA0OTkgbnVsbCBdIA0+PiANZW5k b2JqDTM0NCAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA0NDQgbnVsbCBdIA0+PiANZW5k b2JqDTM0NSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAzNTMgbnVsbCBdIA0+PiANZW5k b2JqDTM0NiAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAyMzAgbnVsbCBdIA0+PiANZW5k b2JqDTM0NyAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAyMDggbnVsbCBdIA0+PiANZW5k b2JqDTM0OCAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAxNjcgbnVsbCBdIA0+PiANZW5k b2JqDTM0OSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAxNTIgbnVsbCBdIA0+PiANZW5k b2JqDTM1MCAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAxMzkgbnVsbCBdIA0+PiANZW5k b2JqDTM1MSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAxMjUgbnVsbCBdIA0+PiANZW5k b2JqDTM1MiAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiAxMDkgbnVsbCBdIA0+PiANZW5k b2JqDTM1MyAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiA0MiA5MyBudWxsIF0gDT4+IA1lbmRv YmoNMzU0IDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDI5NyA3MjQgbnVsbCBdIA0+PiANZW5k b2JqDTM1NSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiAyOTcgNzA4IG51bGwgXSANPj4gDWVu ZG9iag0zNTYgMCBvYmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMjk3IDY4OSBudWxsIF0gDT4+IA1l bmRvYmoNMzU3IDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDI5NyA2MjkgbnVsbCBdIA0+PiAN ZW5kb2JqDTM1OCAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiAyOTcgNjEwIG51bGwgXSANPj4g DWVuZG9iag0zNTkgMCBvYmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMjk3IDU3OSBudWxsIF0gDT4+ IA1lbmRvYmoNMzYwIDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDI5NyA0NzEgbnVsbCBdIA0+ PiANZW5kb2JqDTM2MSAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiAyOTcgNDUyIG51bGwgXSAN Pj4gDWVuZG9iag0zNjIgMCBvYmoNPDwgDS9EIFsgMzIgMCBSIC9YWVogMjk3IDM2OCBudWxsIF0g DT4+IA1lbmRvYmoNMzYzIDAgb2JqDTw8IA0vRCBbIDMyIDAgUiAvWFlaIDI5NyAzNDkgbnVsbCBd IA0+PiANZW5kb2JqDTM2NCAwIG9iag08PCANL0QgWyAzMiAwIFIgL1hZWiAyOTcgMjU4IG51bGwg XSANPj4gDWVuZG9iag0zNjUgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9YWVogbnVsbCBudWxsIG51 bGwgXSANPj4gDWVuZG9iag0zNjYgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9YWVogMTE0IDIyNSBu dWxsIF0gDT4+IA1lbmRvYmoNMzY3IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDI3MiBu dWxsIF0gDT4+IA1lbmRvYmoNMzY4IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDI3MiBu dWxsIF0gDT4+IA1lbmRvYmoNMzY5IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDE4OSBu dWxsIF0gDT4+IA1lbmRvYmoNMzcwIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDcyNCBu dWxsIF0gDT4+IA1lbmRvYmoNMzcxIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDcwNSBu dWxsIF0gDT4+IA1lbmRvYmoNMzcyIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDYxNCBu dWxsIF0gDT4+IA1lbmRvYmoNMzczIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDU4NSBu dWxsIF0gDT4+IA1lbmRvYmoNMzc0IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDU3NSBu dWxsIF0gDT4+IA1lbmRvYmoNMzc1IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDU2NSBu dWxsIF0gDT4+IA1lbmRvYmoNMzc2IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDU1NiBu dWxsIF0gDT4+IA1lbmRvYmoNMzc3IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDU0NiBu dWxsIF0gDT4+IA1lbmRvYmoNMzc4IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDUzNyBu dWxsIF0gDT4+IA1lbmRvYmoNMzc5IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDUyMSBu dWxsIF0gDT4+IA1lbmRvYmoNMzgwIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDQzMCBu dWxsIF0gDT4+IA1lbmRvYmoNMzgxIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDM3MCBu dWxsIF0gDT4+IA1lbmRvYmoNMzgyIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDM1MSBu dWxsIF0gDT4+IA1lbmRvYmoNMzgzIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDI2NCBu dWxsIF0gDT4+IA1lbmRvYmoNMzg0IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDI0MiBu dWxsIF0gDT4+IA1lbmRvYmoNMzg1IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDE1MSBu dWxsIF0gDT4+IA1lbmRvYmoNMzg2IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDU2IDk2IG51 bGwgXSANPj4gDWVuZG9iag0zODcgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9YWVogMzExIDcyNCBu dWxsIF0gDT4+IA1lbmRvYmoNMzg4IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDMxMSA3MDUg bnVsbCBdIA0+PiANZW5kb2JqDTM4OSAwIG9iag08PCANL0QgWyAzNSAwIFIgL1hZWiAzMTEgNjcz IG51bGwgXSANPj4gDWVuZG9iag0zOTAgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9YWVogMzExIDY3 MyBudWxsIF0gDT4+IA1lbmRvYmoNMzkxIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDMxMSA2 MTcgbnVsbCBdIA0+PiANZW5kb2JqDTM5MiAwIG9iag08PCANL0QgWyAzNSAwIFIgL1hZWiAzMTEg NjE3IG51bGwgXSANPj4gDWVuZG9iag0zOTMgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9YWVogMzEx IDU4NiBudWxsIF0gDT4+IA1lbmRvYmoNMzk0IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFlaIDMx MSA1NTQgbnVsbCBdIA0+PiANZW5kb2JqDTM5NSAwIG9iag08PCANL0QgWyAzNSAwIFIgL1hZWiAz MTEgNTU0IG51bGwgXSANPj4gDWVuZG9iag0zOTYgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9YWVog MzExIDQ4MiBudWxsIF0gDT4+IA1lbmRvYmoNMzk3IDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAvWFla IDMxMSA0NjMgbnVsbCBdIA0+PiANZW5kb2JqDTM5OCAwIG9iag08PCANL0QgWyAzNSAwIFIgL1hZ WiAzMTEgNDA4IG51bGwgXSANPj4gDWVuZG9iag0zOTkgMCBvYmoNPDwgDS9EIFsgMzUgMCBSIC9Y WVogMzExIDM3NiBudWxsIF0gDT4+IA1lbmRvYmoNNDAwIDAgb2JqDTw8IA0vRCBbIDM1IDAgUiAv WFlaIDMxMSAzNzYgbnVsbCBdIA0+PiANZW5kb2JqDTQwMSAwIG9iag08PCANL0QgWyAzNSAwIFIg L1hZWiAzMTEgMzMyIG51bGwgXSANPj4gDWVuZG9iag00MDIgMCBvYmoNPDwgDS9EIFsgMzUgMCBS IC9YWVogMzExIDMzMiBudWxsIF0gDT4+IA1lbmRvYmoNNDAzIDAgb2JqDTw8IA0vRCBbIDM1IDAg UiAvWFlaIDMxMSAzMDEgbnVsbCBdIA0+PiANZW5kb2JqDTQwNCAwIG9iag08PCANL0QgWyAzNSAw IFIgL1hZWiAzMTEgMjcwIG51bGwgXSANPj4gDWVuZG9iag00MDUgMCBvYmoNPDwgDS9EIFsgMzUg MCBSIC9YWVogMzExIDE1MCBudWxsIF0gDT4+IA1lbmRvYmoNNDA2IDAgb2JqDTw8IA0vRCBbIDM1 IDAgUiAvWFlaIDMxMSAxMzEgbnVsbCBdIA0+PiANZW5kb2JqDTQwNyAwIG9iag08PCANL0QgWyAz OCAwIFIgL1hZWiBudWxsIG51bGwgbnVsbCBdIA0+PiANZW5kb2JqDTQwOCAwIG9iag08PCANL0Qg WyAzOCAwIFIgL1hZWiAxODIgNTg1IG51bGwgXSANPj4gDWVuZG9iag00MDkgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgNjkzIG51bGwgXSANPj4gDWVuZG9iag00MTAgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgNjA5IG51bGwgXSANPj4gDWVuZG9iag00MTEgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgNTkwIG51bGwgXSANPj4gDWVuZG9iag00MTIgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgNDk5IG51bGwgXSANPj4gDWVuZG9iag00MTMgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgNDMyIG51bGwgXSANPj4gDWVuZG9iag00MTQgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgMzI5IG51bGwgXSANPj4gDWVuZG9iag00MTUgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgMjc4IG51bGwgXSANPj4gDWVuZG9iag00MTYgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgMjU2IG51bGwgXSANPj4gDWVuZG9iag00MTcgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgMjA4IG51bGwgXSANPj4gDWVuZG9iag00MTggMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgMTg5IG51bGwgXSANPj4gDWVuZG9iag00MTkgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogNDIgMTIyIG51bGwgXSANPj4gDWVuZG9iag00MjAgMCBvYmoNPDwgDS9E IFsgMzggMCBSIC9YWVogMjk3IDcyNCBudWxsIF0gDT4+IA1lbmRvYmoNNDIxIDAgb2JqDTw8IA0v RCBbIDM4IDAgUiAvWFlaIDI5NyA2NTcgbnVsbCBdIA0+PiANZW5kb2JqDTQyMiAwIG9iag08PCAN L0QgWyAzOCAwIFIgL1hZWiAyOTcgNTk3IG51bGwgXSANPj4gDWVuZG9iag00MjMgMCBvYmoNPDwg DS9EIFsgMzggMCBSIC9YWVogMjk3IDU3OCBudWxsIF0gDT4+IA1lbmRvYmoNNDI0IDAgb2JqDTw8 IA0vRCBbIDM4IDAgUiAvWFlaIDI5NyA1NDcgbnVsbCBdIA0+PiANZW5kb2JqDTQyNSAwIG9iag08 PCANL0QgWyAzOCAwIFIgL1hZWiAyOTcgNDc1IG51bGwgXSANPj4gDWVuZG9iag00MjYgMCBvYmoN PDwgDS9EIFsgMzggMCBSIC9YWVogMjk3IDQ1NiBudWxsIF0gDT4+IA1lbmRvYmoNNDI3IDAgb2Jq DTw8IA0vRCBbIDM4IDAgUiAvWFlaIDI5NyA0MTMgbnVsbCBdIA0+PiANZW5kb2JqDTQyOCAwIG9i ag08PCANL0QgWyAzOCAwIFIgL1hZWiAyOTcgMzQ3IG51bGwgXSANPj4gDWVuZG9iag00MjkgMCBv YmoNPDwgDS9EIFsgMzggMCBSIC9YWVogMjk3IDMxMSBudWxsIF0gDT4+IA1lbmRvYmoNNDMwIDAg b2JqDTw8IA0vRCBbIDM4IDAgUiAvWFlaIDI5NyAyMjAgbnVsbCBdIA0+PiANZW5kb2JqDTQzMSAw IG9iag08PCANL0QgWyAzOCAwIFIgL1hZWiAyOTcgMTU2IG51bGwgXSANPj4gDWVuZG9iag00MzIg MCBvYmoNPDwgDS9EIFsgMzggMCBSIC9YWVogMjk3IDEzNSBudWxsIF0gDT4+IA1lbmRvYmoNNDMz IDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIG51bGwgbnVsbCBudWxsIF0gDT4+IA1lbmRvYmoN NDM0IDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDE0OCA1ODMgbnVsbCBdIA0+PiANZW5kb2Jq DTQzNSAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAxNDggNTgzIG51bGwgXSANPj4gDWVuZG9i ag00MzYgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgNTU1IG51bGwgXSANPj4gDWVuZG9i ag00MzcgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgNTAwIG51bGwgXSANPj4gDWVuZG9i ag00MzggMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgNDU3IG51bGwgXSANPj4gDWVuZG9i ag00MzkgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgNDE4IG51bGwgXSANPj4gDWVuZG9i ag00NDAgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMzk2IG51bGwgXSANPj4gDWVuZG9i ag00NDEgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMzY3IG51bGwgXSANPj4gDWVuZG9i ag00NDIgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMzUyIG51bGwgXSANPj4gDWVuZG9i ag00NDMgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMzI5IG51bGwgXSANPj4gDWVuZG9i ag00NDQgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMzA1IG51bGwgXSANPj4gDWVuZG9i ag00NDUgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjkwIG51bGwgXSANPj4gDWVuZG9i ag00NDYgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjc3IG51bGwgXSANPj4gDWVuZG9i ag00NDcgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjYzIG51bGwgXSANPj4gDWVuZG9i ag00NDggMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjQ4IG51bGwgXSANPj4gDWVuZG9i ag00NDkgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjM1IG51bGwgXSANPj4gDWVuZG9i ag00NTAgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjIyIG51bGwgXSANPj4gDWVuZG9i ag00NTEgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMjA5IG51bGwgXSANPj4gDWVuZG9i ag00NTIgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTk2IG51bGwgXSANPj4gDWVuZG9i ag00NTMgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTgyIG51bGwgXSANPj4gDWVuZG9i ag00NTQgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTY3IG51bGwgXSANPj4gDWVuZG9i ag00NTUgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTU0IG51bGwgXSANPj4gDWVuZG9i ag00NTYgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTQxIG51bGwgXSANPj4gDWVuZG9i ag00NTcgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTI3IG51bGwgXSANPj4gDWVuZG9i ag00NTggMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgMTEyIG51bGwgXSANPj4gDWVuZG9i ag00NTkgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTYgOTkgbnVsbCBdIA0+PiANZW5kb2Jq DTQ2MCAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiA1NiA4NSBudWxsIF0gDT4+IA1lbmRvYmoN NDYxIDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDMxMSA3MjQgbnVsbCBdIA0+PiANZW5kb2Jq DTQ2MiAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAzMTEgNzExIG51bGwgXSANPj4gDWVuZG9i ag00NjMgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogMzExIDY5NCBudWxsIF0gDT4+IA1lbmRv YmoNNDY0IDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDMxMSA2NjUgbnVsbCBdIA0+PiANZW5k b2JqDTQ2NSAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAzMTEgNjQ5IG51bGwgXSANPj4gDWVu ZG9iag00NjYgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogMzExIDYzMyBudWxsIF0gDT4+IA1l bmRvYmoNNDY3IDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDMxMSA2MTcgbnVsbCBdIA0+PiAN ZW5kb2JqDTQ2OCAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAzMTEgNTc1IG51bGwgXSANPj4g DWVuZG9iag00NjkgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogMzExIDUzOSBudWxsIF0gDT4+ IA1lbmRvYmoNNDcwIDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDMxMSA0ODcgbnVsbCBdIA0+ PiANZW5kb2JqDTQ3MSAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAzMTEgNDY2IG51bGwgXSAN Pj4gDWVuZG9iag00NzIgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogMzExIDM3NSBudWxsIF0g DT4+IA1lbmRvYmoNNDczIDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDMxMSAyOTYgbnVsbCBd IA0+PiANZW5kb2JqDTQ3NCAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAzMTEgMjQxIG51bGwg XSANPj4gDWVuZG9iag00NzUgMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogMzExIDIwMSBudWxs IF0gDT4+IA1lbmRvYmoNNDc2IDAgb2JqDTw8IA0vRCBbIDQyIDAgUiAvWFlaIDMxMSAxODAgbnVs bCBdIA0+PiANZW5kb2JqDTQ3NyAwIG9iag08PCANL0QgWyA0MiAwIFIgL1hZWiAzMTEgMTI1IG51 bGwgXSANPj4gDWVuZG9iag00NzggMCBvYmoNPDwgDS9EIFsgNDIgMCBSIC9YWVogNTcgNTc3IG51 bGwgXSANPj4gDWVuZG9iag00NzkgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogbnVsbCBudWxs IG51bGwgXSANPj4gDWVuZG9iag00ODAgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgNjU3 IG51bGwgXSANPj4gDWVuZG9iag00ODEgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgNDgy IG51bGwgXSANPj4gDWVuZG9iag00ODIgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgNDE2 IG51bGwgXSANPj4gDWVuZG9iag00ODMgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgMzgw IG51bGwgXSANPj4gDWVuZG9iag00ODQgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgMzM3 IG51bGwgXSANPj4gDWVuZG9iag00ODUgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgMjcz IG51bGwgXSANPj4gDWVuZG9iag00ODYgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgMjUy IG51bGwgXSANPj4gDWVuZG9iag00ODcgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgMTcz IG51bGwgXSANPj4gDWVuZG9iag00ODggMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogNDIgMTMw IG51bGwgXSANPj4gDWVuZG9iag00ODkgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogMjk3IDcy NSBudWxsIF0gDT4+IA1lbmRvYmoNNDkwIDAgb2JqDTw8IA0vRCBbIDQ4IDAgUiAvWFlaIDI5NyA3 MDMgbnVsbCBdIA0+PiANZW5kb2JqDTQ5MSAwIG9iag08PCANL0QgWyA0OCAwIFIgL1hZWiAyOTcg NjI0IG51bGwgXSANPj4gDWVuZG9iag00OTIgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVogMjk3 IDMxMSBudWxsIF0gDT4+IA1lbmRvYmoNNDkzIDAgb2JqDTw8IA0vRCBbIDQ4IDAgUiAvWFlaIDI5 NyAyMjEgbnVsbCBdIA0+PiANZW5kb2JqDTQ5NCAwIG9iag08PCANL0QgWyA0OCAwIFIgL1hZWiAy OTcgMTg0IG51bGwgXSANPj4gDWVuZG9iag00OTUgMCBvYmoNPDwgDS9EIFsgNDggMCBSIC9YWVog Mjk4IDMzMyBudWxsIF0gDT4+IA1lbmRvYmoNNDk2IDAgb2JqDTw8IA0vRCBbIDUyIDAgUiAvWFla IG51bGwgbnVsbCBudWxsIF0gDT4+IA1lbmRvYmoNNDk3IDAgb2JqDTw8IA0vRCBbIDUyIDAgUiAv WFlaIG51bGwgbnVsbCBudWxsIF0gDT4+IA1lbmRvYmoNNDk4IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDM4NiBudWxsIF0gDT4+IA1lbmRvYmoNNDk5IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDM4NiBudWxsIF0gDT4+IA1lbmRvYmoNNTAwIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDUzNiBudWxsIF0gDT4+IA1lbmRvYmoNNTAxIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDUzNiBudWxsIF0gDT4+IA1lbmRvYmoNNTAyIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDQ0NCBudWxsIF0gDT4+IA1lbmRvYmoNNTAzIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDQ0NCBudWxsIF0gDT4+IA1lbmRvYmoNNTA0IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDQ5MCBudWxsIF0gDT4+IA1lbmRvYmoNNTA1IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDQ5MCBudWxsIF0gDT4+IA1lbmRvYmoNNTA2IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDQ5MCBudWxsIF0gDT4+IA1lbmRvYmoNNTA3IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDU4MSBudWxsIF0gDT4+IA1lbmRvYmoNNTA4IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDU4MSBudWxsIF0gDT4+IA1lbmRvYmoNNTA5IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDU1NCBudWxsIF0gDT4+IA1lbmRvYmoNNTEwIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDYyNyBudWxsIF0gDT4+IA1lbmRvYmoNNTExIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDc5IDYyNyBudWxsIF0gDT4+IA1lbmRvYmoNNTEyIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDcyNCBudWxsIF0gDT4+IA1lbmRvYmoNNTEzIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDY1OCBudWxsIF0gDT4+IA1lbmRvYmoNNTE0IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDYyMSBudWxsIF0gDT4+IA1lbmRvYmoNNTE1IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDYwNyBudWxsIF0gDT4+IA1lbmRvYmoNNTE2IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDU5NSBudWxsIF0gDT4+IA1lbmRvYmoNNTE3IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDU3NSBudWxsIF0gDT4+IA1lbmRvYmoNNTE4IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDU2MSBudWxsIF0gDT4+IA1lbmRvYmoNNTE5IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDU0OCBudWxsIF0gDT4+IA1lbmRvYmoNNTIwIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDUzMCBudWxsIF0gDT4+IA1lbmRvYmoNNTIxIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDUxNiBudWxsIF0gDT4+IA1lbmRvYmoNNTIyIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDUwNCBudWxsIF0gDT4+IA1lbmRvYmoNNTIzIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQ4NCBudWxsIF0gDT4+IA1lbmRvYmoNNTI0IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQ3MCBudWxsIF0gDT4+IA1lbmRvYmoNNTI1IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQ1OCBudWxsIF0gDT4+IA1lbmRvYmoNNTI2IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQzOCBudWxsIF0gDT4+IA1lbmRvYmoNNTI3IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQyNCBudWxsIF0gDT4+IA1lbmRvYmoNNTI4IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQxMiBudWxsIF0gDT4+IA1lbmRvYmoNNTI5IDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDQwMCBudWxsIF0gDT4+IA1lbmRvYmoNNTMwIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDM4MCBudWxsIF0gDT4+IA1lbmRvYmoNNTMxIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDM1NCBudWxsIF0gDT4+IA1lbmRvYmoNNTMyIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDM0MiBudWxsIF0gDT4+IA1lbmRvYmoNNTMzIDAgb2JqDTw8IA0vRCBbIDUyIDAg UiAvWFlaIDU2IDMzMCBudWxsIF0gDT4+IA1lbmRvYmoNNTM0IDAgb2JqDTw8IA0vTGltaXRzIFsg KEYxKShHMi4xMTE2MDA3KV0gDS9OYW1lcyBbIChGMSk2OSAwIFIgKEYyKTExNyAwIFIgKEcxLjEw ODkyOTApNzMgMCBSIChHMS4xMDg5MjkzKTc1IDAgUiAoRzEuMTA4OTI5OCkNNzIgMCBSIChHMS4x MDg5MzA5KTc0IDAgUiAoRzEuMTA4OTMyNik3NiAwIFIgKEcxLjExMDQwNjEpNzcgMCBSIA0oRzEu MTEwNDA3OSk3OCAwIFIgKEcxLjExMDQxMjkpODIgMCBSIChHMS4xMTA0MTMwKTgzIDAgUiAoRzEu MTEwNDEzMSkNODQgMCBSIChHMS4xMTA0MTMzKTg1IDAgUiAoRzEuMTEwNDEzNCk4NiAwIFIgKEcx LjExMDQxMzUpODcgMCBSIA0oRzEuMTEwNDEzOCkxMDEgMCBSIChHMS4xMTA0MTQwKTEwMiAwIFIg KEcxLjExMDQxNDIpMTAzIDAgUiAoRzEuMTEwNDE0NCkNMTA0IDAgUiAoRzEuMTEwNDE0NikxMDUg MCBSIChHMS4xMTA0MTQ4KTEwNiAwIFIgKEcxLjExMDQxNTApMTA3IDAgUiANKEcxLjExMDQxNTIp MTA4IDAgUiAoRzEuMTEwNDE1MykxMDkgMCBSIChHMS4xMTA0MTU1KTExMCAwIFIgKEcxLjExMDQx NTcpDTExMSAwIFIgKEcxLjExMDQxNTgpMTEyIDAgUiAoRzEuMTEwNDE2MCkxMTMgMCBSIChHMS4x MTA0MTYyKTExNCAwIFIgDShHMS4xMTA0MTYzKTg4IDAgUiAoRzEuMTEwNDE2NCk4OSAwIFIgKEcx LjExMDQxNjUpOTAgMCBSIChHMS4xMTA0MTY2KQ05MSAwIFIgKEcxLjExMDQxNjcpOTIgMCBSIChH MS4xMTA0MTY4KTkzIDAgUiAoRzEuMTEwNDE2OSk5NCAwIFIgDShHMS4xMTA0MTcwKTk1IDAgUiAo RzEuMTEwNDE3MSk5NiAwIFIgKEcxLjExMDQxNzIpOTcgMCBSIChHMS4xMTA0MTczKQ05OCAwIFIg KEcxLjExMDQxNzQpOTkgMCBSIChHMS4xMTA0MTc1KTEwMCAwIFIgKEcxLjExMDQxNzYpMTE1IDAg UiANKEcxLjExMDQxOTkpNzAgMCBSIChHMS4xMTA0MjAwKTcxIDAgUiAoRzIuMTEwMDU3OCkxMjUg MCBSIChHMi4xMTAxNDAxKQ00OTQgMCBSIChHMi4xMTAxNDAzKTUxMyAwIFIgKEcyLjExMDI4MzIp NTEyIDAgUiAoRzIuMTEwNzA1MykxMjMgMCBSIA0oRzIuMTExNDIwNykxMjcgMCBSIChHMi4xMTE0 MjA4KTEyOCAwIFIgKEcyLjExMTQzMDApMTI0IDAgUiAoRzIuMTExNTA5NSkNMTQyIDAgUiAoRzIu MTExNTEyMCkxNDAgMCBSIChHMi4xMTE1MTI1KTE0MSAwIFIgKEcyLjExMTUxNTMpMTM0IDAgUiAN KEcyLjExMTUyMzkpMTUyIDAgUiAoRzIuMTExNTMxMCkxNDQgMCBSIChHMi4xMTE1MzUzKTE1NyAw IFIgKEcyLjExMTU5NTcpDTE2NSAwIFIgKEcyLjExMTU5NTgpMTY2IDAgUiAoRzIuMTExNTk4Nykx NzYgMCBSIChHMi4xMTE2MDA3KTE3OCAwIFIgDV0gDT4+IA1lbmRvYmoNNTM1IDAgb2JqDTw8IA0v TGltaXRzIFsgKEcyLjExMTYwMTIpKEcyLjExMTY1NzEpXSANL05hbWVzIFsgKEcyLjExMTYwMTIp MTgzIDAgUiAoRzIuMTExNjAxNykxODUgMCBSIChHMi4xMTE2MDIyKTE4MCAwIFIgKEcyLjExMTYw MjcpDTE4MiAwIFIgKEcyLjExMTYwMzIpMTg3IDAgUiAoRzIuMTExNjAzNykxNzkgMCBSIChHMi4x MTE2MDUwKTE4NCAwIFIgDShHMi4xMTE2MDU1KTE4NiAwIFIgKEcyLjExMTYxMDEpMTg4IDAgUiAo RzIuMTExNjEwMikxODkgMCBSIChHMi4xMTE2MTMxKQ0xODEgMCBSIChHMi4xMTE2MjA3KTE5MCAw IFIgKEcyLjExMTYyMjgpMTc3IDAgUiAoRzIuMTExNjMzNykxNjMgMCBSIA0oRzIuMTExNjM2Mykx NjQgMCBSIChHMi4xMTE2NDYwKTI0NyAwIFIgKEcyLjExMTY0NjIpMjQ4IDAgUiAoRzIuMTExNjQ2 NikNMjUwIDAgUiAoRzIuMTExNjQ2NykyNTEgMCBSIChHMi4xMTE2NDY4KTI1MiAwIFIgKEcyLjEx MTY0NjkpMjUzIDAgUiANKEcyLjExMTY0NzApMjU0IDAgUiAoRzIuMTExNjQ3MSkyNTUgMCBSIChH Mi4xMTE2NDc3KTI2MiAwIFIgKEcyLjExMTY0NzkpDTI2MyAwIFIgKEcyLjExMTY0ODEpMjY1IDAg UiAoRzIuMTExNjQ4MikyODAgMCBSIChHMi4xMTE2NDg0KTI4MSAwIFIgDShHMi4xMTE2NDg1KTI4 MiAwIFIgKEcyLjExMTY0ODcpMjgzIDAgUiAoRzIuMTExNjQ4OCkyODQgMCBSIChHMi4xMTE2NDkw KQ0yODUgMCBSIChHMi4xMTE2NDkxKTI4NiAwIFIgKEcyLjExMTY0OTMpMjg5IDAgUiAoRzIuMTEx NjQ5NCkyOTAgMCBSIA0oRzIuMTExNjQ5NSkyOTEgMCBSIChHMi4xMTE2NDk2KTI5MiAwIFIgKEcy LjExMTY0OTcpMjkzIDAgUiAoRzIuMTExNjQ5OCkNMjk0IDAgUiAoRzIuMTExNjQ5OSkyOTUgMCBS IChHMi4xMTE2NTA1KTI5NiAwIFIgKEcyLjExMTY1MDYpMjk3IDAgUiANKEcyLjExMTY1MDgpMjk5 IDAgUiAoRzIuMTExNjUwOSkzMDAgMCBSIChHMi4xMTE2NTEzKTMwMiAwIFIgKEcyLjExMTY1MTUp DTMwMyAwIFIgKEcyLjExMTY1MTgpMzA1IDAgUiAoRzIuMTExNjUyMSkzMDcgMCBSIChHMi4xMTE2 NTI1KTMwOSAwIFIgDShHMi4xMTE2NTI2KTMxMCAwIFIgKEcyLjExMTY1MjcpMzExIDAgUiAoRzIu MTExNjUzOCkzMTQgMCBSIChHMi4xMTE2NTM5KQ0zMTUgMCBSIChHMi4xMTE2NTQxKTMxNiAwIFIg KEcyLjExMTY1NDMpMzE3IDAgUiAoRzIuMTExNjU0NSkzMTggMCBSIA0oRzIuMTExNjU0NikzMTkg MCBSIChHMi4xMTE2NTQ4KTM0MCAwIFIgKEcyLjExMTY1NDkpMzQxIDAgUiAoRzIuMTExNjU1MSkN MzQyIDAgUiAoRzIuMTExNjU1MikzNDUgMCBSIChHMi4xMTE2NTYyKTM0NiAwIFIgKEcyLjExMTY1 NjYpMzQ3IDAgUiANKEcyLjExMTY1NzEpMzQ4IDAgUiBdIA0+PiANZW5kb2JqDTUzNiAwIG9iag08 PCANL0xpbWl0cyBbIChHMi4xMTE2NTczKShHMi4xMTE3NzU1KV0gDS9OYW1lcyBbIChHMi4xMTE2 NTczKTM1MSAwIFIgKEcyLjExMTY1NzYpMzUyIDAgUiAoRzIuMTExNjU3NykzNTMgMCBSIChHMi4x MTE2NTc4KQ0zNTQgMCBSIChHMi4xMTE2NTc5KTM1NSAwIFIgKEcyLjExMTY1ODApMzU2IDAgUiAo RzIuMTExNjU4MikzNTcgMCBSIA0oRzIuMTExNjU4NikzNjAgMCBSIChHMi4xMTE2NTg5KTM2MSAw IFIgKEcyLjExMTY1OTIpMzYyIDAgUiAoRzIuMTExNjU5NCkNMzYzIDAgUiAoRzIuMTExNjU5Nikz NzAgMCBSIChHMi4xMTE2NTk3KTM3MSAwIFIgKEcyLjExMTY1OTgpMzgxIDAgUiANKEcyLjExMTY1 OTkpMzgyIDAgUiAoRzIuMTExNjYwMSkzODMgMCBSIChHMi4xMTE2NjA2KTM4NSAwIFIgKEcyLjEx MTY2MDkpDTQxMCAwIFIgKEcyLjExMTY2MTEpNDExIDAgUiAoRzIuMTExNjYxMik0MTIgMCBSIChH Mi4xMTE2NjEzKTQxMyAwIFIgDShHMi4xMTE2NjE0KTQxNCAwIFIgKEcyLjExMTY4NzkpNTE0IDAg UiAoRzIuMTExNjg4MCk1MTUgMCBSIChHMi4xMTE2ODgxKQ01MTYgMCBSIChHMi4xMTE2OTk0KTI0 OSAwIFIgKEcyLjExMTcwMDkpMjY0IDAgUiAoRzIuMTExNzAyNCkyOTggMCBSIA0oRzIuMTExNzAz MSkzMDEgMCBSIChHMi4xMTE3MTExKTM4NCAwIFIgKEcyLjExMTcxNzQpMzEyIDAgUiAoRzIuMTEx NzE3NikNMzEzIDAgUiAoRzIuMTExNzIyMikxNTUgMCBSIChHMi4xMTE3MjIzKTE1NiAwIFIgKEcy LjExMTczMTYpNDI4IDAgUiANKEcyLjExMTczMTcpNDI5IDAgUiAoRzIuMTExNzMxOCk0MzEgMCBS IChHMi4xMTE3MzIyKTQzMiAwIFIgKEcyLjExMTczMzMpDTQ4MiAwIFIgKEcyLjExMTczMzcpNDkz IDAgUiAoRzIuMTExNzM1NSkzNTggMCBSIChHMi4xMTE3NDE4KTQ4MyAwIFIgDShHMi4xMTE3NDM2 KTQ4NSAwIFIgKEcyLjExMTc0MzkpNDg4IDAgUiAoRzIuMTExNzQ0MCk0ODkgMCBSIChHMi4xMTE3 NDQ0KQ00OTIgMCBSIChHMi4xMTE3NDY0KTQ5MCAwIFIgKEcyLjExMTc1MDIpNDAxIDAgUiAoRzIu MTExNzUwMyk0MDMgMCBSIA0oRzIuMTExNzUwNSk0MDUgMCBSIChHMi4xMTE3NTA2KTQwOSAwIFIg KEcyLjExMTc1MTApMzk3IDAgUiAoRzIuMTExNzUxNCkNNDA2IDAgUiAoRzIuMTExNzUyOCkzOTgg MCBSIChHMi4xMTE3NTI5KTM5OSAwIFIgKEcyLjExMTc2NTApNDA0IDAgUiANKEcyLjExMTc2NzIp NDM5IDAgUiAoRzIuMTExNzcxMykxOTkgMCBSIChHMi4xMTE3NzIzKTQ2MyAwIFIgKEcyLjExMTc3 MjQpDTQ2OCAwIFIgKEcyLjExMTc3MjgpNDY5IDAgUiAoRzIuMTExNzcyOSk0MTUgMCBSIChHMi4x MTE3NzMwKTQxOCAwIFIgDShHMi4xMTE3NzU1KTEzMyAwIFIgXSANPj4gDWVuZG9iag01MzcgMCBv YmoNPDwgDS9MaW1pdHMgWyAoRzIuMTExNzc2OCkoRzIuMTExODcxOCldIA0vTmFtZXMgWyAoRzIu MTExNzc2OCkxNDMgMCBSIChHMi4xMTE3NzgxKTE1OCAwIFIgKEcyLjExMTc4NzkpMjg3IDAgUiAo RzIuMTExNzg5OCkNMTUzIDAgUiAoRzIuMTExNzkwNik0ODQgMCBSIChHMi4xMTE4MDI1KTEzNyAw IFIgKEcyLjExMTgwMzEpMjM4IDAgUiANKEcyLjExMTgwMzUpMjQwIDAgUiAoRzIuMTExODAzOCky NDEgMCBSIChHMi4xMTE4MDM5KTI0MiAwIFIgKEcyLjExMTgwNDApDTI0MyAwIFIgKEcyLjExMTgw NDEpMjQ0IDAgUiAoRzIuMTExODA0MikyNDUgMCBSIChHMi4xMTE4MDUzKTI0NiAwIFIgDShHMi4x MTE4MDY4KTIzOSAwIFIgKEcyLjExMTgwODQpMzA0IDAgUiAoRzIuMTExODEwMCkzMDYgMCBSIChH Mi4xMTE4MTAxKQ0zMDggMCBSIChHMi4xMTE4MTE5KTQwMCAwIFIgKEcyLjExMTgxMjApNDAyIDAg UiAoRzIuMTExODEyOSk0MjEgMCBSIA0oRzIuMTExODEzNik0MTkgMCBSIChHMi4xMTE4MTM3KTQy MCAwIFIgKEcyLjExMTgxNDApNDIyIDAgUiAoRzIuMTExODE0NikNNDIzIDAgUiAoRzIuMTExODE0 OSk0MTcgMCBSIChHMi4xMTE4MTUzKTQxNiAwIFIgKEcyLjExMTgxNjApNDI1IDAgUiANKEcyLjEx MTgxNjQpNDI2IDAgUiAoRzIuMTExODE2Nyk0MjQgMCBSIChHMi4xMTE4MTY4KTQyNyAwIFIgKEcy LjExMTgxNzUpDTQ4NyAwIFIgKEcyLjExMTgxODUpNDg2IDAgUiAoRzIuMTExODI0NCk0NDAgMCBS IChHMi4xMTE4MjU0KTE1NCAwIFIgDShHMi4xMTE4MjY3KTQ2NCAwIFIgKEcyLjExMTgyNzApNDY3 IDAgUiAoRzIuMTExODM3OCk0NDEgMCBSIChHMi4xMTE4MzgyKQ00NTAgMCBSIChHMi4xMTE4Mzg4 KTQ1MSAwIFIgKEcyLjExMTgzODkpNDUzIDAgUiAoRzIuMTExODM5Myk0NTIgMCBSIA0oRzIuMTEx ODM5NCk0NDggMCBSIChHMi4xMTE4Mzk4KTQ0NyAwIFIgKEcyLjExMTg0MDcpNDQzIDAgUiAoRzIu MTExODQxMikNNDQyIDAgUiAoRzIuMTExODQyNCk0NDQgMCBSIChHMi4xMTE4NDI5KTQ0NSAwIFIg KEcyLjExMTg0MzMpNDQ2IDAgUiANKEcyLjExMTg0MzQpNDU3IDAgUiAoRzIuMTExODQzNSk0NTQg MCBSIChHMi4xMTE4NDM5KTQ1NSAwIFIgKEcyLjExMTg0NDApDTQ1NiAwIFIgKEcyLjExMTg0NTUp NDU4IDAgUiAoRzIuMTExODQ2MCk0NTkgMCBSIChHMi4xMTE4NDYxKTQ2MCAwIFIgDShHMi4xMTE4 NDc0KTQ2MSAwIFIgKEcyLjExMTg0NzgpNDYyIDAgUiAoRzIuMTExODY4NCkzMzkgMCBSIChHMi4x MTE4NjkwKQ0zNDMgMCBSIChHMi4xMTE4NjkzKTM0NCAwIFIgKEcyLjExMTg3MDApMzU5IDAgUiAo RzIuMTExODcxMSkzODcgMCBSIA0oRzIuMTExODcxOCkzODkgMCBSIF0gDT4+IA1lbmRvYmoNNTM4 IDAgb2JqDTw8IA0vTGltaXRzIFsgKEcyLjExMTg3NDgpKEcyLjExMjExMzQpXSANL05hbWVzIFsg KEcyLjExMTg3NDgpNDkxIDAgUiAoRzIuMTExODc1MikzODggMCBSIChHMi4xMTE4NzU5KTM5NiAw IFIgKEcyLjExMTg3NjYpDTM5MCAwIFIgKEcyLjExMTg3NjcpMzkxIDAgUiAoRzIuMTExODc2OCkz OTIgMCBSIChHMi4xMTE4NzY5KTM5NCAwIFIgDShHMi4xMTE4NzkyKTM5MyAwIFIgKEcyLjExMTg3 OTUpMzk1IDAgUiAoRzIuMTExODkwMCk1MTcgMCBSIChHMi4xMTE4OTAxKQ01MTggMCBSIChHMi4x MTE4OTAzKTUxOSAwIFIgKEcyLjExMTg5MTMpNTIwIDAgUiAoRzIuMTExODkxNCk1MjEgMCBSIA0o RzIuMTExODkxNSk1MjIgMCBSIChHMi4xMTE4OTE4KTUyMyAwIFIgKEcyLjExMTg5MTkpNTI0IDAg UiAoRzIuMTExODkyMCkNNTI1IDAgUiAoRzIuMTExODkyNyk1MjYgMCBSIChHMi4xMTE4OTI4KTUy NyAwIFIgKEcyLjExMTg5MjkpNTI4IDAgUiANKEcyLjExMTg5MzApNTI5IDAgUiAoRzIuMTExODkz Nyk1MzAgMCBSIChHMi4xMTE4OTM4KTUzMSAwIFIgKEcyLjExMTg5MzkpDTUzMiAwIFIgKEcyLjEx MTg5NDApNTMzIDAgUiAoRzIuMTExODk2OCk0MzYgMCBSIChHMi4xMTE5MDE1KTQzNyAwIFIgDShH Mi4xMTE5MDE2KTQzOCAwIFIgKEcyLjExMTk0NDkpMTkyIDAgUiAoRzIuMTExOTQ3NikxOTcgMCBS IChHMi4xMTE5NDgzKQ0yNjYgMCBSIChHMi4xMTE5NDg0KTE5OCAwIFIgKEcyLjExMTk0OTEpMTk2 IDAgUiAoRzIuMTExOTUxNCkxNjIgMCBSIA0oRzIuMTExOTUyMykxNjAgMCBSIChHMi4xMTE5NTI0 KTE2MSAwIFIgKEcyLjExMTk1MzEpMTU5IDAgUiAoRzIuMTExOTU0NCkNMjAwIDAgUiAoRzIuMTEx OTU3MSkxOTMgMCBSIChHMi4xMTE5NTc1KTE5NCAwIFIgKEcyLjExMTk1NzYpMTk1IDAgUiANKEcy LjExMTk1ODYpMjMwIDAgUiAoRzIuMTExOTU5NykxNjggMCBSIChHMi4xMTE5NjIzKTM2NCAwIFIg KEcyLjExMTk2NDApDTM4NiAwIFIgKEcyLjExMTk2NjkpNDcwIDAgUiAoRzIuMTExOTY3Myk0NzEg MCBSIChHMi4xMTE5Njc0KTQ3NSAwIFIgDShHMi4xMTE5Njg1KTQ3MiAwIFIgKEcyLjExMTk4MzEp MTkxIDAgUiAoRzIuMTExOTkwOCkyNTYgMCBSIChHMi4xMTE5OTEzKQ0yNjEgMCBSIChHMi4xMTIw MzMzKTI1NyAwIFIgKEcyLjExMjAzMzQpMjU4IDAgUiAoRzIuMTEyMDMzNSkyNTkgMCBSIA0oRzIu MTEyMDMzNikyNjAgMCBSIChHMi4xMTIwNDY2KTQ3OCAwIFIgKEcyLjExMjA0NzgpMTQ1IDAgUiAo RzIuMTEyMDQ5MCkNMTY3IDAgUiAoRzIuMTEyMDUwMSk0OTUgMCBSIChHMi4xMTIwODc1KTQ2NSAw IFIgKEcyLjExMjExMzIpMjAxIDAgUiANKEcyLjExMjExMzQpMjAyIDAgUiBdIA0+PiANZW5kb2Jq DTUzOSAwIG9iag08PCANL0xpbWl0cyBbIChHMi4xMTIxMTM2KShJMS4xLjExMDQxMzIpXSANL05h bWVzIFsgKEcyLjExMjExMzYpMjAzIDAgUiAoRzIuMTEyMTEzOCkyMDQgMCBSIChHMi4xMTIxMTQw KTIwNSAwIFIgKEcyLjExMjExNDIpDTIwNiAwIFIgKEcyLjExMjExNDQpMjA3IDAgUiAoRzIuMTEy MTE0NikyMDggMCBSIChHMi4xMTIxMTQ4KTIwOSAwIFIgDShHMi4xMTIxMTUwKTIxMCAwIFIgKEcy LjExMjExNTIpMjExIDAgUiAoRzIuMTEyMTE1NCkyMTIgMCBSIChHMi4xMTIxMTU2KQ0yMTMgMCBS IChHMi4xMTIxMTU4KTIxNCAwIFIgKEcyLjExMjExNjApMjE1IDAgUiAoRzIuMTEyMTE2MikyMTYg MCBSIA0oRzIuMTEyMTE2NCkyMTcgMCBSIChHMi4xMTIxMTY2KTIxOCAwIFIgKEcyLjExMjExNjgp MjE5IDAgUiAoRzIuMTEyMTE3MCkNMjIwIDAgUiAoRzIuMTEyMTE3MikyMjEgMCBSIChHMi4xMTIx MTc0KTIyMiAwIFIgKEcyLjExMjExNzYpMjIzIDAgUiANKEcyLjExMjExNzgpMjI0IDAgUiAoRzIu MTEyMTE4MCkyMjUgMCBSIChHMi4xMTIxMTgyKTIyNiAwIFIgKEcyLjExMjExODQpDTIyNyAwIFIg KEcyLjExMjExODYpMjI4IDAgUiAoRzIuMTEyMTE4OSkyMjkgMCBSIChHMi4xMTIxMjA0KTEyNiAw IFIgDShHMi4xMTIxMjM2KTQ3MyAwIFIgKEcyLjExMjEyMzkpNDc0IDAgUiAoRzIuMTEyMTQwMSk0 ODEgMCBSIChHMi4xMTIxNDE5KQ0zNzIgMCBSIChHMi4xMTIxNDIwKTM3MyAwIFIgKEcyLjExMjE0 MzApMzc0IDAgUiAoRzIuMTEyMTQzNCkzNzUgMCBSIA0oRzIuMTEyMTQ0MykzNzYgMCBSIChHMi4x MTIxNDQ0KTM3NyAwIFIgKEcyLjExMjE0NDgpMzc4IDAgUiAoRzIuMTEyMTQ1NSkNMzc5IDAgUiAo RzIuMTEyMTQ2NCkzODAgMCBSIChHMi4xMTIxNjIyKTEzOCAwIFIgKEcyLjExMjE2MjMpMTM5IDAg UiANKEcyLjExMjE2OTMpMTM1IDAgUiAoRzIuMTEyMTY5NCkxMzYgMCBSIChHMi4xMTIxNzMyKTQ3 NiAwIFIgKEcyLjExMjE3MzQpDTQ3NyAwIFIgKEcyLjExMjE3MzYpNDgwIDAgUiAoRzIuMTEyMjky NCkxNDkgMCBSIChHMi4xMTIyOTMzKTE1MCAwIFIgDShHMi4xMTIyOTM0KTE1MSAwIFIgKEcyLjEx MjI5NTQpMTIwIDAgUiAoRzIuMTEyMjk1OCkxMjEgMCBSIChHMi4xMTIyOTYwKQ0xMjIgMCBSIChH Mi4xMTI0MTM2KTEyOSAwIFIgKEcyLjExMjQxMzcpMTMyIDAgUiAoRzIuMTEyNDE0MCkxMzAgMCBS IA0oRzIuMTEyNDE0OCkxMzEgMCBSIChHMi4xMTI0MjAxKTQ0OSAwIFIgKEcyLjExMjQyMDYpNDY2 IDAgUiAoRzIuMTEyNDI0OSkNMjg4IDAgUiAoRzIuMTEyNDI1NSkzNDkgMCBSIChHMi4xMTI0MjU5 KTM1MCAwIFIgKEcyLjExMjQzNjApNDMwIDAgUiANKEkxLjEuMTEwNDEzMik4MSAwIFIgXSANPj4g DWVuZG9iag01NDAgMCBvYmoNPDwgDS9MaW1pdHMgWyAoSTIuMS4xMTE2NDYxKShNMi45LjY1Mzcz LlJlZmVyZW5jZS4yLkluc3RydWN0aW9uLlNldC5SZWZlcmVuY2UuTWFudWFsLkRvY3VtZW50Lk51 bWJlci5cDTAyUk0xMTM3KQ1dIA0vTmFtZXMgWyAoSTIuMS4xMTE2NDYxKTIzNCAwIFIgKEkyLjEu MTExNjQ3NikyMzUgMCBSIChJMi4xLjExMTY0NzgpMjM2IDAgUiANKEkyLjEuMTExNjQ4MCkyMzcg MCBSIChJMi4xLjExMTY0ODYpMjY4IDAgUiAoSTIuMS4xMTE2NDkyKTI2OSAwIFIgDShJMi4xLjEx MTY1MDQpMjcwIDAgUiAoSTIuMS4xMTE2NTA3KTI3MSAwIFIgKEkyLjEuMTExNjUxNCkyNzIgMCBS IA0oSTIuMS4xMTE2NTE3KTI3MyAwIFIgKEkyLjEuMTExNjUyMCkyNzQgMCBSIChJMi4xLjExMTY1 MjQpMjc1IDAgUiANKEkyLjEuMTExNjUzNykyNzYgMCBSIChJMi4xLjExMTY1NDApMjc3IDAgUiAo STIuMS4xMTE2NTQyKTI3OCAwIFIgDShJMi4xLjExMTY1NDQpMjc5IDAgUiAoSTIuMS4xMTE2NTQ3 KTMyMSAwIFIgKEkyLjEuMTExNjU1MCkzMjIgMCBSIA0oSTIuMS4xMTE2NTYxKTMyMyAwIFIgKEky LjEuMTExNjU2MykzMjQgMCBSIChJMi4xLjExMTY1NjcpMzI1IDAgUiANKEkyLjEuMTExNjU2OSkz MjYgMCBSIChJMi4xLjExMTY1NzApMzI3IDAgUiAoSTIuMS4xMTE2NTcyKTMyOCAwIFIgDShJMi4x LjExMTY1NzQpMzI5IDAgUiAoSTIuMS4xMTE2NTc1KTMzMCAwIFIgKEkyLjEuMTExNjU4MSkzMzEg MCBSIA0oSTIuMS4xMTE2NTg1KTMzMyAwIFIgKEkyLjEuMTExNjU4NykzMzQgMCBSIChJMi4xLjEx MTY1ODgpMzM1IDAgUiANKEkyLjEuMTExNjU5MCkzMzYgMCBSIChJMi4xLjExMTY1OTEpMzM3IDAg UiAoSTIuMS4xMTE2NTkzKTMzOCAwIFIgDShJMi4xLjExMTY2MDApMzY4IDAgUiAoSTIuMS4xMTE2 NjEwKTQwOCAwIFIgKEkyLjEuMTExNzExMikzNjYgMCBSIA0oSTIuMS4xMTE3MTEzKTM2OSAwIFIg KEkyLjEuMTExODIyMik1MTEgMCBSIChJMi4xLjExMTg5MDIpNTA5IDAgUiANKEkyLjEuMTExODkx Mik1MDEgMCBSIChJMi4xLjExMTg5MTYpNTA0IDAgUiAoSTIuMS4xMTE4OTE3KTUwNiAwIFIgDShJ Mi4xLjExMTg5MjYpNTAzIDAgUiAoSTIuMS4xMTE4OTM2KTQ5OSAwIFIgKEkyLjEuMTExODk2Myk1 MDggMCBSIA0oSTIuMS4xMTE5NTQzKTE3MyAwIFIgKEkyLjEuMTExOTU4NSkxNzEgMCBSIChJMi4x LjExMjA0NjUpNDM1IDAgUiANKEkyLjEuMTEyMDQ4OSkxNDggMCBSIChJMi4xLjExMjExODgpMTc1 IDAgUiAoSTIuMS4xMTI0MzkwKTExOSAwIFIgDShJMi4xLjExMjQ0MDYpMjMzIDAgUiAoTDEpODAg MCBSIChMMik0OTcgMCBSIChNMi45LjIwODc3LkZpZ3VyZS5GaWd1cmUuNi5NdWx0aVRocmVhZGVk LkFycmF5LlByb2Nlc3NvcikNMjMyIDAgUiAoTTIuOS4yMzEwMC5UYWJsZS5UYWJsZS4xKTE3NCAw IFIgKE0yLjkuMjczNDEuUmVmZXJlbmNlLnJlc3RhcnQuMS5XaGl0ZS5QYXBlci5OZXR3b3JrLkxh eWVyLlByb2Nlc3NpbmcuUGl4ZVwNbEZ1c2lvbi5BcHJpbC4yMDAxKQ00OTggMCBSIChNMi45LjMw NDM0LkZpZ3VyZS5GaWd1cmUuMS5Qcm9jZXNzb3IuRXZvbHV0aW9uKTExOCAwIFIgDShNMi45LjM1 NDQ2LkZpZ3VyZS5GaWd1cmUuMi5FeGVjdXRpb24uVW5pdCkxNDcgMCBSIChNMi45LjM5NDYwLlJl ZmVyZW5jZS4yLlZpcnR1YWwuQ29tcG9uZW50LkludGVyZmFjZS5TdGFuZGFyZCkNNTA3IDAgUiAo TTIuOS40NDQxNi5GaWd1cmUuRmlndXJlLjQuQXJjaGl0ZWN0dXJlLm9mLkVWMS5EZXZpY2UpNDM0 IDAgUiANKE0yLjkuNDgzNzEuRmlndXJlLkZpZ3VyZS4zLlBvd2VyLmVmZmljaWVuY3kub2YuTVRB UC5hcmNoaXRlY3R1cmUpDTE3MCAwIFIgKE0yLjkuNjQwODguUmVmZXJlbmNlLjMuU0RLLlJlZmVy ZW5jZS5NYW51YWwpNTAwIDAgUiAoTTIuOS42NTM3My5SZWZlcmVuY2UuMi5JbnN0cnVjdGlvbi5T ZXQuUmVmZXJlbmNlLk1hbnVhbC5Eb2N1bWVudC5OdW1iZXIuXA0wMlJNMTEzNykNNTA1IDAgUiBd IA0+PiANZW5kb2JqDTU0MSAwIG9iag08PCANL0xpbWl0cyBbIChNMi45LjY5NzgyLlJlZmVyZW5j ZS42LkhpZ2hMZXZlbC5Qcm9ncmFtbWluZy5HdWlkZSkoUC5paSldIA0vTmFtZXMgWyAoTTIuOS42 OTc4Mi5SZWZlcmVuY2UuNi5IaWdoTGV2ZWwuUHJvZ3JhbW1pbmcuR3VpZGUpNTEwIDAgUiAoTTIu OS43NzkzNC5GaWd1cmUuRmlndXJlLjQuUmVzdWx0Lm9mLmV4YW1wbGUucHJvZ3JhbSkNMTcyIDAg UiAoTTIuOS44NTUxOC5IZWFkaW5nMy4xMjY0LklPLm1lY2hhbmlzbXMpMzY3IDAgUiAoTTIuOS45 MTU3OC5SZWZlcmVuY2UuMi5Vc2luZy50aGUuQ2xlYXJDb25uZWN0LkJ1cykNNTAyIDAgUiAoTTIu OS45NjkyNy5IZWFkaW5nMy4xMjUzLkNvbmRpdGlvbmFsLmJlaGF2aW9yKTMzMiAwIFIgKFAuMSkN MTE2IDAgUiAoUC4xMCk0NzkgMCBSIChQLjExKTQ5NiAwIFIgKFAuMikxNDYgMCBSIChQLjMpMTY5 IDAgUiAoUC40KQ0yMzEgMCBSIChQLjUpMjY3IDAgUiAoUC42KTMyMCAwIFIgKFAuNykzNjUgMCBS IChQLjgpNDA3IDAgUiAoUC45KQ00MzMgMCBSIChQLmkpNjggMCBSIChQLmlpKTc5IDAgUiBdIA0+ PiANZW5kb2JqDTU0MiAwIG9iag08PCANL0tpZHMgWyA1MzQgMCBSIDUzNSAwIFIgNTM2IDAgUiA1 MzcgMCBSIDUzOCAwIFIgNTM5IDAgUiA1NDAgMCBSIDU0MSAwIFIgXSANPj4gDWVuZG9iag01NDMg MCBvYmoNPDwgDS9TIC9EIA0+PiANZW5kb2JqDTU0NCAwIG9iag08PCANL051bXMgWyAwIDU0MyAw IFIgXSANPj4gDWVuZG9iag01NDUgMCBvYmoNPDwgDS9Qcm9kdWNlciAoQWNyb2JhdCBEaXN0aWxs ZXIgNS4wLjUgXChXaW5kb3dzXCkpDS9BdXRob3IgKGphbWllcCkNL1RpdGxlIChhcmNoaXRlY3R1 cmUuYm9vaykNL01vZERhdGUgKEQ6MjAwMzExMDQxNjM3MTNaMDAnMDAnKQ0vQ3JlYXRpb25EYXRl IChEOjIwMDMxMTA0MTYzMTExWjAwJzAwJykNL0NyZWF0b3IgKEZyYW1lTWFrZXIgNi4wKQ0+PiAN ZW5kb2JqDTU0NiAwIG9iag08PCAvVHlwZSAvTWV0YWRhdGEgL1N1YnR5cGUgL1hNTCAvTGVuZ3Ro IDEwMjQgPj4gDXN0cmVhbQ0KPD94cGFja2V0IGJlZ2luPScnIGlkPSdXNU0wTXBDZWhpSHpyZVN6 TlRjemtjOWQnIGJ5dGVzPScxMDIzJz8+PHJkZjpSREYgeG1sbnM6cmRmPSdodHRwOi8vd3d3Lncz Lm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjJyB4bWxuczppWD0naHR0cDovL25zLmFkb2Jl LmNvbS9pWC8xLjAvJz48cmRmOkRlc2NyaXB0aW9uIGFib3V0PScnIHhtbG5zPSdodHRwOi8vbnMu YWRvYmUuY29tL3BkZi8xLjMvJyB4bWxuczpwZGY9J2h0dHA6Ly9ucy5hZG9iZS5jb20vcGRmLzEu My8nIHBkZjpDcmVhdGlvbkRhdGU9JzIwMDMtMTEtMDRUMTY6MzE6MTFaJyBwZGY6TW9kRGF0ZT0n MjAwMy0xMS0wNFQxNjozNzoxM1onIHBkZjpQcm9kdWNlcj0nQWNyb2JhdCBEaXN0aWxsZXIgNS4w LjUgKFdpbmRvd3MpJyBwZGY6QXV0aG9yPSdqYW1pZXAnIHBkZjpDcmVhdG9yPSdGcmFtZU1ha2Vy IDYuMCcgcGRmOlRpdGxlPSdhcmNoaXRlY3R1cmUuYm9vaycvPgo8cmRmOkRlc2NyaXB0aW9uIGFi b3V0PScnIHhtbG5zPSdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvJyB4bWxuczp4YXA9J2h0 dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8nIHhhcDpDcmVhdGVEYXRlPScyMDAzLTExLTA0VDE2 OjMxOjExWicgeGFwOk1vZGlmeURhdGU9JzIwMDMtMTEtMDRUMTY6Mzc6MTNaJyB4YXA6QXV0aG9y PSdqYW1pZXAnIHhhcDpNZXRhZGF0YURhdGU9JzIwMDMtMTEtMDRUMTY6Mzc6MTNaJz48eGFwOlRp dGxlPjxyZGY6QWx0PjxyZGY6bGkgeG1sOmxhbmc9J3gtZGVmYXVsdCc+YXJjaGl0ZWN0dXJlLmJv b2s8L3JkZjpsaT48L3JkZjpBbHQ+PC94YXA6VGl0bGU+PC9yZGY6RGVzY3JpcHRpb24+CjxyZGY6 RGVzY3JpcHRpb24gYWJvdXQ9JycgeG1sbnM9J2h0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8x LjEvJyB4bWxuczpkYz0naHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8nIGRjOmNyZWF0 b3I9J2phbWllcCcgZGM6dGl0bGU9J2FyY2hpdGVjdHVyZS5ib29rJy8+CjwvcmRmOlJERj48P3hw YWNrZXQgZW5kPSdyJz8+CmVuZHN0cmVhbQ1lbmRvYmoNNTQ3IDAgb2JqDTw8IA0vVHlwZSAvUGFn ZXMgDS9LaWRzIFsgNTUzIDAgUiAxIDAgUiA1IDAgUiAxMCAwIFIgMTMgMCBSIDIyIDAgUiAyOSAw IFIgMzIgMCBSIDM1IDAgUiAzOCAwIFIgDV0gDS9Db3VudCAxMCANL1BhcmVudCA1NDggMCBSIA0+ PiANZW5kb2JqDTU0OCAwIG9iag08PCANL1R5cGUgL1BhZ2VzIA0vS2lkcyBbIDU0NyAwIFIgNTQ5 IDAgUiBdIA0vQ291bnQgMTMgDT4+IA1lbmRvYmoNNTQ5IDAgb2JqDTw8IA0vVHlwZSAvUGFnZXMg DS9LaWRzIFsgNDIgMCBSIDQ4IDAgUiA1MiAwIFIgXSANL0NvdW50IDMgDS9QYXJlbnQgNTQ4IDAg UiANPj4gDWVuZG9iag14cmVmDTAgNTUwIA0wMDAwMDAwMDAwIDY1NTM1IGYNCjAwMDAxMDM0OTQg MDAwMDAgbg0KMDAwMDEwMzY2NSAwMDAwMCBuDQowMDAwMTAzODA3IDAwMDAwIG4NCjAwMDAxMDM5 OTcgMDAwMDAgbg0KMDAwMDEwODY4MCAwMDAwMCBuDQowMDAwMTA4ODU3IDAwMDAwIG4NCjAwMDAx MDg5NzMgMDAwMDAgbg0KMDAwMDEwOTA4OSAwMDAwMCBuDQowMDAwMTA5MzE0IDAwMDAwIG4NCjAw MDAxMTcxODIgMDAwMDAgbg0KMDAwMDExNzMzNyAwMDAwMCBuDQowMDAwMTE3NTc2IDAwMDAwIG4N CjAwMDAxMjQxNDkgMDAwMDAgbg0KMDAwMDEyNDM1OSAwMDAwMCBuDQowMDAwMTI0NDc4IDAwMDAw IG4NCjAwMDAxMjQ1OTcgMDAwMDAgbg0KMDAwMDEyNDcxNiAwMDAwMCBuDQowMDAwMTI0ODM1IDAw MDAwIG4NCjAwMDAxMjQ5NTIgMDAwMDAgbg0KMDAwMDEyNTA2OSAwMDAwMCBuDQowMDAwMTI1Mjg3 IDAwMDAwIG4NCjAwMDAxMzM4NTggMDAwMDAgbg0KMDAwMDEzNDA1NCAwMDAwMCBuDQowMDAwMTM0 MTcyIDAwMDAwIG4NCjAwMDAxMzQyOTEgMDAwMDAgbg0KMDAwMDEzNDQxMCAwMDAwMCBuDQowMDAw MTM0NTI5IDAwMDAwIG4NCjAwMDAxMzQ3ODEgMDAwMDAgbg0KMDAwMDE0MjgwMyAwMDAwMCBuDQow MDAwMTQyOTU4IDAwMDAwIG4NCjAwMDAxNDMxNDkgMDAwMDAgbg0KMDAwMDE0ODQ3MiAwMDAwMCBu DQowMDAwMTQ4NjI3IDAwMDAwIG4NCjAwMDAxNDg4MTggMDAwMDAgbg0KMDAwMDE1NDkzMCAwMDAw MCBuDQowMDAwMTU1MDg1IDAwMDAwIG4NCjAwMDAxNTUzMDMgMDAwMDAgbg0KMDAwMDE2MTU0MyAw MDAwMCBuDQowMDAwMTYxNzE4IDAwMDAwIG4NCjAwMDAxNjE4MzcgMDAwMDAgbg0KMDAwMDE2MjAy OCAwMDAwMCBuDQowMDAwMTY4MDIwIDAwMDAwIG4NCjAwMDAxNjgyMDkgMDAwMDAgbg0KMDAwMDE2 ODMyOCAwMDAwMCBuDQowMDAwMTY4NDQ3IDAwMDAwIG4NCjAwMDAxNjg1NjYgMDAwMDAgbg0KMDAw MDE2ODc4MCAwMDAwMCBuDQowMDAwMTk0MzgwIDAwMDAwIG4NCjAwMDAxOTQ1MzUgMDAwMDAgbg0K MDAwMDE5NDc2MiAwMDAwMCBuDQowMDAwMjAwMTM1IDAwMDAwIG4NCjAwMDAyMzQ1MjcgMDAwMDAg bg0KMDAwMDIzNDY4MiAwMDAwMCBuDQowMDAwMjM0ODYwIDAwMDAwIG4NCjAwMDAyMzYzMzQgMDAw MDAgbg0KMDAwMDIzNjgzMSAwMDAwMCBuDQowMDAwMjM3MjkzIDAwMDAwIG4NCjAwMDAyMzc3MDMg MDAwMDAgbg0KMDAwMDIzNzc4MCAwMDAwMCBuDQowMDAwMjM4MjM0IDAwMDAwIG4NCjAwMDAyMzg2 MTggMDAwMDAgbg0KMDAwMDI0Mzc3MCAwMDAwMCBuDQowMDAwMjQ0MDUwIDAwMDAwIG4NCjAwMDAy NDYwOTkgMDAwMDAgbg0KMDAwMDI0NjMzMiAwMDAwMCBuDQowMDAwMjc1Njk1IDAwMDAwIG4NCjAw MDAyNzU5MjMgMDAwMDAgbg0KMDAwMDI5ODc3MyAwMDAwMCBuDQowMDAwMjk4ODMzIDAwMDAwIG4N CjAwMDAyOTg4OTMgMDAwMDAgbg0KMDAwMDI5ODk0OSAwMDAwMCBuDQowMDAwMjk5MDA2IDAwMDAw IG4NCjAwMDAyOTkwNjQgMDAwMDAgbg0KMDAwMDI5OTEyMiAwMDAwMCBuDQowMDAwMjk5MTgwIDAw MDAwIG4NCjAwMDAyOTkyMzggMDAwMDAgbg0KMDAwMDI5OTI5NiAwMDAwMCBuDQowMDAwMjk5MzU0 IDAwMDAwIG4NCjAwMDAyOTk0MTIgMDAwMDAgbg0KMDAwMDI5OTQ3MCAwMDAwMCBuDQowMDAwMjk5 NTI4IDAwMDAwIG4NCjAwMDAyOTk1ODQgMDAwMDAgbg0KMDAwMDI5OTYzOCAwMDAwMCBuDQowMDAw Mjk5NjkzIDAwMDAwIG4NCjAwMDAyOTk3NDggMDAwMDAgbg0KMDAwMDI5OTgwMyAwMDAwMCBuDQow MDAwMjk5ODU4IDAwMDAwIG4NCjAwMDAyOTk5MTMgMDAwMDAgbg0KMDAwMDI5OTk2OCAwMDAwMCBu DQowMDAwMzAwMDIzIDAwMDAwIG4NCjAwMDAzMDAwNzggMDAwMDAgbg0KMDAwMDMwMDEzMyAwMDAw MCBuDQowMDAwMzAwMTg4IDAwMDAwIG4NCjAwMDAzMDAyNDMgMDAwMDAgbg0KMDAwMDMwMDI5OCAw MDAwMCBuDQowMDAwMzAwMzUzIDAwMDAwIG4NCjAwMDAzMDA0MDggMDAwMDAgbg0KMDAwMDMwMDQ2 MyAwMDAwMCBuDQowMDAwMzAwNTE4IDAwMDAwIG4NCjAwMDAzMDA1NzMgMDAwMDAgbg0KMDAwMDMw MDYyOSAwMDAwMCBuDQowMDAwMzAwNjg1IDAwMDAwIG4NCjAwMDAzMDA3NDIgMDAwMDAgbg0KMDAw MDMwMDc5OCAwMDAwMCBuDQowMDAwMzAwODU1IDAwMDAwIG4NCjAwMDAzMDA5MTEgMDAwMDAgbg0K MDAwMDMwMDk2OCAwMDAwMCBuDQowMDAwMzAxMDI0IDAwMDAwIG4NCjAwMDAzMDEwODEgMDAwMDAg bg0KMDAwMDMwMTEzOCAwMDAwMCBuDQowMDAwMzAxMTk0IDAwMDAwIG4NCjAwMDAzMDEyNTEgMDAw MDAgbg0KMDAwMDMwMTMwOCAwMDAwMCBuDQowMDAwMzAxMzY0IDAwMDAwIG4NCjAwMDAzMDE0MjEg MDAwMDAgbg0KMDAwMDMwMTQ3NyAwMDAwMCBuDQowMDAwMzAxNTM2IDAwMDAwIG4NCjAwMDAzMDE1 OTUgMDAwMDAgbg0KMDAwMDMwMTY1MiAwMDAwMCBuDQowMDAwMzAxNzA5IDAwMDAwIG4NCjAwMDAz MDE3NjQgMDAwMDAgbg0KMDAwMDMwMTgyMSAwMDAwMCBuDQowMDAwMzAxODc3IDAwMDAwIG4NCjAw MDAzMDE5MzMgMDAwMDAgbg0KMDAwMDMwMTk4OSAwMDAwMCBuDQowMDAwMzAyMDQ1IDAwMDAwIG4N CjAwMDAzMDIxMDEgMDAwMDAgbg0KMDAwMDMwMjE1NyAwMDAwMCBuDQowMDAwMzAyMjEzIDAwMDAw IG4NCjAwMDAzMDIyNjkgMDAwMDAgbg0KMDAwMDMwMjMyNSAwMDAwMCBuDQowMDAwMzAyMzgxIDAw MDAwIG4NCjAwMDAzMDI0MzcgMDAwMDAgbg0KMDAwMDMwMjQ5MyAwMDAwMCBuDQowMDAwMzAyNTQ5 IDAwMDAwIG4NCjAwMDAzMDI2MDUgMDAwMDAgbg0KMDAwMDMwMjY2MiAwMDAwMCBuDQowMDAwMzAy NzE5IDAwMDAwIG4NCjAwMDAzMDI3NzYgMDAwMDAgbg0KMDAwMDMwMjgzMyAwMDAwMCBuDQowMDAw MzAyODkwIDAwMDAwIG4NCjAwMDAzMDI5NDcgMDAwMDAgbg0KMDAwMDMwMzAwNCAwMDAwMCBuDQow MDAwMzAzMDYxIDAwMDAwIG4NCjAwMDAzMDMxMTggMDAwMDAgbg0KMDAwMDMwMzE3NSAwMDAwMCBu DQowMDAwMzAzMjM1IDAwMDAwIG4NCjAwMDAzMDMyOTMgMDAwMDAgbg0KMDAwMDMwMzM1MSAwMDAw MCBuDQowMDAwMzAzNDA3IDAwMDAwIG4NCjAwMDAzMDM0NjQgMDAwMDAgbg0KMDAwMDMwMzUyMiAw MDAwMCBuDQowMDAwMzAzNTc5IDAwMDAwIG4NCjAwMDAzMDM2MzYgMDAwMDAgbg0KMDAwMDMwMzY5 MyAwMDAwMCBuDQowMDAwMzAzNzUwIDAwMDAwIG4NCjAwMDAzMDM4MDcgMDAwMDAgbg0KMDAwMDMw Mzg2NCAwMDAwMCBuDQowMDAwMzAzOTIxIDAwMDAwIG4NCjAwMDAzMDM5NzggMDAwMDAgbg0KMDAw MDMwNDAzNiAwMDAwMCBuDQowMDAwMzA0MDk0IDAwMDAwIG4NCjAwMDAzMDQxNTIgMDAwMDAgbg0K MDAwMDMwNDIxMCAwMDAwMCBuDQowMDAwMzA0MjY4IDAwMDAwIG4NCjAwMDAzMDQzMjYgMDAwMDAg bg0KMDAwMDMwNDM4NCAwMDAwMCBuDQowMDAwMzA0NDQxIDAwMDAwIG4NCjAwMDAzMDQ0OTkgMDAw MDAgbg0KMDAwMDMwNDU1OSAwMDAwMCBuDQowMDAwMzA0NjE3IDAwMDAwIG4NCjAwMDAzMDQ2NzUg MDAwMDAgbg0KMDAwMDMwNDczMyAwMDAwMCBuDQowMDAwMzA0NzkxIDAwMDAwIG4NCjAwMDAzMDQ4 NDkgMDAwMDAgbg0KMDAwMDMwNDkwNyAwMDAwMCBuDQowMDAwMzA0OTY0IDAwMDAwIG4NCjAwMDAz MDUwMjEgMDAwMDAgbg0KMDAwMDMwNTA3OCAwMDAwMCBuDQowMDAwMzA1MTM1IDAwMDAwIG4NCjAw MDAzMDUxOTIgMDAwMDAgbg0KMDAwMDMwNTI0OSAwMDAwMCBuDQowMDAwMzA1MzA2IDAwMDAwIG4N CjAwMDAzMDUzNjMgMDAwMDAgbg0KMDAwMDMwNTQyMCAwMDAwMCBuDQowMDAwMzA1NDc3IDAwMDAw IG4NCjAwMDAzMDU1MzQgMDAwMDAgbg0KMDAwMDMwNTU5MSAwMDAwMCBuDQowMDAwMzA1NjQ4IDAw MDAwIG4NCjAwMDAzMDU3MDUgMDAwMDAgbg0KMDAwMDMwNTc2MiAwMDAwMCBuDQowMDAwMzA1ODE5 IDAwMDAwIG4NCjAwMDAzMDU4NzYgMDAwMDAgbg0KMDAwMDMwNTkzMyAwMDAwMCBuDQowMDAwMzA1 OTkwIDAwMDAwIG4NCjAwMDAzMDYwNDcgMDAwMDAgbg0KMDAwMDMwNjEwNSAwMDAwMCBuDQowMDAw MzA2MTYzIDAwMDAwIG4NCjAwMDAzMDYyMjEgMDAwMDAgbg0KMDAwMDMwNjI3OSAwMDAwMCBuDQow MDAwMzA2MzM2IDAwMDAwIG4NCjAwMDAzMDYzOTQgMDAwMDAgbg0KMDAwMDMwNjQ1MiAwMDAwMCBu DQowMDAwMzA2NTEwIDAwMDAwIG4NCjAwMDAzMDY1NjggMDAwMDAgbg0KMDAwMDMwNjYyNiAwMDAw MCBuDQowMDAwMzA2Njg0IDAwMDAwIG4NCjAwMDAzMDY3NDIgMDAwMDAgbg0KMDAwMDMwNjgwMCAw MDAwMCBuDQowMDAwMzA2ODU4IDAwMDAwIG4NCjAwMDAzMDY5MTYgMDAwMDAgbg0KMDAwMDMwNjk3 NCAwMDAwMCBuDQowMDAwMzA3MDMyIDAwMDAwIG4NCjAwMDAzMDcwOTAgMDAwMDAgbg0KMDAwMDMw NzE0OCAwMDAwMCBuDQowMDAwMzA3MjA2IDAwMDAwIG4NCjAwMDAzMDcyNjQgMDAwMDAgbg0KMDAw MDMwNzMyMiAwMDAwMCBuDQowMDAwMzA3MzgwIDAwMDAwIG4NCjAwMDAzMDc0MzggMDAwMDAgbg0K MDAwMDMwNzQ5NiAwMDAwMCBuDQowMDAwMzA3NTU0IDAwMDAwIG4NCjAwMDAzMDc2MTIgMDAwMDAg bg0KMDAwMDMwNzY3MCAwMDAwMCBuDQowMDAwMzA3NzI4IDAwMDAwIG4NCjAwMDAzMDc3ODYgMDAw MDAgbg0KMDAwMDMwNzg0NCAwMDAwMCBuDQowMDAwMzA3OTAyIDAwMDAwIG4NCjAwMDAzMDc5NjAg MDAwMDAgbg0KMDAwMDMwODAxOCAwMDAwMCBuDQowMDAwMzA4MDc2IDAwMDAwIG4NCjAwMDAzMDgx MzYgMDAwMDAgbg0KMDAwMDMwODE5MyAwMDAwMCBuDQowMDAwMzA4MjUwIDAwMDAwIG4NCjAwMDAz MDgzMDggMDAwMDAgbg0KMDAwMDMwODM2NiAwMDAwMCBuDQowMDAwMzA4NDI0IDAwMDAwIG4NCjAw MDAzMDg0ODIgMDAwMDAgbg0KMDAwMDMwODUzOSAwMDAwMCBuDQowMDAwMzA4NTk2IDAwMDAwIG4N CjAwMDAzMDg2NTMgMDAwMDAgbg0KMDAwMDMwODcxMCAwMDAwMCBuDQowMDAwMzA4NzY3IDAwMDAw IG4NCjAwMDAzMDg4MjQgMDAwMDAgbg0KMDAwMDMwODg4MSAwMDAwMCBuDQowMDAwMzA4OTM4IDAw MDAwIG4NCjAwMDAzMDg5OTUgMDAwMDAgbg0KMDAwMDMwOTA1MiAwMDAwMCBuDQowMDAwMzA5MTA5 IDAwMDAwIG4NCjAwMDAzMDkxNjcgMDAwMDAgbg0KMDAwMDMwOTIyNSAwMDAwMCBuDQowMDAwMzA5 MjgzIDAwMDAwIG4NCjAwMDAzMDkzNDEgMDAwMDAgbg0KMDAwMDMwOTM5OSAwMDAwMCBuDQowMDAw MzA5NDU3IDAwMDAwIG4NCjAwMDAzMDk1MTUgMDAwMDAgbg0KMDAwMDMwOTU3MyAwMDAwMCBuDQow MDAwMzA5NjMxIDAwMDAwIG4NCjAwMDAzMDk2ODkgMDAwMDAgbg0KMDAwMDMwOTc0NyAwMDAwMCBu DQowMDAwMzA5ODA1IDAwMDAwIG4NCjAwMDAzMDk4NjMgMDAwMDAgbg0KMDAwMDMwOTkyMSAwMDAw MCBuDQowMDAwMzA5OTc5IDAwMDAwIG4NCjAwMDAzMTAwMzcgMDAwMDAgbg0KMDAwMDMxMDA5NSAw MDAwMCBuDQowMDAwMzEwMTUxIDAwMDAwIG4NCjAwMDAzMTAyMTEgMDAwMDAgbg0KMDAwMDMxMDI2 OCAwMDAwMCBuDQowMDAwMzEwMzI1IDAwMDAwIG4NCjAwMDAzMTAzODIgMDAwMDAgbg0KMDAwMDMx MDQ0MCAwMDAwMCBuDQowMDAwMzEwNDk4IDAwMDAwIG4NCjAwMDAzMTA1NTYgMDAwMDAgbg0KMDAw MDMxMDYxNCAwMDAwMCBuDQowMDAwMzEwNjcyIDAwMDAwIG4NCjAwMDAzMTA3MzAgMDAwMDAgbg0K MDAwMDMxMDc4OCAwMDAwMCBuDQowMDAwMzEwODQ2IDAwMDAwIG4NCjAwMDAzMTA5MDQgMDAwMDAg bg0KMDAwMDMxMDk2MSAwMDAwMCBuDQowMDAwMzExMDE4IDAwMDAwIG4NCjAwMDAzMTEwNzUgMDAw MDAgbg0KMDAwMDMxMTEzMiAwMDAwMCBuDQowMDAwMzExMTg5IDAwMDAwIG4NCjAwMDAzMTEyNDYg MDAwMDAgbg0KMDAwMDMxMTMwMyAwMDAwMCBuDQowMDAwMzExMzYwIDAwMDAwIG4NCjAwMDAzMTE0 MTcgMDAwMDAgbg0KMDAwMDMxMTQ3NCAwMDAwMCBuDQowMDAwMzExNTMxIDAwMDAwIG4NCjAwMDAz MTE1ODggMDAwMDAgbg0KMDAwMDMxMTY0NSAwMDAwMCBuDQowMDAwMzExNzAyIDAwMDAwIG4NCjAw MDAzMTE3NTkgMDAwMDAgbg0KMDAwMDMxMTgxNiAwMDAwMCBuDQowMDAwMzExODczIDAwMDAwIG4N CjAwMDAzMTE5MzAgMDAwMDAgbg0KMDAwMDMxMTk4NyAwMDAwMCBuDQowMDAwMzEyMDQ1IDAwMDAw IG4NCjAwMDAzMTIxMDMgMDAwMDAgbg0KMDAwMDMxMjE2MSAwMDAwMCBuDQowMDAwMzEyMjE5IDAw MDAwIG4NCjAwMDAzMTIyNzcgMDAwMDAgbg0KMDAwMDMxMjMzNSAwMDAwMCBuDQowMDAwMzEyMzkz IDAwMDAwIG4NCjAwMDAzMTI0NTEgMDAwMDAgbg0KMDAwMDMxMjUwOSAwMDAwMCBuDQowMDAwMzEy NTY3IDAwMDAwIG4NCjAwMDAzMTI2MjUgMDAwMDAgbg0KMDAwMDMxMjY4MyAwMDAwMCBuDQowMDAw MzEyNzQxIDAwMDAwIG4NCjAwMDAzMTI3OTkgMDAwMDAgbg0KMDAwMDMxMjg1NyAwMDAwMCBuDQow MDAwMzEyOTE1IDAwMDAwIG4NCjAwMDAzMTI5NzMgMDAwMDAgbg0KMDAwMDMxMzAzMSAwMDAwMCBu DQowMDAwMzEzMDg5IDAwMDAwIG4NCjAwMDAzMTMxNDcgMDAwMDAgbg0KMDAwMDMxMzIwNSAwMDAw MCBuDQowMDAwMzEzMjY1IDAwMDAwIG4NCjAwMDAzMTMzMjIgMDAwMDAgbg0KMDAwMDMxMzM3OSAw MDAwMCBuDQowMDAwMzEzNDM2IDAwMDAwIG4NCjAwMDAzMTM0OTMgMDAwMDAgbg0KMDAwMDMxMzU1 MSAwMDAwMCBuDQowMDAwMzEzNjA4IDAwMDAwIG4NCjAwMDAzMTM2NjYgMDAwMDAgbg0KMDAwMDMx MzcyMyAwMDAwMCBuDQowMDAwMzEzNzgwIDAwMDAwIG4NCjAwMDAzMTM4MzggMDAwMDAgbg0KMDAw MDMxMzg5NiAwMDAwMCBuDQowMDAwMzEzOTU0IDAwMDAwIG4NCjAwMDAzMTQwMTIgMDAwMDAgbg0K MDAwMDMxNDA3MCAwMDAwMCBuDQowMDAwMzE0MTI4IDAwMDAwIG4NCjAwMDAzMTQxODYgMDAwMDAg bg0KMDAwMDMxNDI0NCAwMDAwMCBuDQowMDAwMzE0MzAyIDAwMDAwIG4NCjAwMDAzMTQzNTkgMDAw MDAgbg0KMDAwMDMxNDQxNiAwMDAwMCBuDQowMDAwMzE0NDczIDAwMDAwIG4NCjAwMDAzMTQ1MzAg MDAwMDAgbg0KMDAwMDMxNDU4NyAwMDAwMCBuDQowMDAwMzE0NjQ0IDAwMDAwIG4NCjAwMDAzMTQ3 MDEgMDAwMDAgbg0KMDAwMDMxNDc1OCAwMDAwMCBuDQowMDAwMzE0ODE1IDAwMDAwIG4NCjAwMDAz MTQ4NzIgMDAwMDAgbg0KMDAwMDMxNDkyOSAwMDAwMCBuDQowMDAwMzE0OTg2IDAwMDAwIG4NCjAw MDAzMTUwNDMgMDAwMDAgbg0KMDAwMDMxNTEwMCAwMDAwMCBuDQowMDAwMzE1MTU2IDAwMDAwIG4N CjAwMDAzMTUyMTQgMDAwMDAgbg0KMDAwMDMxNTI3MiAwMDAwMCBuDQowMDAwMzE1MzMwIDAwMDAw IG4NCjAwMDAzMTUzODggMDAwMDAgbg0KMDAwMDMxNTQ0NiAwMDAwMCBuDQowMDAwMzE1NTA0IDAw MDAwIG4NCjAwMDAzMTU1NjIgMDAwMDAgbg0KMDAwMDMxNTYyMCAwMDAwMCBuDQowMDAwMzE1Njc4 IDAwMDAwIG4NCjAwMDAzMTU3MzYgMDAwMDAgbg0KMDAwMDMxNTc5NCAwMDAwMCBuDQowMDAwMzE1 ODU0IDAwMDAwIG4NCjAwMDAzMTU5MTIgMDAwMDAgbg0KMDAwMDMxNTk2OSAwMDAwMCBuDQowMDAw MzE2MDI2IDAwMDAwIG4NCjAwMDAzMTYwODMgMDAwMDAgbg0KMDAwMDMxNjE0MCAwMDAwMCBuDQow MDAwMzE2MTk3IDAwMDAwIG4NCjAwMDAzMTYyNTQgMDAwMDAgbg0KMDAwMDMxNjMxMSAwMDAwMCBu DQowMDAwMzE2MzY4IDAwMDAwIG4NCjAwMDAzMTY0MjUgMDAwMDAgbg0KMDAwMDMxNjQ4MiAwMDAw MCBuDQowMDAwMzE2NTM5IDAwMDAwIG4NCjAwMDAzMTY1OTYgMDAwMDAgbg0KMDAwMDMxNjY1MyAw MDAwMCBuDQowMDAwMzE2NzEwIDAwMDAwIG4NCjAwMDAzMTY3NjcgMDAwMDAgbg0KMDAwMDMxNjgy NCAwMDAwMCBuDQowMDAwMzE2ODgxIDAwMDAwIG4NCjAwMDAzMTY5MzggMDAwMDAgbg0KMDAwMDMx Njk5NSAwMDAwMCBuDQowMDAwMzE3MDUxIDAwMDAwIG4NCjAwMDAzMTcxMDkgMDAwMDAgbg0KMDAw MDMxNzE2NyAwMDAwMCBuDQowMDAwMzE3MjI1IDAwMDAwIG4NCjAwMDAzMTcyODMgMDAwMDAgbg0K MDAwMDMxNzM0MSAwMDAwMCBuDQowMDAwMzE3Mzk5IDAwMDAwIG4NCjAwMDAzMTc0NTcgMDAwMDAg bg0KMDAwMDMxNzUxNSAwMDAwMCBuDQowMDAwMzE3NTczIDAwMDAwIG4NCjAwMDAzMTc2MzEgMDAw MDAgbg0KMDAwMDMxNzY4OSAwMDAwMCBuDQowMDAwMzE3NzQ3IDAwMDAwIG4NCjAwMDAzMTc4MDUg MDAwMDAgbg0KMDAwMDMxNzg2MyAwMDAwMCBuDQowMDAwMzE3OTIxIDAwMDAwIG4NCjAwMDAzMTc5 NzkgMDAwMDAgbg0KMDAwMDMxODAzNyAwMDAwMCBuDQowMDAwMzE4MDk1IDAwMDAwIG4NCjAwMDAz MTgxNTMgMDAwMDAgbg0KMDAwMDMxODIxMSAwMDAwMCBuDQowMDAwMzE4MjcxIDAwMDAwIG4NCjAw MDAzMTgzMjkgMDAwMDAgbg0KMDAwMDMxODM4NiAwMDAwMCBuDQowMDAwMzE4NDQzIDAwMDAwIG4N CjAwMDAzMTg1MDAgMDAwMDAgbg0KMDAwMDMxODU1NyAwMDAwMCBuDQowMDAwMzE4NjE0IDAwMDAw IG4NCjAwMDAzMTg2NzEgMDAwMDAgbg0KMDAwMDMxODcyOCAwMDAwMCBuDQowMDAwMzE4Nzg1IDAw MDAwIG4NCjAwMDAzMTg4NDIgMDAwMDAgbg0KMDAwMDMxODg5OSAwMDAwMCBuDQowMDAwMzE4OTU2 IDAwMDAwIG4NCjAwMDAzMTkwMTQgMDAwMDAgbg0KMDAwMDMxOTA3MiAwMDAwMCBuDQowMDAwMzE5 MTMwIDAwMDAwIG4NCjAwMDAzMTkxODggMDAwMDAgbg0KMDAwMDMxOTI0NiAwMDAwMCBuDQowMDAw MzE5MzA0IDAwMDAwIG4NCjAwMDAzMTkzNjIgMDAwMDAgbg0KMDAwMDMxOTQyMCAwMDAwMCBuDQow MDAwMzE5NDc4IDAwMDAwIG4NCjAwMDAzMTk1MzYgMDAwMDAgbg0KMDAwMDMxOTU5NCAwMDAwMCBu DQowMDAwMzE5NjUyIDAwMDAwIG4NCjAwMDAzMTk3MTAgMDAwMDAgbg0KMDAwMDMxOTc3MCAwMDAw MCBuDQowMDAwMzE5ODI4IDAwMDAwIG4NCjAwMDAzMTk4ODYgMDAwMDAgbg0KMDAwMDMxOTk0MyAw MDAwMCBuDQowMDAwMzIwMDAwIDAwMDAwIG4NCjAwMDAzMjAwNTcgMDAwMDAgbg0KMDAwMDMyMDEx NCAwMDAwMCBuDQowMDAwMzIwMTcxIDAwMDAwIG4NCjAwMDAzMjAyMjggMDAwMDAgbg0KMDAwMDMy MDI4NSAwMDAwMCBuDQowMDAwMzIwMzQyIDAwMDAwIG4NCjAwMDAzMjAzOTkgMDAwMDAgbg0KMDAw MDMyMDQ1NiAwMDAwMCBuDQowMDAwMzIwNTEzIDAwMDAwIG4NCjAwMDAzMjA1NzAgMDAwMDAgbg0K MDAwMDMyMDYyNyAwMDAwMCBuDQowMDAwMzIwNjg0IDAwMDAwIG4NCjAwMDAzMjA3NDEgMDAwMDAg bg0KMDAwMDMyMDc5OCAwMDAwMCBuDQowMDAwMzIwODU1IDAwMDAwIG4NCjAwMDAzMjA5MTIgMDAw MDAgbg0KMDAwMDMyMDk2OSAwMDAwMCBuDQowMDAwMzIxMDI2IDAwMDAwIG4NCjAwMDAzMjEwODMg MDAwMDAgbg0KMDAwMDMyMTE0MCAwMDAwMCBuDQowMDAwMzIxMTk3IDAwMDAwIG4NCjAwMDAzMjEy NTMgMDAwMDAgbg0KMDAwMDMyMTMwOSAwMDAwMCBuDQowMDAwMzIxMzY3IDAwMDAwIG4NCjAwMDAz MjE0MjUgMDAwMDAgbg0KMDAwMDMyMTQ4MyAwMDAwMCBuDQowMDAwMzIxNTQxIDAwMDAwIG4NCjAw MDAzMjE1OTkgMDAwMDAgbg0KMDAwMDMyMTY1NyAwMDAwMCBuDQowMDAwMzIxNzE1IDAwMDAwIG4N CjAwMDAzMjE3NzMgMDAwMDAgbg0KMDAwMDMyMTgzMSAwMDAwMCBuDQowMDAwMzIxODg5IDAwMDAw IG4NCjAwMDAzMjE5NDcgMDAwMDAgbg0KMDAwMDMyMjAwNSAwMDAwMCBuDQowMDAwMzIyMDYzIDAw MDAwIG4NCjAwMDAzMjIxMjEgMDAwMDAgbg0KMDAwMDMyMjE3OSAwMDAwMCBuDQowMDAwMzIyMjM3 IDAwMDAwIG4NCjAwMDAzMjIyOTUgMDAwMDAgbg0KMDAwMDMyMjM1MiAwMDAwMCBuDQowMDAwMzIy NDEyIDAwMDAwIG4NCjAwMDAzMjI0NjkgMDAwMDAgbg0KMDAwMDMyMjUyNiAwMDAwMCBuDQowMDAw MzIyNTgzIDAwMDAwIG4NCjAwMDAzMjI2NDAgMDAwMDAgbg0KMDAwMDMyMjY5NyAwMDAwMCBuDQow MDAwMzIyNzU0IDAwMDAwIG4NCjAwMDAzMjI4MTEgMDAwMDAgbg0KMDAwMDMyMjg2OCAwMDAwMCBu DQowMDAwMzIyOTI1IDAwMDAwIG4NCjAwMDAzMjI5ODMgMDAwMDAgbg0KMDAwMDMyMzA0MSAwMDAw MCBuDQowMDAwMzIzMDk5IDAwMDAwIG4NCjAwMDAzMjMxNTcgMDAwMDAgbg0KMDAwMDMyMzIxNSAw MDAwMCBuDQowMDAwMzIzMjczIDAwMDAwIG4NCjAwMDAzMjMzMzEgMDAwMDAgbg0KMDAwMDMyMzM5 MSAwMDAwMCBuDQowMDAwMzIzNDUxIDAwMDAwIG4NCjAwMDAzMjM1MDggMDAwMDAgbg0KMDAwMDMy MzU2NSAwMDAwMCBuDQowMDAwMzIzNjIyIDAwMDAwIG4NCjAwMDAzMjM2NzkgMDAwMDAgbg0KMDAw MDMyMzczNiAwMDAwMCBuDQowMDAwMzIzNzkzIDAwMDAwIG4NCjAwMDAzMjM4NTAgMDAwMDAgbg0K MDAwMDMyMzkwNyAwMDAwMCBuDQowMDAwMzIzOTY0IDAwMDAwIG4NCjAwMDAzMjQwMjEgMDAwMDAg bg0KMDAwMDMyNDA3OCAwMDAwMCBuDQowMDAwMzI0MTM1IDAwMDAwIG4NCjAwMDAzMjQxOTIgMDAw MDAgbg0KMDAwMDMyNDI0OSAwMDAwMCBuDQowMDAwMzI0MzA2IDAwMDAwIG4NCjAwMDAzMjQzNjMg MDAwMDAgbg0KMDAwMDMyNDQyMCAwMDAwMCBuDQowMDAwMzI0NDc3IDAwMDAwIG4NCjAwMDAzMjQ1 MzQgMDAwMDAgbg0KMDAwMDMyNDU5MSAwMDAwMCBuDQowMDAwMzI0NjQ4IDAwMDAwIG4NCjAwMDAz MjQ3MDUgMDAwMDAgbg0KMDAwMDMyNDc2MiAwMDAwMCBuDQowMDAwMzI0ODE5IDAwMDAwIG4NCjAw MDAzMjQ4NzYgMDAwMDAgbg0KMDAwMDMyNDkzMyAwMDAwMCBuDQowMDAwMzI0OTkwIDAwMDAwIG4N CjAwMDAzMjUwNDcgMDAwMDAgbg0KMDAwMDMyNTEwNCAwMDAwMCBuDQowMDAwMzI1MTYxIDAwMDAw IG4NCjAwMDAzMjUyMTggMDAwMDAgbg0KMDAwMDMyNTI3NSAwMDAwMCBuDQowMDAwMzI1MzMyIDAw MDAwIG4NCjAwMDAzMjUzODkgMDAwMDAgbg0KMDAwMDMyNTQ0NiAwMDAwMCBuDQowMDAwMzI1NTAz IDAwMDAwIG4NCjAwMDAzMjY4MjMgMDAwMDAgbg0KMDAwMDMyODE5NSAwMDAwMCBuDQowMDAwMzI5 NTY3IDAwMDAwIG4NCjAwMDAzMzA5MzkgMDAwMDAgbg0KMDAwMDMzMjMxMSAwMDAwMCBuDQowMDAw MzMzNjg2IDAwMDAwIG4NCjAwMDAzMzU2ODYgMDAwMDAgbg0KMDAwMDMzNjI1MyAwMDAwMCBuDQow MDAwMzM2MzUzIDAwMDAwIG4NCjAwMDAzMzYzODUgMDAwMDAgbg0KMDAwMDMzNjQzMSAwMDAwMCBu DQowMDAwMzM2NjQ5IDAwMDAwIG4NCjAwMDAzMzc3NTggMDAwMDAgbg0KMDAwMDMzNzkwNiAwMDAw MCBuDQowMDAwMzM3OTgzIDAwMDAwIG4NCnRyYWlsZXINPDwNL1NpemUgNTUwDS9JRFs8Nzk4YzQ1 NGViZWU5ZmRmMWMwYTQ5OWRjYjQ1NDM2Y2M+PDMxNDgzNjgwMzgwNDc4YzcwMGQ4ZTE2OWY0NzQz MzhhPl0NPj4Nc3RhcnR4cmVmDTE3Mw0lJUVPRg0= ------=_NextPart_000_001B_01C466AD.29DB9BD0 Content-Type: application/pdf; name="overview_cs301.pdf" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="overview_cs301.pdf" JVBERi0xLjMNJeLjz9MNCjQ3IDAgb2JqDTw8IA0vTGluZWFyaXplZCAxIA0vTyA0OSANL0ggWyAx NjczIDQxNiBdIA0vTCA4MjkzMyANL0UgNTQ5NzggDS9OIDIgDS9UIDgxODc1IA0+PiANZW5kb2Jq DSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICB4cmVmDTQ3IDYxIA0wMDAwMDAwMDE2IDAwMDAwIG4NCjAwMDAwMDE1NjggMDAwMDAgbg0KMDAw MDAwMjA4OSAwMDAwMCBuDQowMDAwMDAyMzkwIDAwMDAwIG4NCjAwMDAwMDI2NDkgMDAwMDAgbg0K MDAwMDAwMjkzMyAwMDAwMCBuDQowMDAwMDA1MTc5IDAwMDAwIG4NCjAwMDAwMDUzMzIgMDAwMDAg bg0KMDAwMDAwNTY5MCAwMDAwMCBuDQowMDAwMDA2MDIzIDAwMDAwIG4NCjAwMDAwMDkyNDUgMDAw MDAgbg0KMDAwMDAwOTc4NSAwMDAwMCBuDQowMDAwMDEwMDIyIDAwMDAwIG4NCjAwMDAwMTA4MjYg MDAwMDAgbg0KMDAwMDAxMTIxNiAwMDAwMCBuDQowMDAwMDExNTY2IDAwMDAwIG4NCjAwMDAwMTE4 MTEgMDAwMDAgbg0KMDAwMDAxNTUxNSAwMDAwMCBuDQowMDAwMDE2MDgxIDAwMDAwIG4NCjAwMDAw MTY0NTggMDAwMDAgbg0KMDAwMDAxNjkzMiAwMDAwMCBuDQowMDAwMDE3MzMzIDAwMDAwIG4NCjAw MDAwMjM2NTggMDAwMDAgbg0KMDAwMDAyNDAzOSAwMDAwMCBuDQowMDAwMDI0NjAzIDAwMDAwIG4N CjAwMDAwMjQ2NzUgMDAwMDAgbg0KMDAwMDAyNDc0NyAwMDAwMCBuDQowMDAwMDI1MTYyIDAwMDAw IG4NCjAwMDAwMjU3NDkgMDAwMDAgbg0KMDAwMDAyNjA4OSAwMDAwMCBuDQowMDAwMDI2NTAxIDAw MDAwIG4NCjAwMDAwMzEwNzQgMDAwMDAgbg0KMDAwMDAzMTA5NiAwMDAwMCBuDQowMDAwMDM0MDY2 IDAwMDAwIG4NCjAwMDAwMzQwODggMDAwMDAgbg0KMDAwMDAzNTc5OSAwMDAwMCBuDQowMDAwMDM1 ODIxIDAwMDAwIG4NCjAwMDAwMzc1MzUgMDAwMDAgbg0KMDAwMDAzNzU1NyAwMDAwMCBuDQowMDAw MDM5MjI4IDAwMDAwIG4NCjAwMDAwMzkyNTAgMDAwMDAgbg0KMDAwMDA0MDg3MSAwMDAwMCBuDQow MDAwMDQwODkzIDAwMDAwIG4NCjAwMDAwNDI1MDYgMDAwMDAgbg0KMDAwMDA0MzI4MCAwMDAwMCBu DQowMDAwMDQzNjc4IDAwMDAwIG4NCjAwMDAwNDczNDcgMDAwMDAgbg0KMDAwMDA0NzYzNSAwMDAw MCBuDQowMDAwMDQ4MDEyIDAwMDAwIG4NCjAwMDAwNDgwMzQgMDAwMDAgbg0KMDAwMDA0OTg0MyAw MDAwMCBuDQowMDAwMDQ5ODY1IDAwMDAwIG4NCjAwMDAwNTIzNDYgMDAwMDAgbg0KMDAwMDA1MjQ4 NCAwMDAwMCBuDQowMDAwMDUyNjIxIDAwMDAwIG4NCjAwMDAwNTI3NjEgMDAwMDAgbg0KMDAwMDA1 MzM4OCAwMDAwMCBuDQowMDAwMDU0MjYyIDAwMDAwIG4NCjAwMDAwNTQ2NTUgMDAwMDAgbg0KMDAw MDAwMTY3MyAwMDAwMCBuDQowMDAwMDAyMDY3IDAwMDAwIG4NCnRyYWlsZXINPDwNL1NpemUgMTA4 DS9JbmZvIDQ1IDAgUiANL1Jvb3QgNDggMCBSIA0vUHJldiA4MTg2NSANL0lEWzw2ZWYyNWZlODRk MzFhZmQ3YmY1ZmRmMmQzZTNiNGI1Zj48OTJiNDUyYTQzOTczODRjZTFkNWJjZWMwZTdlOGYyNDE+ XQ0+Pg1zdGFydHhyZWYNMA0lJUVPRg0gICAgIA00OCAwIG9iag08PCANL1R5cGUgL0NhdGFsb2cg DS9QYWdlcyAzNCAwIFIgDS9NZXRhZGF0YSA0NiAwIFIgDS9KVCA0NCAwIFIgDS9QYWdlTGFiZWxz IDMzIDAgUiANPj4gDWVuZG9iag0xMDYgMCBvYmoNPDwgL1MgMTY2IC9UIDMxOSAvTCAzNjMgL0Zp bHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMDcgMCBSID4+IA1zdHJlYW0NCkiJYmBg4GBgYOtk YGNgUFVjEGBAAAGgGDsDCwPHEYYVdQwM0xkIATbeWRahXle7jnJLmBR8YvEUDonZ/Nxw3tEyHhGD /rusglw24pMkN+UyrnFrQNWXltbRgSTEKCioBARqIOGOBpDdQMDJwPAzGEhbArEnWESMgZdjh7UT TzeDY6uD2psGAQPTYzLiDEuYa884KXBLFDJ97/ywuaOCzcGIx6PXqUYi43EDY0EDg8kJBl4LBmaL BobjDxgMd+xh+vD4QytrDwPbbwamtAMv2A2sOUuyGosZD8xz3Cd7YCXrIbkFz4RPWLVsEJp6hWWK 7gMLjhsorpdkYNT6DqSZQBwWNlBwQtgMsgyMxvOANDNQoIthNpClwMBopgGV9wYIMAC5bk2yDWVu ZHN0cmVhbQ1lbmRvYmoNMTA3IDAgb2JqDTI5MyANZW5kb2JqDTQ5IDAgb2JqDTw8IA0vVHlwZSAv UGFnZSANL1BhcmVudCAzNCAwIFIgDS9SZXNvdXJjZXMgNTAgMCBSIA0vQ29udGVudHMgWyA3OSAw IFIgODEgMCBSIDgzIDAgUiA4NSAwIFIgODcgMCBSIDg5IDAgUiA5NiAwIFIgOTggMCBSIF0gDS9C bGVlZEJveCBbIC0wLjEyIDAuMTIgNjExLjg4IDc5Mi4xMiBdIA0vVHJpbUJveCBbIC0wLjEyIDAu MTIgNjExLjg4IDc5Mi4xMiBdIA0vVGh1bWIgMjUgMCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5 MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag01MCAw IG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9GMSA2NCAwIFIgL0Yy IDU5IDAgUiAvRjMgNTcgMCBSIC9GNCA3NCAwIFIgL0Y1IDcwIDAgUiAvRjYgOTAgMCBSID4+IA0v RXh0R1N0YXRlIDw8IC9HUzEgMTAxIDAgUiAvR1MyIDk5IDAgUiAvR1MzIDEwMCAwIFIgPj4gDS9D b2xvclNwYWNlIDw8IC9DczggNzIgMCBSIC9DczkgNzEgMCBSID4+IA0vUHJvcGVydGllcyA8PCAv TUMxIDEwNSAwIFIgPj4gDT4+IA1lbmRvYmoNNTEgMCBvYmoNPDwgDS9UeXBlIC9Gb250RGVzY3Jp cHRvciANL0FzY2VudCA3MTkgDS9DYXBIZWlnaHQgNzE5IA0vRGVzY2VudCAtMjE3IA0vRmxhZ3Mg NjggDS9Gb250QkJveCBbIC00MiAtMjE3IDY4NCA3MzggXSANL0ZvbnROYW1lIC9QQUxET08rU3dp c3M3MjFCVC1JdGFsaWMgDS9JdGFsaWNBbmdsZSAtMTUgDS9TdGVtViAwIA0vWEhlaWdodCA1MjMg DS9DaGFyU2V0ICgvYi9yL2kvZC9nL2Uvc3BhY2UvcC9vL3Qvcy9JL24vbC9jL0MvYS9TKQ0vRm9u dEZpbGUzIDUyIDAgUiANPj4gDWVuZG9iag01MiAwIG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29k ZSAvTGVuZ3RoIDIxNTQgL1N1YnR5cGUgL1R5cGUxQyA+PiANc3RyZWFtDQpIiWSVa2xT5xnHTwI+ OZoqd+vk1Dlvdc6EplWlwETHSjXuFCoKISmEhITcwE7iSxzbsR3HceL4kpuvSXyJbzjHcWzHcWIn di4O5EaCKF1gBbrSbl1p0QBtQ0N8mKYdg8O046nal+l8e99znkfP//97/icH2poL5eTkFHxypPBY cfG7Ja08qXTve7uPntv5seySgMfOXqJp8Fr+pUzTi8Mv5LRHr5M/+jH52k9cbyF338jevvH/30A5 1AP9HIK2Q9AeCDq6FToBQSch6DQEFedCJbkQBP2Uagvh0DYoBl3Lqc8tzX26hb3l6VYN7V1aEa2W 9il8EP4sj563iOw0pxczxxkv4U39v+G0Pm/zkxd3GGnmK+cm84UTpme+oZNQuoHMZfDra9vLQWEl McPH+TPtN75Cr1hTrjnMNT88E0wEE5FIbBghYgnHHLie6hBO4JNC3yVLGfJ3uPeB5Fb1FWSh+lRg HzhzXi2twqukLC6vSnBJWtlejijPd5WeRd8JHlouxc4t3xU/Bt99EVq5id9cSd4h/oz8Em452VRZ z0fomb/+I5/c+YJNexvO7HjFpj2H6YZBkscw9pn0BvSjQGmKhbEWPm29Dx5+7p9bxpfmgjd+j6bU 05JxTBK5MPHhZHe/dqDTiuyPs2fm0YQ7OhbAAmPTzqtgOamWhvCQ1MWtQvV/c+Tdk6+xEliSdYY4 DA4XK+qr8Zp6WflptMpVPyrCgqI1wXdcxJT3pH6BVY2yO/hCKSYR1qkvgAq2OyzCRSHV9FXUvTvP YNL3ovRjZIrcyuA2sZQVQCy3e9vxDm+XP4wGrX63F3N5iaGQ1dMf6U8NLPRP2cKOro8V5U08ZOkX DI1ruGcUuIbMZgfuMNvNdov7t0xjX59RD4x9elMfUOssgz14z6DeNoTaTDazDaPesllsS6SEOeDv 95gdSPZgAJ1pj/JHsBF+lbMInChTiRvwepGUpTuHPILtU57RYTfiJuLWJRAP92q8+GWtXSlDq6ua d3RjeoPJAPb2FrdzxAhX3MYqQSs8deNCTBSZVa2CyajVHcHHXGFiNITIrUqXFqPrvjUziIdefkAa VRYoo1O6eZCcsvti+OTlSHB0IhT3z3hSiCdlS6XQz9uucZNYklNJFAGBsKdThIs7pQq59BppZ74P Z3a9YtG+h8lH6f2MUamTV4seaTvdUIFVcGokpYDV6Aq24LKQJr6AxgfjrinMGfdGifDlAOELOBHn SNAaBnMTaukoTr9IPnjOkIkEGi5gN7lCclwe0kwvol8QnyWWseVEKrQKEuNa+Qg+0jok5KBPYMNG 2yIvhsS4lb5CwG7o6uDhvHZBS3OTqFHO7WAjqrrui7XoQd/ZqTqsbupa6z2wsUYkr+JXZqKrntvI HriTLW8UyxC6Ll2aT75DYfs+fCYzrYjJQqLLBT4R384BDVydkiqrbJJKBBKBgqNiI52sbNnjvjKq bH18SbEBYlEbpXDEHR4JRTQnmX+CPyDzGRUNVZIS0CB0h1qyk1ACfD18K7GCrSauhNbAzIRaEsBH JU7uRfSQ4hQlGL2GLEzvY4yNT7vnqUHVMmpQqbOR1WPq1euNej2amYVdK/5kdAwhqzODDB1XKW5u RVolTVoOqOW5QjJKZzUlmNU8ZPZiZpPJjKbfhPsJi8/sQcxes8eF/k6xWj+DJevKiZNg38eConK8 vKh5/3b0yHBJgtIokdXo1rovlsIXYpGrrpvIezBdky5IH2YEpC7+JXS/spBbiVXyaqQlgC3IetQS 1EwtoH/0bcQXscX4QnAdzE5m3dzctilnnB+umxJiwqll1S1w/4YvNofPxyPXvF+SW9LjFDqKX3fE W8MiX4FPzHewwcGTgtPn8fNFzQd2oceGS7OmTa+03gYTEaszjIddAZ8/oDrQWtYsQsQSluoc4Ihs XooSj5YIofY9hjw6yU+/ZAT+SdsDt2yjPYIzb26+ZFC9/LRfwZncTT91RH+cT+6gjN4DZ3ZS+fQY plc9yL9Oej23A8uxWEEsNudbASGiV+vB3RqbSoF2GbuMOsyoNWgM6qOZp8wn8Ffkv/rdFpfFWWB2 mh0ONKGOSAmMkHKHqgGH361qxAUdTS1Coe8b5j44s4VqS3WRpN9KH2GMyrL7caDtFKcCu8CppvBg CbL7QYlI4REbjA/FMUfcM3455AsRwwE34hoNWiMgFdPIAnjm/iaDUZdYU9wDD+9NbKzj6xtj3z5D 7ynW62aw2foy/wmw9yPB6VK8tFC8bzt6nChN1lGLnt6VPsigQOJRnLUVcsqx8oZaSRmoa8o2lgd/ 4DK5+gOXyXG1dATfpL16nXGTnPULRqVj7QUdkYmuaZCI232TeIwKiNBEaNI/7ZlD3HO21BX0rnKN l8RmeJVEMeALujuodFU1t8iE3q+Zv4Ezb78SU/lAz4S/z18nBzwb/quRiYLo2LQ3BawOo9GFZ0kF gefd5i5zj7nA3N1j6gESaVc7pUt7s1DICjxj7v2ffz/Tkh8yqFjtRUuGaxONGD+x2n4b3F71RpN4 MkrMrqAxbUQxgikClZFDU70W5pkxYTiMBhw+woW5h0PWSZCM6NoInGgbEnNR/QNn3nXlPC+KTfCr vEXgTJVKxMW5ImVDNXp2qfxZDebqdfRZ9bOKcIdDgwxpBlVKVKJVKDowlULczQc1PAchxWWEZiwx aBqw9JssFvQD2JDdV3rmEVlzh6ExaA06I2LU6UxdoFPbP9iNd//3ZzBgGjRbMbPVYrfY75J/YP4F 9n5J2w1Hyf8ERwC4/yIFMwZt+yIFQAZ7QwXXBkj7zoh7iX6JgRmKgYqDhBpvlHadfR59nqaEsBuS lIyNlh+VjZeNl4+ZzhgOfJr47L0G93sU+OsV/CcOewplbmRzdHJlYW0NZW5kb2JqDTUzIDAgb2Jq DTw8IA0vVHlwZSAvRW5jb2RpbmcgDS9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA2NyAvQyA3MyAv SSA4MyAvUyA5NyAvYSAvYiAvYyAvZCAvZSAxMDMgL2cgMTA1IC9pIDEwOCAvbCANMTEwIC9uIC9v IC9wIDExNCAvciAvcyAvdCBdIA0+PiANZW5kb2JqDTU0IDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRl RGVjb2RlIC9MZW5ndGggMjg0ID4+IA1zdHJlYW0NCkiJVFG7boQwEOz9FVtelMI8DqOTLBqSSBR5 KFzS+8xCkIKxjCnu77PG5KIUeMfjGe8y5nXz0JjRA39zs27RQz+azuEyr04jXHAYDaQZdKP2+25b 9aQscDK318Xj1Jh+BikZf6fDxbsrHJ7y++QO+Kvr0I1mgMM5/fgkol2t/cYJjYcEqgo67Bmvn5V9 URMCD7Y/7ny1CNm2T/fGc4eLVRqdMgOCzJIKZHmsAE33/4yV0XHp9ZdyLCqThAqTx3zDVAifIj4R LiJfBF6UG6ZCOGpE0AgdcV0x6rnfnv/2iq2lSEkkiqhMgwvDnHEE8UhEme2DE0E43hXd4VdCvrdU 9OocBbY9wpZLSGQ0eHsnO9sQQPjYjwADADxMihUKZW5kc3RyZWFtDWVuZG9iag01NSAwIG9iag08 PCANL1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0vQXNjZW50IDcxOSANL0NhcEhlaWdodCA3MTkgDS9E ZXNjZW50IC0yMTcgDS9GbGFncyA0IA0vRm9udEJCb3ggWyAwIC0yMTcgODE3IDczOSBdIA0vRm9u dE5hbWUgL1BBTEVDTCtTd2lzczcyMUJULUJvbGQgDS9JdGFsaWNBbmdsZSAwIA0vU3RlbVYgMCAN L1hIZWlnaHQgNTMxIA0vQ2hhclNldCAoL2J1bGxldC9zcGFjZS9IL2kvZy9oL3AvZS9yL2Yvby9t L2Evbi9jL3MvUC93L3QvdS9NL3YveS9iL2QvaHlwaGVuL08vRi9sXA0vQy9BL1MvYW1wZXJzYW5k L0kvTi9rKQ0vRm9udEZpbGUzIDU2IDAgUiANPj4gDWVuZG9iag01NiAwIG9iag08PCAvRmlsdGVy IC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxMzAgL1N1YnR5cGUgL1R5cGUxQyA+PiANc3RyZWFtDQpI iVxUe1BTVxq/webe62Oy2u5Fes/OvdZaqlMtrdV1xum2VUeogtKHIOADhIA8AgkkIU8gCYgvloSQ hCTkcSPkBfJ+riKy+GiL+FjttrRTu9txRmd2dtY/tnpCT9zZy07/2vP9ceac7zvnd36/73yfAHsp ARMIBGs/2ZWxd0/GW5+ryuTyHVvf3X1oy26pRLzkomNgVeJ5VLl4Y1El/PE38OXV8LdrOn636peX l7yr//8EJuANIzBMhGHrMWwDhr2JYZsE2NvLsG0YtpvEMoTY50IsD8MUGD/e4OExFlsvAILNggLB 14J/JaxKAAn7EyQJD5dtXvbopaiQFVrw5XgLPkcYie+In8l1ZAo5SMaWFy3/YQW1YmIFXLlrZeFK x8pnqzaXxC6hvdQvePzMf/DYGSL+yeIdKpb0whFPWnTgIvRMdCu2AW6hdFpNg9pEmtSq07VAKrf5 1KzaZ7oQpr1mj9XNtLscTrd9MJQEE9F2IcLhPylTR1NHs51sdpyx22iPxemwM3a7y+IFXmez0cHa TZZ6La09rWuqZxrrDQ06g7YhSRERogL0KaUobxAfow9yOWNiRjw2q7oNBgeszn62z9XjjwSnMpPg Thythe91Rf0XXQOvugbaR8xjJHoFPys/rTilPqVq0hh1G+ArSSPdkZAvQvoitt5B+rJuqCLChCsK XIfAZ8f0knK2XKItPEyrWzVWLdOmtWvcqnBJUpZELJGXkyJ0DV6HRyhIoxCiYYgQTcUOwgCFjuJP 4c2n6KYwfhAFKPgOfgluFMJefArxUwqOOhaLhOhDHNleFAlFz2NX4XmqsUBdXqUgFdISw3Fw4Ag3 XsaWj2u/+I7+wfNl3xgz1jfFzYM/DRhqQ2yo1iNpKyRhMt78sGoua5KczN4TSAFIuK18fyabub9y CxLRaFX07Zv7mI9vPix/Dp5803X5Bnv9cs9820MSvYGLxFCWCG/CebgGzcMdMAbXxM+9KILJhOgZ lCfCB/AKegA3LRahTYhDVyCHNvHeTYQI/QhVifz2Rn65kRDBBliWGFsg4Mb4ghC+hcPk2IIwvgBZ PkRGoNfiE+j12IQQSflwFhf9m0eNmQh4KW4Swi18THLchKPJmEmIUpbQcRHcDM/HRqnx/qnAHLg1 pcwfYPsLvAfep9/XHCgtYPJP5inTQUZeYKKULR3XfPU9/b33q/4JBgniJ6jUuZ/KnoPnP/Xdu8XO 3e19AkkakhVPMu4y99K3960D67aXpWWwGakVKYikEdmbMpfGiKJQHntM8U/vC5q0HtajsVWX0SdN Mq2O0WqkjWKAXodiHO5Dj6m/zPpHhtihEd+Nv9Lfqq+Lh5lh8af+jwD6ekkMaIP7cf661ePUien7 tY/Bk/vc6BV2erT7xjf0YFOvPsToQ0quyqOzqduV7UpriSPb2dCqNSss5E5fYXiYDts5zs24uWj7 MJjsM2m62C61s7q1lITr8TMPaq4fHSZHju7z7wDvpqlLjrBHS+RZe+kSa7lTyjhlfmW3LqK+rLuj bztnOWfmLQmuqZo7WUBXGhRKPaNXVjQWgFyxzS9jq326yKlhEiXj5g/CmdMnSNFHMSJK/dFgNlpM JNzYhRssjbbTDr4wz3YGaDhLXFYNibuZYNFnzl0gLVsnKWbFEnVBFm2Er7YTXHunu4NxuANtEdBz odnkZJ0mq66WllVqMhsZ+Vn1Gf3ZdOMxjVRGSqvrinPpLNeJcBVTFR7WXwVDfVZ3hI24ujhPuKW+ paHVQDbBfVSJoVKpZGqVlQYxqNW2OerZ+o5Tbj/ts7jtfJNweGzdVrKl09wWZaPWUPsFB5lLiOTz iRA8wDlJQBHUk3Xd0aY+MD8TvDrKjk777/6N/rvqXuEMM1N4OJgOyiqb6ngl6pS1GikJrYh5UUTA f8BkSqqqrCsGxVWusJpVhY2jf6av2Ie5EBPiIq4hMBCuk/pZTmovzqOzjIUqKSPaDn+GFKXT1TbK QFm1K6RhNWHT8DQ9axvzhJmQN+jqB0GuSd/JdurtSjOP9hrePK+YPjFADhYe8qaCPxyoyT3OHs9R pm6ltwZSJ3KY3IkvahbA3Wu+kXF2Yrhrpu0OidbhzRVGhU5HipSxdxaLKGQlNPx/krlJl6zSWgbS s6uzi9jCbFXq7+kd/rTRHObwyEz1bdAXtbqDbLfrwgWuh9wDAV91DIHy0SMq7A+7BsBQpE7GsZzM Ls79lZFUJV1SoNIVVv2qwJR9iAszoo95piRl0qma5aC02sFpWDVn7Dk7RkKIW1rMFsv5djv9WHk/ f4qZOp7RvRN8kLnELD9XmbqNfi+wd/IwkzP5ZfUCmJvp7OWZ9UQmXNdItB43qRr0OiOJWDhC+bxd th5wMWhSe1iv2i5rOUmiYrx1wB7y+viGexvWJsb2PHq6dZDobLVb2xiL1dXKgUEoxFvqG1oMoMVg OG8Eh4oaFNVsjaL+ZC6d9+Gb38b3QJYQyaA4tpYK/Y/3YKRexmey2l58hM4xilUyRqauqi8BJVXO EM87ZBy6wvMe9IeYlPh1qmp0Vn8fjA+abRfZi7ZwB+fp9nu77FHSEbGMXaNjTQikE7pwLVfjJF01 EmspSD1Uk8PnI0eVtp3eye0fzWNyR2fl98BAtK2Dr+wOn88dJI8SOaYyrZpRaySmfCBXm211bJ3N 5Gz2kigFb80OFI1WkaJSWJgI7xL99pDPz/j9QXsf6Ak0ajvY/3JZZjFtHHEYVyvs3ZdaQcQo2lF3 gSRC4SlVIjVV2zxUQWqiHqJJEJQ2Se1QMHG8PvDa+IzBt51y2Y6Nwcax8RoTqyKmtInLJYXeR1BK n0oTESlSq0iV+tDZaFzUWXjr26xmR7v65v/9vu+GZVRxmkJF2AifElFiPsB7J2nf5FDSFbemTRO6 GBnTsyNq0HfV49QxWme/2WwgYQg1YmA1YnorhW05lKMmJIdNRHW7RuBRU5XHa9kJeLEevkasrcM6 xEngSSnqgNvwbdi5G1uvozaJ8ILoGUjjTNiB3WImNOFHfBS64YV6uEkUx3PJFD2VzER4kE25bQkm bh8z6Sj0B2Tgr7vbU/TUZCaSB7mU255gEnvbf8IGgSDWrIvqIl1Uf5Q8D9Ss24Ev02E0m3WWPJc2 3CDjBnZUBTRaj0PPGJzGAZOe/AoB/O8NhEwJL/1frsL0kBVjyTKq7abQJmyCO8Q3tjuaWbqouTjR BvrUHoeW0Tr6zSYd+R1i9jTQwB48LYVMMVEG5Vm7JoN9H8NdoP2aksP4Mqrtl4FSnSgYGa5wrbxK rcQWsEsOoi15R+UH/UPw+4+55QpTWcpuPKYeGza6lujlrtO5E+DlM/qOLqar09B6jDqWba100jKD 0AKb5aLxekT05DmGy7tuL1Fr0YU0T/MpET3zsyJ60mxUcZ5639XNsTR2cVUO54gpbYYTgZcXgff9 yswqBt5q+v4j6qHpZ8UKvaxonzmzCzw9o7MZ+zk1+QCBf227dzcqilUiytHZXbEK0dugIg3CQ5JA IOzz+0IeoNIMWvSM3mLUDXxMPkEH9sQ5OgdflbdNX1joo/sW1q2/gN++TRY/Yxbnpu98TS06bulu 0rpsV7o16bru+MQ6TJ5K9qamqeRYPD5Oj8fTw3lQyHgcmInOiCXcT0Ja6r/HfaGYI4vKs8lT4M12 65XLOGRMl85RiviVvJ7OGyqm+wMJ35Tvppe85+QHDJRlyGEbpAdtnJcFPexYHJM37koH8xgpHtxL H8Dlv+W9UrPz+oib8Qz7IwkK3t366xV4GDWiw63NG6hMvBtVpk00l553rYGRWCg8xYRTE+E4+AeP kfCiwMvRT0SvS2sy0Saz1tUHNNx4EmdR0pOfp+Amds4O8c7Eh4WrtLrwuW0d3CqOxmeYfDybSs+Q b0FGNBQha4BP6uF7Ai9BLVL0fLUWPSfUStBLUni2yksgbmNwP1yt3xL2Paruk+Cwh0fEd2np8WrN SaFGgvvaG9Wa4+LqkBS2iGcOSmXNkEBqeTAaCUXAl59GJnNMdnJ6LnkXap5JD6AjUlyJ6lCNUCdB R8UPlSThQNjvp8L+UCBA6dwmu4N22Dk3O+QJeYE37At5wyQiiFgwFowGSdkH8BwusixfsuPhLyUK PFPgE6UyVbaXWDyRrCqhBEqVndUwLGtXKSllQoUzXWabEJ4uSWFu/7Na+X8DAHDaKQ8KZW5kc3Ry ZWFtDWVuZG9iag01NyAwIG9iag08PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL0Zp cnN0Q2hhciAzMiANL0xhc3RDaGFyIDExNiANL1dpZHRocyBbIDI3NCA2MDAgNjAwIDYwMCA2MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgDTYwMCA2MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAN NjAwIDYwMCA3MDcgNjAwIDYwMCA2MDAgNjAwIDYwMCAyNjAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIA02MDAgNjAwIDU5NyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIDYwMCA2MDAgDTUyOCA1OTAgNTU2IDU5MCA1NTQgNjAwIDU4OCA2MDAgMjMxIDYwMCA2 MDAgMjMxIDYwMCA1NTIgNTc0IDU5MCANNjAwIDMyNiA0OTIgMjY1IF0gDS9FbmNvZGluZyA1MyAw IFIgDS9CYXNlRm9udCAvUEFMRE9PK1N3aXNzNzIxQlQtSXRhbGljIA0vRm9udERlc2NyaXB0b3Ig NTEgMCBSIA0vVG9Vbmljb2RlIDU0IDAgUiANPj4gDWVuZG9iag01OCAwIG9iag08PCANL1R5cGUg L0VuY29kaW5nIA0vRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgMzggL2FtcGVyc2FuZCA0NSAvaHlw aGVuIDY1IC9BIDY3IC9DIDcwIC9GIDcyIC9IIC9JIDc3IA0vTSAvTiAvTyAvUCA4MyAvUyA5NyAv YSAvYiAvYyAvZCAvZSAvZiAvZyAvaCAvaSAxMDcgL2sgL2wgL20gL24gDS9vIC9wIDExNCAvciAv cyAvdCAvdSAvdiAvdyAxMjEgL3kgMTI4IC9idWxsZXQgXSANPj4gDWVuZG9iag01OSAwIG9iag08 PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL0ZpcnN0Q2hhciAzMiANL0xhc3RDaGFy IDE4MSANL1dpZHRocyBbIDI3NCA2MDAgNjAwIDYwMCA2MDAgNjAwIDY4MyA2MDAgMzM2IDMzNiA2 MDAgNjAwIDI3NCAzMTIgMjc0IDMwMSA1NDkgDTU0OSA1NDkgNTQ5IDU0OSA1NDkgNTQ5IDYwMCA1 NDkgNjAwIDI5NyA2MDAgNjAwIDYwMCA2MDAgNjAwIDEwMDAgDTYzNyA2NjIgNzEzIDcwNyA2Mzkg NTgzIDc2NCA3MjMgMjU3IDUwNSA2MzggNTM1IDgzMCA3MjEgNzczIDYzMCANNzczIDY2NCA2NDYg NTcxIDcwOSA2MTEgOTA0IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIA01NDMg NTk0IDUyNSA1OTQgNTQ3IDI2NCA1OTUgNTY5IDIyMiA2MDAgNTE3IDIyNiA4NTggNTY5IDU4MSA1 OTQgDTU5NCAzMzIgNDk2IDI4MSA1NjkgNDgxIDcyOCA0NzkgNTA3IDQ4MSA2MDAgNjAwIDYwMCA2 MDAgNjAwIDU5MCANNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIDYwMCA2MDAgNjAwIA02MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgDTYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA4MzMgNjAwIDYwMCANNjAwIDYwMCA2MDAgNjAwIDU2MiBd IA0vRW5jb2RpbmcgNjcgMCBSIA0vQmFzZUZvbnQgL1BBTERNRitTd2lzczcyMUJULVJvbWFuIA0v Rm9udERlc2NyaXB0b3IgNjYgMCBSIA0vVG9Vbmljb2RlIDY1IDAgUiANPj4gDWVuZG9iag02MCAw IG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNiA+PiANc3RyZWFtDQpIiVRR TW+DMAy98yt87LQDn6VUQkhbq0k97ENrt3tITIc0QhToof9+dsw67UD88mI/m+d4d9gfbD9D/OZH fcQZut4aj9N48RqhxXNvIc3A9HpebuHUg3IQU/HxOs04HGw3Ql1H8Ts9TrO/wuopvU/uIH71Bn1v z7A6pR+fRBwvzn3jgHaGBJoGDHZRvHtW7kUNCDGX/XGnq0PIwj1dGo8GJ6c0emXPCHWWNFBvtg2g Nf/fokoq2k5/KR9JZpJQIGwE7wnnecAUCCvBD4SLKmAKhCW/4Py16KxZp0wDphBR/6XT5revjFHn XJBLZs5VBeOiFMmUJXmEdSG6PEfJRLkV8UC0/JvSuXwkYpMxIRqEiagWI5iolnlkAraG93VzWV+8 pwWEpQaf2eHe4m3vbnRsKH/RjwADACNTmgAKZW5kc3RyZWFtDWVuZG9iag02MSAwIG9iag08PCAN L1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0vQXNjZW50IDcxOSANL0NhcEhlaWdodCA3MTkgDS9EZXNj ZW50IC0yMTYgDS9GbGFncyA2OCANL0ZvbnRCQm94IFsgLTcyIC0yMTYgODUxIDczNyBdIA0vRm9u dE5hbWUgL1BBTERLRytTd2lzczcyMUJULU1lZGl1bUl0YWxpYyANL0l0YWxpY0FuZ2xlIC0xNSAN L1N0ZW1WIDAgDS9YSGVpZ2h0IDUyOCANL0NoYXJTZXQgKC9BL24vc3BhY2UvZC92L2EvYy9lL00v dS9sL3QvaS9oeXBoZW4vVC9oL3IveS9QL28vcy9mL0gvZy9tL0MvcC9TL3RocmVlL1wNemVyby9v bmUvQi9rL0QvY29sb24vRi94L0UpDS9Gb250RmlsZTMgNjMgMCBSIA0+PiANZW5kb2JqDTYyIDAg b2JqDTw8IA0vVHlwZSAvRW5jb2RpbmcgDS9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NSAvaHlw aGVuIDQ4IC96ZXJvIC9vbmUgNTEgL3RocmVlIDU4IC9jb2xvbiA2NSAvQSAvQiAvQyANL0QgL0Ug L0YgNzIgL0ggNzcgL00gODAgL1AgODMgL1MgL1QgOTcgL2EgOTkgL2MgL2QgL2UgL2YgL2cgL2gg L2kgDTEwNyAvayAvbCAvbSAvbiAvbyAvcCAxMTQgL3IgL3MgL3QgL3UgL3YgMTIwIC94IC95IF0g DT4+IA1lbmRvYmoNNjMgMCBvYmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNjEy IC9TdWJ0eXBlIC9UeXBlMUMgPj4gDXN0cmVhbQ0KSIl0VGtQG9cZXQx7vdhYseMspbvp7tSJncl4 ktQdexInHTtxcFw/sc3LgKFGgHgJEEJvCQECGTCybIEeoLfESyAESILwsp2Ca+MnLQ5tmmSaJn+a pDNuMknau3Rlt4vj/uzs3Plm7p5z93znfnvikIR1SFxcHH3ynWOpRw/tTJeX19W9/stdBzJeOV5S XC6tOiwpFJYXrUEIhkxKfpcVrn65KkX/8Qzcvhm+tMX2/DN5z669Tfl/TCSOexAegmyJQ55DEBJB tqHIywjyKoLsQpDdccgBBEkFyDEUSU9Acjgo8hKnCKGRbcgeZCUuIW457l/rdq67HZ8ZPx//MGFr QmqCJmEFbUb7gRE8Xt+GPY/JEunE9sSxxM8Sv98wsHHzRk0SmnQy6dtNJZt+v+kh7wWebJyZZQ/i /waxtseAaVsfO7m6hDMpj6yxlFUr4LHjPPaCBVbi8DzwfIuyeiDbgfJg6eobeLmiukYsEObXZapO YKoTuuNHiD2uw2MFVMH4B9JlcjJs8Y7So97AUF90cNY/71jEHItdi7eIz5X3S6eoaUGW7z2yqLRJ UUHDtNhGvCFDnSs7p63VyBX1mFYpb5GS5WJbn4pW9TWHrxLXTL+1zlO2ececZ7In4PC5ezC7y9vp J0N9DWIn7RB3FWcROfosbQbFg0PMP3GBPKfxRKv6rZRxQ8g4dGn40qCpv2t7zJkC4wH82Woaugco i0RVAjnGYxqY3bg3YAlFiAXFlGCEGhHkOI6RBzOUAj7NF9Rm6VIxjmWa7B72ejGvZ9ASIoP9OpWL dqvMkipCoK0Ryym5uKzpbHtbRytpaG3taCdVe1Cj0WA0Xu4wkeGATuWlvUqLuJIo1FaIaylxbYW2 kBSIzG4FrXDrBsYJU4fJYKK4Zeik2HhwoaVDf0GP6Ttamomj7txIGVUWmVc+IP90yzs5Q89O+heW iFDLYH0vVd8rc9fYI/Yhn2cQ47E9vmS4FfTCzSi7FdSxm9E/MyTO7fTBLWs7YnYLyltkXoPDOFsK 4F64MsOuoDE5O4zD58CXMBWFw6CP5UoSYBNXi1D2RRB79lERd+ub4H/gJ/hMqFnD9aK2iMsJWatC p6R0ygaNulGr0+gVrVibsqa9hGT3gykoQWEquAqn8WigReuiXfVmaTVRwpmlpJTiYl0myb4BIvAM Ct8CsZ2xxzh8CP56zxPluov4rz8gRlsCGq47v9Rd1RPuCXg9AcwTsIxOEDcV04IhaliQYT9AsgHA bnuibhfzaPUX+PTZI77XyVPZjZI8+qykqKKsQMgX56uyMVV2c1YGsaPvV9dOU+nXPqz5G/nFh71z N+ibc+El5+cYmwhUWWJ+eTVWXcavzyNPFbjGhLRwTH1tiZi8PGGNUtaIY8w74hsdGBh2Ya6hUXOY vBqpFwXogMguMORicANo+4v4Tt40xoO7mXiGxe/OaoRDdEBozz1M5Ol/o+VTDXxlaZ1QWi2SCRsw rZCvzybZZPAdY0XhRsA+irE4tIFPbnc5p+hpR3RwNBoKD8y45zH3vPnGIvGN+KOcK9TVnP19O0hW DtgX1voeNSUzNcD7PcqugklYhcJl4P0OZR9wzp5G4RfA8wMay37qkdqUzH3nNryPwgng/QFloz/6 v/AEtffpifDlJ7B78DMU/hEcYbmyAcBta6OwAZxmoyi7An4HuZL0P+tn4cZkuJ75+g+xr1GIAnid +Yrlxb5CYcJT3ruAnYjd+DVzA2UPAPbnHImD8VaYzUwMjwSaVW7arbbUlhP59WUiKSUR8RvTSfYn YBbqUPhTENsQi+GchutwGIXbwd8feCfm6CsTvbc+Je4o5opHqVBJhjOVZM8/1TPEfMx48SXpB+fC 1Pi5NPc+8p00RUkBnS+Q5KYR1ZdrrRLKWueQ+5R+xaT4ltCl69abzwdVPnW3GutWm+RSorJBJJZR MnFlUzGZX2rrraVFvdqRScLMAtX6g/70aT7Fn7kl/5j89K7nRzHzS8RMfaR6hKoZyQ69PZbrr/Ro nJjG2eLtJQasPp+TcvoCXePk+8FGmZ/2S21VhiIMAi5jG28y3OyXAXZT7PHaHEAew9WstbyN+YF8 LW+vwyS8UlSmLiDF8s7uelrT0+LyE16T02anbD0ui7/TZuy9FDaGjcOdfrP+uCq/thKDR6ENN1g6 zGZiShWs8FP+8lzrEfJQllYkoAUiCV+XgUEEmAZsHqcVs7oGTOPkiL9VZ6ftzZ31SuIcX/xmC1XT Jm1Xt59sLlBUVmFCobroDJHfIwjUUKJAtP4KGQyYuvvofpvf7e3HdOvlneqeJqqpx6MfIK1Wg8FM Wy6aDV3GnpUUHWjQGU16+rypzWy7ZLhsIrio67pojcKClIuWixaDGeMZmHymEQ8JcpyHyb2HqtIy 6cwTov2vEfvcaWHO8fCC7AF5f8E9Pk3PhAPXbHcxLiibylSiOjkmrxM1CUlBtc0vp+W9TSNTxD3H 9eA0NR2M+GbIkT6dghsypZkLYC7K228r5kpHMd4ofAxfxAsqiyR5ZKnIukb1NQWjxLLjBkedCUb8 s+TYYKPEQ3uklko+cVB9SlhAfQRncU1I1i9yYk5RhbmYLCtvVnNhoaqR1AnFQkWpthDTFracKyAO OjNDRVRxaE6+SIaGO+0D9IC9r9c/rN2f8g2A9NqvgYB0NoTyjIwZBnGD3dBtI5bl88VRKlqc6XmP fPNIVVo2fSatdt8rxNvuk5FCih9ZkC2Td+YdQS4kgoNT/2277GObqMM4LuAdDYEaE4+090vufEGH CZoYE0hAEl4WxERexCEvDuR9bu2u3dq19GVrd13Ler1ubdfe+rZu7dr1bYytlgkiogOEGAQMatRA gBDFRBMVEn9Hrn/4uwDGP8zl7o/Lk9/z/J7v8/s8zy82I8OL1ds6THaFvaOthwEHGSFjok1oK8cD vv7+fr6/nxTn431Jf4KPKWrYUSJyMnU0O6rI5MYHK2A85zShXmYKMwc9viPeXq7XS0ph1PzL8PSD FsLJ8i6wV9NtMtAGk03DftBZr1qD25dh3+JLa5sxOBu/KW7GbuKJm9gyPDwdzIeGQiF1KCT0xUAg 4ONCdJAb4MLexF1Vp7/L7+RR3sWnxNcJlFPtfrK+893WPdQe5oBpJzikE9IPNaiSV+MzxWlqulgZ OSVrYBqm36r1EjpDE6Kztj0YtdCWKJtMkwFpztxtQ/uOMRRz7LPOS+CHC8nx4/Txo/kvYt/dFwuq 5/DDSxzHzGP6lDqF1NoHVr+t3biD3rGxfeWrZH2yYeIAtX/ilPkiKOWD0Rydi6ZTqaxjlWW7gVEo 49xCVC6fw5xwdni6WFQXi5PxEyCT9HQP0lFnsNNMenw9XA/Fubys17le+lWFmHcV/uWP+gVeUPMC HwmTla5SW5pK65uERqDR9nTpaF2XzqzXnYExlTT7EbSkq17Z1T1xFEP/XqiNogYs3iNQdtMQk391 SBimbEDxPIFPwBW/3vpFCmBwLqIGvAFb4U5MonHJKrXdEF/DpFmPF73Cy4vCZ+VKm/2QvEo4LTaI ApEwMwNNoFnjsjN0q01n0LekbqteRJ6zGJyFX4Qnwh+nJvN5dT5fjk2AVPwIG6EFV8BhI9GMw3ko 9HJuak1tDoY8nIeT4VOpqXxBXSiU47K5hxVogQ0i8yP/mnuo1bVZMvqvQdEfRmAIq/mwLxwhK45S O+JTe7OwF2VIjoix6Yx6zZGSI2NOKJQRMSo+TaBshgfI6a4yymam7aCwE7QgWy2KnjHqtInrqpfw RXL0s/9PMCcSrDtoN5Puh4L1IMG6/yPYICJQRK0siPNhHbG7Za9x2+NjlHEi8F9Onhv/hDo5Xs18 CipFpzFNjxgFDape2+aW3ZRUhOeJhg26lUvItcNbqghV1bOma+D2N6WLM/TMxfyPv5HXzOf2Vanq vndH1oKl9dqNDTSizzsCYR0rs5Pg2NGBZIkuJ/PZ0fJoaWgyWlVEq8HpE+QV6xfNFarS3JjaBJrR bnW03tZuMGnj11V1sp4mDNXDOXg60TzSPmZVw/cghXh20NgImnRC5jBtziAIkJcT58ZPPuLZxJjT iFBojGhlnm3R7qKUkgb+LU4SvNvj8wBGx1oMdPthg86wf+QP1aKHtTgHDXL9g+eHprOoIrLl2Ecg GPRxQToY5EIgDedhvMfNe4DyTbFRnEt8bjnehCa0ph3xDWBzYyfTRDfpLId2kdpwW9JEJU2VtgvM KUPREnUool3BThvZ4bJYHVSX1eBuRRCIyEPxMFuYIp/vxLekdk22UJqpM9ZL4Osz8dIUXSmlqmfI Ipu1jFDWkQO5TaWePjbgCCq2julzWTIZisUjVCQ+HMiBcsZlR7cDW9jo1yjuRxDTgnCemCVW4bal 2Pf4Rukrr5NjuW41+rjcpDZiSNkpe6rgqoDoIO8fpAf9Qp/QN/SzqluuF07BsSzHAtTJAm7aHegN CSRqZWhi50Py8yX8RIVAeAuBsAAXy0eOkRZjysgYXE94HciVU8F1cy4XuSeqyXVQHbkp52kwXhqI F+livJAZK9qXq/5EDMjKR3irlHVuMe1hWtVM6yH7btBhCQgOuktwx4fJAX+0L0Hx/T6/n7wM72LS k/g66U9M+cofC+ECHObkFebh0vZa3XaxTm4yP6GDoXwWvgzThPShlMYggUMS1l+XB/0FuKSGSbgX JuULgkRIa9+Aa+XxDi6UBjHlipvLCZed7WY9Cjfr6LUDj9vHoz7O9/Bu3vqaKtwb8UZQZsIRTgAT +VA8Tadjw6NDE/DOA6CS0GC7u7Zum7gOkzD8Tu28/n1MaY+Lv5/GxZlnxAvEP1ALNz8KZW5kc3Ry ZWFtDWVuZG9iag02NCAwIG9iag08PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL0Zp cnN0Q2hhciAzMiANL0xhc3RDaGFyIDEyMSANL1dpZHRocyBbIDI3OSA2MDAgNjAwIDYwMCA2MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTcgNjAwIDYwMCA1NTggDTU1OCA2MDAg NTU4IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMwMiA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAN NjIzIDY4NCA3MjAgNzIzIDU5OCA1NDcgNjAwIDcxMiA2MDAgNjAwIDYwMCA2MDAgODU3IDYwMCA2 MDAgNjM2IA02MDAgNjAwIDU5MyA1NTIgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIDYwMCA2MDAgDTU1OCA2MDAgNTY0IDU5OCA1NjYgMjg0IDU5OCA1NzggMjQ3IDYwMCA1 MDggMjQ4IDg1MyA1NzMgNTkyIDU5OCANNjAwIDM0OCA0OTUgMzEwIDU3MyA0NjkgNjAwIDQ1NiA0 ODMgXSANL0VuY29kaW5nIDYyIDAgUiANL0Jhc2VGb250IC9QQUxES0crU3dpc3M3MjFCVC1NZWRp dW1JdGFsaWMgDS9Gb250RGVzY3JpcHRvciA2MSAwIFIgDS9Ub1VuaWNvZGUgNjAgMCBSIA0+PiAN ZW5kb2JqDTY1IDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzAzID4+IA1z dHJlYW0NCkiJVJFNb4QgEIbv/oo5btMDyq66TYzJrm0TD/1I3e0dcbQmFQnqwX/fAew2PQAPL8y8 MMOK8rFU/Qzs3YyywhnaXjUGp3ExEqHGrlcQcWh6OW87N8tBaGAUXK3TjEOp2hGyLGAfdDjNZoXd M78P74C9mQZNrzrYXaLrJwnVovU3DqhmCCHPocE2YMWL0K9iQGA27E+7rBqBu320GY8NTlpINEJ1 CBkPc8jqOAdUzf+zIPURdSu/hAn8zTCkhTjxnBDvj45pIRaeT8RHe5+HnBMLdPrpidiaEZ/jPCDP LXv86+WtM26T8gfvYjNzSbzfbAsSDjZ9nDrhYN+URMSJDyEmoSZO/YuS8+bm89vP2g7c6iYXY6ik rk2ucrZmvcJbJ/WobYnsCH4EGAA3q5HdCmVuZHN0cmVhbQ1lbmRvYmoNNjYgMCBvYmoNPDwgDS9U eXBlIC9Gb250RGVzY3JpcHRvciANL0FzY2VudCA3MTkgDS9DYXBIZWlnaHQgNzE5IA0vRGVzY2Vu dCAtMjE4IA0vRmxhZ3MgNCANL0ZvbnRCQm94IFsgLTU1IC0yMTkgOTQ5IDczOSBdIA0vRm9udE5h bWUgL1BBTERNRitTd2lzczcyMUJULVJvbWFuIA0vSXRhbGljQW5nbGUgMCANL1N0ZW1WIDAgDS9Y SGVpZ2h0IDUyMyANL0NoYXJTZXQgKC9UL2gvZS9zcGFjZS9DL1MvdGhyZWUvemVyby9vbmUvaS9z L2EvZy9wL3IvZi9vL20vbi9jL2h5cGhlbi9iL2QvdS92L2wvdFwNL3kvcGVyaW9kL3cveC9zaXgv Zm91ci9QL0UvcGFyZW5sZWZ0L3BhcmVucmlnaHQvY29tbWEvdHdvL2VpZ2h0L0svUi9BL00vXA1J L3NsYXNoL08vcmVnaXN0ZXJlZC9GL1Uvay9EL2ZpdmUvRy9ML1cvYXQvSC96L2NvbG9uL0IvUS9K L2J1bGxldC9WL2FtcGVcDXJzYW5kL04vcS9tdSkNL0ZvbnRGaWxlMyA2OCAwIFIgDT4+IA1lbmRv YmoNNjcgMCBvYmoNPDwgDS9UeXBlIC9FbmNvZGluZyANL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNl IDM4IC9hbXBlcnNhbmQgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NCAvY29tbWEgL2h5cGhl biANL3BlcmlvZCAvc2xhc2ggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSAvc2l4 IDU2IC9laWdodCANNTggL2NvbG9uIDY0IC9hdCAvQSAvQiAvQyAvRCAvRSAvRiAvRyAvSCAvSSAv SiAvSyAvTCAvTSAvTiAvTyAvUCANL1EgL1IgL1MgL1QgL1UgL1YgL1cgOTcgL2EgL2IgL2MgL2Qg L2UgL2YgL2cgL2ggL2kgMTA3IC9rIC9sIC9tIA0vbiAvbyAvcCAvcSAvciAvcyAvdCAvdSAvdiAv dyAveCAveSAveiAxMjggL2J1bGxldCAxNzQgL3JlZ2lzdGVyZWQgDTE4MSAvbXUgXSANPj4gDWVu ZG9iag02OCAwIG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDYyMzMgL1N1YnR5 cGUgL1R5cGUxQyA+PiANc3RyZWFtDQpIiWRVa1BTZxo+UZMcqESlHozfcc6Zdnbqbjvd7eqO7FoQ 2qVeqkWKCCJGkhDu5H45SEKIgKDWKgrmCrmeJBACJALhIrBrQS7VOmJVBO2snbFuZ7ezuj92TuxJ dzZ0dn/t9/745p13nnkvz/O9HwNatwZiMBjcnA8OZX2y950jRKVSmbrjtx/mvZsrFQskqzEQRden 5NHSHw+8IphPN1CcjdTGTaZtYHPyanTT/0EgRtwgNgQlMKCkRGgrBKEQ9MYW6EMYOrQBUkGQGYK8 UPzsjaeGcOhNBoeRzficMcqYY9xnfL8mf41izd/WWtdOr0tb95gZZN5kp7MVbAquhCPwIvx9giBB l3Au4XlicuKbiY2JY6/96rW29dvXX08qSzqVNJG0wtnA+deG6g0rG3M2Lm7auulGckryu8n5ySXJ L17/4+v9m3+x2bb5IaJF5lK2pexOEad0pfxzy8Yt+7Z8uxW2RMfpj5AfWbGz/2ZFz7JjOa/uIFHu T8YY95WRxaFvc36gzkVtSIPrjNMOfO1OmxWz2tztftTraNLZcJu2XaMAiialVo1p1XJ1pUbmqyX1 TpgqiDERpUyhkdXD9TJpswQVVZtIBa7w6ANhELjqs5OYnewlR0hqDy3g0i+pXYi8Ql/CA9mO44Mi TDQ4RdxCR4Y6OkN4qCtIdvcv/o5LrWfRgNrV6bf0dAS2dvS2BftBKuuc4qyqtbaFaK5r0tEo9Xvu uK+v2xWAnQFjXxiM60I1fsxXI7Dko4UCnbgarxZrRSeA7LLcLMPMcofULz5cxa+QVcIc+iL1iC5B eCsVy+olWPXIsLwMlo3L7keYa6l/eWwFPsQ6kinMlGfAsgz9+6kg1fy+LwPzZgxlTmfCX7JW8ce7 EN+S+fFT8Bf9E9kSJl8SPjzyII4bS+tLd2fA7j3G9HSQbkhX7cFUGZXpvLQ4bvrB0EPvUjz9bWpb io4db6ZRhzXVNzRqz8KF7N520tbpgTs9HT0hQCVsp6EJNof2UT2UGlmhW9KoFvYq8nAKxdhOM17E nfDsrxGq9dXXzE9Y9JmfvmbOsTjUH6LjyKh7wDWJTobUxW7cXWzMehu8bchS8bFiVZm6EC0sd42o cNVIw+IP4O+me+4R7KOYEskemhWvoCtzPfND+NC84xmVCKhEzTPhPDYvzAmkoWk5NdlCXJhN7KAT AZ3o2DGUjXGoFymvDu9jt/BOVUnUYk2xIec8nEXtijU+Z3Oil1K+ja1nt3fbvKSH9Fzz3vDP9nCn fOGAZwAm+03D18GCZlIQxsKCPPteNCtXwxfiAr4m5wPQ8LydPWka9PixbjJoiaDDQYOKxEm1WVwG qpukdUpMq5RrKoicau7u4lxeFQ+u4mlz94MzURmb46YqkSxn7rAAE0RmNPfQpXnH4Cg+Oui+cQdE Tg/U+rHabqmzzNJtcnZZPbDVc8XfB2aJMVEQC4rybFno/nxCKMJFQuLoXtDyjD1hDLlJjHQHTSPo YE9jrRN31hplFaDUIFPXYXXqssbC5pbPWlpbL7Si59OYF1kXXLYLHej4gEFD4t54zSLA11fJlZhC Xt7AQ0+Um31yXOGrD5+fgN9riTP2TXQOoW/RMjYlo24xv4vNIVTmPx7/MprxHpuejqUyd1IzdOZ3 bM6LfqRs+ItTt9EHc+7RMXx01D17H9xVT/OHsWF+rjMLlSlbm+PENhGGOp2fOsylZr6JsVh5sXXM xyyb02FzGWGji2zzoePheqkP90stZUWAV18mkWBSaWk9Dy2tuepQ4Eqnzn9mAP4N63K2pyhSBnOi yEtEqqisF6D8Cku8eLlPHxoH4+YBrw/zeQfMo+hQsF4WJ0hmKj8JePoyhRT7KjqKBEsLOj9GUw9W 7uPhvH2qd+hN4A3X7sgRLDeyIH2CLs44IyN4JOKauQvuEtPCeBvCo84DaEVNs16Ky/TKWkLR9tT6 pW8YHvJdc06h4e7V6btqTdKL5fBfWa3zmuulQZhD7aGuI26y3ziCjvQbVF6cVJmrRUCgr1SsDr2i oRgtrvjvSuobBoPmAOnGrNQEYnd1d4TR8P84lVeCqjinBEaoxafL0XLxVYcaVzsMviDoM3qddoxO okNIreR0OR8ccB6NiLCSyCxxH71/0zEY7+Oa68ZXPwusGyN6JK5Sa8Ditv8ssPaefvBnIlKyKrDV iXxcUFcVF1gVwc8HFe1iqxKzKt21gfpSnURNiOPrYZgqiu5EKOgtGnrJju1cRzHeohkv409qR/RR tAYxEarLUvRAnrzgJH7ymPrgHpBvLvFKMZk3XD+J9vqvWDy4x+J0dnXDjWx5e22nHtPbyDO9qM/f 1uHFfVc9ZlfXtUBP2DkGO8euTs2ACcOYOoKpI9UhQbDCJ3QUWWFrUeGVfHR3pk58AN8vzi0u+rRa pCiuK4LripqOHQUHTZ+SxzDyWKh4UjQoHlNN6WDd1EzTAjo33dH1BX7DPuW7PiAb5PLFRaoCLawt yG/KQ4+fuGIuxk9aSu1VJL+3JkwMw0Tk9ORNcL/zTt8c1jc3MbEQ6rX3WUIdcEdosC2Cvnwiz1/A FwoC+3aBkuZSXTmmKyfEckWdtq7hVCPcdErbokW1DZfam/DG9lajFVz6rO1CG3ahbdXuUX3cgyzp kQaPzk6YthbSjxGVQmKoQSWqDrsO13Y1+frAvPVPgQg2HAg5R1Gvc/Wr69Qa1ZclEprNbSyvkyjU MGeKuheNIdRaepFJq1gUk4rfslgMeURVM6kB1hL9H7arNaiJNIvu1k46bTHGfZgUdtd2sz/cGXZ8 jau7jo8ZR0tEZzGuOIIBFIgECQkJISQkBGISCAmaByTBEAIJj8QkQBQJPngF8YHlA1QcZ3VqdUZl pHzPD+frTIeqbfy786e7+qu+Vffce+495yumvYNIb4xLI38DkZ45Lu0txPiW+CPr3pW20++pEb2J nFefLgtiZaGitlxbb7PP4/bBbr+d0sjLFWd5ASzAS3dtRskzc1xwGSK5sT8wwXZoMKxVUitc0SQu RA6pRWUVmELK02ai5BdADJFjHwA2dDGiqfDjPrlTmEdRvri0HCuXFBzZj5IcYKaWy58IN2AweQVZ it1oyl7/WB6eNya7/QSZ9Uz3j2Kj/Zd8d9Hxs9WSXry3tL3QngW/gHR3hZcyBuCBjFTvenTpev6O XTg7VbiapCEkI7DsUgq27fKDorfok2lfdBy/GA3esjyBl0EGtpzDK6SmcSFhIq4xT+W0pf4dWaVI 4WVj2byvpVtRciNxDmyEbl+QZvfh5Or4Nebr/3TfGMfHb5z4ESxAAE38w74JbGLf58GPUNJPlaED YowRz1kz8Y2gllj8KL4YFBNrnsYdc1yilc4wgK0scB88fUI+BQKCOROXz3Ff0RkgJfZ71nUikZxa D8q10DZ5en4+ls/9WrYd3fxvXzQXzx2VTT9DZtunz1Dwz1ztuj8PXxyeh8+zc+DnkOYbwWUKfoSC /xma9I+i7Wn4v7YLVs6rHi246uo2LGXiweGXaPScoy2C97eFg4E+7yeJDPDn+YRmiAXkzKsYN5kc ii8AQ8nvcyL/C7axqLP3H+tbQSmz7miNDvnSvTfMw3jhqOI2eifaGqZacNI9/g1CuJPjUnpBfamx EquvNKj1Wq2iuqpSC2uV8joJeqikyavAFV5teNB2tMFqOWa2IMuhuvq6OoQRBVtYwEoHvwO/BVZy jgYWQuQ4sRUMggiNZEHka/INDbz52xz3JZ2RSYRYP5K/xOCPqYLmUJUzgC3Et0zzEbPWrAU74oOJ zyCQRgyaHeYms2PJ/MPUBMdjz2NcMolOpsUHDVqj1qBdQr2OGNT1DUab0W6w1R3Xt5ApxGAimTTH nSFikEltVps0FDFQsIlFfEe3aCxai9aqteqsOvAi7k98F+OuiH8HGex6u95R21Tr0B0nnxJtiVT8 LMVgNigkppnRgSu+e+i9K6UZA/hApnfLSmSlbGteBpaRt7t0M7p5ty+ah+dG51v7zHuXau2XcR0z deIh/2f054c9kxP4xGRwFiQgIEE4y57EJtnrepLQpHX8VDa+K1W4gkxAyITgiqupGOMs2BpLYIIv oLFT2or2+dkT5CIHjwik1OyVc7V7UHIdqIXmEj4AF8HH9At9JmsH3mnxNLqbgq0dnS0h2BWyhfuR Ad0pVQirDEk7S1qUdlljuRW2lPNNuSjZStFgHhbBvsOsU1YY5b+S/f+jzarNVRdgRwqUAqnkkweJ Wbse7FDplLVKwxKgIBczh66unQ71dQ64zi9xnbeNXaa8m3B213ugvX/5VaCpE4/479DebktjEA/Z AsdPuN6uS2TcB7OxRcxrZ7TKTgr6cWEukqMulsixCkmuho2SGyiSbIDIlrlFzJfgKlgN3TpTU+XG W1UOgTmrYXmigW7hNBTbVTCgeSCNVWfXO/XHDW3GLh1ISDScrelWt6rb5E6RrcfV1d5yglqAtp7T SL8uXBnAVMGyDqFbaa9okFne1+oASnbPcSHGBGAMMg8OT5U/Rr+f9EZG8OFI1/gtJKD3aTowDbXb K9wSb4bn8zaNKVFjqrYoLDCZ4N89MI6Em08EvJg30OcYQkf7qyVBPFDq5pmz4Vmo/o704oEIHMlJ 82xAN6VVHMrGsw9JM75CMlryQyKsu+S65JXUUm81NtbDYGHJRN5ehFtZXFyGSYsPqtPR9AOuUBFe FFIO1Efh5ZDlM99XQwdhhgo8ZsU+BPLH8eE1QD734fxCWgSSxpicc1NlM+iLu13DVPojXdMvEWJP cjydnqriCPgYX5hTmYamZbd0l+DCHtXwFEKkJ8f30JPbt5zjYIwu8AsLNFDqshQic+KvSS7xmvZX CNgpnfmJYtIdcI4FPiVmwLr4DO0FBNKpP1dAZHJ8ivyUmJoPWhafJj8ipmnLIMCmgt5AjFwCmWRS 1qCZsgau9toA2mg7dsyG247ZTU1meIper9fXU3bWYDhqQKu15kY9rm8wutoR4KKPKyN8P+bjZzq3 oTszVQIezhNU5O9D6h7Sux2d3hbM7Q3aImh/oKbag7dVO+RiRGasMtRghtoavaZOUyfWH6grNciM KiNbd0ApFMMlYhVlRDmugqAIEwUHqsbQcHdjcwgPuQJefwA20HVgIZOnEgilWJmgQJ2FCqWNzUq8 slnn8SG+Rk9zM9bs7HB0Wx0ml8ljutQYcXQ44U10hg2kE6uYPb7TLaPoSJ+i0I/7C52ZOxB2Vbao CCsSFSizUE5Ba1iMi8PVIzeQG85hXw9WGF/FvElvF3XKTlTD1f7umlPo7fGukQE8MuKdfIR8L5vK o6QjL70rBS0s1qlEeImqbN63gfa1c9wf6IxdhBH8xDRckZ0/1AuHuRnuHZT0SDiU9OyXpaxB1npS IxyME7komUZvXWg9SV23qNua9Tr8T6iWqxJIZLCsjH8kH8057A5TnrVXPXwduU4l1ov1+k66h9D+ bk0F5QnkTjHlgh9DDBuxFNCZh8UFCg6aVeDuFeGi3qrBCeRm86j/JHbS39c6jEb7KvmUSeA7OTuR nVX7xYexPuItk3TS5X6JR9QMO0XFjbz/NV5tsU1kZ7gq9cy0D36o1ghm1JmKctGuluWSJXmApbvc AnSBRUDXCZeE2Ens3Dy+JY4viWMn4CR2EseOb/H9bojt2IaEgJPtUmgV1HJZLUuLqt2gILUrVUu1 VXsGjRE9Nn3pW99Gmplzzv+d7//+7yMOnZLxYQTjd0OzVRM8fK2OrLt+W/YIisSkK0El3LFgKI4d WXkpqEa5QnCI2c2LRdOuOeJGpo+GjlPqaq7H2QIyvujJRWMY4LMrPJWi09AKM48nRVPSlG5u5DbG cBHozSYmRm0O/JvuPzYtkAtNJ8MfEvtOyuouUk113Qd3lne/DjG6fkf+JbG85J2Bg3YmdsN+F3sf GRRrpYpeaJK/gvOWqfv20dZ59Op40OYkHTaPNUCMT4yOWKnJEduIfRh7ivaO6SwGMzZgNA8Rwk59 t4rqUQ60NeJ7dx18Vqp7jnLtzDvMe7y42MU/jB/uq5e1k+1SoeYM5IW3wgtd8R6EfzGeJjPxnBdC WVCLY9RsqZp3tl8k7ya7ZUL9KXhZky4Yvdz6QBy37LqMng205GmSzn+ue0g8W/Zlc1Q+67/7F5yx 7zqCKpOyoNSFuaQdk2KYe2V8SA2+8kgNLLt2jk/y5+5IvyAyV96AHgkE4th+lKtmzGvBfTSKzg7H TV7ysnfIY3Rpwz0+2ok5abFVSLS0DUIySrRKpUaCgXDVK8EqWEYX3NkEjGmJnOsmkY8PqDzUdI9N 9CnOfgWLL/0AbGNe815UbVlFS69/xASqSoFVlHsIbFsLjqJ/fQ62shHOdwh7BqwAPjjFYdcgrJ7t 5zD7y6tDZ1MCO6Cz2flKABcD0Zcz5SN60MJw0uQnTb6h6UF3X7jHK3NhTlmXVVyJdhDUPlm3QqJO qIJyiIKCnmwjWjsGdZAhWoWypwt7XANPAY9+0zkbiZHx8IzrOpGJlo/uVk22/rp8dPj2ljMbhjoU uQoZ+L9vV/8ftFrb36BVad0nlR2X0CV3Pp4gE/Gcu1gGqweCpbK18t+AdQn8ktnGSycK3s/gNFGL oJqI3ZWGqqfFpIgWqPnEp0JvptKARagm7jJrjrL/5tXPL8ufEk+XI8U5ar4YerCKryofNBTJYsOx yB5izzE5FIeGemVtFV4Vqp2Him8Dp5l3eZlK797KqcWQCGL3uRP4kT4+3Uq2wl6vI/jC6RkpJZ3p K28FCZohW0qveCCGBuhoTxwqV6KsXA9/G12CHmIx+GAFdtuDpkVy8eLp6EGipVI+rZUrlB3Y412v 6GdlufwItkI6kYcqU5ytFChy13+M/6qvTiqCBbZAueQLfVlYYFa3dB//vftmIk0Cf+k1b+UlXX0A 6U7JQxIP5qbboJocPP3ffq6twauDtVBN+BU1yacnPQkq6Q4HvQmMvQJJNFmm2zxadM5GY2Q0knXd tI6Pjo2NjViIv6Emk9lkgn6ZEHUZ1HJKrlbROhH2bXWFqDtWrvLas59p7hMPf+NJ5alcyg/H/jX9 VUWIVISbfMfd1YF1HZNKe78d008Nubx4xO7zO0mXL27NEpmEURukglpHt0WCrViQYm++EsTq3R8T x8/paBElontbzuMCR3tISQaVefVt3XeydVeMQaNDjzkGJrQqXKrvUWpJrbJzsIVoarf7FJTS3xcz ZaGam0/4zmfboVLdBXuZOh5UKrC5it38wcE/s/9EmmwSr4bUeJPGa4R9ymx2Ug6zy+IZwx6j/SOG 0cERzDg0eonohdF2kBq0mTwRHDyGvP4DE+Cx91EZ2mKhx9TkuNqqtfW5FUF1vL88q4ayEF+bJ0kl PZGwL4V98A3saTaDnuxrkHaRndJmLZ8Q0lMBDaUJGLNLcM2dKHcDKKyFkzLA2YqwvyjVsJuZGvgI zpQCnLIB3wAm1oI1zBbww9IWznMEVMEvdyAsWtq4idkI7cXG0kZ2DXzajoDt8JfnCPfn368F68EF 8DP2AudfCHsChMEBYC07kZ+yn7BvgU84GxHwETvJHmVDnO8R7h5gfcFjNzG7OW8joL60qDh2SWvU 6wfXDw7oTGrCaDCbjZTBbLQYxrAa1D5sh1EDG7FDiScKV+xeeIe+4GzwDqCZf6x7G2E3lXZzuBuu QaT2ggWUXS79hLOfOfyU/RIFv2N+zPmi9A7KHQenQYgnSaR1BaKQdichIxPudAEv6NISqAASsVtA CMQ6SRclkejEAlzgFie6SK78RRn/ba9oziryOXB6e3zagGG9IRC+HCdS0QlHiAo5/NPuoFVh1zgG MIPDcylITE2NQm9lN9vMNovn0bph08jwsGn0MtFvsEwMQWNlsjlx25jPmiTN4+ZxC/4EvOS8j5xi PdoDPXxZ5/pOmVjbSHTI7F4NpfYZoldxp9lhdpBmGMgsU/fAwroqeE2jjJ65zPPqbb1yXGHUaPTk gEZ6qYU4Coh7yGxsSO+lWPo+r/Tun8C+J+jX7D7OM2Q7OJ60hl1e//ppvy2SxGd1iS4/6Zc02k8R 7HsIU8s+42laFG1dko5OkaJZg2mbBcaLRJPQNt1MNU+Lw12pzpQyrZnFNDlj/hpesBW8eXI6H0mn riSSM6GcB/PMFmzXifmCUZOjctq0ItWR7Aq1eZoxT7OtqRG/aBRqm8nSh8w53kV1s7StTdRKC1QN mKrBcP4sfs5+wddA+hpjwrQ4I8rTc72Yam7BcIu4ecPuv0HN+/KxbCY9E8v55jHfnH2hiN8y3Oid J3vnpPk2+Isw1uDHfA3n7PVE/QWDupHiaj3M3xcRZuEt5mvefwDY/o2VCmVuZHN0cmVhbQ1lbmRv YmoNNjkgMCBvYmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDcgPj4gDXN0cmVh bQ0KSIlUUU1vgzAMvfMrfOy0Q4BC2kqIw1pN6mEfWrvdITEd0ghRoIf++9lx22kH4hfnmff0rLb7 3d71M6j3MJoDztD1zgacxnMwCC2eegdZDrY38/UWTzM0HhQNHy7TjMPedSNUVaI+6HGawwUWz8Vj +gDqLVgMvTvB4ph9flHjcPb+Bwd0M6RQ12CxS9T2pfGvzYCgeOyvd7x4hDzes6vwaHHyjcHQuBNC lac1VGs60Nn/b8lGJtrOfDchEWaaUiGsBWvGVvCOcJFFTIXwUvCSsfAL5pfSL7m/2kRMJYkmSCTP 64S8XFXLmwexVBVrIhUyRZgarF6KtYItaLaghaHZh24Jr4Shn1g058ZKlG9q8n8OgTdzz9OcQ6Co 4/piopxl7/C+YT96jo6/5FeAAQCtsZWDCmVuZHN0cmVhbQ1lbmRvYmoNNzAgMCBvYmoNPDwgDS9U eXBlIC9Gb250IA0vU3VidHlwZSAvVHlwZTEgDS9GaXJzdENoYXIgMzIgDS9MYXN0Q2hhciAxMjIg DS9XaWR0aHMgWyAyNzggNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDM1MSAzNTEgNjAwIDgz MyAyNzggMzIyIDYwMCA2MDAgNTU3IA01NTcgNTU3IDU1NyA1NTcgNTU3IDYwMCA1NTcgNTU3IDU1 NyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgDTY1OCA2ODAgNzI2IDcxNiA2MDAgNTkwIDc3 MCA3MzIgMjc5IDYwMCA2NjYgNTU0IDYwMCA3MzAgNjAwIDY0NiANNjAwIDY4NiA2NTUgNTgxIDcx MyA2MDAgOTE3IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIA01NTEgNjAwIDUz NyA2MDMgNTU3IDI5MCA2MDEgNTg0IDI0NCA2MDAgNTM0IDI0NyA4NjYgNTgxIDU5MyA2MDIgDTYw MCAzNTUgNTE4IDI5NyA1ODEgNTAzIDc0NCA2MDAgNTIwIDQ5MiBdIA0vRW5jb2RpbmcgNzUgMCBS IA0vQmFzZUZvbnQgL1BBTEVHSStTd2lzczcyMUJULU1lZGl1bSANL0ZvbnREZXNjcmlwdG9yIDc2 IDAgUiANL1RvVW5pY29kZSA3MyAwIFIgDT4+IA1lbmRvYmoNNzEgMCBvYmoNWyANL1NlcGFyYXRp b24gL1BBTlRPTkUjMjAyOTUjMjBDIC9EZXZpY2VSR0IgMTAzIDAgUiANXQ1lbmRvYmoNNzIgMCBv YmoNWyANL1NlcGFyYXRpb24gL1BBTlRPTkUjMjAyNzkjMjBDIC9EZXZpY2VSR0IgMTAyIDAgUiAN XQ1lbmRvYmoNNzMgMCBvYmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDEgPj4g DXN0cmVhbQ0KSIlUUk1vgzAMvfMrfOy0A58hRUIc1m1SD/vQ2u1OE9MhjRAFeui/n41Rpx0gLy9+ z7GdeLd/3Lt+hvg9jOaAM3S9swGn8RIMwgnPvYM0A9ubed0tfzO0HmISH67TjMPedSPUdRR/0OE0 hytsntV9cgfxW7AYeneGzTH9/CLicPH+Bwd0MyTQNGCxi+LdS+tf2wEhZtkfd7x6hGzZp2vi0eLk W4OhdWeEOksaqHXbADr7/yxSojh15rsNkUQmCS1RXeCCiyfCSnjFvNKCNeEyXTAtEXmvLtSK1VRy 1NmWorJKrLcky05MWCEeiMjZP1cLkXOSnJPkIsk5U8GZikKulDJRMiERhIlg08IIwaYqI6zElDDd NidcioQwESzRUlvJEs0SLQVqluhqbR0T1VqllMXN5Anf5mIuIdDIlmewTIZn0ju8vRQ/eh4Bf9Gv AAMA872kpgplbmRzdHJlYW0NZW5kb2JqDTc0IDAgb2JqDTw8IA0vVHlwZSAvRm9udCANL1N1YnR5 cGUgL1R5cGUxIA0vRmlyc3RDaGFyIDMyIA0vTGFzdENoYXIgMTI4IA0vV2lkdGhzIFsgMjg0IDYw MCA2MDAgNjAwIDYwMCA2MDAgNzAxIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMzNCA2MDAgNjAw IDYwMCANNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw IDYwMCA2MDAgNjAwIA02ODYgNjAwIDc0NCA2MDAgNjAwIDU5OCA2MDAgNzQzIDMwNyA2MDAgNjAw IDYwMCA4NzIgNzQxIDc4OSA2NjcgDTYwMCA2MDAgNjY3IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCANNTYyIDYxMyA1NTEgNjE1IDU3MCAzMjQgNjEw IDYwMiAyNzIgNjAwIDU1NCAyNzUgODc3IDU5NyA2MDggNjEzIA02MDAgMzg0IDU0NiAzMTggNTk3 IDUzMCA3NjUgNjAwIDUzNyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA1OTAgDV0gDS9FbmNvZGlu ZyA1OCAwIFIgDS9CYXNlRm9udCAvUEFMRUNMK1N3aXNzNzIxQlQtQm9sZCANL0ZvbnREZXNjcmlw dG9yIDU1IDAgUiANL1RvVW5pY29kZSA2OSAwIFIgDT4+IA1lbmRvYmoNNzUgMCBvYmoNPDwgDS9U eXBlIC9FbmNvZGluZyANL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3Bh cmVucmlnaHQgNDMgL3BsdXMgL2NvbW1hIC9oeXBoZW4gNDggL3plcm8gDS9vbmUgL3R3byAvdGhy ZWUgL2ZvdXIgL2ZpdmUgNTUgL3NldmVuIC9laWdodCAvbmluZSA2NSAvQSAvQiAvQyANL0QgNzAg L0YgL0cgL0ggL0kgNzUgL0sgL0wgNzggL04gODAgL1AgODIgL1IgL1MgL1QgL1UgODcgL1cgOTcg L2EgDTk5IC9jIC9kIC9lIC9mIC9nIC9oIC9pIDEwNyAvayAvbCAvbSAvbiAvbyAvcCAxMTQgL3Ig L3MgL3QgL3UgL3YgDS93IDEyMSAveSAveiBdIA0+PiANZW5kb2JqDTc2IDAgb2JqDTw8IA0vVHlw ZSAvRm9udERlc2NyaXB0b3IgDS9Bc2NlbnQgNzE5IA0vQ2FwSGVpZ2h0IDcxOSANL0Rlc2NlbnQg LTIxOCANL0ZsYWdzIDQgDS9Gb250QkJveCBbIDAgLTIxOCA5MTEgNzM4IF0gDS9Gb250TmFtZSAv UEFMRUdJK1N3aXNzNzIxQlQtTWVkaXVtIA0vSXRhbGljQW5nbGUgMCANL1N0ZW1WIDAgDS9YSGVp Z2h0IDUyNyANL0NoYXJTZXQgKC9LL2UveS9zcGFjZS9GL2EvdC91L3Ivcy9BL3AvbC9pL2Mvby9u L0MvUy90aHJlZS96ZXJvL29uZS9QL1QvaC9nL0kvdHdvL1wNTi96L3YvY29tbWEvTC9HL25pbmUv Zml2ZS9VL2ZvdXIvZWlnaHQvaHlwaGVuL3NldmVuL2QvVy9IL1Ivay9mL0IvcGx1cy9wXA1hcmVu bGVmdC9wYXJlbnJpZ2h0L3cvRC9tKQ0vRm9udEZpbGUzIDc3IDAgUiANPj4gDWVuZG9iag03NyAw IG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ0ODEgL1N1YnR5cGUgL1R5cGUx QyA+PiANc3RyZWFtDQpIiWRUe1BTVxq/QXJzeUVwex28t3NvW911p2vro3ZkUMFVec0IaHlsnxAS wSQ8giS5CREhwRcWR1EhgMa8ACGQgAQSHrLqCvKwBWvbLQjqdu3iOnW2WnU8l56w7s12/9s5f5w5 33d+5/u+3/f7Dg8JDEB4PN6K3X/cFZeQ9Ic0jUyp3LRh/fb0d5Jz98rUhX4nwZKhy6th0S8rFxj+ g6WADgdvRtS/vuzkMr932f9jEB63kCAeEhqARPCRyADkrSXI6iXIGh6yFkHWI8h7S5AoBNmOIDtR ZBcfSeMjH3MAZBOXC0IjbyFixI5cRV7wAnjFvJO8VwGugJklaUvKA1MDn/JX8TtQCi1AD6GvBK8L 3hZkCPIExwRPscNB7wUlBp0IGg02hYSFVIbyQxNDn4XFhWWHfR7WIFwhFAsnl+5YWha+MlwRPhw+ H7EiQhFxqoQdhHH4L6iv6t8oWyXw7V6YwtnIRaMvcsGICuETIbwICFaPK7Ye3LqF2Ny4tTWGao31 xAzHYHNo1rRsWj2NqWb0s/eIu8ZZ2zRlm3ZND0xjm9G02JwYRQzmx/NZA26PMW7dTETrt6hiKHWM LDYrlsMPT3tmWmew1pnGO3PE3ME7ihlKMZMzk+bH98e6YmyxmBDsZUPAP3F4Khqcgsb7wAhO3YWn QF0UrPPnN7t8Aq2qPlZFnDhWfbyaUB/R6nVUxYEyg/YY9ieB+6zjgrUFs7bUuXoJ8BoMgxECIRx2 AjkOap/B2lWokA1hu3CrqC5pHbHOkMTkUGKNnMkms/OtHg3NeAyT88TDukmrl/JYOqx9ZJ+TybHQ 0HkbF6cwG2AIAUOs63tTqZTe8cK75L1xx3gv3Ttm/QcIIUAIMy8eo8bFyY5oMjqlMFVMC4GKfYxr FJ8ZksloEOUrA4ELqRsFRz4tlRdpuFr/Bqpxc/2Is7ezuWtFS1dD7yBxk7kqclPunDRzPBm7Ry0S 0TnZTGoMcRQgRkGfsdPeTDXb2hvcZFebnrHRdrWxWEZ88GnamnSqVF9+qPJoQs4nIkU2psg6mLGL qGKZp/C5oME9MvTzDUzIytlt+Dn7mTYnMaLpF7sopyTdFEfGp2skYlos0WQk+OOcFvTUdVhtlM3S ZuwmXS2VpRbarKtTFhD7DMWaA5ROIz+URepQw0a0pubE6TO11fWk12lg7LRdU1+US+RWFKkYilHK 9TmkuKC+SUWrmvSuPgIGHEV3WtO8HOeeG8w35OyEpXeAHuix/+UrosfQqW2jtA6FVdrQ2mi70NjE 0TMLzuJQggIJGOXDUQG8bsRXgWtwEwgAmx4+WsduhssE8JJvPV94GYzjT6oazaZGc92KWrO1pon0 uspLmujm/fWybCK7QlqynyopkZeLSKmizqyi1ebylionBgPRmmT7R948LM97vfQW+d2ErX+QHuxv unGb+JoZEXkpryjNFk8WK6sOM7T6sNagO2gH0ZFg+F++36Af+gR84SX2W5xF0M3rU9Zmr8laU7za sBIDYagRBLY+73vsfTzxcPYB9shXukogZDHgwe1MfVEesbeiUKWm1Kp8vYTcW2C0cRzZ9G2XiG6j w26lbPZ2Yw/p7tBznL4Eb/hb1uokhjX9EhflkmSYksi4DJ1cTEtkmqw9hPyM4pyKalTZSh1l+8qK VdoiTFtUKRUTCbZMr4Ta6x3V/JWcGbO4++m+Htu1W0QvR7aDI7vYJm10nLOZG+0YDAFv4xauyYVE gUGp0VGlGkWljJQW15q0tOaCoamDaKtrspgok+VirYvsvFips9DCJ+24rPuK7ib5w5RzcoAenLT/ CMIJwFPfF41QI6JdbVHkjj3q7Cw6O0u9ZweRaM3ozaFyPNeYSbKjtcbYTLcYbefN1qptB9OU+7A8 lbQ0iywoOXteS2tNBtvxNgzy0RNpliy3DAPn2Q7cvt+4L4uQ6PNVSkqpKqzI5bj7n76cXsLLTUfL f6ejm3S3l++300InmwDcOJSjL8GXL+GXfF8CdOMgAr0JUvjAiX4Bue01FJoWJHxIorBxUcIXXmeD wT38z5cqSzlB6+oVnKD1CpWW0qqklZ+RcDdQgiT0MPDinvZDZVbaWlanKiSkhhJGRx1g8rnJgDEg HWxHYZ/vFQ5uoXfGzd39dL/bdmWSGNB3M20U48i3io2OhiazqQUzXTzrcBHj2v68dsqR98G5bST8 YlGCCp+yDxfex72Zcbb3yTei5ImpdGpi4bv+HyjY8e5oIpU4Oid7Rv7wbcvVG/SNq46pk3cxGIQe +1ArlhVgBVLRgUwyKbN5KJfOHdJO/Z343jx5aYAa7L5m/4q84qlQdtDtSovstAgDweiR6cKxTC8m fAh+ZhfxySEmx0W7RKbkaGKDLkkmokTyTGYnCVezZ8FaFLb4FnFgRAHvfvtNLvRE2zzACBC8fz5z lBrL3OJ4k4Tt/gKk08tBMLgN5p7DOZDBBr3wVfjN4Lfs44VNuCc9zrqRXBkli0+mk+ML1kIBAfnt 6ybiqPjxu9KfyMveWnM33X2ho/Vil2Vd5CwbCcd+Dz5Cj6doPt7HaSXvk9Ld3MfVNCShJUOaqe+J B5apnkHqsnu46Rvyck+F0kl3KC3yWq7AEFT/Xf5ohgcTvuRSCgX3wCN4D4QuSGAo7IKPQBcM9ScG f5pd/qvVf+rlroaAGvTxj+A4fMIHv0PhKLsdeIGHD99B4dfwDh/cgSGLEoFw5/RyVgF4ELAvf8W+ 4LACthMF875OPljGPYn5OlH4H5arNaiN64y6Nqy2k1Yznc667l531/a0M53ptGnrxvW4nSSdcfxI nGCXBCPMG2xAEuj9QOgBQgaEHoDQ+4EeKwRaCdlGPIQNODapjRPHBDN1mtjTOLUnSf/0Rybtbrxq plekv7+dc8/37bnnO/cJmyvnflj6IMY8YzlsMWvWRslYt6erFW/p61J3Ezp1h7kGcM8zGuYQwuWK HAbpXmJ+jyzMOMcokhqLuyOB1EQ0GaDRQNo1cwVf6s/rsoQuK08KIzq31qUeQUdUIgcUYap00Dpb xn6DLV8y66BQdV6o5ZZeiQoepGo3VwPuJUZWEmqh+A0Gm11mfoskkPx0vz5EhvUesaNu5IU9DolD 7TA6TSOmUTPK4DGk29OXshZQO+/il9al/qwx+mNjTB3scmf9yVhkGo1Mu+HuvdO93JYjLrUJIqeG rbYhYDf12foA926JU5oNfX0Ym6t9PfZHcOQ17YUasua8oqYCrwzXZ0VEVviO9KHaZfVaA4N3e+Z1 Ezpvn8foMqAu/YixF+8yKmQaQiMV9jWDNxv9k2JSlOy+NHQV5VBk5Mjk6yuNaOPKB+qn4PG92Nwq uTqXvLGBr/UsCmlCRB+b3p96JVIfVkVQVbg3PoWnfPHkBBFJZtyz4OoVk3KKnFIGRc4WlEGQ4U3l Wu0cym9ws88wRl58xjzHPmNkXxVvHUD4T7aYCPZL6ui1c8S5a/cVX4DPNpPLK+TySnLzM5yt4b5X rOS9bqyTdhGd0iZ9JahsDk5LSWnauHQHZythuYbHZwpM/W7muwhDsFvM/uJWOYMijKDkRM8h3E+K eQ5n81AvCPej4jy3l4W6+z7CVJcc6k8wItVgbYZOqYJQSttNzUCqcvn1pN5vmaDw2FjE7yf8/gn3 5KjbEXBEnKuuK56EDz3Jo7nTmDGUtMwAt9tud5Meu8fhcaKPeJaBYevQkM0KTP3OsQFyYMwaiOJM gLfaPdueIibbqvyvgBNVevF5srVT23QWN/97hJdyRyMBIjgx6ZoBl1MXTREybHJr5bi4XXO0jxgY HLaCQ71ntEIZKpL2tLyF1wTPpyWEND1veBvkMuPBNEkHk7H4lF06rgkbUf5B9jRrwnLNVZET4KUK uaCBbBSojh3EX4gdnxcQgvl35Ftgc23i8jw5f5m6PnoX5XYgA21GqUaLatXSvg7QJArRKlJF9xZu 4eveQpwm6EQ2tACy2wkm1u2VO8UosxMZXFdda8mhfBVLsD/DKLG34TReYapViAmRoqOnDjR2hGgF Kc+YFtfwW74lKkNkkzMQZymn76TI7DqmnVJGJQHULxW72sDJN2Vnm8mms+rjh/DDkGo1UT13U34P zKRdgRQ5GYAtptFj/4EmsIPzwAwQY3oxe9jmc+GP1e83XiOWG89QL4MXK+Q12w0f/x1+MH5sATa8 cFv+AKyvhrML5MJMatFzE+V2IRapQa3Ro3q1vL8TNAn9Kbj8Jk1XhpdRtgyx2+x2O1Es/whzLvqz 8QSaiE/7roA8bVLGybjCK2zEuTFodE+Y2a/bMKdY5TCB+o5eJYxDqt6OOvzVI4cfFU8zu9jTn//9 +TxvciTsGifc44GRKBgZtQ2PkZS1/J+8IXs5X8GcYX+K0VQ2NA+u5vRi6E1iX0MFHGO9Cmpe2a6v g8ilMSoypqVb+E3fAkUTTH9xL3aut0MF06GyrU8As9iYD+56b1/YCiMID7FXR1vzErQrv2a4D56+ G7k8S85ejt75FGcd+07yNFOqmAyOXdbp6gBHK+XVTWST4Nuxn9xWyJp8E+TSLn+KTPnjpd36Bo/f /P5upoy5i+R9mQRFUBTtmwW5SbM2RIa0451NOPcRLD/kuW0eDz7stY3Z8Rv6OfEUMS2uD5wB7SKL QUpKDCqNToYyfq6s5PfFH5QwWYorK1II+2UZBCjnymBU4f8aFnYyR5EHHzIHuNFyZjfCVTGfMn9m qsq5vQjXwonK2V9wO7dB+BsQBKqibHspXmR/w0Ywv6JrrB2IuiwGGSmDh2pl6Mb+IsXsYu5tZ/IE kYCZ/BJIxfp7QmRQN66S4NxXsLzx/8j+bTmdMHcHyEC3S9KKc59ARp/zNg2rkgyRkTSEKkr4xhK+ UqOR6aY0UYUfuhwrZc0YLTkXPAmEYou+1LRSrZWi97kdkEAZc4u36JuBE0xSWd88oKl+HVwSunG5 COf+BctPeB8a3u5KE3wR+3OojKTIV7+tBrmIEMvbe2pBbVuIlpcuVeE2fttfSEIyyVzoKlRPjyhJ cqubWL1ACW/7wcTxJQFRU3hP/gg8fC+5XCCXVhIf/AN/otyoWyFW6l5L/gEcOSWvqSP5SsY6ghmm MpYcuHdj8vo8OXc9tvEY/0R9r3mVWG16K3kctIu3R6lXKFUi9K/7/qtidjBTvAlpQpMyoMyLLFFi 2lCJnzHVKUSEUC7saQB17UFaSSrSpsJf8PXt609TM6El+MQpMeVzCWYLPiGtwzYbKewy66BT6DRS fTv6xYHtP5XnFbwzCfinEllvAaQZHmKx2Oz9JH8f+yt2AKNbq+CIT1Xruy6QFzq7WwR4i0+cVBJJ 5bz2tv5jzZ5Mf9zsNaNe85ixB1f16bQmwqiVXxSC1s7xEHyihkzUUAblvoNUROtmhYRw9mbPfbC1 FqTzZJ6OLt7EF0xZRYJQJBomXg2eCO4RjivHjV7U6LH4w3h4PBDyEN5QfHQKZniLcYKcMHg0Dqjt Hch17VwrTfC5Rx+zFPby4Qfc35Bad0ekm9BGaPMi8Ccczgw56rQ7wVOearjcOmgbHiAHB+F2/18A RQG6/np/jpKFH4WRiJieGvfK494z9yX7A/slBw5fyvdUFWGNbY94Ho94knuVfZt1n3ulgAiApauG rxutq5Kapx+omqKgnKYIQ/b4o/sD+7wHW4BmdHIecnRpfmAbaXKUnXwffJ2Eq7ga99b7BPvjBw77 DvdWFvcIBvdS+KMF+woG+xX8J/sX+CcF+w4G91b8owUO9wv3NRb3BAbt+B3v/B0F9wMG9y/4owX7 AwYl/BYw+BYF+w0GMfwWJ/gWBfsHBvcu/KMFDiL3YnAVfF+FeoJ+gIQZhIB7h3YbhYWLjIQfhIyD jIONCCkHkomTiZOKCIqTlYuWG7mtlJyiH6KdoK6ev/dv+PoY+wwG+xb8KvsX+CoF+w8G91r8vgUO +xmx+EYV97EG+8H77gUz+Ffr+8oH97736AXm/DsuBw58mvjsvQb4wRT5BRUdR+OUCmVuZHN0cmVh bQ1lbmRvYmoNNzggMCBvYmoNMjg5MiANZW5kb2JqDTc5IDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRl RGVjb2RlIC9MZW5ndGggNzggMCBSID4+IA1zdHJlYW0NCkiJpFfLdtvIEd3jK2oJ5JgguhvPrGLT ksej6IxiKWcW8ixaYEvEGCQ4ACiNssoX5RtzqxsAQcmOZ04WIkiou7rurVuP/s0TVJEXUVbIMBIJ pUKEeU6LrMCzSKg13s+085arLqeyI0FdiV8frgU9dN5CyDDPUlIqzBNJWy9NsCsuxhe1d+9FYZrl NP/89AHn/UgR/UoilPREMV3S7S8Rrdmw/GOGr7EmCdMipyxOQpWkvEhGoVCpexPn9vjfPBFGMlY4 LqJFFBZZ6r6XW/xHygLnW1NKpkCdqjBWgm1FSRgnanglY3vkP7zI7m0fsCULhcTpKg9lal1UUZjk xfSGT8+c9e8vZdvvbrzluQDFN/eeiO1BeKiE45HBwxy/bravQ+EYi8IoEthbeuO3J+/WfxssBPz3 d3iGwqe362CRhcp/DAS48HUADvxdadZ0eQjiMPPrPgCtfhUsCjwWQZzhcbNpjV5jEZuTMNfatS22 C/x6pqtAFGGO17/c/OgBbiQQbLp5P7iVT27lzq2mNF3XtHSPvx+qhw0bgDh8E0TWzEIWYeLfB8pv 2i3OiuEpKGNPadVs94c+KLCYT5O5ZQoPlSLSIqMsgUhUng1kFUeyIusHu+CvaqPb670x6+DmV/Au B97ZyzRz5EdMvlSRIugsjFKIDCYnCYB6xdRHoSwy5YDdbOBgwBEv/GsVIbk60rRhiHvTAu5WM4ay WezbkYQ73YFaCwb6jQpacFqAPPhSFKkzrNvmsFuT3pFeP2obse2h7qtFP8ZGt61+pslswAnsh0Hk 080GXlj7N3+BUaVyNRotN1Vvyv7QGt75WK1NR4+mff6ay9u7ajc6auMayaOrzuBT1W/I/N63Zmvq Z6qbJ9o3T2ZyZtgqIkRnIfHMhAOqsjj+BoMb3VEa033d6L7aPSz2TbXr6crhxAs6q3Haru9GCiOl Jr/YTxlb1fmf/auz7nPwhjgZL+6ee2Bt7qnZLcDCHgJpdV9u9npN15/eXoLqNfVPDX1c/kSsEVjK UVyOwREqy6zhfdPidF3XBM9MWza7HTgFVXfP1DMc1trKvWVLSGWlCisj/kooTyELl+uXkokTGRv+ D69+IUmgCSMcnIo0LAq3eHLl1qe7QxfSmS43Q6Ak8j5V2ctIXZ1ZYjWtD7qm86t/WrzxjJe6KfGf rdk27XOQSeT7LH7pi/hFRfat+JXQ7J0hvd/XFTjpG5z0dX0txhwQ6ZxnGcfC8XxgAThLJcTQ7Ohp YyDdWrcPhh6b+rB1vq91r8eDmUOreyEGF4ccgTPVjva6ReRMHdLoeY5CdI1yI/2Z+wdersdkXhyz KRLFYPVb+Y1DND017Zeud07jXWfaR5cWhf+GX+hulljZq3BpwubdWtfNzpDZ3pk1p/xJsqshPjJD b4GaoA8p4rGQoCAO8UHNZoQNVwYgR4r2I3AXMERoBOxcR1WgVu9AMajtnrvebI/lSs7rlUyjQYco JNXDrnvD1cC0Oz3kxr2Gw3wCnzlmHiSL6mUr0OJIApJ0VghV4ZKYS9TaxqpzoV2eK1e6Uf3TQrm2 49+11Rr+2sw8KfDo6jHqll11OxJgK+m+Pg2/sOFfm8dqcNm5xh2vUHPX8gEySFvrqnsObIsENG3r JXYOpdVKx7Rz2SNVR37G6vWyqvouBa0Qdd3Z4Ggbfu6eMG1pwHyQRFkywH9o9RYixJGc1ZwNoV1l ZyaZihfJi/ryFXFwiGCebW3HEv5mEksWDnJpEYntXW04N5xI2zV9+niNRVL5U07LPJvXzsTmol9X X8xRxtZb9KrpVKvAVUgf+6Fa3ettVVe6dWg4++DBKV3VruvbQ2kzrTO9tTka5PKxBS11OOwH3HRO BpvMlDiWsuvmvn9icb43j6Zu9txp6KLq6bN//f7ic2CDcOQkHrr+rqwP3EunNMmLk87Bhdvl9Yor 376qjwzD0/2m4uK7NneHhwfjeAH4A1pMd0DHtol42C8mzcwqhkueeOpMjLlvmrqzVurqrtVtZTpX 74BhrHCw5yq0beL6yPCr1rH6yAJcIDQlxxr9rofU+RyuTswH2uYsleaJ5GrU8jx26bjgapVKeB/j ulFIl5b/pmChMoXa+MPLNrGf+v5gaMhrdE4ewuBqnKtk4iGaJuJoCCpMJ1nKCYo54E0eRXT58era ETlsjwew5Yh4tkcigejD+d8Dlfo/DfuOaF57MQeDIZenaR6IyNzfV2XFYpoPYf8/Jkk/U/+8t/L5 G0mG98O/pm71dUyYKiwiHvyBiZb0cyAlXw/6/k8BvNSIzKMZhgYMtrs1mke/+R6sU2+YYDuFLG3Z 5WHsdXgWX8GfYHfCWp1vx6AzzDDfQzIQcyq+Rcd3BNe8XPhcz5q62Z/C9p77A9nOcGw6Y4vhSvK6 Q0yD+4mhqVD3iPPEM6k5+FPASDRZYDLGWKBEPo3dqhhR/zR048CBPyHtm+hOxaRsgqTjEAnq3aVk ZuskiCcb51P54Iqdw5mWk1b2ihDePUyuNK/+JaZg8z9XD3PiuOwb6ohf6vwc6eEfUNjq+nnqLRo9 0LarP6wI9uSb/UU/6qpmm7NR86XgJQxYX8au+KrPfRfWqQbezkbrQQczKf55MXxElnD/GrRuR6PC X+iyPOCV7s1fEfYwpw+Xb1fL7quhElF0QeINOtpw8+N2WZvfcWeh83PbZBKeW6ICljueW+AxGj+6 0vo7irsKZIqOq8svGBOOjYV0TzJMkEh759LZDcCmWU7zz08fYPlHzFu/EpecJ66il3T7S0Rrb/nh WtJD52EQIA9lNc9Rl2Ayj2nrJdnJi9q79t7dgNbE0SpixLmI3XUvpnF3hpFJ8WVvueoKKjss7sod 8Fy4qmSA/NmJwWhuJZPry7PhuvC+Aessr+XlStC79yvvN2/5ySAMqNmrpm7aamv6tiqphduR9QCz Cn0Zvgu68CRDDlXOgBmmsDDjCHQlCeYaQUoWYQzHBWBK3Dtb471j8TpEEVuD5BLej9mLmz4kUGCK hqz4OoQ5rJChtIMl77TcDJIrsLPIrJmCncgId8NQJjhG5Lh9RNJSNLr7xeaMkNz1bv23XIowk+Iq m/tX083Jvsj8VaCgiWZowRgIM+EGH9ycpnHg1k9j3hD7V2f85PxwZkeZMGESU3jIH3BAAWIKr1Dc wiLhQIZpIhmhkukR4WtgqgCNeSLAYxYWRZqcArPtTzifUCUDqCb3L8fLk1TRyQ2SV8ED5/rFuyEt 7EmYfqfDlUKYMtw/hJIISGzPPJ7kfzr7L9vljtxGDATRXKdgqGhrsRjM5wQqhXbqKzDX9dVYy+V5 ljOy9xFsDnuAwdseCiWYFNM5zZHk9f3njw38LsSdnutOz87MpTvGx+OXFnbbHaP76Bf0uHtmLDWw BkDXn1+7T/4I4zqP7fP5YpbHPNd/lK8PPf9d5ZugZV1eogF6vxafpy61DRh7fu/EUOWchLuTKOu2 9ivN5I1Q95+TRCR8TpWqAwqo8bmPJJAVnTDFGEvYYctJxN9FN7E08M9OqItRTwkrLhKJn+oHV9DE ciYBzyBRDp+aVQz/iW4J1yKRJ74l7y2kEUqGE3Dj8xrVgTpGwac6MIJErO4zlP3ZfUqYw0ismiQy us9QutTmjdBpNQnEWQQqe4K1gV2In4SF+O09D/HT1jUQPwkT8ZPgPkiUwai23tEbRYJVkoiAU8UL AZQw5yLhw0hkwanyhQDukXgRiAsFi32kdkL5yiSxPEikwWjeG3sjUrE2Eo4ESihHwUqxRknrWMig hKjuVKfaGd2phLmChCODEgoZTCUMGZRgyKCEQAZT2/TsTiVMhDD39JIk0uFUETM4nYddi0ScRqIS ThUxh1NTsgeJVvRPAQYATdoFCA1lbmRzdHJlYW0NZW5kb2JqDTgwIDAgb2JqDTE2MzMgDWVuZG9i ag04MSAwIG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwIDAgUiA+PiANc3Ry ZWFtDQpIiVyXu5UDRxIEdVpBC+Z1d/19Iv1XL0HhWEENE8iHTfTELKr+uB3fmf4z3/fG//z7jx+w +j/46x+QUUyM5U7k927sRH6uV0hU2U7Ud+LtRH1ml4k8w0Q3mvZ3s3aiP/dioh6azneO78R8r42J yMdE+12JOd/dAV07384avj+xD3Tu9/49v7//AXGTiZpdc953atcUsDAm0i4Ts89z7NN32QH7PIuJ 8n2e4995KOqfnWAi2pnoRNH4ruO44vN3mcgZJqbQVH7BQIGwYqIvmsqvQVP5BQMFEgYKDAyc/lhU eg3fr0RP2QX/BAz+CeQJJrqXPu/Irlw9f8D9MVHv7sTd70qurd8PxNbvB3rr98777tbvB2yCiSxn YgItTU6jpcnpy8S+qe9IrkRRyeXNRL5kYrZ+70iurd8PeDoTtfV7J+U0Diw/4/vBnlIr0LO+a+hZ n99iIieZmMKBSq1Az5bRj4m+6Cm5UENu5TCQ3kzMW0/Ju+fT11kJAe9gonIf6L1S2nbiSunHRMJA gf1v+l3pFbuogFsxURBQYAZFpVehqPQKZ6INRV1WbwEFbBhICCgwEPDG9x6+SnxxiolqFJVeiaLS y52JfI+JOSgqwVBDfsFAgYKBt78DAwUeDBQIGCjQMPCOtN5PgoDfx0TOZWL2aTz5tf9D/kC8ZqLP LvrkV++iAgYDBdKdiXm76NOrs4sK4EHQdcHAZ98xJOwznLlATDHRhaLyCwYKOAwUqGtMzKCoBMMf kV8+DDQMfPndgxryCwYKJAwUGBj4SlqjaEnrx0T1fqafBMMfaU1rw0DeYaIph/wqfIb8imCibBe1 I633eQk8GCgQdZloKGhX09q+swIOBQUSCgpM7mfF9Mp3U4F4zkRDQZNhjaYyLC8TacPEwEGTYXBQ wKuYqEBTTfO2HxYBg4MCAQcFutBUiuHLaph/w0DtyfwHplFUhiWKyjAPJvqhqIb5g6JSDA4KZDIw cNA0y9/9sAg4HBSo2kVdhsW+9wJmwUReZ6JnF3UZBgcF8F11XW8XdU3z+C0XeF1MBL6sQENB1zgP BQX8GBPZj4mBgu4fP0LT/B0Gai+Hegq0h6Co/IKBAmnBxFz8Ffk1OFEJVo8J/Ni7hnkYKGCnmQgY KNCJGyu/HCeqaf4FE3WciWmcqARLFNWy6AzgxEN6zT5QAYOAAgkBBQYChgb6u1sIOAQUqNqPdMiv 2I+0AH6ZdJ0QUKB7H2hIr0RR6eXJRD0U1UB/9mkIvDYmIh8T7SiqgR4GCtgME1nNxMS+saFt0dBU I/0NJgoGhgSDgQIWjwlsZbqe/SiF9MLUK+DZTJTjRDXQQ0ABg4ACAQEFGgKmtkXfPQT8P4GEgQJT u2jKL+yHAoHxXKDxi6BXZ3ZRvbIyJjIeE4OABvp943XtEFCgIGBKLwgoYFgPBRLroUBjPUzplaih fZHnpYF+33f8E06ZBfcEIoqJtv3/MTXLX3yGzJpgIsuYGLiXGuYNh6Vh/jJQvR+SlFqQT8AwEgvk SyYGI15Jrd4PiYDjGRAo30VLwzzuqoDx/ajh+x37uEq7oqGFRnm4J5ATTEyhp9QK9NQsb4+JxmpY cms/JLq2bAYSq6HAQL7SKI/BXMAhn0AlimpXhHwC9i4Tyfe70FN2BXpqVYR/AgX/BAb+lewq9JRd YUy0oadG+Yue0msYyBwGBv61Jvm3iwrECSYK/rXswmYoYG5M5HtMzNlFW36hhvTCZihQ2Axbg/zd 91XgQUCBgIACDQFbgzwEFHAIKIDz0vXkPtGWXhBQILA7CjQEbOnVKCq9sBkKJDZDgXkoqkH+oKgE awYKBrY2RUNCc/wtJmKSiYaBLb8wVwm4GROFzVBgsBmOBNt+6TqwGAo0E5rjsRgKGBZDgYSBAgMD R6/eLioQMFAAP78jv2CggNl/EnmLiZ79TI/8KhSVX5jKBQoT4GiQx14o8DDRCOCnTde95RmN8RBQ wE8xkRBQYDCUj/RytNAc/4yJPvuRHvmFtVAAvxi6TqyFAgMBR3pBQAGvZKJifVk7GuS3gD9geyr/ gdgC/kDvtdCO/NoG/oDvvfAHahv4A7MNtKNXeyT5gXBnoh+aapI/byck2N5SfiCTgTEU1SB/eyfk 1yQTVfgM+bUN/AEzZyKvMdGDojKscKQyLBioh6Ka49de+D8BBgCqEKR2DWVuZHN0cmVhbQ1lbmRv YmoNODIgMCBvYmoNMTYzNiANZW5kb2JqDTgzIDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2Rl IC9MZW5ndGggODIgMCBSID4+IA1zdHJlYW0NCkiJXJdLDitHDgT3PoVPUOgq/u80c//tpAYwzHg7 dXRCotihEvmXfXVe19/5zhv/+79//UBk/AP+83/QHjvR5z7fiT7+XSayHxOTOzCH7zAnbjNQUytx v/PVfgsBi2AizZmYaztxzx3biXu8LhMV+5vcd743O/GOvg0T0c1E5+7XtXMdldrx50zU50zMvw38 Jfy8RKV+woaJvqgjzjeoNI5VMZGRTIyhjjzvotI8Po+JKnSszocvW8feMJBfM9GNQiVY5k5IMCgo UBDozvk+FCrDoKBA5GOi91u8T1qv+7q2aQaymomJ3dB3z4OCAnGdiYKCT4LVllTAoKBA/hGYbzf0 ya9GGfIri4ny3dDn0no/eQH7jIloY6JzN/TFgRq69jsMJAQUmEJHpRcEFAgLJpqfIr0GHZVfZUxk PCbG0NE+70Ol8gsGClSipfLL0dKR1sFEfsZE926pSTAYKOB+mag/AjO7UJNgUFAgIplo2y21d+7d hQrYBBNZj4kJ1GHyGoXagaO6LhyCJsGgoIBBQYF8wcTgEDQJ1vvZCzh+CgLlKDTl9Q7kMd6OGt7v QJl1rqHMktXJREJAgeFTk14QUCCMgb5op+zq/ZMWsGwmEv4JzNuF+iepdz8FHAecQOWuw6+k3nUI 6IRiIiCgQNeu1KUXzkABh4ACBQEFZvZzdemFM1AgIKBA226p+7koVHr1MJA5TIyj0Djv7ZYKBP66 BKrRUukFAQUMAgrku0ygCvkFAwU8moky1Nnng4ECb4KJKGeiA3WOtEadc/jk5dfw/uSuM6QXBBQI CCjQEDCkV+86BQwCCqQ/JubtOkOvvl2ogENAgYr9Uwk7n+2OCthNJgInoEBDwJBesTsq4BBQoGCg AH4pIb3QUoHwZqIhYOS5HwqVXhBQINOZGEehmucfCtU8/z0mCgqGBAtU2sesmchbTDQUDAkGBQUc CgoUFExN9DgFBd5cJnC06Lp9F5oa6N8uVMC/ZCLhoMDkLvT3ynehehVwUK8a/yopw7ZgurYYBtL+ SMzFV5Fg2IgEvIKJiv3sU/M8hnMBw8QqEHOZaAznKcPgoIC/ZqK+YmLgYMowOCgQbkw0HEwN9FgQ BawvE5kMjKGlmuehoIBjQxQobIglwWIXKmAYzwXyPiYaCpYMwzko4HBQoOBgaaL/dqUCD/O5QGBD FGhHpRrpsSEKOBwUyL5MzD47ShsjFkSBgIMCNShUhhXeQ4bhGBRIMybm7mdfMgwLogD+N3QNz0sD PfZDAcN+KBCdTDT2w5Jf2A8FHPuhQOEUFBgYWBIMH6J9EQYK9N0/lZZfMFDAYKBARjAxMLA10N/d UAHHgihQtQtt+bW/q67xSHSdOJ4Eune7Wnbh1ybg8E+gMJy35nnshwKvHxORl4mGgK15HguigGFB FMgqJgYLYmtjxIIoEDgEBQqHYEswHIICfAtN9Mb7g/WwpVdvhwUcAgoUBGxN9BBQwLAeCkQ/Jhrr 4WhfxJAm4HeYSAwdAlO70pFfMFAgLJjouysd+TWoQ4LBQIHE+icwW47RQP+hUAmG/VCgsB+OBHMU qokeR6BAYj8U6N4tHQmWu6UCGI50XTBQYAaFyi8cgQIBAwUa+oxG+ouOyi+2Q4JhQxSYQEc10uOb aKKHggIFBUeCYUMUMP8jkVBQYL7VDv8k2FbwBzwvE+U7oJH+7fvSawv4A1HNRO8hTv9iWkVyJzTR 7/3wB3IfgT8wezz3T34F6tBEb4+J3gb6J7+2gT9gmUykJxPzkNBI/6Ed8qudiUrUoY3R0VGN9H8E YoaBLhQqv6J2QiujFRN1nYkZNEx+FVoqweIx0YaWaqL/8GglWA8Tmc3EbAX9aqLfO+IPxP7z+oHq 3dIrw/Zp/AO2d8QfyHeZaEh4pRgkFHBIKFCQ8Gqkh4QCv1dIBCQUaEh4NdPb3QnN9JeBHN6fvSLq Z6BdBHVqooeCAv2hTgnW6JcES2ci/TExD3Vqov9QqAyDgwIV6Kh2RjgoYDeZiAkmutBRGQYHBdwu E3UvE/ixPAmGlgqENxMNBZ8meigoYFBQIKGgwEDBp1d7RfyB4H3492RX7H4KmBUTeZOJHpQpuwof Irv2cP4DtSdBf5rndzt1/XoYiGwmGgI+jfMPhWqc/5KJ7GBiIOCTXhBQIN5jAlVILnRLbsUwkPZH YpZ9/xNgAKYyo/oNZW5kc3RyZWFtDWVuZG9iag04NCAwIG9iag0xNTkzIA1lbmRvYmoNODUgMCBv YmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4NCAwIFIgPj4gDXN0cmVhbQ0KSIlc l0uS3DgMRPdzijmBgiRAfO5k3387yXZMmI+r6k69qEpBSQD6x1d/s/e/sb7V/u+vf47g6f8Lv3+E 3HYRNr5h6yIk2Jwkdk8SFX0T85veNzE/X0EixybRdTs1/RW3UwnbjUQtOLVvDji1z4pA7CbQBqP+ rQmj/nkHifxbwUPsb2wY3Z+ZkYi5SFTDaHwz4CM+9yaRC/eS3xhwmt+qTWLHJlEOp/XNBaf1+TAS UQR6w2h/y0D0t2eRyL6NuhKGDEqw7SQCGZTQfyt4CCWsQShh+RCJDPr6xrqdSrARJHYFiUIGXQlz ODUF20jkWCS64FQRi/vhS9iIqYSacKqIdd6EIpZBIvYm0QanoWTDhyKGEEpI/IgShgxKMGRQQowk UYXvUMKQQQn25+C7jurvWzhnBESpshdhakz4DvuWOwlXEUCEfh1EqW4X4d+ougk9nW4SezSJXARa Yb2ArZDYTehp7Yc4JxNEyheILhhVh1AEft+CjyYRi0DBxXmc93X1iz0JOL9Bjzefr6hCPUvBhM3z kST2TBKnkYFoxf8iNLQ2stGqX5PYuUhkLRLdd3pyfGvc6ZHgM0jEShJlt9Oc6vQ3MHWSed1zEoha JE7jv4ilkQWfakrTSezlJNKSRPtd81SX2iA0B6NJ7CKQuK5jMe565pmLk4QvJxHmJMpRrjMoUc+t +hUJzyQR9RDwqVOBcoY61CKwzUikG4lG08hUy8JjVdtLJ7GrSWSj4DoXA7da31oEtPIQCJ8kCk0j +xsBGxq96SS8NolA05DQ465nDRXwNirBVpPY1iRyLxId972UhjP6hgQrI7ExDyTUuDtLaVrPu7NI WOgbErRbkAhvEuihpQmCtiFh1STh/RCJtiGhJ4y6dqi76BLMgsT2JJG7STQOQmmEFEqqEYLGISHG IlEYoBXad1B0bQC2SWjokwj0BQkVd4BKQyRBnK2zSTgGqISci0TjMJSWBINTfaB1SNjbSWQ8RCee i6YIWocE6yIRmKASat1V7z/vQr9uYaF7SPD9EBFOovJ22poiGKISVheJje4hIWeT6HVXvTVH7pjq f64cEnYYiUT3kNCF79AY6TseEnwEiZhJotA92rl06H8cFv3v6B0SAjNUQmGG9lmGcSc6G9g5JOy5 SeR6iMYMbQ0SR8k1SYLAzkkg0TskNHpH62gMGNXRmEYiMEQlFHpHa5Cgd0hYO0m8QBSvc+VoHYz7 uo7FNF7f6BsSEou3hEbfmGM8G8dRLF5m58tk5cM0msccOhwTiJYsdI+jBNrHUc6L7s1onOwNRvME HeQonvUwgQlylGpa1ikZtKxtaz3ItodInw/Sm3eluRK8Kw2WtIfZ5Q+TTcc6LoOOtXbNfBi3Bwl/ iNp0rPESdKz5kuthvOxhov1hetCxFrBJx39ePMlsq4dJ74fhXjKHBg1vXJ+1HmS3PUwNVkeb2GR5 tIqt/TBu+TDh9TDFUzM1cLCoH4V3LsF7PkiO+TCNkTunVjJ0mqOY7YfZmLpHyR0Pw01lTk0enhop Vi8TYz5MTXrWcrboWdsZpu9RnEGVEns/TLHxTH92lqMsNh4p3FqOkqMfphc9a03jUZdibg/D1eUo 3F2O0klG86gYDQ2k3g8Tox6GaZ5a1xZvS0OJrUcKV5ijRLzfU0mmni3mKKv3w+zxMjnrYXoxPppP Rs8aUftBdjxEpj1Is/UszSi2HincZ44SMx6m1v/MWH+Vw5yWk2BUSx0PMlP78c2o4U0geo72EGd5 IzKSjELUdPNn6yGztE3cjCK8C8zZt/ph/CEmzeiE+QKiARcvs8ofZgwHow100fD6eSEhM4Ml1myn X43/+RBm80HGpuPxE5ibOX3VH2ZNODaF6irorx8ldjyMZT3MaFi2Ouf0RnRSfD7ICjL5k+ibUf6Y USnOjEqZTst/3uluRrtt1cPY6IcZhjKbErjpWWtEroeZjWCYEjhRZilh+2Fs58OMxLkyrVBNzwrh epDFX9IbDmNqZ8FbD+OMqZTJmNpZL/nQNToZUylnxJAZg44VQj7Q8zY5H2QmLC8tDY1WICWYUylm /jCDOV1qxQnLUrzrYdZE81oKIYO6/gwLMlbrYbThgjmTip7jZ/sgs+Ly/J8AAwBB8J7cDWVuZHN0 cmVhbQ1lbmRvYmoNODYgMCBvYmoNMTU0MyANZW5kb2JqDTg3IDAgb2JqDTw8IC9GaWx0ZXIgL0Zs YXRlRGVjb2RlIC9MZW5ndGggODYgMCBSID4+IA1zdHJlYW0NCkiJXJdLDuvIEQT3c4o5AVH/7r7T +P7bSdkLv6idEEhQpWI0xfyror93798e9t2Yv//560eO/Z/857+k4q2MNyL13ROI1NcvVyY9V8aS 18nv9CCTX51ZGX8cOb7nD5n4plYkx1fELkf271og419HrkwUR7bvDUe2b+5dmbK7Mo7t+PtuYcki fXxl4sXK2LrO/U7ip4tUz8r4wch+vvsOMucbvyvzx4X/FzFeZb5zOc18bbEyEbyMFCxO3N9Mr0ze WRmnpi4HqalI94rEHyv9RfJ7D/dc5FBTkcpcGf/jyr9M6ABwyaEDcFYm/a6MJUf2b13Gv7orEcZp ZGBwgTKwamVyemXs4qtMChomFum4KxO4jN2P4gjM8xUpSiriiR2bBOS9EunTKxPru2QgJTUpmHgU iNSsiF+cK5OBtFRkIlcmaamI0VIr+c+RZaCdlYngkqVgccn5zY7k8xVxWmoykOdTpGmpSByO7PKf 65GBflam8q6MN7esT4xIQfMVyYiVsfpzy/me9P9zyz9S0PRHAs+dfHIQmv7I4Nj8SM5bGYOo+SSh BzKSEKL+SHQhMzoBnHl0BHplys/KeHLm1hHgzP01TP2RNF8ZC84sCyuQKR2BWhmHqflkIUz9kYm7 Mll3ZWweMvEdrlkW+kpEcmJJ2Nyy6wT0yuSblXHnxPqU3LLpCLyVifNWxmBqXlkIU3+kaKqI09R7 dQSwZZGxXpmMWRmjqffoDGDLIng1+IFwjiwJkyNLws6VyZMrYxT1SkLHmkU6z8oERb2lI4A1i5yV 0LvTSnhxmvzucOLUAaiVSeuVseDEUrA4cegA3JXxx3kkoUNUkaGoIklRRezwppsOAG+6JPRZmaCo 5+kI4KaLzLkro4ffyjhu+pGDhZFFenYmbq+M0dMjB+mpSNVZGaenZ3QCIKoI3rp/INNXxJojq4Hw gSpSr1YmnCPLweTIpRNwVibpqYg9jiwLOY4k5PNUJCjqUQO5EEPkUFSRoqgiXhxZFYSiivS9K5P2 VsY4jhzkQ1ek6KmIP2x55CBq3Y9MzsokPRUxejqqIPRUpGNFoiDGHNUoZtRA0CZ+pCxXxoMjy8Hi yOogc1Ym6KkI/wJGDvKbpCA1FfHDidVAqKnIeK1MUlMRa06sCnI4sSoINRUJ55LlYOGmi8zEyiQ9 FXHjzHIQ7/g/0vRUJPCKmqMSQk9FDj0V4Z+ogNPTVgc5GFmkX65Meq2M0dOWgyi9P1LnrIyjT2RL QtxRgaGnIjm+MkZPWw7SU5GmpyJR2HKrhdBTkcFb9Y8UWu+POL9KEjZHVgmhqCLxYmWMorYkTI4s CbtXxg/HUQt53LIkpKgiWSti/JtolZDLLctBPuREgp62HCyOrBYyO6PXp5Vxw5ZLErJPiDRFFQmK WmohtEfkUFSRyl4Zp6ilFnIgs0hTVJH0uzKG4ps1eo/kzGoh7BMiQVNLFqL5/sjQVBE9MVfGLm57 SUOaKtLsEyI8FKUScjiySghNFSkaL+LJNctCmirSZ1YmaKqIOUeWholHmEixUIj45W2XhlRVZCJX Rj9/ZWxw21M1hKqKtJ2VicA8KQ3ZFkT4XBHI5yvijjWnLGTzFWk2X5GgqakaQlNFDk0VKZoqws6R aiEUVWQsViYpqogVHiypFjIwTKTurEwYzEhZSFFFpt7K8AVewJiQg/RUpDNXJpoTq4Ww+IoMPRUp eiriyYn1iT9KJWQnku88IkZLQwbSUpHiA1XEWSdCBhp2LDJ8oIokLRWxg3lCJYSaijQ1FQlqGlKQ mooM+4RIvlkZp4MhB9l7RbrfyqyfJQWNI0vB4MhSkJqK+HBklRBqKjLUVCSpqYhR01ALGY6sFrIj wd4bcpC9V2ToqUjSUxF7HFmf2Hv1qempPgX7hKuFICJwKKpIRayM89XSrw4ARhZpiiqSFFXEAjfd JSF7r0jNWxnHkl0OOkeWgxkro/enlbGDs+VqIY8jy0F6KhLJDZZOAOdRDdmRWgGnpS4D2XpFmq1X JG6vjNFSl4HBgWVgnZVxWurqIFyxDKSlInrurYz9sdF//hVgAFuCm3wNZW5kc3RyZWFtDWVuZG9i ag04OCAwIG9iag0xNTM1IA1lbmRvYmoNODkgMCBvYmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUg L0xlbmd0aCA4OCAwIFIgPj4gDXN0cmVhbQ0KSIlkl0uOQzcSBPc+hU/wUH+Sd7Lvv3W2Bxh0lHdC IqDOpoJPyj/S7Tun/vSw78b8+fcfP0m9/n/y179J+Pxm7H0vz29GyfRdTJ67GAdx9QrA/bpiITEJ 5nzvJpjzHZvFVMxivFh4vjssPF+/haT7QiwdTH+nWae/OrkYfzhjq+95galvfp3o/5jsuxg7rJwf ifw6fBFRPOT43rBxfHNzMWW9GA8esn+32Ni/nrOYuG8xZjxlGZjsLAM7FuPnd+d477vv9wn+JOO1 mMxejPUBc+X/BXPl/1tMhIORhOVgzjcTi8lbi3FjZ0kYDUYSVi8mIGq81hV4YGShvcVU+mK82bm+ C1N/kn61mPRejOWASd2BAyZ1B+5i/PGc5aGzszwsX0xOLMYuO8tD4xnKw+jFRLGz6Raws+kWvMWU vcU4NLzSEKr+JH1iMfr3F2NU9UpDqqqkehbjB5Xv0SXAMSsZf4vJWogNTvnOdy7/LVlIU5UETb2y kKYqmTmLyXsX4zT1ykKejiTsRcThIef3Hg9ZDnouprIX4z1gQjeAjUM34C4mYyHrbPw7g5ulpG4s JoxnLAOD7yMDqxeTM4uxi8ZHChoaK8FX0k8QjY/83O/RUiVDS5UULVXiicpHBtJSJU1LlQQtVWK0 9EhB/qn5ipYq8cvKMtBYWQZGLiarFmPDyiX/WVkK2l1MBCvLQXxYCub4QpKaKnFqeqQgL6iS7l6M /n0wrgvAypLQ72Iq32Kcb6NX9FTJWCwm6akSo6fzdAPgqZK6s5igpyMJA88CJdMLwa+in8AeGo8U dDRW0tRUSfCZMqMLwMajCzCLKb+L8WTj/i7fpr+mpkqSmioxajpSkJoqqenF+PpbUtB4PHKQmirJ eosxqDPxnYfnl5L2WExQ05GC1FTJUFMlSU2VODUdvaKmSvhMURB3EWZo3DIwcMhKqmoxTr1aC+Ti kJUMT0dJxl2MFRq3JshhH02Q54sJetpyMNlZDnYtJk8vxuhpy0FnZ0mYdzHR7KwNQkQOmi+kIhbj xcqaIPRUSdNTJWmzGAtWloT0VEltxOlpy0FnZTmYuZjsXIzx26a1QR4ry0E/iwls3qinG4DKSuYu pCiqEg9crZKEFFVJTy0mKKoSw+qNkoSBykqq7mJ8WFkThKIqGffFZMZijKKWJghFVVL8hlQSFLUk IUVVMhRVyX8Qp6glCSmqkq5YTGD3RmmBXFaWhBRVScUsxot9tEDWx64Fwi2hJGmqEuMPy5KFNFVJ nV6MP3ROWchvdSVDU5Vk38XYwTGnNAQhCbl6lUThBPNoRaGxkuHqVVLWi3GKmpKQd11JU1Ql/GZT wKuVUpCaKqmOxTg3b2p/cPMqGZ/FJH+HKDFu3tQCOWwsBxdBSVMCUlIlQ0mVJCVV4hy86f+++s1I wDqLCUqaGiCUVAl/wCqo9IU4B29ofxxUVtKvFpPei7FE5biyH5WV1LmLwQGG/KOjSqZ8MTmxGOPe DfnHTaekuXeV6LEHRvtjcGeUzH2LWXUkYLKyBKSkSpqSKglKqsQcXoQETDwIlBQlVeKHlbU/HivL wVgIf04rMA7e0Pq4bCwDaamSCDaWgbRUr2bOYvLexbihsUtBaqqkqamSoKau+UFNlRwuXiWVvRjn r1PXAOHiVdLvLYZPJgVGMXy0ochof3BKKAl66nKQnioZeqok5yzGLm6WS0JjZUmYC9FPJyDaH4eV tT9eLqa8FuP01OVgs7IGyDmLiXcXY87KspB/yjWiYiFOUV0SGj90ScjFqyS5eJUYF69pgVxUVtJc vEqCi9ckIfxSMCcWki8X4/TU5CAfp0qanioJemoaINwASo6/xfDHqQIfPMBM+4OeKhlOXiXJyavE iv+6BsiwsgYIPVUSxsqSkH9KDvYikt9rSuyxsRR0vo0U5OJVEly8pv1BTZUMF6+S4uJV4ly8pld8 oCrp64tJy8UYPPUnB/Fp/SQFT38Sh6f+5CA8/UkGnv4keA7+BIbJ60/74wUYOei5mMDk9ScHm5W1 P84sJt9ZjDsrS8Jfh/r3PwIMAFoZmYsNZW5kc3RyZWFtDWVuZG9iag05MCAwIG9iag08PCANL1R5 cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL0ZpcnN0Q2hhciAzMiANL0xhc3RDaGFyIDE3NCAN L1dpZHRocyBbIDI2NiA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw IDYwMCAzMjcgMjY2IDI5MiA1MzIgDTUzMiA1MzIgNTMyIDYwMCA1MzIgNjAwIDYwMCA2MDAgNjAw IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCANNjE2IDYwMCA2OTYgNjAwIDYwMCA2MDAgNjAw IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA3NTcgNjA0IA02MDAgNjAwIDYwNiA1MzIgNjAw IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgDTUzNiA1NzcgNTE2 IDU4MSA1MzAgMjY2IDU3OSA1NDEgMjA2IDYwMCA0ODQgMjA2IDgzNCA1MzkgNTU4IDU4MCANNjAw IDMwNyA0OTEgMjcxIDYwMCA0NjMgNjkyIDYwMCA0NjYgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg NjAwIA02MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg NjAwIDYwMCA2MDAgDTYwMCA4MzMgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCANNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA4MzMg NjAwIDYwMCA2MDAgNjAwIDgzMyBdIA0vRW5jb2RpbmcgOTMgMCBSIA0vQmFzZUZvbnQgL1BBTEdJ RytTd2lzczcyMUJULUxpZ2h0IA0vRm9udERlc2NyaXB0b3IgOTQgMCBSIA0vVG9Vbmljb2RlIDkx IDAgUiANPj4gDWVuZG9iag05MSAwIG9iag08PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3Ro IDMyNCA+PiANc3RyZWFtDQpIiVRRy26DMBC8+yv2mKoHwATTSBZSmzRSDn2oSXp3YEmRirEMOeTv u2vTVD3Ajmc9ntFust5tdrabIHn3Q73HCdrONh7H4eJrhBOeOwuZhKarp/kU/nVvHCQk3l/HCfud bQfQWiQf1Bwnf4XFVt2nd5C8+QZ9Z8+wOGTHTyL2F+e+sUc7QQpVBQ22Ilm/GPdqeoSEZX/c4eoQ ZDhns/HQ4OhMjd7YM4KWaQXaYAVom/898RAVp7b+Ml7Em2lKRei8CJiK0MssYCqE84hzwuUqYCpC ryRhmUlJ2ET+kXk2ZvxcCfKfncpf3xhDy4Yu5fFluWGXlnAR4yy3RBTcLJaBKNhbcSYVjRQHUyfC ZZSoJ07HicooKTlWqZgoI6HmPDEBj4b3dZtyffGeFhCWGubME+4s3vbuBscD5U/8CDAAAHya+wpl bmRzdHJlYW0NZW5kb2JqDTkyIDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGgg MzU3NyAvU3VidHlwZSAvVHlwZTFDID4+IA1zdHJlYW0NCkiJZFVrUFNXHr9YufeibNx2Jiy9Z+fe 7o46zHasrrtdHa2tVhxEkTcCgS2YBxBMSCAhCQEioIRXDA8RAol5kYQkECQPngJCgiiKIO201Np1 3RltZzu72/rpJhvY3Ytf+mHP+XA+nPP//36//+tEQDt3QBEREbGpp5ISEhPez5ByRaIjh3//aeaB JG5xiXj7DguC6BhFmBvqC0kiX+whf/VL8t23e3+95/U727dv/58JFEFtiAZDMRD0WwjaC0GHIqA/ RkCfolBSJJSxA8qOgBgQ1AdBVghyQtSKozhABPQedBA6CiVBd6DvIqp3HNrh3PH8rZS37u6M3unZ eS9yCP4N3I7ASD2yiPLReXQD/W9UdFRL1F92nd01t+uH3Y2713f/GL03WhZ9+xdf7Yl1BKfDZ+j/ hjeb/wMHm5HN1NAqPRi71bMZG+qBabRwE+kiq+kPw8okUonQyGMxLxMPP0ZoYafiCH0GJo2hh5F5 cNi09TCSxiH3BVfoszafZQH4vRW5VsKWq/lkH7ZX8YkwF88tZ1VkgiymZVZICGcVX7/GXms2bLM4 Y/MaPdmzyPsSfLXofOAhPA8ML8kojESlL9nL+DIr3XkKnMzgJbMJdrL0cDgKC0cZDnsu4BTci5hQ ShrSnFddIqhEKwWFdamgqfAm7HOpO62EtdPYo+1DN/0rCI0TrIoJbMYg6mGNw2wz20btc47eLm23 qXfNPek0DhiMfaZuM9ptarfZsWXZDOc2PsrJvnUOxGdKWRQwS5LWcgpdgVWLfeM2B+qwefvnwNRt RTkFU64p/jNW2Sy9Jscb5XXymupqeVF5eqlAXqmoaUjmFLCFbFTIUhTkYi1tTSol3tTW1IIFs2Ea Z4Rk0BMMF31snO0NyNbBE79+1Ev43Ia5R9hU/ajEiUsdZUZ2z5B2wKCzolrrDccI5q+aKB7Gh0vy tMkgKaeqqIgoKpLmtJxDl+Hrsxq3xYrarCOaKeAbuiIeICziXh4HK6gtFVbiYiGrLgs0N7WplERj U1szyEba1ar29q62G+D+xBWxnbCL+ooZWG4tWyDEhRTnbMAo6rMLCYFd4W2dRxNaKNKvXfRi792q x2DdbxzzEb4xQ+ALbF0aYI/hY6yLxkTAEzZdExGiq1IqFi6yMpa84w//AF8MhyL9cL9Jr7P0or0D g51DYNZbfZnCLO0ryMAyay8J+DhPwKnJBfkcjaWMEFhrRlom0HOwOtnI8BajtCnyfgink+9tIpHh IZgkgtTZvIXTn5PlkeQG/G24PHIdDltDrMiPqGOLFbkG08h3gtpX9BJOjvw8OJFsXywgChYrv3mN /Wh6Oh7A/eMPBp+C+zM1PA/h5huZnRepFDetC/25Y6gvN9F4DPzuY+7ZDCL9rODgdt3tGvwgkIAn BDa4/wAvVs2Tc8Ts5OBy5zOKpPKCJI9dgtLIFDI1+Ip+b/qR/Rvw7FFZ+jQxnTZwIg6LE53IT8fT 88+XHQfHz9sX84n8e+Kv/4X9c+Dp9D08d/MGPWHpGfcn8NO3rrUlYmnN8f12D0Txv09dw9dSj7n2 g/3HuQmpRGoC/w2XKMfBpQSc5iL3h+Lo5Dl4abxOPEjYxNsJzKnh8MS4mJdTFw/CH5A+eCtuJ7lC HkBeremGJ4gJl+nuE2xVOst24S5Wmu4jEG7fYj2GabenSC79pDl9iomzplekfwMbD/Sj1PtRE1WQ AflE6RDOHUqzHjUeMcYW9PD6ZXpUpm+wDmPjfS67GR+w+3rnQWC8VuAknAItW5WDrsKtTyoXLrlR T2Gq/iSIT68qKSQKSyT5adjFPuZgGT5YNif6UrYmj12VT0pNEtRc2cNjYgXVJZcr8IrLBYoMcJ6h dZYQJc6qidZFNFFJVSA5HxOKI0VLmz2ppGgrbg2hcYP7yHw6o5pdKsDLSgtqM0GxoFsnISS36gbs mPWmWX8LN+jtfe6bAbVXbWm3qA0d2k70NNIefpcu6qzqvYJf0dxqtIDOrjbVDaJLdUPVdR2dRJqa W5upflGC2np1h5JQdjRrTBh5G5mr9ly24bbSfM0FcCG3hk/1IF/GbM1Gl+Drbo3dokf1lpGb02Bq uEFuIAxVNwVMrLRCwqjHr7U0tja1olfrW1tridPK7HperVAhkddWorWV18r52GfaIifVe86x2rtg 1NXVP0QM9TtMNjt6FaF1kR8Hj9HdjnH9IhVlGcdBONn9WWew+JosPgfn8AplGSCzUO/hETxP9cIT bL3f73TjhZvH6K+QW9yBcoccrXKONHjBF4sDM2PE2Izx8Qvsr5JV5gw+w8wYiAfM4gY5n+BVicql JSg5mbLFuo/QsoK7NugVQq6CBbKZBi/l3FtDOV/tn3d6cI/DZ7gLPK46MTXrxVp+Bwe9BzfPS8c5 w+hwUZ42lUp5BYNJMBmSsx9iRw2Jvjw8zxsQrYPlWZ3LTbhHTNOdS2gK3Fgg5worUFoP+f62Rue4 PvBGo/NnjTxKI7/gZ43umoV17PP+BYcbJxfIWXp4HJG5RFa+DtXxS7qZID5DxLj0BvkI9icKmYEz fH4K2TfSraPc6iwWgwv9w/0QKwWhsYIKUkU3IM9lK+wpfJqdZT4DTlP2LIKVJ034cNveu83cL/oc LM1oh6hfymke65rfZs6R84XU7yPk1jGpCOlH+dvU5h5i6mAsEv6OPEcfdrh1d8C0u7p0kJp2/Z+p 09HwU1gd0E46hqmJcSgmWPr3mQMvEXOHrrsb7+7u7zB3dLdqQKv6epsKLCCqRqVKCVRKJVWIhbyG Kikhq6oXsP/Xfbk9NXHFcdyHZncdO3mpYWR3Zrczfeg4tZ06Y2vtOLUPVakXGC6iIkhCgpAL5Gog m5BgICLIRSCakN2FkAQSQrgtEC7R0laraKfWdsY67dSOl7Zjp+2TD2eZjW1PYKz60H+gb2fnt789 5/c5399l8S27Su6kNfCKvC9CU8HoKjPQdtsP1cDeoiuvLyKKFAPPC2MV2h+yrWjdmOkpMiWxu9C0 huxjiCy4huwyDJmHyEaoEXYoEhzH9qO59jKdjtTpSh0HCLm6lzVRJrYh3DKKHUS6SgdOTBoww1Sq YZn4cXlgZpaamQ5e+wEXGiHmWrAxC1xFP+2bicXJeIxnUkQq0XiSo/pPeuX7cPHrZXALXWxNnGHJ M5wn0OxvCFlZgx/z63U9aqJS02TXU7V2s6Veh4Gx3CfKZVSaXgeyV9bLfsnbeg19sv4lgclLMxDJ O+CVLHAY/fM3cEicldxCRAO4C46AAskHiOgTz0mEI2vqzrhnQQmsPgA243UbXeybisbIWHSyb4GY HD5l5SjO6tXKcfHxNfA9utA3GY2SseGMlY+661mKre/VlePiyjL4C73SkNRHyahe0VdInNC4adjI aIuR1rgTdMTEYpxR61URVVo3rc8YzDYtdr9w9cS6p2xmo5BNlA9AySQarf0ZNhW5uPjddcgmgPKt 0QwdFtLxQTpcho5B1121SgduZjeb67TYT/lpBsJxgc3CDhm/Joy5FyrGv9lU+Fw2fRP4DFaMMvFv WensF+Y7xJ2r4UV4gangzfv4A+tNRYpcVOSHdxG78s2lUCfHrDnb8G3BnJlSUnoefPhMg/+x1Vri 1jynQcWTDTKwhA5UR4wxGqNjz6pTZtN7+L26r1arUwGsToqqDM0a2myoq8Ie5T7RwQBFBsiyAI8u +xeGRsj40FRgiei90YyoIGADZaStRkc19iuEcR2V7oSTi3YyZb9GXE31DU9SE1FuYg7nXXFLkLQM VnB5AU+Hu8PViW0ZLB1bwIcvBIMsyQSjvRPEdOJUXYgK1/v1ndXYMtKyVD+tjmGx6rJAPlEsb9Br KI2BPlGOq/y1kZNkxHqp7rYN60AeWRa0CrzWZTHRJG1Su8sJpeZCyEQZB52x1glYOzqK++UTWkwq Lt1feVsmbv6o5Nu0FFV2G3wO0uEPNo0Q533tHT7K1+7vDHS1pTbZW1ytTW1YW1Nzmwc2pa4eD3W6 50xgEBekv198A2yGOfYq4LJAscBIDiLi9nSB+L5QINmHgMNpRnITDkRSYM0CG4Q94OX0HsmXCNgO 38xFxOz0bnG9sFuSg4gb4BKHy1xohE43EOlrwnGBkcHvvZfOE3cKeZL9CDieHjTvc1Y7zc7G7EYX 7TlJtJw+2+6hPO3u9sYOrAjtbu1p64ZH7ek56yXGo152kAqyXCwwDeiVdZukgBFeXymRib4YcKKP RKckjDwETonojAHfUXSnqH0XaCUl8Mciy/RAdCaA815EVKAZtx7hnGzAdd5mxGvdVlsj6aI1nlJi B3jzLpKMe1wDlOi4LEtvvQwOPEZ/Fg/AIN8CRSOdYR/Xn80NeOFAwDfEDBzZr5d78wlxMyLkiA9l jkqzuqZGp6syq+wYraxoUhCKil4Wzv5Mdagmrotbxmges/NN00l8tneG5UmGD0/E47GR8dAUgzH8 TG+SmJtpssPWYB83x3UjNSE1o8IYVW+FHC9vqrBXkum9QolMYas0ajTqaqOqvhyzyd1lpfgx73FO TnLyocox9Vg1b0zaMFty3r1ILM57++H8xfFD4+NjicgUN4uxSe/8RTzlXqCTpG3OOKVJqMdUQ3IO 4+Rl3hLiWJmbllMZTHeEIlnLJD1SE8ZCtVU+OVFQVqeEg5SSLs7B97JFCSWpTMzXXSYWeX8kTo1G 2ETXNHYU8egbLFaYi1aju5ZQaplRC2UZdSU/x69cmA/FydHQKDNDxMLNjn5qwOGz9hixTxBAiPr/ GUFHQPjjEgL6Nwo3Zf8ACFqAVgplbmRzdHJlYW0NZW5kb2JqDTkzIDAgb2JqDTw8IA0vVHlwZSAv RW5jb2RpbmcgDS9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NSAvaHlwaGVuIC9wZXJpb2QgL3Ns YXNoIC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgNTMgL2ZpdmUgDTY1IC9BIDY3IC9DIDc5IC9PIC9Q IDgzIC9TIC9UIDk3IC9hIC9iIC9jIC9kIC9lIC9mIC9nIC9oIC9pIDEwNyANL2sgL2wgL20gL24g L28gL3AgMTE0IC9yIC9zIC90IDExOCAvdiAvdyAxMjEgL3kgMTQ2IC90cmFkZW1hcmsgMTY5IA0v Y29weXJpZ2h0IDE3NCAvcmVnaXN0ZXJlZCBdIA0+PiANZW5kb2JqDTk0IDAgb2JqDTw8IA0vVHlw ZSAvRm9udERlc2NyaXB0b3IgDS9Bc2NlbnQgNzE5IA0vQ2FwSGVpZ2h0IDcxOSANL0Rlc2NlbnQg LTIxMyANL0ZsYWdzIDQgDS9Gb250QkJveCBbIC0xMyAtMjEzIDc3MyA3MzggXSANL0ZvbnROYW1l IC9QQUxHSUcrU3dpc3M3MjFCVC1MaWdodCANL0l0YWxpY0FuZ2xlIDAgDS9TdGVtViAwIA0vWEhl aWdodCA1MTkgDS9DaGFyU2V0ICgvemVyby9maXZlL2h5cGhlbi9QL08vb25lL3R3by9zcGFjZS9z bGFzaC9wZXJpb2QvY29weXJpZ2h0L0Mvby9wL3kvci9pL2dcDS9oL3QvdGhyZWUvbC9lL2EvUy9k L1QvYy9uL3RyYWRlbWFyay9yZWdpc3RlcmVkL20vay9zL2YvQS9iL3YvdykNL0ZvbnRGaWxlMyA5 MiAwIFIgDT4+IA1lbmRvYmoNOTUgMCBvYmoNMTczMSANZW5kb2JqDTk2IDAgb2JqDTw8IC9GaWx0 ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTUgMCBSID4+IA1zdHJlYW0NCkiJXJdPbxxVEMTv+yl8 tJEy9P9+7xrEJeKGb1EOCHIBO0gBxNenZo2iqZYl21P7007vm+ru2pvuPLIe1ORYVg8vt1Owpd+U 17siYsTE0RbExBGRg9FKYvxYi+/lR0kPxm0NRmITY0e3EmNHbB2MqROjx3auWY/KHIx3DkY214z/ dBEjR/oejNUVWfvYi0qG0pdDfWPCfDAaVPJaxyoqGUquGoxLDUaMSl59dFDJUKIHoptLrmNfzvT1 rtTlTN8YzxyMNJeTR28uGSbUHow5lxzHTi45jppIiA5EjU8ZJgw+ZUcH5GCMjQpF2KgLJjQuGSZk o0IZn0qPxT6FUmqDcffBSPIpCzqASxZ0QA3GlEpumNCpt6BU7sE4GxWKCtXcMCEbFUqGD8aKau5G C9BTh9JsVChhPRgNrrnQAlxzHWwMCK46EHE65oYJk0tOdEAMRtmoDRPyI4VSbFQoPuqJQxiBCdmo UJKNCsXYqG3HLhoHUGrFYEJqMMpGbbgwuB5FC+zB2B6IKJcMEzqXDBOmD0abSq6NFqAJBqXYqFDc ezCSVHIttACVDCUHYUbPvGDBoIqhFNsUiq8YjApXXPf/rgwsyDaFYmzTymNzwbAg2xRKsE2hKNu0 4lhsUyi5YzCuORhxPmRHA3DJjgbYg9FRMzxoXDM8GDYYLx+MLK4HHmSfQkmrwRjvpBJ0ANcs6IA9 mNCBqFPJiUG4qeShMNM2kNRB2O6ByOoro3B9rysDpaoGE1mDMYQqZgTL4cq8DeNXUs6VwkwMAtmC iL7nk1dSutZgEoZhxqMHo84VIzQgKr6Q0uqDSfHB2NbBCJeTxzjjxDKbSMRkzHswwk9c0WDKzwEz XnwwvmMw2PfE+LHZOlC6dDAZezCOMMnMOcCvDJpQuWa7r1JmYudgbMVgpLlmtCUqfCGlYg8mYiDD geeu4E+FvhL2Dtpo12B85WDO7XFhBH+L7gXl3OPMnGGEGXcbjNIHl3VsoZKh1N6DiVWDsa7BCMLk leljJX0sKBU+mHPuM3MuL2ZEuB400uaa70mIEee5AwWbkRjspSR/QemIwaTHYJyfOhTluSNIS0J+ h1JbB3MuHWbY7hBkfKwzxDODb5JegwnLwZjmYM5vtlcGjbT5SRi+YOlgvAeC/wnBl03uGijtazDJ kwfKubaZObPHlUEn8eQRuYdAZqJ9MFY2GLneamNDXd8E12WLgdDFhMn1IWz0EI0cCE0TB0K2M3FG BSI0r4Xut8z2chXalYmkaQPBadhAEGqUjQC3rkcPoTqZiEomLAch1CQbC4mmDIQyZSJUmdBNlaJj Fp16IOYOIquZ8CwmlAb0xiJyqhR7iIYLhFRlwvl1Gj3bsHupCITAGkTQMoZgUUyI04Fi9xgdOVaP BhMhxoTSONkIiHRaSG89gKRZAsGjmFBq74U/NJAgtAYTKcGEbWdC1vVE1+L0gusqfp2SH66NxgcE MXoH7BmlMrFmpJhwWrkQdFGZCGs0OCA0zQ0ImcYE5xUISm+B9aIEYLvQ3IAQu5iwlUxI04kjoxWd OBZLDiJoyUIwmhsQaPYvLBV6HU1BUwOC80NDMms6UASzIsJGOoGQNDUguA9CabEu7BLaqxCaXw9K 8xCsByHsLhmZBELFIMIHYeZMCGWoxgahA4VArYZrp00KgbNIY4Ncq8B1U4CHkJTfITgtUQhKQ6Ox QCi8Q6jtTAQ9eQhGUwMCdVJjf1Bsh1A0NCAEfbWEYDreQ2gDN/qC2gBCLmPCaX1CUIrrjf1B304h UILGddpmwHUxofxh0RebCkXWoqAOIfguSFoVTAj1QWODBLkHG2QA83WjgN5oi01HjrZYzURSOofg NDUgaNKBYn/Q1IDQlMwhJO1OCE67EwKnjUJjrKvNIVQPgtMGBMtigtNGYYHQ3IBQZkwEzQ0IRnG8 0Bo0OSBw2oDAaQOC5yCUJkdhh1ASh9AUxCGkOhNOkwOCbKoU2epqUlzTnMU1xw0IFoMQWqCFFUKT A0JR+oYQFL4hKGXvQrJadOZIVm1MUDjDtdPkgKBOB2ojbkBobSbyPjmszoC9v8Wz99/d3j/fMGUb jSH4OQcu3gvRH8cnb5+ocU7Prze5A/rwxw12FVj8+dfbx8cfnnCQjy9P6IvHz798xZXdNX/888uX z7/+/fTOYO/1+B5aPv4Dzh//evr0/OH2/83q4d23+zt6dm/MEnU0L77G3e973u282eNP3//89Pz7 7cfnsxbsvMTv8xdKsocPuHAk8n8fPn6Sh99uGui7u8exUgwFwQ6BCITo8fXz+cHvAKaSxr6f8GT+ E2AAqfmyhA1lbmRzdHJlYW0NZW5kb2JqDTk3IDAgb2JqDTI0MDMgDWVuZG9iag05OCAwIG9iag08 PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDk3IDAgUiA+PiANc3RyZWFtDQpIiZRXSY+b NxK961fwNJAMiOa+HL0kgQ046ZkW5mLkIMtyW7EWj6SO4Vt++rzix+2TZCdGH9R6KvJVPdZCTp4/ mTxfTASLXAfl2ByfPnommDKGWysdk1ryaKNhix3s6E+yTxPBhRCRLVaT6d2r32aLP/AbFnit2eJl +lWmH++HHxWXMsIgqPLz8Pvb6evFs19mc+U1D9PFTHA5fXY3+33xevLTItMJomOvmYBrjn1hhr1h ExMlDyxELqxku4nxijvnC7CtAMyiCgS4yKM0LDiuYugsguA+qh7Q3BpLwMBx8bUwvHtS95RCcqMt +UE/m1iRbYcYLoOv+8TAXVCdQdTYWPeA5VHLzvUroLHAGWkEV7ZJIpXkDudXHS5AlUTKwIPrJKlL iiQVKBoUksvvnShl1yaK1J6b2IvSkCJK3qiqUiyqKhUoIhSeK2CkikLiSEEZoxVSzCgmpefCa/il EZ2IsiJbII7bqIEYjl8J0Qo2bmSDGjHmFoLV+L9f1ZCyM2xFirCydzbZw2ukciEk7RwOZRSIg5nT vUvIEO1sH4hH9SG7OxtPVeluIc2BsqohZecWSGHvbLKH10gfiBGRK9fFYQREEqGzMhIeadfFYfCb 03FkAx+Dv4VU/rqqQ/LONY7K3myyg1dAH4VEAkpL4jseTaB8j4obISuC1IyeRzHklURebCdKaNj4 zkYJwZ21txDwKzFaVZG6swro0gNXZu9ssofXSOVCIOi0XKIGUyGmpouGa9FwJwazQFrFHKrTRqYs t1IzE7iApMf15JtDxNjIfYCRjxxH4MYzZJ7mgB3mwN3heKY5ABenMg0AwVBFOjhHI2NsIG5MiDwd JspAI+W7tFLGcen7tFLoNs735aE0FPF9CSk0nKjMLaTmQ13VkLJzTavK3tlkD6+RPrFo5qVZpwI6 hZd1z11Dmm8+cC37slBo0kGpPka0aa3syMbRzL6FNP8v2Ie2ikIQ6LFSUPelpFeUFUZXZNsQiXN2 KX2xBTUTNGgXbGeCLq+F7gGPy4dPGT8QXQGNh2oQ7UXiS3NHBgxz4zqzilR3JGINeS4N/hSb6k8F Cn1hugJG/iiLES9cL4+j8zG9PAVp8qD9Wud6fbJN06cAVY7MdAWM/NGByqNzR0eE7nuvK1LdQRNB ZJ03xaR6U4FCnnkuv4+1iYZ7oXpnpORKyt6ZglRntLRc6z53ik3zpgBVisx0BYy1QVXblAXVH6t5 DL1ZRZo/NnClTe9Ptmn+FKCqkZmugJE/BjNfuf6wjEYX9X3KV6QdFjpITKEVf4pN9acChb4wXQEj fzAOapNV+RpOU2G4VZUaQuoKTFM1DFWDD9cmQ50HeUSAAQNIeVBjNyEu3xbp5SDp3UAtvucfGsgP kikd0IGNvM02VTeIyvH+IBNdczzJc5vJ3gopF/2PxoTKisZ8Q8GpvhVTLqHGpJz6BzGlOyhGy20m c4Mpd44+JP/3RHS5snRrvk3kCtF3HoX0ZsXTJlhM0/QsVJ5rPF0zsG1ApMdtl/IYctKFzgLOR6l6 ACPSpCWZ5QqoLNTlhkwNdGNIdxCpQaAKsK0AbmvS94MNY9sPV8Rs4TESh4lRAGztQpunl98rB03G XJ/VEelxUri/V6MCVEfKRKuOFIvqSAUKce0Cl0DvSsn0pol1eNyFTpMMNE3yMGuaZIumSQGqBqWe LoHelZyg1RMdDB6XnXIFqJ7kSVYdKQbVkQoU3lIEF997N0pFNkUinrCqk60ATZE8wpoi2aIpUoBC XOv+Ehi5khtek8RI7lUnWwGaJHl6NU2yRdOkAJW5tNVLoHcFQkfZBozCHvROQ3UFaSmD6YpNb7mM bCf3XZ+QCm8/esPSeQhqAlIJvFdCsvc2pXy18VwpP0KGVdvJhyeNGpoL6NVRZ4So61II4xBsR4jR G73rt8fYM3YEDIvGfJ6ElT1fRkZ8fnhXdHxkNYoPOguhRsiwaMzn0IFd6PkyMuJzOCNrez6yEqNw 0BjS7peLLvhQCcaM+AZkxEdvR61GfHiJhFGADrVtRwrnVQMhbjyGnkAWzVyNciEjiVDjGWbISmL+ jGSAVbD0QGs2eExpM0KGVYkQScglXlhoj/bqwpTmhENySfQsDZnw1tEhMBMwR9pgzPPQsXkdkQas nmSUDv9YTP3xaLz/ejqvdzQf52DWwrM5rsIk1eIlfl0f/9ys1qc6P5NLqcQmxpPhkPfeUIobTF8p YkVIIeMNx8MQGO6S6UgMjj6GwcqlI2k2yDAbRsiwKilkkCHRmZSrVPjYCrM4uFCRQijo6YhWEgqf N0NpSC/z7oNJwAvNjpC0KNH99ObF5N+k6tOfoTtbfJjIrJuA/JYL5AJuzgJyk6SoFrp3rEhH/Avw y+Tt9MVsLhHm9D59elyu5tLjU8yQTWoq2XMAyKvpdjY3XE4Ps3mYroDxOP3EXs5wkHK6mc0xvafL h9kcIUyPs7nDz0v6MNPd7PfFazqc/00kEcfkI5yIEedE/6+QlTipdGga8UGLuSavIjVr621KywqR iDlum+M2FKUdgjeM9ghMy5BOI6UTwhYU8PTZ58/bzWp53hz2KWme/myKdiRYLAKiApTDgwuXNY7O 1pLy+DB5+su9Zg8nZN/mYb/csn+xV7vlw5rdHQ9IxdNm/zDsrIadsYFFo4JkNiIXKG3/Yv9Zvl8e 2efRCkE2JuCeNNi8OOx2j/viLTulSjj1liZb/nfzfn2AH5vkx/d3fbN+jy23yba6WkTAxApos7h3 GK/SAjjx+fGcXMCiFx/Xu83pfPx6FaEeRTjkmEy65/++EDkkOq83e4YtHlfnxyM5S/7Q9lfOdsf2 F7vf7B63yQ12+MDebQ7bw0OK4zuyDE7q4mRwmNzi2+69gl8bZMdhFJxOQ1NcOMTeHx8f2PvNaXX4 cz3IgfpQzvg+gm/J8OtyDx1WH/cUxderI8CNo51AR/rr+vzlcPz0nUQzyvyTY3i1P6+P+/WZHQ+P +O+E1Dl92ZxXH9en758CmB+Oy91u+W67Zufj8sOHzYrtlnuk3W69P18dwry0neEM16vH4+b8tWTo 4XiTbrA9H46UzMvjesn2Q+C5Yt0QruNDxdOnxUMmRLoHce9xb0O5vp0KO7/7Da0qoH3NJTWYpwzP ttSPWu8IQ8lTr5TcIflxj0LXRe1jk6cvTpGtTjA9rfZU+IoKf2ibIbVNMdXY+K4EVJrd/wUYAB5b 5F0NZW5kc3RyZWFtDWVuZG9iag05OSAwIG9iag08PCANL1R5cGUgL0V4dEdTdGF0ZSANL1NBIHRy dWUgDS9TTSAwLjAyIA0vT1AgZmFsc2UgDS9vcCBmYWxzZSANL09QTSAxIA0vQkcyIC9EZWZhdWx0 IA0vVUNSMiAvRGVmYXVsdCANL1RSMiAvRGVmYXVsdCANPj4gDWVuZG9iag0xMDAgMCBvYmoNPDwg DS9UeXBlIC9FeHRHU3RhdGUgDS9TQSB0cnVlIA0vU00gMC4wMiANL09QIHRydWUgDS9vcCB0cnVl IA0vT1BNIDEgDS9CRzIgL0RlZmF1bHQgDS9VQ1IyIC9EZWZhdWx0IA0vVFIyIC9EZWZhdWx0IA0+ PiANZW5kb2JqDTEwMSAwIG9iag08PCANL1R5cGUgL0V4dEdTdGF0ZSANL1NBIGZhbHNlIA0vU00g MC4wMiANL09QIGZhbHNlIA0vb3AgZmFsc2UgDS9PUE0gMSANL0JHMiAvRGVmYXVsdCANL1VDUjIg L0RlZmF1bHQgDS9UUjIgL0RlZmF1bHQgDT4+IA1lbmRvYmoNMTAyIDAgb2JqDTw8IC9GdW5jdGlv blR5cGUgMCAvRG9tYWluIFsgMCAxIF0gL1JhbmdlIFsgMCAxIDAgMSAwIDEgXSAvQml0c1BlclNh bXBsZSA4IA0vU2l6ZSBbIDI1NSBdIC9MZW5ndGggNDY1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+ IA1zdHJlYW0NCkiJLMKFWxpxAAbgv3o9l643ERELRBEDG1tEFAM4Oo7u7pSS3ve7u/d5x+PxCEej 4ZAcDHDYx/6w18NBt0s+dwedTh/bnX6r3WM3m11sNLtPDfZzvU7Wap0qs1JtlytkqdxiF0utQrGV x0Izx8zmyUwOG+lsI4WZRjLTSGD6KY4prMeS9Sgm6pFEPRzHWihGBqNkIFrzR6pkuOoLVdAbqniC pDtQZrv8JdpHOr1ch6dod5M2VwGtSBcsdMHsxLzJQRrtOTSgLUfZcnprFnUWUmvO4COaMg+m9L2R vDOQGiqFt1TqRp9EtS6p1pLX2oTqkbx6SCjv48q72CXzQhM710Tx7JZ7ehM5UZPH12E8QlVYoQod 4hV5oMTg/mVwDy8Cu8ydc3L7zI/yU/8Wnvg2mRvHXlw/8soU5JrCKz30sFcP3Liy75bskcu7LrZ4 hxYxl7bpRbacXpDT81vonNvkCjecs7juELBljhmZg49r9mm21M6T2qdW0fZvhftXYv0jsf5eJn+h 2II/xZYfIjN+F5m/LXEnF034dcH4hfl5nvtpzvBRSH4QGiZmkZoQUO8F1Duc0eNb5Ovf8PWvcVqH r5Cne8nTvZhC7X8BBgD2WFt5CmVuZHN0cmVhbQ1lbmRvYmoNMTAzIDAgb2JqDTw8IC9GdW5jdGlv blR5cGUgMCAvRG9tYWluIFsgMCAxIF0gL1JhbmdlIFsgMCAxIDAgMSAwIDEgXSAvQml0c1BlclNh bXBsZSA4IA0vU2l6ZSBbIDI1NSBdIC9MZW5ndGggNzEyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+ IA1zdHJlYW0NCkiJJMIHOyJgAADgv3P73HLLnS2yR2fvvYmoZCTKSJeUkpGOFCE6slIyonO67O1E 54ysjI4z7su9z3t7e3tzc3N9fX11dX15eXVx8RfU6y/Pzy/Ozv6cnupPTvQ63fnx8fnh4enBgaFW q9vT6nZ3j3d2jra3j7a2DkCNZn9Ts7+xqVVvaNfVe2s/d8HVtZ3l1e2lle3F5d8LS1vzi1tzC79m 5zUzc5rp2c2pmc3J6Q3VlFo5qVaq1idU6+PKNVDxfRUcG1+RK5bB4dElcEi+KBtZkA0vSAfnJKBs Tjww2yed6ZXM9PRPd4unu/qmRL2TnT2qjm5DoehHu0jZ1jkh6JgQfJ1oEY43t4/z2741CRSNrQpe yxi3eayBP8rhyzlN8jreCMjmDrO5Q7UNQyzOYE39YHWdrKpuoPLLAJMtraiVMlgSeo2kvKafVi2m VonLKvsoTLCXzOgBSfRuUnlXCa2LSBUVU0VFlI5CsLSDQBYSPgvxpPZ8UnteSRuOKMgtFmCLWsGc wpasguZMPD8T34zB8zPy+ei8JhSuCYlrROY2pmN5aVgeIoebms1NyebCsxrgmZxkTH0Spj4xoz4B XQfGo9hxKHYskh2TXgtGI1hRCFZkak0EmFIdDq8KA5OrQpMqQ5KYwYnMoMSKoISKwHhGQDzDP47u H0v3i6X7xpT7xtB8omneUVSvKKpnZBkIi6DAwike4RT3sFLQLZTsGkJ2CSE7B5Ocg0hOgSWOhkSH AKK9fzHUrwi08yu09QULID4EiDfBxptg7YUHrTzzLe9afMqzgOWZw3BmHjhT0D33o3vuBzcsaOKK NXHJeQ86Z78zzHrrlGnoiHnjiHntgDF2yDC2z3gFRb+Eol9A0c/tUM9sUUa2SCMI8ikE+QSS/sQm 7TFojXgEWqU+BC1THvxvAb8PmiffTbpnlmhomgD+E2AAwjPEUgplbmRzdHJlYW0NZW5kb2JqDTEw NCAwIG9iag08PCAvTGVuZ3RoIDMzOSA+PiANc3RyZWFtDQo8P3hwYWNrZXQgYmVnaW49JycgaWQ9 J1c1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCcgYnl0ZXM9JzMzOCc/PjxyZGY6UkRGIHhtbG5zOnJk Zj0naHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIycgeG1sbnM6aVg9 J2h0dHA6Ly9ucy5hZG9iZS5jb20vaVgvMS4wLyc+PHJkZjpEZXNjcmlwdGlvbiBhYm91dD0nJyB4 bWxucz0naHR0cDovL25zLmFkb2JlLmNvbS9wZGYvMS4zLycgeG1sbnM6cGRmPSdodHRwOi8vbnMu YWRvYmUuY29tL3BkZi8xLjMvJyBwZGY6Q3JlYXRvcj0nQWRvYmUgSWxsdXN0cmF0b3IgMTAuMCcv Pgo8L3JkZjpSREY+PD94cGFja2V0IGVuZD0ncic/PgplbmRzdHJlYW0NZW5kb2JqDTEwNSAwIG9i ag08PCANL0NyZWF0b3IgKEFkb2JlIElsbHVzdHJhdG9yIDEwLjApDS9NZXRhRGF0YSAxMDQgMCBS IA0+PiANZW5kb2JqDTEgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDM0IDAgUiANL1Jl c291cmNlcyAyIDAgUiANL0NvbnRlbnRzIDMgMCBSIA0vQmxlZWRCb3ggWyAtMC4xMiAwLjEyIDYx MS44OCA3OTIuMTIgXSANL1RyaW1Cb3ggWyAtMC4xMiAwLjEyIDYxMS44OCA3OTIuMTIgXSANL1Ro dW1iIDI3IDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEy IDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMiAwIG9iag08PCANL1Byb2NTZXQgWyAvUERG IC9UZXh0IF0gDS9Gb250IDw8IC9GMSA2NCAwIFIgL0YyIDU5IDAgUiAvRjMgNTcgMCBSIC9GNSA3 MCAwIFIgL0Y2IDkwIDAgUiAvRjcgOSAwIFIgDS9GOCAxMCAwIFIgL0Y5IDExIDAgUiAvRjEwIDEy IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDEwMSAwIFIgL0dTMiA5OSAwIFIgL0dTMyAxMDAg MCBSIC9HUzQgNCAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczggNzIgMCBSIC9DczkgNzEgMCBS ID4+IA0vUHJvcGVydGllcyA8PCAvTUMyIDYgMCBSIC9NQzMgOCAwIFIgPj4gDT4+IA1lbmRvYmoN MyAwIG9iag08PCAvTGVuZ3RoIDc4MTMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0K SImUV8ly48gRvfMr6gjaIoRasPlktXqZ1ZaHmphD9xxAsESihYWDAsWWv8Jhf4Uv841+WYWNkrp7 HIoQJRCVy8uXma9e3S4u30aMs9u7ReSHLMAPffJA+CpMmEj8IGG31SKwX7W7xeW7tWI7gwe3+SLw gyDA4dPivfdfdt0cHttit++YCALJrkudteuD1lt2u+RS+Imnl4GX7+umbHaPyzj2leez2XvLX2+/ W0g/TlIXSf+nCBM/jiSTgS9U6KKBS+/fy9uPZ1GLiPspT2dRj/F5LKu3ztV1U9c67+jwc1+SKz9S 6TNfvz/1JXnsJ0H0kq/3cNZq1rXZVldZe29Y07JW7wrT6RZozL+4+4MwWWhW8CnZivuCw+Xr0WXe B3lVlqzp9rplmxbpGptznVXauID2mh3a5qDb7pE84/+CAjMHwFE8aNacat0aRqlevuWOFbHNOGZK +iqSCsxIfemQubw2KcsN3jN5TcTgIzG8WVbOXOjMhUAXIQcU/mqKfzVHDzAIeAMMeMxHJNi3de5g gBERcgBhQZjyFwH7W9N2e7bO6i5j1+3xn+zqQV+w9bHoNLumSMhROpydufV+aAx7l3WNuWDXVywN AxkM78v06fuDx5/XV2do0QsJ0Fmp4fU4juh1ZIV0UMvIK+2n9P5ikxmR4X6YpIlDpm8uFUjZE0oF yUqm4UomYdCfG1xyX6WRmtCg998uhfCyT89cJLDTu/AD+HtiPQ5UeG5dxn4Mliej7f+vsuflnFjN fui2Uy0lP49ech6wd63OOvbLUkR+6mlqnRoT5th29hw5iF8q4zfHukMh2+YI7v/UZFsK0r6g1AtV nA6uu+Zes3fF3V3TbofKKzVn2dzPqxbt3JTs1RpNkXxzM574LFW+f4EpEVuJrzFFvciUdMYUVHC5 AllAqj8j4g9e8GHJeUwzikbxFwlDnoVwVt5myxV484l+o/FeYk86suelzkUYmNXpi1EIa+3N7eK3 BWcFQ+RxKvyAhyziMJ2wVZziEzO41YtfWE3jJZnGy4pjMgIhFfgp+rFaRCEFlA4PysUdoopi0Hv2 +6d38PMdYv7IMDXZiSn2I3v/a8C2NK8EzauvG14v/rF4RYtS9EC4ZYgPGVLgHGilATXT+Z6U056c dWWDNmhZ1WAgFzW4VmVd0dQX7KEwRcdAcHbSG4a/Mbd6qguhkA+npBSSctZt8LSE4kS5orz3TqfT MpIogJ9TlxrqUj9vqgH6Z6Zm+AR+KAkhpDVAZOskaCOCLlwAlogAkhyH0+kJIQR8ZrCML3wBGO+C 1iL2YFEy1zyfT1NhFKp+cHmE2l+f5IfzSE+Gyg+VmIWqQuHHXwp1euFLofqs93DOySG8ngY89LG/ CSD7PyxLEX2emLyn49eOrwE4goti+0qIaVyNTyj6QFgff+ClNXrvq223wvkIiyhWkR+g7mgIgarI yD0JY+sNTYy5oaSFCjMgJYFGf+cVvhEiRXLWFOWwiiPlc5yErSCEsJTDo767RsRJ4XAB5xJjxL4P IUZ7qn9ArmNn+msvjl3bjz2RWCf4AL6SY+fEofQTmcTPtcxsyfWFd9PD9sbCnWcxGiNEKtVCpAmp x/FJz7JpcioSHcpxTjFJUooQ5ily4Jz8D2syPBd/bgCPcwdmonjsMupLLJ8oxYbkgP/F8YMaxlZE eLck/3RrR06da1KAeVM/6JrmT1aSNMy1MQ0U4D4zbKN1jWfFyjUn5wCKpOewNGRirULHFuUj27YQ kDXbPLI9bgBQoHnZ5PfMdqjx2e2+MBh3+qHosg1er3RWO6F5+ye7TEJrrD97aE74vS2MKQ52Oloh S/IVYvVYdkW9o2g3pa6shDaPZjXs30SOUdJmi4UbvZ2ukK3prKVWl0W2Kcqig7xGc3gUoDaabbUp dggsz2pWN6xs6h0CqbTu3Ch2wYrAAeoC+u1YtLrSpDoQCv5qdxRfdjiURW6jt/r/XusDOx7YqYA+ HRPnseCjLboUkGo/IEvYg8ACnPSF/nQoG0MKfdc2J5yHo20GhTtoGxElU9bW3kNTHqH7/f4Njv0L qYHP2MkZn6cy7PUZPFSE6qrbQ3Nt4Tdr2+xxIgT+z/dYSHl3bO0V4qEAUsN2wo1gBjmEuSMGINSf cn1w7ELNbVXvjqUtgcmzEkzQgxOCzCDmoY48mZeRY4i4MtpVuckMgrS06EOl24wG0F0DwJqjsTji 4c1k3cnNvnyTbR72RH5T9lX84N28MR+WPnuT5Xt288Z2Q0HlPdWgBAIHI7C/H20io7ycGxVR1Cui by//DjYdzth2warsnkKi2p5BC1gtVIbuK1uGVmWj2g3lWfthzDuY5zw77QuEvM/AFGqlObiI9RLm Nvg8Fdueg/YyFM+RjgN7J/DmvLbdge5Fa+JfCm8ongP/PAUzQTI37YItTWMjK+mUziyCrtv13V2R F7DvO5kcjzIZY7GnrotRKtgdmXu9llCf1LBGt8hbo79gDiXL0PCricNQVN3Ig8AN3nniUX/Vyqjr DSpB7PoWbVhS+y7D0Bfe1Y+v2fXNz7aJC3CvR3k2VKfLyRxWroK+2U5Ne2+6XvJtSnSbi7slJ3l5 pHsOjeX/LIUiJc2WPEqg63fHtj/U9MmNfA7kWQXTxHmCl3pLyehZI99ZybXRW+ry1+ubJdZo7J0P q7K4n+VxTo/x2oRt3hMl22aY2McS4xNKjGaXoYkNR0WV7eYN7gPOwdVqJEl8NrrchUIGydTvRGsw z3aLqzY4luW2mM/K7Op0wbaPdVYV+ZgHT5PzavcUKotNiw2maVoseYJbz92qxK3RjpYJlX+572iH 1ShQ2TSHftj0MflTPWIVzl1J1RPrqqTRBL50dtfMLTU17cQMuGNDZMxUmALoi9buPoyxIYtQnbFK iGRcHgY3h5xKsMW9wXlwttFntDYPALKgniUK0IGHDNtwGAJh8kKVz652VfaxaTHC7KilufUEHAFw 2mNd27lWVNpnbLh1jDKZ9Cj2T5iEUCUknMI48hVyGp6MwukzioeTJhYsputphI1Gwq0XOqszdkZp OGoeq+WuG8Cdd5RvjBeVs4nLaQrVLWKYDEeT05XN+50OPIlCBZC70XkU1qVySLHN0bAjbSiws7OT E02duwBoa9EzxxbIxljNxxCuQKmzcr1cAdXIW0MODpxnhyy/hxYxmD/5Hg5q3dFAgcWsm/ayHUoD ZaQ4o0zicJnWAE3gsjn1UxhRmmNldza6FZ6OB6KhIYEwrub5qnP8Kw4lUa/Ojy2tCNa1kHd3uqX8 j6aPjJihSST2Ki/b7Vo9zgE5iQhvl3V62lSDhgkSjJxzDSPC2SYg2IFS9T/Wq2W5jRuL7vUVXE1R U6N249lAdpZsp1IZJyoryUYzC9qiVIopU0NJsf1h839zzgUaBEjqWbOyfIkG7vOcc4mps7+wViaK gjdfl5OPq8szgpEEk2iSnDGSgfK+0RtepzS1xUPGRb5BGl4s7jhgF4AYwADTdru6Q3mTkELAJTDV wLOiYufVIyt9B+JfjQp5/oU+32RrQyx4Bd6UEqhGDFDd8VISM5zEWdGsuwTqxuxmtr1nUVGG+IXx jJ03antPGid7erI8v/1KpHmDCi+W13wu3fzwJDs/dJbibvfq4kzN9Ptc+uJ0pAAk+WI1u7pCwODi oyJ+8uoy/wZFSJorMjXUhdB9IvypVFRGUvwN2V9FasqZUFgZnSwpDv8Wf/n19XLx/cFAg8IHQ/Mh 385rCdaC75jgs4QXqBsGGPvY+fek71PRpZsEL3wXeh13lf5UGiqp4iQroczycjMyk5JvqwEqEJki MCkCVGYIDICjKOB5wi2uiRIka5RNZ/rOqjDGs6sRJj9f3qJEUDdEp1G5DJ3TSEM9GhlAjyh67JRq 4nIxX+1HJaJ5hu1ndo0iQ4CfzT/eXXA3I3zNJtgqFkk0yzp4d32wE/5yxVYiHW6Xy8VNgr9RA5Rt SeCgkpxYR0LViJPRNbZhWUZe/3LyE9uQ/XRzeUVIlB68EQ1TZKffrF/mrDXVouoZd5O+ECYYUt/X WntdWLm0KWxib1/veCVnBdSpMs7nM951MwKFLJ3ouPOk45DrgpEbC8iQ5udmrPhZqjhQ/4cx/r9J phbzb8Df+ezz9RJoevOPydcZ6Gukk974rQqlY9SMi/kBoPD6Oq8wQMarj0uAV9Y7Bws+mkLrJoms y+i5DgCmJoDcbmAirhLR6PshBVB7dz6T5AqoTBC2+e/k6P2vJ6OOTV7cEUHTmdnkeAEpBZcOmc8f QTST17IXYZE8xAMG8v3H1//aF/aGIk7rFLJ1Oe4Lv/09JSJ7RgjTnZv8MeH2eHN5gSrc5E5nov5o CHuVLkyr1ywnDY5d391ioVh++pzeY6iuCynU0gEfl3dYElay0n1hEzOE4lMRl+zjFXuBDqEWaVIo 7d7mZeLN8tOdzPqr90d6cvjmaO8/e68+zBcgmb/mR8sFtOPV/HaFLK0uJ4RANxH+lmJ9zuCvJj/v qcmf+EUHO/mKJFiAzPsJKUGREoBgnUbfmQHwDFhGeTvnyYVD0mSr+d4hk6knfXNz3wXc3cvdymrc Lfeq3nce3xsNAQsNrJCi3qDPrepiHG/buEu8NAM3SHwIB4KHlFUmQszBNW07oOcChkBgzAY/WnC7 MWjIoMTiugFSlZZghtqyvsZ2FuNdGdqnF3sfi4+dgpdYC6hgJsbGzjgcZLaZI4+YXA5KVHYcwbwf +pQxiGCFfQWFYZ7xKhLhI8HvqkT/eW/6U5Y7AIg0xSFqyykGR8bEGzMI1NwkdEzq7SSLqodfPkgA 0Bauc4DZA1RSm62Mj8Fq0CiPrfOMDkGiVJXoZAlVonU0yJ2r0kqL03Xq63tSpmtL+/p2qgMeYv88 kuodGY4BAiiq+zL8BvSf2cjig4dyO6ZqsB1n27jQBaWRKsgMFGZtWVQW03nrxMIdpDEgL0NIIYX0 ERSBas/YTkW/0+I7qp9UA9fvtoxfKdvjjcbCjKe3faqA6WLzO73bbRmDVAAHb3ZaPFAifeXRRa6x DNC6lhZUP33ksS6p5kjO8LalPIUGUbnTpShAnIJi2CrwKMIdODAT3XfICzQdhKa0SuoUaY+6U0Bf xhNZPI46VXUKXzidHt7d7B9gWsFjx/vcSaeAdsFw6Y8/M9ShVT0HACQAdzBIAfwIhasje1jwiRa4 pCOKoCT9iCuNDQfBNxYUEwmkBcoW0DvenM8g3Rw2blK1BSMWwviWvL5tKV+1LqfkjiOJ96NtgBdt qhpASJYaEAza1KoGZ2lJ9S6W9T0ZeitL+3rjkgGusb8rlxQL3rgklsYl7FxxaFwSEmpcqu7JLlWW 9vXkEtYXjodREaSB7QMN6wx7zegGlraaDUoTJJucMACHFpZOG+TPTfeOTTdM5/v9FLJu3XgFmEZn 6CFE5NOdASsrT3xAkfygtzBy/ml5tgMI83ssUnD6Ge+Bg7DzKWnKnqi7wXo3N3fluSxR9tAYiW2B +Q6XXMmYR4JCtiz4IDYKdDcLh5jg3FW26NQAVkq59eHmV1Jc+G7YMkE8y38KoCkiGgStgeqF69PD 1ewLKpJopLfKCY0MDIw0svxyu1ou+POOXFjUVOOk0cBFYyUXp+M3r94vvyxZfzt9+23+6U7aYSz8 feIrC68iusiq9ImiywBuDjwmIg5rDdCIhgE6HZuCtqB00BIyhTE6MDgjOu18jxKwdw+eCAQS98CJ SuA98h5L+siDPPLIi3LLww899spjT5zc0+tUuA5QqEFznl23MejHb1N9ZZX5YZNgFt9Hy3b9q0E0 SYah4OQK9Dz62AE3dQ/6NtLztMBhyg6lCYMaDaeU32mBeLNWLEEkidw8uHwGQgUWwqBpLAENHMe3 5HVYtGkscWShDZ+T5NtcV9QAiY3553cBLZuyDYQZ7DB2I8qqfX3CtwcClgAf7j+wzqO2gCOHEmvE 5kgwGsKJokcb7EM9/U4WRAsJGpzED2JAUySLD40Fgq4XaUd5hdEbb05nwLuwQML2trGETpJWHt82 lG82PJYsFiPn3w11GNwI+liH0SN9ztZO0+JjY0HR2jDyzZXTYA7o5sbiBB8rt3dYylcbPmfCh9hF nIyOyicRPsGSGTBBNBAtmhkYZCBzF+tsGGqD76B56q7mvUMsPeylYrk+xULaGcaX+Haap/I/fJG6 fsPbhzUqfbCaPQLYxzvYAwNoA99G7LCjSi0wclCQhQ96k6cLBHqPSrU7NWoD9WvJygIb5AMEgQuZ Jwh0Sm3g3OameIrSMSqLMRqt/+4nZ5hoxA8ZgLepJii7HSrayIE09TiipTa7jtwrl7wBAGlwF7Yc X0WN3ZYa5eR4S6CcZr/gMb507D4WtPPabLqVjtgBS6stR+CsDnHjDNMfzM5rHkgN4IPxQjxombon xz10lPzYlUwAWlZRe0b97vj3h6KOGDFsNUEQ9MlP4ogC1mk0QIyQEhuE9fqf+/BKT3+XtoLg8T3g AoLHDxCdEDyn0w/zi9SD7y4XczmGpFjMxgE6cmD1IItOPrx+T+fpGJ7DTzpkxXTy06871GbKv7bo +rgz//e2DoYdhYdGRxE2CHh6XL/VKKEIZ1VspiK0U6GAY1GufsLgKIyjo4DA3KpBlKmGj9wDFQWa YAjC4n4rFu1Gi+YZSHNhIH6lKesqS74ZdYl9YmCQnTfpjBcG1gqwHHdayuvlq7U/rc8jS6+DwiRT PHAsyBpG+vxg6PpY8bO3zYHQHAA/B8qH+254CvRE33E8GujxGzOOM4qprbHHP6GBdK/QQPFF0BMJ d7rFHr3pVz5Tg4/eBJ/xUI0++qnogy0rmtCiz9Mi7yEXWP4X4A89Di+An0jUITE+A37CTvihav5/ AtBYgxqB9BPTGCPx4QkINEpRivI4VGBBXRZsPa7USlauHcFCxHQfK2gQNWd1Y8k3F7CAeIc4dxU0 cAEIg9ppWb8+frW2tD5nDecgtUm/pEBBPQjEyEF0qEnWcLRgPBwmLSQtFbqBsELL0FrY4aLACL4y XOnmfIZY4yAm9dBYIAGtKm/pnZb1V63PKRCPriPGrAPx1MWqDkQsrg4EW6UeQxtaSwkEiMS/qkB4 xpnapWIpbpfXty3lqw2fUyABYGltHUiI0LhNIGJpKgJLaCtSLCUQMGbfVoRn2ooUS3G7vL5tWX/V +iyB3A941nVgkgeFKPaNKGeeq0QRLZo7vIgOrBZMf1CKjmce1KLjoReJUWugDN0LxKiNEPh87gV0 AI8NV4xn84EV2FMv5wOY+h5j8dunSpliMXq3j1/U9H6C6PnJs1liLM2zdSqyG5yLz2EJxQEhKqwl pfPd0NeorNhsrlaUNHhX60d+FOP/KK+63jaOJPjOX7GPSxxIzffHYyzLh0MinBMnuIc8KRRhCCda CKU7I//+qnpmd2fITeBDjIgszkz39HRXV3dIPXhRlKh7IZdFP6IWo0mryGJ82rUgvctFUV4o75QK /1KBQ0mbjCzHnyRS80pXZ7w5uAoif88nN6LFv01pJIMnt5jOkkkXmdWljSRZTbELUVCNK2Zn+j+M Iz3gMTYiF7UNvXHVZWsnZK7NoyYsJIYPYj4h+b7FPpqnh32TvVBIn2w/vDw83nx6ezkfV5SJRd/H Y2jhp5OIDjA/EAchH0UI4BOLnYh2E+K5Bi+LtUWqmOQ7pBzMR7dFcyjcJsmS5FLVHEi3VWQxPu1a kM5jybiKWfCQ9b65hUXBKqubWxQkNrewTEjbXKIByrHgZRtM442sSL7xeA1ZTE+7FqTztzRyJIZC Udmo9wotGdUfPWkPCAjaSEnyExS8IDNg8R3tRRfAi0RqkXpughcVgVkMqrImCEHAZsh2FVlsT7sW pPdYrnF3f7v5kVl680Ej+37GSFgzEf80JC5YgkMieJ1ZenP7mofDK1a+Hr5sbv7+yQyfXzdSrJZV U+rWDz9/RQHdbndgpzh+kr9ptPiLfjKqrSH36+EdAJTQ+LzdoSDHl+0ujQfU3Pjv4f12ByIen7Y7 tN7xAZXINnPGn/Fhiwrz40kKErSEPpzAXlRM7BtwANJi8oUf6cvHrU7lALTA8eVwfH19+vJ5G1Dc w91W6/H5eDp+wXczvk2VfnN3+u34+Hh8fP9y+A9+fRtu7m/t8O797eb3jYUA9ripDtAwnNLAY5HE jhe1qHGU/7+GLxuLbp2gq/ic2mYs5zzLCTMVuq7rft/c/HR8fnh7+u/x9uX55fx0Or6dnw7D+WmY u7wRbio08f2GSsgNXwc33A98Cc2XsJlvTIaJUlBasbPGgdbCFXk7C2HHfMRdLJTKaeOcFjctRLiS lHVWOv8agvqwqiBoQqVgTG4B/OFKAphXYKFFetuSjc7hQRDExiH0MMOiWsxTCMlRV8jikCP36daj CVkcgFYIvnPywnpxyce9yiQitE7FOneBbbVwiNXkB+cpGtIagngqZwSBGYjoFYS7XNmFnMgd0Bsv HsW0d1XEB88m4FCgkToay3OQjTOCnqRJWV4hkCLrO8TITOGVmTblsIY4ekQWvjQuHk0noRTgNvxB W8uaKh3SRsu2GXF7qqvpILuKUI9Mu6SbXCPQo1q55hbFdh8g1JzLXYCkLXUBYmH4LkA9gqNxXH2O KRwrCBpY6gJUjXcBSsyKLkKoV++7CGWKtS4e10hiWqQ2HitIya7nS+NF8+0VvP06bBxam6U2ADM7 VBNcUzzAzoijuEI1zN+pJkUpl++HzYKUBggn8EnloqZ19oLUNQYpLlp0QSiGWG0ODT2tAeQAX84N qHm/ikyCY950CSB4XmTBvOcawdtrnZpNl4BldKJt9qwhGWq/mEZ0Y1xFoLwKexFxa4jo/xAmpL7S NeJkV33VVF4VBUNlinfwprwqZIAPM+LQeA3lwfydF83zd77qhCDFVaivmrQRrW+FMKclfLHYIXx4 KSKbAzS6WUUwMiRbEe/DCmLQ30nSy641BLkfoyCwkfSMOJktYvMdvZnVWr8fNjNi1b5kbo3cCsDA mGH+7qFcfPMdHBURg8Mc6gmZQr18LzFqdkwIWC0XNqihJq353ASWlGqM7xCHdhRbV6+RWGT9/J3k BNG7fAedQtI3zldkdn7+Xq0uO2YEc481rfNgHPbTxlfSXaGpGdF48i7QV4gFgUGrL0mNyGNmu0zy A0ugKFlVpGxg10gidupHZoj1FPeIo/Yp/OnYqagbx493HMEQkgSpx1X1I8LLokDzRqytgo6Tc7Bv /DINbXsUDeoi839aBCr1W1VtEqQQo4QkgDT40DFAF0KDGD1JNd4bWZImwTZtCjAPvTtvgrbVft4U /GQT7wGLqd0K2YOLl61x2EHMRQRxnlZvPsQSPA92NrkNnkduIGTQbFaT3i/n1hIs6Gu0/CZWHkSf AnSZ6JrI8J4Qpr9prr62YgM88s53Vv7sbIu+i+jHi7N3cvb18ztUdTAYQ1FCrGa33IDh/ZVmdmgL 4/3x9HL+QwYB7AjQVDtoIlAhR4xfR1dWfb/lHPPbH2/HV1m6o3hGkwB3OchfWfrp7Xx8OHHWkC3/ uPnnNF5IRuAADAXz4yaKPfBCTjUj/LADuboYlhdauRYEa4qJyhXkKKNYe63xux9+YTx2nDgQbA5d 1qHxiYMfzy+fzw+n0/FxxcOg5XHb3KOmTsj8KfeMZo7/lXd4GrQraG8ts1C+DPpPx89Pr2/Hc7H/ 4en5WAOfNZKtC3yokV9iDjddRvqrkpYmSrebEJgWuefRLh0DZNE2qyKdNmEkdblDkJTST1zIImNW EB5cKBZEglA2QEQWlCgVpRkZN9+tKHPKClJv8Hx1J+nvFqTromkuOiPTRS0EKfvvfM9lz3TPBZlv hfEi5BVgcRAdU18gkMkURMtFwUJau24NUjeFNWS+1uWdipCZSYWZWiRNzOjlfEHUjZdHRsOJhiEC ZXo2nncc10CnqZBHBCVyXFNgLQ6wqA1t6zKHZXSMbyNDHdq594xB4cWyClFkgzGQfkHO4mSok4Q3 hnqW6JBQ7h2jLEO2UVjSsxAnk5ThTB1UgQ0yBEDxaZnuqGbztAzUTtdItrgVlmGDnC+Cua6iurcc Vvy+nIWumQz7KfxX01n4VTtOJ5wOxDP8rBynE7sntc7LlC1DVcq2npYt+4zHeGMWmwnxpvLRwdRl 0WiZO5XMnYUDHJqczpWn5SOEPoYKyWdMsqAS4WlrSnfNSpqVw1+WecV3UIwZ5cXWCdeaX2Q+ACUj 87Jqf0B2QY4POyRGILnjBzCG7NAK+mcH48ql5ofd9AvGR2RXs2NtMTIcFGgHvEjMzjSW4z4gQ3ld 6pvmEjwXegOOWd/eTugVR1Fe8YZeyHCRBw4FR0kM5ZYURQ4Sj52ez9w0A89EK9KkfnQ+sH0UaZLI 930zuP/udrZPdeAYeii8KlBKFyqGI4USclPlbzIM0kgQYzCMfCLb9oY/fPylGr67v938iP/+NwBn 8R48CmVuZHN0cmVhbQ1lbmRvYmoNNCAwIG9iag08PCANL1R5cGUgL0V4dEdTdGF0ZSANL1NBIGZh bHNlIA0vU00gMC4wMiANL09QIHRydWUgDS9vcCB0cnVlIA0vT1BNIDEgDS9CRzIgL0RlZmF1bHQg DS9VQ1IyIC9EZWZhdWx0IA0vVFIyIC9EZWZhdWx0IA0+PiANZW5kb2JqDTUgMCBvYmoNPDwgL0xl bmd0aCAzMzkgPj4gDXN0cmVhbQ0KPD94cGFja2V0IGJlZ2luPScnIGlkPSdXNU0wTXBDZWhpSHpy ZVN6TlRjemtjOWQnIGJ5dGVzPSczMzgnPz48cmRmOlJERiB4bWxuczpyZGY9J2h0dHA6Ly93d3cu dzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMnIHhtbG5zOmlYPSdodHRwOi8vbnMuYWRv YmUuY29tL2lYLzEuMC8nPjxyZGY6RGVzY3JpcHRpb24gYWJvdXQ9JycgeG1sbnM9J2h0dHA6Ly9u cy5hZG9iZS5jb20vcGRmLzEuMy8nIHhtbG5zOnBkZj0naHR0cDovL25zLmFkb2JlLmNvbS9wZGYv MS4zLycgcGRmOkNyZWF0b3I9J0Fkb2JlIElsbHVzdHJhdG9yIDEwLjAnLz4KPC9yZGY6UkRGPjw/ eHBhY2tldCBlbmQ9J3InPz4KZW5kc3RyZWFtDWVuZG9iag02IDAgb2JqDTw8IA0vQ3JlYXRvciAo QWRvYmUgSWxsdXN0cmF0b3IgMTAuMCkNL01ldGFEYXRhIDUgMCBSIA0+PiANZW5kb2JqDTcgMCBv YmoNPDwgL0xlbmd0aCAzMzkgPj4gDXN0cmVhbQ0KPD94cGFja2V0IGJlZ2luPScnIGlkPSdXNU0w TXBDZWhpSHpyZVN6TlRjemtjOWQnIGJ5dGVzPSczMzgnPz48cmRmOlJERiB4bWxuczpyZGY9J2h0 dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMnIHhtbG5zOmlYPSdodHRw Oi8vbnMuYWRvYmUuY29tL2lYLzEuMC8nPjxyZGY6RGVzY3JpcHRpb24gYWJvdXQ9JycgeG1sbnM9 J2h0dHA6Ly9ucy5hZG9iZS5jb20vcGRmLzEuMy8nIHhtbG5zOnBkZj0naHR0cDovL25zLmFkb2Jl LmNvbS9wZGYvMS4zLycgcGRmOkNyZWF0b3I9J0Fkb2JlIElsbHVzdHJhdG9yIDEwLjAnLz4KPC9y ZGY6UkRGPjw/eHBhY2tldCBlbmQ9J3InPz4KZW5kc3RyZWFtDWVuZG9iag04IDAgb2JqDTw8IA0v Q3JlYXRvciAoQWRvYmUgSWxsdXN0cmF0b3IgMTAuMCkNL01ldGFEYXRhIDcgMCBSIA0+PiANZW5k b2JqDTkgMCBvYmoNPDwgDS9UeXBlIC9Gb250IA0vU3VidHlwZSAvVHlwZTEgDS9GaXJzdENoYXIg MzIgDS9MYXN0Q2hhciAxNDcgDS9XaWR0aHMgWyAyNzggNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAg NzUwIDc1MCA3NTAgNzUwIDU4NCAyNzggMzMzIDI3OCAyNzggNTU2IA01NTYgNTU2IDU1NiA1NTYg NzUwIDU1NiA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgDTY2NyA3NTAg NzIyIDcyMiA2NjcgNjExIDc1MCA3NTAgMjc4IDc1MCA2NjcgNTU2IDgzMyA3NTAgNzc4IDY2NyAN NzUwIDcyMiA2NjcgNjExIDcyMiA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3 NTAgNzUwIA01NTYgNTU2IDUwMCA1NTYgNTU2IDI3OCA1NTYgNTU2IDIyMiAyMjIgNTAwIDIyMiA4 MzMgNTU2IDU1NiA1NTYgDTc1MCAzMzMgNTAwIDI3OCA1NTYgNTAwIDcyMiA3NTAgNTAwIDc1MCA3 NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCANNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3 NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgMjIyIA03NTAgNzUwIDUwMCBdIA0vRW5jb2Rpbmcg MjEgMCBSIA0vQmFzZUZvbnQgL1BBTElGRStBcmlhbE1UIA0vRm9udERlc2NyaXB0b3IgMTMgMCBS IA0vVG9Vbmljb2RlIDIyIDAgUiANPj4gDWVuZG9iag0xMCAwIG9iag08PCANL1R5cGUgL0ZvbnQg DS9TdWJ0eXBlIC9UeXBlMSANL0ZpcnN0Q2hhciAxMDggDS9MYXN0Q2hhciAxMjEgDS9XaWR0aHMg WyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAw IF0gDS9FbmNvZGluZyAvV2luQW5zaUVuY29kaW5nIA0vQmFzZUZvbnQgL1BBTElLRitDb3VyaWVy TmV3UFMtQm9sZE1UIA0vRm9udERlc2NyaXB0b3IgMTUgMCBSIA0+PiANZW5kb2JqDTExIDAgb2Jq DTw8IA0vVHlwZSAvRm9udCANL1N1YnR5cGUgL1R5cGUxIA0vRmlyc3RDaGFyIDQ3IA0vTGFzdENo YXIgMTIxIA0vV2lkdGhzIFsgMzAxIDU0OSA1NDkgNTQ5IDU0OSA1NDkgNTQ5IDU0OSA1NDkgNTQ5 IDU0OSAyOTcgMjk3IDgzMyA4MzMgODMzIDUyNSANMTAwMCA2MzcgNjYyIDcxMyA3MDcgNjM5IDU4 MyA3NjQgNzIzIDI1NyA1MDUgNjM4IDUzNSA4MzAgNzIxIDc3MyANNjMwIDc3MyA2NjQgNjQ2IDU3 MSA3MDkgNjExIDkwNCA2MDUgNjAzIDU5OCAzNTQgMzAxIDM1NCAxMDAwIDUwMCANNTAwIDU0MyA1 OTQgNTI1IDU5NCA1NDcgMjY0IDU5NSA1NjkgMjIyIDIzMCA1MTcgMjI2IDg1OCA1NjkgNTgxIA01 OTQgNTk0IDMzMiA0OTYgMjgxIDU2OSA0ODEgNzI4IDQ3OSA1MDcgXSANL0VuY29kaW5nIC9XaW5B bnNpRW5jb2RpbmcgDS9CYXNlRm9udCAvUEFMSkZLK1lSQVRIUitTd2lzczcyMUJULVJvbWFuIA0v Rm9udERlc2NyaXB0b3IgMTkgMCBSIA0+PiANZW5kb2JqDTEyIDAgb2JqDTw8IA0vVHlwZSAvRm9u dCANL1N1YnR5cGUgL1R5cGUxIA0vRmlyc3RDaGFyIDY5IA0vTGFzdENoYXIgMTEwIA0vV2lkdGhz IFsgNjY3IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCA2NjcgMjc4IDI3 OCAyNzggMjc4IDI3OCANMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3 OCAyNzggMjc4IDI3OCAyNzggMjc4IA0yNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDYx MSBdIA0vRW5jb2RpbmcgMjMgMCBSIA0vQmFzZUZvbnQgL1BBTEtESCtBcmlhbC1Cb2xkTVQgDS9G b250RGVzY3JpcHRvciAxNyAwIFIgDS9Ub1VuaWNvZGUgMjQgMCBSIA0+PiANZW5kb2JqDTEzIDAg b2JqDTw8IA0vVHlwZSAvRm9udERlc2NyaXB0b3IgDS9Bc2NlbnQgNzE2IA0vQ2FwSGVpZ2h0IDcx NiANL0Rlc2NlbnQgLTIxMCANL0ZsYWdzIDQgDS9Gb250QkJveCBbIC00NiAtMjEwIDc3MCA3Mjgg XSANL0ZvbnROYW1lIC9QQUxJRkUrQXJpYWxNVCANL0l0YWxpY0FuZ2xlIDAgDS9TdGVtViAwIA0v WEhlaWdodCA1MTkgDS9DaGFyU2V0ICgvVC9oL2Uvc3BhY2UvQy9TL3RocmVlL3plcm8vb25lL2Mv YS9uL3Mvci92L2kvdC9vL2h5cGhlbi9wL2cvbC9kL0kvQS9NL0RcDS9QL1Uvdy9mL20vay9jb21t YS9iL3UvZmkvcGVyaW9kL3kvcXVvdGVyaWdodC9qL0UvcGx1cy9mb3VyL0svc2xhc2gvTy9ML1wN Ui9GL3NpeC90d28pDS9Gb250RmlsZTMgMTQgMCBSIA0+PiANZW5kb2JqDTE0IDAgb2JqDTw8IC9G aWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDI3MSAvU3VidHlwZSAvVHlwZTFDID4+IA1zdHJl YW0NCkiJNJULUFPZGcdvDPfmChi0bbLsvfVe163jVt3pWrtadX2su7pjUXHFFQQfkTx4JgESSCAJ hIf4AF8gECBCXhCCRB7ytoqoa+urq6uionYzstgWa1e7Xb+bntBp2Jn9zsyZM+f7zjkzv/N9/4+H hUzDeDxexNaPN23csH7hx1kp+9I3b5/aojg6XLwbKfzV/nT8LxEwbSaEzKr55SzHz6a85E+RGC84 MBLDwqdjb2HYXAz7FR9bgGGLpmEf8LAlfGxdBBaDY/EYpsSC9mHwOWw2NgfbiKVhFZgda8Ou8Dbz dLzH045Nu8hfyFfwX4eoQipCukKGQl7jBL4Gt+BASAUfCaIFbrKEfDM9ffrfQqWhzWGfh50K6w77 PpwJXxjeMYM3I2PG98LFwsmITRGuiNszhTO1M69c9eNiPx44OIlzBwUBPfeDiEsOjAeSuXFCGFgs DKQA5ueJDmeU5hQZio355twSW3Kkx2JvrG0iqxqOn+6lnrw/b0AgnAM3n/Lg2FM+HANS9BTiIO4p Ck7LURyKWw5xU7cBKz6sLM0uMhQZ8gv0xU55pLvGdsriIC32Ck8H9d38+ecFQvRfuAxpojHkWgIu wdSpGHHQ893U8mCOX6/jlUErXxPyNQFSvx7/lBACfk0U3zWcdZse6qt1e1mvu+msdYi0Xjj51TfU 16VXzN2MucfYntuib9HYVfVknSqlUk7HSkzqFDZZnSnLiyXzYos+W0ohyrlgMJq5wXlEXmeb9Szd 7dXL3GyzrHYVCqVQqGlVhoyRqVP0Ulqa0tClZjO6TI8glILQuseePkbIkX6paBthTM9MU6QqUiXq eC25VNBc1Vp3xuZtdDfaGsnAlTG/VCAs83FX7/LOjYN7nM8d8YnQf4iahhrX6PWqyqG+qpMkzIeZ 7nt3qLFo4KNlMYhnRNMSGFPaQeUh3XhhJLxbDjOP1NGPruz4JL04cWcMmyxLTvlCsnwjmjH/KAoh OdUUlj6RomdIf52+/aW9d4Dt73NcvEYNFnRqWxlta2qjpKqtztlodZFWV2WLh2oras1zM7ktWY5U K2lNTa6U0jEJhlQ5K0/T7DZvHTNEVvTWtjlspN3hrj5De93mHDtrz6nOTKWkRqVSx+iVKYUK+kBp Wfl+tmg1fsJpO2alz3rzM5rY5kxLqpSSmJJVKkalTjbto5OV1XYNq7HntReeX1IQeSLamdAtJ4W2 HFjzhJPpePBojA+PxGOw5p9PFnCyTwg0GpDhK+C6AGmfiCALHuBH0ANCWHAXHj+EqLu8nmdwLsjy MNcpgtm587qX0ejoftT/m7m1Uc6d7Ia2ka2vaVhwH2ZBOLzz63GEr9uSskXOHiKGj56t6WWeuYaH 79AvGn6XcYJFTjQs+vf9oa+eDa1fvCzh90uWbHs6zgg1/xI/BCUOl4i/IiX+hkB9fgn+LoHckxL8 FQGbuHJRfb9loGqwRmbdad8yguIj0UFiFBS4sJWrAoEoXbHHuIOWJFY7FKzCrvbm9ZO5A0UX/0wN VgzU9TF1/U1nOprI5o4ByyX6XFeB5jTbqnXKrbF/t0fqb6VciG8nO+KjT31KR20zqXawsarEfeoY UrXd9Ie11GeWKNdWxhXdsftcOpl+7rrhIX3/emP3EHuhu/1q46NFzsj86KzdSUpS2Apj4r7OY5Vt rLfSXeOsd9bb7I3Nje56r6WHtPSc+OMwdaPosv48oz+v7pa3qlzJ1sQqskIlObqdRmWTEqgm0DJ/ uAgWEJe7Swub2DP5ngxnIumS1ny+lvpi/+58OVMgz1Vmaw2G7ILMIrIoQ3FgF43e5/oJoabMB6U+ UPt4oxP8UTF32hfYBKXcHF9gDqi5lb5AHSFcGcyBhz7I8vEeT/AfiyfgIXzrQ99CFhfpC+h+lJGt Yr9k0aRkQiDU2HL8Eh3v3gT/XjCynIBQIKAC/Q+HWQS6xa2Gi9CLo18QiEOAAyyaqjx/mI43MsEf EXPbfegHf9iiYKnMhRVi7o0ApIE3uI8AOfcCD7x47pegnwvQ2kBpblyBvDjz7WKn+YxhEK3ijkWi uZOS54TwWcETbuQJb/AlZ3rJH4TXIhQFYWgDaCEGFsJsMEIemg/voFi0BS1Gs1AF8/KQyFEGvAt3 meu9D9oe0CCEGUvRPrQTER+gt9C89yAEVrBCDawVQz9sEry6Y+vpYrt6Gob+RLWXnDZ6GFOL3qGx aupV1UknyONZSUcSaOQI0iD84SEQRfR6Dh2oY10ljaa6bLIupzJTSSXmp2VqGW3WXvMWGm2Gk4Sw NQj5tg/Mo0HIXMTLHznfBh4x2laCPnzN/gO9h0MYgWZBbMwzSVOS9e0jAhDWj14DATUiu7/OzZza tbt8J43uEBMfiSCH6Gg9YPCwHoMraQ8lyZIoDEyeLK1MQqO9wU/3vRK5FF5Vn57U9w0X3aQvDJxs OMt2N5xusrWRdm91eyfVWejVeRhdi9K5r0Ft2VG/2rrammDNtZJ6a5GtiWqxuJpsjK25u/pL+lJ3 gdbNtmjrU47veV4ReajH3Jndlt2W7koMypZ018kddMLeYoOMleYpNbp0MietMFVBpVaqrBmMNdOl 9eY2mwaMt4w3Db0FDSWeApvJYiAteRW6bCq7JCc/lzHpdUa1mTSr00qTaKmiojaNTa3TnDI6DI5C z4H23xZHlidYJK6gWK2EN2J/OJi/CdxYBubJ8GA+tnK9cFm02LhFlcakK+MN64ONorJezf6f5yqN beM4o0AbaacooH9UlR1g90fR+kfttI6cpE3dwoDSuopbt7Edy7Jk3RdJiZd4Lm+K1OHAknhoSe7y vkVSpKmT1uGriuJEtuTEdZsmdltXaBugQIwCBpboykBHNtCfu8A3M9+b9973RspqYuYMsMw6yp/g laOH91/HTnh+G2wngu1Z0ZISKJdvm3fg/du+1DK5lMwUAkuAXXJvPsArrx/eP4rVVN6u/Ve1JWyP jEXBeGTixiOc+xY2fzk1zhCOuC1sYk2sxiedAbS0f7odtvU4zEJSaJJTOqVOZRoa6XtirvNcZZJh P2DCs64luDJn1UTJgNGt6B//YMSMC81N1oYR4Zh8VDemtKttWpPWZKDMamDROIYVeAfTn5UR0uyK cRPO5Z00umpvNpRPTyqm1R4tGOa0gp5RiVVLmOVajcwADPIhuxAOyN0MRepYWyiOM1N+t5dw+7we xsm4ks7i9LZnjc75gBir4Q7dFVworCnuwDs34+sr5Mpa9P4eXhotWPKENWdMa+O62HBQ6gM+yZBT DM+0KFv7SM5T/7zj8V1skfu3IJ/OB0qwlNeLU2RK7Gs+iTcam6UiQiQVUb2wpS9WlpJUaqT8Mf6J fz2dJ2r4s9zzrwRqpcQihB0DbFZGynKmjU/x+/6NdJbIpYpsGWYSNipChnWM3D3wN1+d9YZysT8N Mv2X/Gdhe6dV3Uv2qSViXSfQdtounsOPRRuXW4lLy5vKz+Dv1wL5ebI0l7jm2XrDW+doN4iValBT 0SDfqudpzBDVBBSonWGpaxB29FqUA6RQJRdTnYDqtLU24ednWkNdRKg7KS4gahRKlkW4vZa8nicb H2P8w8oRQS6VYxfgQp4SoXQi8je9g58ytcgGiUGZSN8De0VsHlEub1zfwXd9G8kcSibf+LtAp5SN iGF7PzMrISVZ/fL4Jqh8p3rmA/c0/kR1r32VWG0/G/8lbHhvuKWNbGtRnTyGvxV9t9xKtK58pPwT /GidyaCmMqlF/80feetMfTqZkgL877i/CFKpOf8CLBcpYZoMqmjxVDvgl6ony0wxnQIHht1QW2l6 uvv9NSzrjNA0QdMhZxIGAhPjQdL3eZVzSDapgL1DdqOaVBmNWpsKOKhx+QB+7mcn/7zftIfVPOOP C6SlDePHKOHNhApkMZxMsnMgMOfefIRXzr19Ctvobk6chpe6LUpEfKX84F50nba2ZrwhfHq+ibgw f1v+GfxwLVYukWcmescoYmTIoFJRQK8Sj3TBXombVZF6rzU8lnzTW3f5bLCzJAMfVh4ipOfYeZRi 9OI0mRb7W04hah0gLZYJDV1I3C+4kzWu7yJqraayRA33Wi1XxBanczMxwhMLBKN+4IvFXUlYSFk1 ITKk8Yjbcf7RHvcIu+6YN6cIc1IdkTKAkYpQKP31heGWLpKjEbdR2yh8v1bZFzytP7SH7e+/UmHr 99mXv49U/iv4T/339jC+9vldwXqBzUdIFONWtvHKSv3+EtYyJrGZCbPN5NBBq/HKtI7Un6hyRGPj cXhAfnTGLuzOFneCD1Yh1+cl3BfcRe79Kr66mu/h+6sqh/9/gMMHnH3xgYYkqotiq9NFT4KYSTCh COJwJOaKw3zMqmVIv8Yl6cH5f+xxt7Bb3lI8QcTjWW8RRgKjNoZkrLR5Wg+chknFAM5/ucdVsC3j ijRNZGTd/ibYeH7odCdpzVBRBQvYYTECQzg4YkDo6lUavQL84fiL3l/Cu+Mvp2JEPJXzXoXx8Kgl QAatXoOLAi7dpKwf53f3uAfYwkRmnCVGE7aoKWgKahg5DWi5xDkIG85Jz/SSD18u+HRL0FreUj6A 1xbpCOJ3JJMJz4NwaebGDv5Yud2GZNH2XqwBnnpf29NGnr8ke+cHSOu/Kl8idtC4z2eK7ApcKepF GTIjYi6ewk8amiXIeST9VDvSGptHWssbNu7h95iNTP6AHnyLgHNijDZkiJmAOZ50ZOBCiY5dJYvR VD60BELLM6s38Q1bmVoiqEV5ThQDMWEP3QZFErsJRWaTWqOVg92fPu/awwqVZ4JCJh+4Cks5vSh1 4AUXG/FfGC8cmJ9M+NILci/cbf0evuO/nikQBw+sI7VcHLs6PTeTI5xhmmW8gGaCzhCMRBzmKJl9 VBUaHPJIoFrrMFMkZdEqNH3gy5d48We/zgqkhevGXbhYdPlzZN6PHhFJEEh6UrP4rD1hDBPGsIYZ phUzHf7fBDpouds2aXBa3HYPsHvGaBoPetiAj/AFMq4FOJccMSBVGGj1lOwJsso5a9IYMYSV7BAN vIP9zm4ok485lOSwXWczWnUmg96qQUNpVK3EFc5hn5rwqUP6hDlhXjHe1a+aZ62+ERCwePQaXGXV alEM0QyNdMOuQU9IRaqCxtRo4ZixbuZctKsofeFM0j8KTNYrU3bSPjXqHHeBcfcEm8C5zb3deq4R qz+PwuO7J+/yN7DzUwMuPeGivKagFVgDidEcDEWvOBOk+fOqCb3psg3WVLS1SKL8LNY2KrINE1al Xqc0ApNSYZdDmcrl05GUzxx0xMA4O5G9hnML9fxDrPeKbJIinHKPykv5dGFD0gLMqbQji8JAZmuB /PkXB5Bz5VquucJWHa3mAf+psdcisstetRQtBXOe/ya3XXekmruwz1b9FQU7brr2WeW7kfrH/HbV P6u5t1DVm9VH+ZtDhxRfH+duoSV+wm9SjbaBy45XJdwrP+ZuVP2wmjuKqr+qPtjp23yfIB13+cL/ m/yCmXMXzFoxfcHsTQuPfI/4sUTCmO038+/Dtan1KY0pkg1b6jbXbvzN8P0AyPbIP3PbmzpbOtsk 6zOaSlubWuobm+pbOVoaqjvKpWur+iZUyE+1Ym1ZMK99DrgAcgVWCB/Oq61l3zRxybTpctOnzZ+4 Snrm7K6OOfIzr7JOKsjtz5KOSa8tAEZaQUNyhFQktCb4PglLeVgz68ebvWw/Doj8dBcFABHIl6IK ZW5kc3RyZWFtDWVuZG9iag0xNSAwIG9iag08PCANL1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0vQXNj ZW50IDYzMyANL0NhcEhlaWdodCA1OTIgDS9EZXNjZW50IC0yMDkgDS9GbGFncyAzNCANL0ZvbnRC Qm94IFsgLTQwIC0zMDAgNjQzIDcwNiBdIA0vRm9udE5hbWUgL1BBTElLRitDb3VyaWVyTmV3UFMt Qm9sZE1UIA0vSXRhbGljQW5nbGUgMCANL1N0ZW1WIDAgDS9YSGVpZ2h0IDQ0MyANL0NoYXJTZXQg KC9wL28vbC95KQ0vRm9udEZpbGUzIDE2IDAgUiANPj4gDWVuZG9iag0xNiAwIG9iag08PCAvRmls dGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU2NCAvU3VidHlwZSAvVHlwZTFDID4+IA1zdHJlYW0N CkiJYmRgYWJgZGSUDnD08fR203bOLy3KTC3ySy0PCNZ1ys9J8Q0BSYv+kOYRS/594Kf4zzDWh/yv BKf8bBYCSYhg0wAEvgwBDIEMUQysQNMZZBiqgErPMDX92CX2k/VPx1/WHx3sfyp+fBX9kfHn6Z+M H0/Z+L7b/uQVLapqa2qQb2xqq6+Rqp1QN7VJrmnanLYl0nf+uP7mYcMl+/0F25I5E6ZMk586ZcL0 WVKz2qY3TpGb0lA1oUj6N8+Plb892fh+LPn+QLR0Y/bKxEUcixLjp8VJx8U3lCbJJ5Zm55SmcpSm NKQkSyVPS12YLrcwfVX+1jKOsq3bGnZK79w+bcFW+a0LVq9YsJ5jwfppGzZJbW7YVLZJ7jfb72TR gpy0WqBJaTOX5cjnLKtZsVpq46w1K1fIrVi1YdZO6X1bK9NWyS8qmJ6bLZVTk5tTIMf3vX+BaMuS Je1LpY8dnLt+t/yRbcsPnpM6XnwgeqfcrqjARe7SBUXtzUXyRS1F9SXVHGt+c7Lj8vScPxFViBCp A0nWI0LEFSlEZgJDZAY8RPy/W7AtqVnSsKSZ47vHd2HRoryMukTphIwZS/Ll85bULl0mtXjqkvlL 5Tas2Dxvr/TKZS01i+QX1c6pnFbKMa10YmWtVH5tYX4R0CsBvxlF1XG7oA/VBY1zyubJFRV1F0l/ r/oRwYozvlhwxvJvzt9Vv7m+VxGrtwbZNU6/XwT9ZmHlq5n1481eth9vRAACDAAuF1ZzCmVuZHN0 cmVhbQ1lbmRvYmoNMTcgMCBvYmoNPDwgDS9UeXBlIC9Gb250RGVzY3JpcHRvciANL0FzY2VudCA2 ODQgDS9DYXBIZWlnaHQgNjg0IA0vRGVzY2VudCAtMTY3IA0vRmxhZ3MgMjYyMTQ4IA0vRm9udEJC b3ggWyAwIDAgNjIzIDcxNiBdIA0vRm9udE5hbWUgL1BBTEtESCtBcmlhbC1Cb2xkTVQgDS9JdGFs aWNBbmdsZSAwIA0vU3RlbVYgMTM3IA0vWEhlaWdodCA1MTIgDS9TdGVtSCAxMDkgDS9DaGFyU2V0 ICgvUC9FL24pDS9Gb250RmlsZTMgMTggMCBSIA0+PiANZW5kb2JqDTE4IDAgb2JqDTw8IC9GaWx0 ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTMxIC9TdWJ0eXBlIC9UeXBlMUMgPj4gDXN0cmVhbQ0K SIliZGBhYmBkZBQJcPTxdvHQdizKTMzRdcrPSfENAYkr/JBm/CHC8kOGR+y39e++X02/7Fm/7+bv Efh+SPDIj4VCDEyMjFceOOcXVBZlpmeUKGgkayoYWloa6oBIYzBpBibNwaQFmLRUcEzJT0pVCK4s LknNLVbwzEvOLyrIL0osSU3RU1BwzMlRCAKZVqwQlFqcWlQGFAW7SyGzWCFRoaQoMSU1N7EoWyE/ TSEkI1XBNz8vv6SyIFXBGWpKZn6enkJRanom0Pii1BSFzDyFEqC60GCFAKAVeSUKiXkpCiFwY/zT 0jKTU8GCqTnFqeUZQE16KAEBBGoMhgz+DCyMjCwGbTe+r+L7qd/9nfd7GBAbf+dlvPZdhfma2I8t 33n/qAAF/3zn/f3nu/EPcSB/ORtQ7YKy74uAShMgSr9P/q4JVA5kLHrFdvpGz+J98jsWXD74XUjq O6/HodiFcnNTU/p/C0n/rmH7nvWbV/Th2u781fJLyicXFEqpqHU7yll/T2Dj+/F9QdkP2y/15UIX vst+j/ouK7zjh4YYkHmNTfhG177eGyFbOdYmhPWXSId5VbpGyHeyCe+4/lvkzyygknp24Rtbe47M XCm3cc6mRduk73c7mMnzFS35mTD9d9r07y7dbN8/TvxzcgY7khDH949T/pyZxvmdkeu7LPd3xuk8 PN9lJ/Hw9vDwAQQYAHlQ8LcKZW5kc3RyZWFtDWVuZG9iag0xOSAwIG9iag08PCANL1R5cGUgL0Zv bnREZXNjcmlwdG9yIA0vQXNjZW50IDcxOSANL0NhcEhlaWdodCAwIA0vRGVzY2VudCAtMjE4IA0v RmxhZ3MgMzIgDS9Gb250QkJveCBbIC0zIC0yMTkgNzUzIDczOCBdIA0vRm9udE5hbWUgL1BBTEpG SytZUkFUSFIrU3dpc3M3MjFCVC1Sb21hbiANL0l0YWxpY0FuZ2xlIDAgDS9TdGVtViAwIA0vWEhl aWdodCA1MjMgDS9DaGFyU2V0ICgvSS9uL3MvdC9yL3UvYy9pL28vQy9hL2gvZS9EL0IvUC9GL2Qv bC9zbGFzaC9NL0UveC9BL3kvY29sb24vUy9VL0wvUi9nL09cDSkNL0ZvbnRGaWxlMyAyMCAwIFIg DT4+IA1lbmRvYmoNMjAgMCBvYmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyOTE0 IC9TdWJ0eXBlIC9UeXBlMUMgPj4gDXN0cmVhbQ0KSIl0lG1QU2cWx2+Q3FxlG7cvl9J7d+6lnWm3 2mpdterWl1qsGLUUBCsQQIFAEEIgJCEECISEt0BNwAQwCYGEl8QkkCCQoCICIoLVilpc290PaqtW p7Ydd3b0ufGGnY39vl+eM895mfOf35xzGFB4GMRgMMiEz77YF7v/g9TEzw5yEj9IKsuXSDav/1vM wTWJxcKsopcpb1L4nyI1dHGgPiBjPlkJ3nn1xF8iFl57GYr6f2UQA/ozBOEQ9A4TWg1BaxjQOga0 gQFtgqAYCPo8DOKEQXEQFM+AkpZBqQzo7ZAYiIQ2QF9AKgbMkDNmGXcZz8OWhb0eJgm7v2zfsjvh TeFXmcNwNNzBepM1hbyOrEY2I83Is+Xrlv9jxdsrSlc4VrzQUOP0bvQFHNT8F6Y0rGBCYAGlopY6 glGBDphNz8ytRUFjYJEZB9P1S4vM+ZBvDqRRG1AAvUdDT1nBDeGA8R7NeMpie8B3VBAFy+ibTFoK AyYIWVEwiP4ABEwwBH9PC5jPYNoW4DFpCKatSzzmU5g9R70WeXuue+Q0OTbSM3UNO6sckbgIiTu/ O9PgMdmtFjticbS5h7FL8tN8J+HkJ5l34vTYEg9cgmle4FUU7IHHveqKXrK3vEOUh+UoiyVyolzK V6fg9KdABNPT4SAevuhTyR2kvcwozMKyqgUlpUSpOLcmFae5QAezQRhlAWyUn5tWnoDHHnRMZ5FZ 07Kb97HH1sXRSWJydNZ+C585XS32kJ6Snry2NOQJXHtLOJvsR/zJHNsn+LufFOz9koznCNfTTIxm Oz+cjSV2X/pX/lP8/qJ9aoa8OOW60XIf+RDWxJdx+XkI+z+UlrqCnsro5mzA1pXH8tOJdP5X0l04 vY06A7bBNy9I04dJen3wCvr7DwPfzpAz3578GSzHAFP046F5Yv7QDtdfcdoRotALs4eoXyIfBreB euqNu8E3gIDa+CDYvsSjuljsMrArEvwTPLhPPwCFFPowWLbE+43Fpn8HuyMDvFV/fPZQ7sif6RcB 5P1QTQaLDcpADPU9qqvRqXVqsDc4HvUIBnHUuK5d16Frf+vlo+1AgoFfAjw6mkXHBcc16ia1Rv1W yNRolM3HmwxNbRpD44mGTjqWGo+io5d4D6kArFXqlFoVwgY7QB61iE755+y38dtzJcl+0p9ii/kI +0i2KyuZSM5KKNmJ70ywT2WRmVOyxUfYI9utsUnis2Atypm/U/Acf35ncGGenF9wPQYRGIgQPo5f IBbitwxG49FbCjjx5Jcc4Vo6AqMjXGsvcwi2A+wKRKDgU3j6lFre83JMCjOxIzWF0tCYlPLUiTi9 BdTDSxHh4CJ4n3VhWNvaS/a1WPWWDldXb1+nGzG7Dd5RzF97SuEmKt3SvqLOijaZvrQVaSkt0Gbi dFcII8y+DB4HVqJXxtQVfaEeJ4SZWIZSIC4j5OJMVTxObwUasBWmO5dWor+Cy2A9fGOsrspCdina C3Vpx9dEaVgt3OOCNgUCmFZY1Vrb1mBsOKHpbuqvBRFRmtN1A8ouZXeZsdgwaO7v6TwZWgrD4Ag2 WuutdBIKl6RXaKlokx+Xtfwh6jBODyzxYPYYYI+jRyaul/6E31uw+c6TE77+mRuYs8Gu6iVUfYpu uUVsS7bu6FZpo1Ta6pbyFoSOcCT4ZzCv6aTTRticw+3n8MnRarGLdJZY+Lp05DHc/J304mEf4suI s27Ft8fJc9LJ9Bxp8n4suTPbXUwMFF0V/yZtaW5t0jcj4JWi+ayDGK9SIJAQUsERZRKedNjszifz 3RX+5ilkDdzyd/v+c0cQ9jMQPY1yz1yXPMSf3OqfCEk937/4K0YlrgomsTgKbmEBUSDMqIzD49I7 B4pI4aBi4jpGJa0KJrJW9cSc4RLseApbQEsMclM1UW3uqXfiesOxYwbScKxN26FDrrOaGxqaG/Fm jeZrDV6t1ukbyIbjTeYeDJhZMxW+AgdhL0gx7sb3pSgK+SS/UJ59CGu8wxpo77N1Ehaby+DDR511 1Vayu7q9TITJmqo0dYSmvq5B1ahqFDUcbizRyJoUTfG1hyuEIqRIpOCnYVxzrquYKHb5q6Zx74De 5CbdZqfN4UQ0rFrwCspXFAqlhKQwV5mGC6V6UwVZaaq12jG73moyESZjb/tAa7vWrLVqZ/W+9l4j sp3F3k41gX+jmjnZ2RwP4uUlW/biOw+IuZlkZqosdiP2sZXj4xJc30XxIn7jQteQj/QN9ZxvvYps hut5ikKxDJFJCmqy8YyjFq+YFHuUE1exq8YJu4fw2Ics5/DRAZU8dErLjCJdHvITzFZT7wIWelSU W87F03ItnmKy2FM1Po9dM006hoghx3DXBD41XFkQuq0FRu4+bF9VqugoMUw9RWkjq8whthabEGOx QM/HY5PEKdlkVopszyZss43jSyVS/TPim7hnQG88SZ402W09DmTvvQBvE4udBGKprai932Mcw894 q0V9ZF+JMZeL0aNwy3nzcL8dASn0PVQuFarz8PQ8s0tElriqxppnEIoNtx5rbW392tCB3ZVdyz5L nM0+0LsTjzkgTs0is1Nlu9e/7O4PMfLPSm7h30xaBn3k6KD9TNslZCNcl68okZYj7FpqNbUWdeQb UzgYp5orFhCCkpzKr3BursUrIkXeqokrIWznHR7C6xi2hBCMVuTbyVPBTWia8qhERsjEOTVJIch6 o5SUmmqsDkz7cSMrzcofERGikQtVN/Afv/lfo1XT28QVRTe1Zza1KMJRmKfOsGioUFVFxSpZAK1Q QRGIAO0G1ypEStLgYELGsadOxpPE8ThgnLFTxxN/1RN/hXE+RCYxKFGRCVVFF5HS0FaCClSpSGZR JEQQlfpGekb0JfkDbO/inqtzzz33KNoiU9Ymf/mL0uVPjxPcdG/OmSSTzkvjXeDoV71WvFIrd7wJ j9u8ZKWtS/ecf4D52W2yitmsSn5BmHSpDq4TU8TCNTWYoa9mRtJiUih4FDZBJtiuaAfovBgQ8M4E jvP2kLBged1ehavEjymtpNJqaTF5G5TV4b4084MnZj9LoYdPCVPtPdiovzFvWD6sErU37+hZSy1b xeV34Sf4Z+x/3f70LXAvOLZxXZynm/yzCXeAK8RKqqyW6JK6mKpswnowbF/sgnUbloOf643mG6Wb mbvYcXi7yqhdqS1F2dgu2s6281ZwtiMzv6XAyhq1ltqk/wT6z2xbXnU9Bo9Xi5UlZrmSv1+lqtz9 1gpdaW0pHgKHWlz4OlptXLOFsuSbl7FToCJsrIPLRCWxMHWdnipqydvRsdFIJBIKg3+IYFAKBq+O BoD9sp93MS6+jx2wk88ObLGw58mc2aHd9a6D335Kz5SZxZlJ7Ja3fHPuPO0utCmnUgey9ZfGOXlI Jn0TI8kMVZSVyQSdVNSoBuZLopBjckL8u3AP+SRsrPSXtzKNLXUSnPpmgLUzdra/8xzVHnfkOTrH lfmfB1701s+KOTHuI+PD3wt9lNPn4QRa4LoDnaDNIStuhpscvB7U8IVLp5VzmoM0oYfwM/1r87Pf P4Z7LWjv4WOP0L/GtlhPxkt7M9PiLSBPSFKCiUvJcDpCPiCGQv7RQIgUR0avgP6hsViACcSC6SIF HxCmNT1rRutEL9EZZiM8PcZHhdhgyp3j1SFyUJ0b0UD5Riw9zUyniwVlhjz8N9YLmie+HGx1Xqa7 nd8KVtDBTmS9jDcraiu45X4cP3a8qoO74Xn4Pjq/GQlPwwI8CqOGBiPaic6gXfCM4QMjPILG0QmU N7wymj6C0Q0zatAPGvYZoa12x91yRRB9vsDuwPBAkAeiX5JExi+JYX+EbCLkazKOIGRIjoVkcHNW zmDKldxC7h5k9Zf1+4yooXbQYBLS+vM7Rv3XXfqG+X+WlppBCmVuZHN0cmVhbQ1lbmRvYmoNMjEg MCBvYmoNPDwgDS9UeXBlIC9FbmNvZGluZyANL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQzIC9w bHVzIC9jb21tYSAvaHlwaGVuIC9wZXJpb2QgL3NsYXNoIC96ZXJvIC9vbmUgL3R3byANL3RocmVl IC9mb3VyIDU0IC9zaXggNjUgL0EgNjcgL0MgL0QgL0UgL0YgNzMgL0kgNzUgL0sgL0wgL00gNzkg L08gDS9QIDgyIC9SIC9TIC9UIC9VIDk3IC9hIC9iIC9jIC9kIC9lIC9mIC9nIC9oIC9pIC9qIC9r IC9sIC9tIC9uIC9vIA0vcCAxMTQgL3IgL3MgL3QgL3UgL3YgL3cgMTIxIC95IDE0NCAvcXVvdGVy aWdodCAxNDcgL2ZpIF0gDT4+IA1lbmRvYmoNMjIgMCBvYmoNPDwgL0ZpbHRlciAvRmxhdGVEZWNv ZGUgL0xlbmd0aCAzMTUgPj4gDXN0cmVhbQ0KSIlUUbtuwzAM3PUVHFt0kK04EQwIHpIiQIY+0KTd HYlODdSyIDtD/r6kZKToYPN0OuqIo9wdng++n0G+x9EecYau9y7iNF6jRTjjpfdQKnC9nZdT+tuh DSCp+XibZhwOvhvBGCE/6HKa4w0e9vqpeAT5Fh3G3l/g4VR+fhFxvIbwgwP6GQpoGnDYCbl7acNr OyBIbvvjTreAoNK5XIxHh1NoLcbWXxCMKhow9aoB9O7/ndC549zZ7zaKrCwKKsKsNglTEaYqE6ZC uM64Jqwz1oxr7lVFmTCZmf22ID15Lq/fvbK1UWcSrarsuOWXuavKtoSJYEXlMpEUHeF1HrLaE7FW TKwTQViYDU+qs2LD42pWaJ3nVMs8eQKOg3d0T9ZeY6TQ0yJTtpxq7/G+6zAGDpE/8SvAAMV5l94K ZW5kc3RyZWFtDWVuZG9iag0yMyAwIG9iag08PCANL1R5cGUgL0VuY29kaW5nIA0vRGlmZmVyZW5j ZXMgWyA2OSAvRSA4MCAvUCAxMTAgL24gXSANPj4gDWVuZG9iag0yNCAwIG9iag08PCAvRmlsdGVy IC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMSA+PiANc3RyZWFtDQpIiVSQPW/DIBCGd37Fjak6gNMm E2JJGslDP1Sn3QmcXaQY0BkP/vcFYqXqAPf5Hg/HD+2x9S4B/6BgOkzQO28JpzCTQbjg4Dw0W7DO pDWqtxl1BJ7F3TIlHFvfB5CS8c9cnBItsDk14lE8AH8ni+T8AJtz8/WdE90c4xVH9AkEKAUWe8YP rzq+6RGBV91f8rxEhG2Nm/XpYHGK2iBpPyDI550CuUcF6O3/Gnu6KS69+dHEbp1CZMPkTlQ/G1bF 2d+/KJZnrN1lWvnknczMRBm6bqKiFSjn8b6sGGJhKIf9CjAAOo1t0AplbmRzdHJlYW0NZW5kb2Jq DTI1IDAgb2JqDTw8IC9GaWx0ZXIgWyAvQVNDSUk4NURlY29kZSAvRmxhdGVEZWNvZGUgXSAvV2lk dGggNzYgL0hlaWdodCA5OSAvQ29sb3JTcGFjZSAzMSAwIFIgDS9CaXRzUGVyQ29tcG9uZW50IDgg L0xlbmd0aCAyNiAwIFIgPj4gDXN0cmVhbQ0KODtZUGs0YkJhWCUmV1k+RzBrTiVtQyU/MCwyNjg2 TWVNMzxabmZuT2xyQD9sSWojQENkRmcyazVcJ0AySG1mITAKPVhsPCVZallwMSJmYTdubUwvLlhD SnVZKD02Mj9bUWFPWUdWVl5KLmdsJEtNT0lxTC47TE5KSCYsPykjcGJFMVQKXlBsVGw0ODMxTzAs JWF0azIvOioiYzJdbzVlLCtWIXErT0EpOE9PIXJabzBabFNcMFBuclY8XDdTOS0vbHJKKyEKbVQs I3FLS3JOSSNFQDlON3JnVENqNy1rQXIuczZrOiY1cGI0YVp1TWl0ZERJXkorZEtnODVMXl9NLVlN REEvNiIKODFuQnBaJlMjRkViKG9BSzsrc0wiUz1EdDVpSzhta1w0QmE6KG5MQ25xSDY3OF4iV1Es NjpUNjpSLVRANjIiV0cKLk43VV5lVCxqWkI2IlphS1Y3YF5uNWFfTzNDQGZQL25ENHAuMydUQl4m LGpyOC9dP3U6QmJxMWhoJHFWayE4InEKaGgxNUBQS11ib19Db2MmNVpPXzE0WXQxPS81VjBnSUk9 Lj0rQWEhM01uYHMvMzAtcjElV1Y8ZW87X2hGJVJiY2QKM1guMyxRTTRRblglNFtNUk83ZkUhI2xo SClxbFFKLWRmI0xubT4sIjtAWHAwJStxSDtxR1tFciQnZXVkTE9RVl8KUCxkJl8lLGQ7UzdwTmBs a2A1PF5BP1ckVy1SPjAiOWxpX1EmK19YXz0jbjk/JUZUIWpvYWlgXStrJTNzX2hzXSMKOzQndTZK ZDY2JD5YdGs0L2NqOyUiXXBHJDFfbDRxMDU1Qm1zKUsiLW5ncVEiPUk/QFxFTWAyM1JsMFE4ZURY O0UKRUkyXVpPVThOaWJCcDxhVUgtZ15fMEgpN10xUXBxcyc7YD1GT1Y7QFlNVEY6OCFbTGFPZmxU QWZCSTlKYnIqUSQKJ0dIZD4yTDhqRiNeU1tUYmghUklidF5WRy0vcD0jKjhWXDBBQkBfVnAmaGpD Oj1DMW1gT3Jzc1ZPO1NFV0ZpZ3IKcTVrLCVxM0BoaTAxVjZWZT8jMi0mIlg7UWwhXjZmNE1GTk9t RG51ZzgjVFI8PnBURlQhMVhWXnBBfj4NZW5kc3RyZWFtDWVuZG9iag0yNiAwIG9iag04NTEgDWVu ZG9iag0yNyAwIG9iag08PCAvRmlsdGVyIFsgL0FTQ0lJODVEZWNvZGUgL0ZsYXRlRGVjb2RlIF0g L1dpZHRoIDc2IC9IZWlnaHQgOTkgL0NvbG9yU3BhY2UgMzEgMCBSIA0vQml0c1BlckNvbXBvbmVu dCA4IC9MZW5ndGggMjggMCBSID4+IA1zdHJlYW0NCjg7WVBsNGRQK04lJlY2N28hWkE1alY2SVth cWU0S0FgaDdtQTthOlspVyRuZUgqNEc+cmtrdWRFOXVZRkxgVlFnCmltVDdVTT4sbjAuVnBASF5b L0dRJCwpbi5OVyYqTT9QaT9TPWdqK2BGQSZVRSpWKz9HREBRZTlMOUo9TmZqciM8CnIvXm5UMmd1 YzlpL0E4bzlodWJSXjVgbkldYTlXbl5BLTVsKVBodDY0XClmJkVLJ1klMllscS48KyJpdCxQMkNq CiZfQE0pPEIkPi5tQWhQZyRZcT0nMmdGMSwjRE1wQVUmb2lzXi9oL1poNldfS1xHOG1FKGphIjFb dSwvYV4lXEE/CnBhWSxmOCc5aWA+YVA0KCdRYTJZMSVHby1JKHI7QUtBKzRaXz1TdURXNms8JScn RTlXTWFLXz1NWl9vMnFRXERWCmgqW3BFaGNnYUQ/XGNbLU42Pzo1JD0vUztZNzcqL0lCZE9MQDlK UCNNXU5zTVopaEQ7K2wyKFdqOTU+aUBeUnFTCjFyXGZ0RCxgS0ltQFA4a0o3RjNtREw8I1U1LFxW anI9Y1htIkRcNFRCdC8lP2gnMkp0NTkrPE9EcnRFXSMmJTVpCi4pJDYvKGBSOVonT29EY1pAQ1VF NkpMZTgqLzRdO0cwWllYP2VKbXJwbXRSa0BURT45QzlFbC5AdSNNbS8raVhpCiE1ciNmUCZUQlA8 WD5NPlIsYz8+YDNFdWNPWj5Fa2o5aWMuLU1ATEohSWc1NC1CR0Y/K3N0bzxjZGlVXnE+TWMkCkhJ cUsrN1YhX2chSS5qamVaNjM5JCojUkZLYSNaclJUUFFYMTlOLT5ZaWQzLkheL1EwKDVQXSQiYl9a OmA3Pl9CCiVEMTJfPEYhSFhDPyQzV2smS01rL1MvMiooOTItZ2FzMSt0ZilEK1IwVC5HKmc1ViM2 K2pjNzVsY1clXmwxR2VmCk1Ka1p0MGkuU1FtTmtlPVluVSQoYGBdOWlPSlNFMlg0R1RNKW1RJ1U0 TjgkQ1wtN2xqPWleQl1pPlMpJkZNQD49CksuUFAxaUF0YXViYGo4NWxcP2stZjwmXk4oNVlWIyJU OkJhOjMuKEJrNClCWCdBIVYncWJLMEhMV29JW01SLFpbCm9acVhaWVVtWV9TcG49UGVZTWdhcT5N Xys8WXFZMSlTIy9TOWQkXmdFLTozc2RsMV5HXFM4ZGwhLTYvbC9Gak4uCmZnSjkiaWxbMy1cRlBA WF4zI1lWTDpMPTU0UjBaTz5dY0FyKy0qQmA6Zj4nNFhLcys5MEo5Qj9ZYzZeLis9L1ItCmUlXytF KnJtPUc8IVd+Pg1lbmRzdHJlYW0NZW5kb2JqDTI4IDAgb2JqDTEwMDUgDWVuZG9iag0yOSAwIG9i ag00ODEgDWVuZG9iag0zMCAwIG9iag08PCAvRmlsdGVyIFsgL0FTQ0lJODVEZWNvZGUgL0xaV0Rl Y29kZSBdIC9MZW5ndGggMjkgMCBSID4+IA1zdHJlYW0NCkosZ11nK2UvaF8hX2dDdE89MGYpJFAl Y0lpOFpkZmM1JjNqXzgkN2cuQExgWUtVSk5HQlBccG9SPV87RGwnUChUCig3Qm9vXl5TOjcxKE1O XVpRWC8rQ2J1LmxLInA3NHBlMVQlcy5EWSUmXDFUZEpocjU0Lk05YXU2Pjc5bjZgUTo0ClBiTFNa VExFRSg4RUAnKjFtZ18qZVRuTio7KidWMytnbS1FRWV0WCU7Qm8kdXIyc3MqTmAuLSEua0dfcTZH REQnCmRLb0whOEthI0VWLEBWIVxqOFpGYnA2RUU8OWNuPU42ajxNOFE/WyM3ImRxJzE+MG5mOygm O1FVNmJVRCcpY0BcCjktZFxEQT1jWjBRPmdJTSQkO2NkMk9AJmE7WCxObl9hPD9WLVBWRSU/U2Zd aWRINldSWnFIR3FdWm08dUNpIl0/ClN0Zyg8Z1YtSDlOQjxTQVxUPXNOKUlsJShCRElhazcvSCZt ViFrbURVbzRYOzg7XVY+UChdSTFhUmMoSzFedWU+CmdGLygrR2FLbyRxbmVMV0RyUSM7NVxTKFwk cSc0USw4NWAtODtTKD1aIldTQk9WKkZNKTQsP0JdLFI8Z2JQTj0jCk9tSUs8YTpcbzgraW9PLSFX fj4NZW5kc3RyZWFtDWVuZG9iag0zMSAwIG9iag1bIA0vSW5kZXhlZCAvRGV2aWNlUkdCIDI1NSAz MCAwIFIgDV0NZW5kb2JqDTMyIDAgb2JqDTw8IA0vUyAvRCANPj4gDWVuZG9iag0zMyAwIG9iag08 PCANL051bXMgWyAwIDMyIDAgUiBdIA0+PiANZW5kb2JqDTM0IDAgb2JqDTw8IA0vVHlwZSAvUGFn ZXMgDS9LaWRzIFsgNDkgMCBSIDEgMCBSIF0gDS9Db3VudCAyIA0+PiANZW5kb2JqDTM1IDAgb2Jq DTw8IA0vRHQgKEQ6MjAwMzEwMTAxNDE0MTIpDS9KVE0gKERpc3RpbGxlcikNPj4gDWVuZG9iag0z NiAwIG9iag0vVGhpcyANZW5kb2JqDTM3IDAgb2JqDTw8IA0vQ1AgKERpc3RpbGxlcikNL0ZpIDM2 IDAgUiANPj4gDWVuZG9iag0zOCAwIG9iag08PCANL1IgWyAyNDAwIDI0MDAgXSANPj4gDWVuZG9i ag0zOSAwIG9iag08PCANL0pURiAwIA0vTUIgWyAwIDAgNjEyIDc5MiBdIA0vUiAzOCAwIFIgDS9X IFsgMCAxIF0gDT4+IA1lbmRvYmoNNDAgMCBvYmoNPDwgDS9GaSBbIDM3IDAgUiBdIA0vUCBbIDM5 IDAgUiBdIA0+PiANZW5kb2JqDTQxIDAgb2JqDTw8IA0vRG0gWyA2MTIgNzkyIDYxMiA3OTIgXSAN Pj4gDWVuZG9iag00MiAwIG9iag08PCANL01lIDQxIDAgUiANPj4gDWVuZG9iag00MyAwIG9iag08 PCANL0QgWyA0MCAwIFIgXSANL01TIDQyIDAgUiANL1R5cGUgL0pvYlRpY2tldENvbnRlbnRzIA0+ PiANZW5kb2JqDTQ0IDAgb2JqDTw8IA0vQSBbIDM1IDAgUiBdIA0vQ24gWyA0MyAwIFIgXSANL1Yg MS4xMDAwMSANPj4gDWVuZG9iag00NSAwIG9iag08PCANL0NyZWF0aW9uRGF0ZSAoRDoyMDAzMTAx MDE0MTQwOSswMScwMCcpDS9Nb2REYXRlIChEOjIwMDMxMDEwMTQxNDA5KzAxJzAwJykNL1Byb2R1 Y2VyIChBY3JvYmF0IERpc3RpbGxlciA1LjAuNSBcKFdpbmRvd3NcKSkNL0F1dGhvciAoamFtaWVw KQ0vQ3JlYXRvciAoQWRvYmUgSW5EZXNpZ24gMi4wLjIpDS9UaXRsZSAob3ZlcnZpZXdfY3MzMDFf djIwLmluZGQpDT4+IA1lbmRvYmoNNDYgMCBvYmoNPDwgL1R5cGUgL01ldGFkYXRhIC9TdWJ0eXBl IC9YTUwgL0xlbmd0aCAxMDQ4ID4+IA1zdHJlYW0NCjw/eHBhY2tldCBiZWdpbj0nJyBpZD0nVzVN ME1wQ2VoaUh6cmVTek5UY3prYzlkJyBieXRlcz0nMTA0Nyc/PjxyZGY6UkRGIHhtbG5zOnJkZj0n aHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIycgeG1sbnM6aVg9J2h0 dHA6Ly9ucy5hZG9iZS5jb20vaVgvMS4wLyc+PHJkZjpEZXNjcmlwdGlvbiBhYm91dD0nJyB4bWxu cz0naHR0cDovL25zLmFkb2JlLmNvbS9wZGYvMS4zLycgeG1sbnM6cGRmPSdodHRwOi8vbnMuYWRv YmUuY29tL3BkZi8xLjMvJyBwZGY6Q3JlYXRpb25EYXRlPScyMDAzLTEwLTEwVDEzOjE0OjA5Wicg cGRmOk1vZERhdGU9JzIwMDMtMTAtMTBUMTM6MTQ6MDlaJyBwZGY6UHJvZHVjZXI9J0Fjcm9iYXQg RGlzdGlsbGVyIDUuMC41IChXaW5kb3dzKScgcGRmOkF1dGhvcj0namFtaWVwJyBwZGY6Q3JlYXRv cj0nQWRvYmUgSW5EZXNpZ24gMi4wLjInIHBkZjpUaXRsZT0nb3ZlcnZpZXdfY3MzMDFfdjIwLmlu ZGQnLz4KPHJkZjpEZXNjcmlwdGlvbiBhYm91dD0nJyB4bWxucz0naHR0cDovL25zLmFkb2JlLmNv bS94YXAvMS4wLycgeG1sbnM6eGFwPSdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvJyB4YXA6 Q3JlYXRlRGF0ZT0nMjAwMy0xMC0xMFQxMzoxNDowOVonIHhhcDpNb2RpZnlEYXRlPScyMDAzLTEw LTEwVDEzOjE0OjA5WicgeGFwOkF1dGhvcj0namFtaWVwJyB4YXA6TWV0YWRhdGFEYXRlPScyMDAz LTEwLTEwVDEzOjE0OjA5Wic+PHhhcDpUaXRsZT48cmRmOkFsdD48cmRmOmxpIHhtbDpsYW5nPSd4 LWRlZmF1bHQnPm92ZXJ2aWV3X2NzMzAxX3YyMC5pbmRkPC9yZGY6bGk+PC9yZGY6QWx0PjwveGFw OlRpdGxlPjwvcmRmOkRlc2NyaXB0aW9uPgo8cmRmOkRlc2NyaXB0aW9uIGFib3V0PScnIHhtbG5z PSdodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLycgeG1sbnM6ZGM9J2h0dHA6Ly9wdXJs Lm9yZy9kYy9lbGVtZW50cy8xLjEvJyBkYzpjcmVhdG9yPSdqYW1pZXAnIGRjOnRpdGxlPSdvdmVy dmlld19jczMwMV92MjAuaW5kZCcvPgo8L3JkZjpSREY+PD94cGFja2V0IGVuZD0ncic/PgplbmRz dHJlYW0NZW5kb2JqDXhyZWYNMCA0NyANMDAwMDAwMDAwMCA2NTUzNSBmDQowMDAwMDU0NzMzIDAw MDAwIG4NCjAwMDAwNTQ5NzggMDAwMDAgbg0KMDAwMDA1NTI5MCAwMDAwMCBuDQowMDAwMDYzMTc3 IDAwMDAwIG4NCjAwMDAwNjMzMTMgMDAwMDAgbg0KMDAwMDA2MzcwNCAwMDAwMCBuDQowMDAwMDYz Nzc4IDAwMDAwIG4NCjAwMDAwNjQxNjkgMDAwMDAgbg0KMDAwMDA2NDI0MyAwMDAwMCBuDQowMDAw MDY0ODk4IDAwMDAwIG4NCjAwMDAwNjUxNDMgMDAwMDAgbg0KMDAwMDA2NTY0MSAwMDAwMCBuDQow MDAwMDY2MDAxIDAwMDAwIG4NCjAwMDAwNjYzOTEgMDAwMDAgbg0KMDAwMDA3MDc1NCAwMDAwMCBu DQowMDAwMDcxMDA2IDAwMDAwIG4NCjAwMDAwNzE2NjEgMDAwMDAgbg0KMDAwMDA3MTkxNyAwMDAw MCBuDQowMDAwMDcyNTM5IDAwMDAwIG4NCjAwMDAwNzI4NTggMDAwMDAgbg0KMDAwMDA3NTg2NCAw MDAwMCBuDQowMDAwMDc2MTc5IDAwMDAwIG4NCjAwMDAwNzY1NjggMDAwMDAgbg0KMDAwMDA3NjY0 NiAwMDAwMCBuDQowMDAwMDc2OTUxIDAwMDAwIG4NCjAwMDAwNzc5NjAgMDAwMDAgbg0KMDAwMDA3 Nzk4MSAwMDAwMCBuDQowMDAwMDc5MTQ0IDAwMDAwIG4NCjAwMDAwNzkxNjYgMDAwMDAgbg0KMDAw MDA3OTE4NyAwMDAwMCBuDQowMDAwMDc5NzYzIDAwMDAwIG4NCjAwMDAwNzk4MTYgMDAwMDAgbg0K MDAwMDA3OTg0NyAwMDAwMCBuDQowMDAwMDc5ODkxIDAwMDAwIG4NCjAwMDAwNzk5NjMgMDAwMDAg bg0KMDAwMDA4MDAyNyAwMDAwMCBuDQowMDAwMDgwMDUwIDAwMDAwIG4NCjAwMDAwODAxMDIgMDAw MDAgbg0KMDAwMDA4MDE0NCAwMDAwMCBuDQowMDAwMDgwMjIwIDAwMDAwIG4NCjAwMDAwODAyNzUg MDAwMDAgbg0KMDAwMDA4MDMyNCAwMDAwMCBuDQowMDAwMDgwMzYwIDAwMDAwIG4NCjAwMDAwODA0 MzcgMDAwMDAgbg0KMDAwMDA4MDUwNCAwMDAwMCBuDQowMDAwMDgwNzMzIDAwMDAwIG4NCnRyYWls ZXINPDwNL1NpemUgNDcNL0lEWzw2ZWYyNWZlODRkMzFhZmQ3YmY1ZmRmMmQzZTNiNGI1Zj48OTJi NDUyYTQzOTczODRjZTFkNWJjZWMwZTdlOGYyNDE+XQ0+Pg1zdGFydHhyZWYNMTczDSUlRU9GDQ== ------=_NextPart_000_001B_01C466AD.29DB9BD0-- From bioclusters@bioinformatics.org Sun Jul 11 16:34:47 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Sun, 11 Jul 2004 23:34:47 +0800 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> Message-ID: --Apple-Mail-3--416262076 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Hi all, Thank all of you for valuable suggestions and being involved in the discussion. We have finally figured out where is the bottleneck for our gigabit ethernet. To put it simple, the FTP is limited to 12MB-13MB/s is because of disk IO. Our main FTP server got some file system problem and disk is getting slower than it should be. After fixing the disk problem, the FTP speed restores to be around 20MB/s. Surprisingly, the SCP performance is heavily bound to CPU power. In the following table we compared performance among four different machines. Note that this is NOT benchmark, we use this table only to understand where is the bottleneck. All the operation is against a 100MB file. Model Powerbook Xserve G4 IBM X440 Sun Fire 280R CPU 1GHZ G4 2x1.25G G4 4x2.0G Xeon 1.2GHZ SPARC Disk IDE 4200rps ATA-133 IDE SISC-RAID 1 SCSI Copy 5.710 sec 2.523 sec 4.390 sec 3.187 sec Speed 17.51 MB/s 39.63 MB/s 22.78 MB/s 31.38 MB/s SCP 17.575 sec 10.135 sec 8.787 sec 26.680 sec Speed 5.690 MB/s 9.868 MB/s 11.37 MB/s 3.748 MB/s FTP 6.586 sec 5.288 sec --- --- Speed 15.18 MB/s 18.91 MB/s Copy cp ./dummy.100M ./dummy.100M.2 SCP scp *******:/tmp/dummy.100M ./dummy.100M.2 FTP ncftpget -u*** -p*** ftp://******/dummy.100M It is clear that disk IO is not the bottleneck for all the models. The more powerful is the CPU, the better is the scp performance. In addition, we compared FTP performance. As FTP involves much less CPU workload, the speed instantly boosts to 19MB/s, while SCP is only 10MB/s for the same Xserve G4. Therefore, to tune the network performance, we should focus on each connection point instead of only looking at the switch or NIC. CPU and HD speed is also important. Traffic from machine A to B involves: (1) (2) (3) (4) A(HD) --> A(NIC) --> SWITCH --> B(NIC) --> B(HD) All connection from 1 to 4 need to be checked and benchmarked carefully. Cheers, -- Chen Peng Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-3--416262076 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII OptimaHi all, Thank all of you for valuable suggestions and being involved in the discussion. We have finally figured out where is the bottleneck for our gigabit ethernet. To put it simple, the FTP is limited to 12MB-13MB/s is because of disk IO. Our main FTP server got some file system problem and disk is getting slower than it should be. After fixing the disk problem, the FTP speed restores to be around 20MB/s. Surprisingly, the SCP performance is heavily bound to CPU power. In the following table we compared performance among four different machines. Note that this is NOT benchmark, we use this table only to understand where is the bottleneck. All the operation is against a 100MB file. 3332,3332,3332 Model Powerbook Xserve G4 IBM X440 Sun Fire 280R CPU 1GHZ G4 2x1.25G G4 4x2.0G Xeon 1.2GHZ SPARC Disk IDE 4200rps ATA-133 IDE SISC-RAID 1 SCSI 3332,3332,3332 Copy 5.710 sec 2.523 sec 4.390 sec 3.187 sec Speed 17.51 MB/s 39.63 MB/s 22.78 MB/s 31.38 MB/s 3332,3332,3332 SCP 17.575 sec 10.135 sec 8.787 sec 26.680 sec Speed 5.690 MB/s 9.868 MB/s 11.37 MB/s 3.748 MB/s 3332,3332,3332 FTP 6.586 sec 5.288 sec --- --- Speed 15.18 MB/s 18.91 MB/s 3332,3332,3332 Copy cp ./dummy.100M ./dummy.100M.2 SCP scp *******:/tmp/dummy.100M ./dummy.100M.2 FTP ncftpget -u*** -p*** ftp://******/dummy.100M OptimaIt is clear that disk IO is not the bottleneck for all the models. The more powerful is the CPU, the better is the scp performance. In addition, we compared FTP performance. As FTP involves much less CPU workload, the speed instantly boosts to 19MB/s, while SCP is only 10MB/s for the same Xserve G4. Therefore, to tune the network performance, we should focus on each connection point instead of only looking at the switch or NIC. CPU and HD speed is also important. Traffic from machine A to B involves: 3332,3332,3332 (1) (2) (3) (4) A(HD) --> A(NIC) --> SWITCH --> B(NIC) --> B(HD) OptimaAll connection from 1 to 4 need to be checked and benchmarked carefully. Cheers, -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-3--416262076-- From bioclusters@bioinformatics.org Sun Jul 11 16:43:21 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Sun, 11 Jul 2004 11:43:21 -0400 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> Message-ID: <1089560600.2792.68.camel@protein.scalableinformatics.com> Hi Chen: This is interesting. Someone once had mentioned to me that the "blowfish" encryption was the best for performance (e.g. least expensive), though I have not ascertained whether or not this is true by rigorous measurement. While SCP is secure in that all information is encrypted, it is costly in that the encryption algorithms are not lightweight. If you want to try alternative encryption schemes, try using the -c algorithm on the scp command line. Note also that this depends strongly upon whether or not you are using version 2 of the ssh protocol, and how your OpenSSH has been compiled. You might get "faster" performance using a "kerberized" rcp, which will encrypt the login portion but not the data. You might also look at rsync and other methods as well, though if security is the primary concern on the nodes, you probably want to stick with ssh. Joe On Sun, 2004-07-11 at 11:34, Chen Peng wrote: > Hi all, > > Thank all of you for valuable suggestions and being involved in > thediscussion. > > We have finally figured out where is the bottleneck for our > gigabitethernet. To put it simple, the FTP is limited to 12MB-13MB/s > isbecause of disk IO. Our main FTP server got some file system > problemand disk is getting slower than it should be. After fixing the > diskproblem, the FTP speed restores to be around 20MB/s. > > Surprisingly, the SCP performance is heavily bound to CPU power. Inthe > following table we compared performance among four differentmachines. > Note that this is NOT benchmark, we use this table only tounderstand > where is the bottleneck. > > All the operation is against a 100MB file. > > Model Powerbook Xserve G4 IBM X440 > SunFire 280R > CPU 1GHZ G4 2x1.25G G4 4x2.0G Xeon > 1.2GHZSPARC > Disk IDE 4200rps ATA-133 IDE SISC-RAID 1 SCSI > > Copy 5.710 sec 2.523 sec 4.390 sec > 3.187sec > Speed 17.51 MB/s 39.63 MB/s 22.78 MB/s > 31.38MB/s > > SCP 17.575 sec 10.135 sec 8.787 sec > 26.680sec > Speed 5.690 MB/s 9.868 MB/s 11.37 MB/s > 3.748MB/s > > FTP 6.586 sec 5.288 sec --- --- > Speed 15.18 MB/s 18.91 MB/s > > Copy cp ./dummy.100M ./dummy.100M.2 > SCP scp *******:/tmp/dummy.100M ./dummy.100M.2 > FTP ncftpget -u*** -p*** ftp://******/dummy.100M > > It isclear that disk IO is not the bottleneck for all the models. The > morepowerful is the CPU, the better is the scp performance. In > addition,we compared FTP performance. As FTP involves much less CPU > workload,the speed instantly boosts to 19MB/s, while SCP is only > 10MB/s for thesame Xserve G4. > > Therefore, to tune the network performance, we should focus on > eachconnection point instead of only looking at the switch or NIC. CPU > andHD speed is also important. Traffic from machine A to B involves: > > (1) (2) (3) (4) > A(HD) --> A(NIC) --> SWITCH --> B(NIC) --> B(HD) > > Allconnection from 1 to 4 need to be checked and benchmarked > carefully. > > Cheers, > -- > Chen Peng > Senior System Engineer > Temasek Life Sciences Laboratory -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Sun Jul 11 17:15:21 2004 From: bioclusters@bioinformatics.org (bioclusters@bioinformatics.org) Date: Mon, 12 Jul 2004 00:15:21 +0800 (MYT) Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <1089560600.2792.68.camel@protein.scalableinformatics.com> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> <1089560600.2792.68.camel@protein.scalableinformatics.com> Message-ID: <34894.203.92.154.37.1089562521.squirrel@mail.aldrich.com.my> Joe Landman wrote: > This is interesting. Someone once had mentioned to me that the > "blowfish" encryption was the best for performance (e.g. least > expensive), though I have not ascertained whether or not this is true by > rigorous measurement. Blowfish being the least CPU intensive is mentioned in the ssh man page (at least on my FreeBSD box) but from using it over some time, I don't see much of a difference between using blowfish vs. the default 3des. CPU architectures also make a difference in my limited experience. Our old EV6 Alpha for example is painfully slow when using scp, even slower than the old PIII-800 I have but blazingly fast at other tasks. From bioclusters@bioinformatics.org Sun Jul 11 17:26:22 2004 From: bioclusters@bioinformatics.org (george wm turner) Date: Sun, 11 Jul 2004 11:26:22 -0500 (EST) Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <1089560600.2792.68.camel@protein.scalableinformatics.com> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> <1089560600.2792.68.camel@protein.scalableinformatics.com> Message-ID: > scp cyphers Usually, the default encryption is Triple DES where the DES algorithm is applied three times. Just about any of the other cyphers will give you a 3X performance boost. I measured it once or twice and that's about what I saw. Blowfish was designed to encrypt streaming data so it usage with scp should be obvious. I think DES is a block cypher where the data is encrypted in chunks but I admit I don't remember for sure. > cluster/GigE rates As for cluster IO throughput, what we noticed when we moved our fileservers from 100 Mb/s to GigE was that the IO server (disk and/or PCI bus) became the bottleneck; painfully slow response to file commands (ls, etc.) My hypothesis is that before the network was acting as a flow mediator; i.e. a throttle or governor. Now the IO requests just slams into the fileserver faster than it can deal with it, I/O requests backup, load shoots up (under Linux, one outstanding IO request will induce a load of one) and the humand get annoyed. A common occurrence for this is when one user doing the same thing (IO wise) gets scheduled onto several of the compute nodes at once. That's what the parallel file system or local scratch is for but users don't seem to want to think outsde their home file space for some reason. george wm turner uits/rats @ indiana university 812 855 5156 On Sun, 11 Jul 2004, Joe Landman wrote: > Hi Chen: > > This is interesting. Someone once had mentioned to me that the > "blowfish" encryption was the best for performance (e.g. least > expensive), though I have not ascertained whether or not this is true by > rigorous measurement. > > While SCP is secure in that all information is encrypted, it is costly > in that the encryption algorithms are not lightweight. > > If you want to try alternative encryption schemes, try using the > > -c algorithm > > on the scp command line. Note also that this depends strongly upon > whether or not you are using version 2 of the ssh protocol, and how your > OpenSSH has been compiled. > > You might get "faster" performance using a "kerberized" rcp, which will > encrypt the login portion but not the data. You might also look at > rsync and other methods as well, though if security is the primary > concern on the nodes, you probably want to stick with ssh. > > Joe > > > > On Sun, 2004-07-11 at 11:34, Chen Peng wrote: > > Hi all, > > > > Thank all of you for valuable suggestions and being involved in > > thediscussion. > > > > We have finally figured out where is the bottleneck for our > > gigabitethernet. To put it simple, the FTP is limited to 12MB-13MB/s > > isbecause of disk IO. Our main FTP server got some file system > > problemand disk is getting slower than it should be. After fixing the > > diskproblem, the FTP speed restores to be around 20MB/s. > > > > Surprisingly, the SCP performance is heavily bound to CPU power. Inthe > > following table we compared performance among four differentmachines. > > Note that this is NOT benchmark, we use this table only tounderstand > > where is the bottleneck. > > > > All the operation is against a 100MB file. > > > > Model Powerbook Xserve G4 IBM X440 > > SunFire 280R > > CPU 1GHZ G4 2x1.25G G4 4x2.0G Xeon > > 1.2GHZSPARC > > Disk IDE 4200rps ATA-133 IDE SISC-RAID 1 SCSI > > > > Copy 5.710 sec 2.523 sec 4.390 sec > > 3.187sec > > Speed 17.51 MB/s 39.63 MB/s 22.78 MB/s > > 31.38MB/s > > > > SCP 17.575 sec 10.135 sec 8.787 sec > > 26.680sec > > Speed 5.690 MB/s 9.868 MB/s 11.37 MB/s > > 3.748MB/s > > > > FTP 6.586 sec 5.288 sec --- --- > > Speed 15.18 MB/s 18.91 MB/s > > > > Copy cp ./dummy.100M ./dummy.100M.2 > > SCP scp *******:/tmp/dummy.100M ./dummy.100M.2 > > FTP ncftpget -u*** -p*** ftp://******/dummy.100M > > > > It isclear that disk IO is not the bottleneck for all the models. The > > morepowerful is the CPU, the better is the scp performance. In > > addition,we compared FTP performance. As FTP involves much less CPU > > workload,the speed instantly boosts to 19MB/s, while SCP is only > > 10MB/s for thesame Xserve G4. > > > > Therefore, to tune the network performance, we should focus on > > eachconnection point instead of only looking at the switch or NIC. CPU > > andHD speed is also important. Traffic from machine A to B involves: > > > > (1) (2) (3) (4) > > A(HD) --> A(NIC) --> SWITCH --> B(NIC) --> B(HD) > > > > Allconnection from 1 to 4 need to be checked and benchmarked > > carefully. > > > > Cheers, > > -- > > Chen Peng > > Senior System Engineer > > Temasek Life Sciences Laboratory > -- > Joseph Landman, Ph.D > Scalable Informatics LLC, > email: landman@scalableinformatics.com > web : http://scalableinformatics.com > phone: +1 734 612 4615 > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > From bioclusters@bioinformatics.org Sun Jul 11 16:31:02 2004 From: bioclusters@bioinformatics.org (Peng Chen) Date: Sun, 11 Jul 2004 23:31:02 +0800 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> Message-ID: <51451B1C-D34F-11D8-935E-000A95770F28@tll.org.sg> --Apple-Mail-2--416486964 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Hi all, Thank all of you for valuable suggestions and being involved in the discussion. We have finally figured out where is the bottleneck for our gigabit ethernet. To put it simple, the FTP is limited to 12MB-13MB/s is because of disk IO. Our main FTP server got some file system problem and disk is getting slower than it should be. After fixing the disk problem, the FTP speed restores to be around 20MB/s. Surprisingly, the SCP performance is heavily bound to CPU power. In the following table we compared performance among four different machines. Note that this is NOT benchmark, we use this table only to understand where is the bottleneck. All the operation is against a 100MB file. Model Powerbook Xserve G4 IBM X440 Sun Fire 280R CPU 1GHZ G4 2x1.25G G4 4x2.0G Xeon 1.2GHZ SPARC Disk IDE 4200rps ATA-133 IDE SISC-RAID 1 SCSI Copy 5.710 sec 2.523 sec 4.390 sec 3.187 sec Speed 17.51 MB/s 39.63 MB/s 22.78 MB/s 31.38 MB/s SCP 17.575 sec 10.135 sec 8.787 sec 26.680 sec Speed 5.690 MB/s 9.868 MB/s 11.37 MB/s 3.748 MB/s FTP 6.586 sec 5.288 sec --- --- Speed 15.18 MB/s 18.91 MB/s Copy cp ./dummy.100M ./dummy.100M.2 SCP scp *******:/tmp/dummy.100M ./dummy.100M.2 FTP ncftpget -u*** -p*** ftp://******/dummy.100M It is clear that disk IO is not the bottleneck for all the models. The more powerful is the CPU, the better is the scp performance. In addition, we compared FTP performance. As FTP involves much less CPU workload, the speed instantly boosts to 19MB/s, while SCP is only 10MB/s for the same Xserve G4. Therefore, to tune the network performance, we should focus on each connection point instead of only looking at the switch or NIC. CPU and HD speed is also important. Traffic from machine A to B involves: (1) (2) (3) (4) A(HD) --> A(NIC) --> SWITCH --> B(NIC) --> B(HD) All connection from 1 to 4 need to be checked and benchmarked carefully. Cheers, -- Chen Peng Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-2--416486964 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII OptimaHi all, Thank all of you for valuable suggestions and being involved in the discussion. We have finally figured out where is the bottleneck for our gigabit ethernet. To put it simple, the FTP is limited to 12MB-13MB/s is because of disk IO. Our main FTP server got some file system problem and disk is getting slower than it should be. After fixing the disk problem, the FTP speed restores to be around 20MB/s. Surprisingly, the SCP performance is heavily bound to CPU power. In the following table we compared performance among four different machines. Note that this is NOT benchmark, we use this table only to understand where is the bottleneck. All the operation is against a 100MB file. 3333,3333,3333 Model Powerbook Xserve G4 IBM X440 Sun Fire 280R CPU 1GHZ G4 2x1.25G G4 4x2.0G Xeon 1.2GHZ SPARC Disk IDE 4200rps ATA-133 IDE SISC-RAID 1 SCSI 3333,3333,3333 Copy 5.710 sec 2.523 sec 4.390 sec 3.187 sec Speed 17.51 MB/s 39.63 MB/s 22.78 MB/s 31.38 MB/s 3333,3333,3333 SCP 17.575 sec 10.135 sec 8.787 sec 26.680 sec Speed 5.690 MB/s 9.868 MB/s 11.37 MB/s 3.748 MB/s 3333,3333,3333 FTP 6.586 sec 5.288 sec --- --- Speed 15.18 MB/s 18.91 MB/s 3333,3333,3333 Copy cp ./dummy.100M ./dummy.100M.2 SCP scp *******:/tmp/dummy.100M ./dummy.100M.2 FTP ncftpget -u*** -p*** ftp://******/dummy.100M OptimaIt is clear that disk IO is not the bottleneck for all the models. The more powerful is the CPU, the better is the scp performance. In addition, we compared FTP performance. As FTP involves much less CPU workload, the speed instantly boosts to 19MB/s, while SCP is only 10MB/s for the same Xserve G4. Therefore, to tune the network performance, we should focus on each connection point instead of only looking at the switch or NIC. CPU and HD speed is also important. Traffic from machine A to B involves: 3333,3333,3333 (1) (2) (3) (4) A(HD) --> A(NIC) --> SWITCH --> B(NIC) --> B(HD) OptimaAll connection from 1 to 4 need to be checked and benchmarked carefully. Cheers, -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory --Apple-Mail-2--416486964-- From bioclusters@bioinformatics.org Sun Jul 11 19:14:12 2004 From: bioclusters@bioinformatics.org (Michael Dinsmore) Date: Sun, 11 Jul 2004 14:14:12 -0400 Subject: [Bioclusters] OS X and NFS In-Reply-To: <20040710160126.936F2D1F21@www.bioinformatics.org> References: <20040710160126.936F2D1F21@www.bioinformatics.org> Message-ID: <1D06B946-D366-11D8-A04B-000A95BE1014@mac.com> --Apple-Mail-7--406696190 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed An Apple Systems Engineer has expressed to me that Apple is aware that their implementation of NFS is lackluster, esp wrt to speed; and that they expect to improve it in 10.4 (due in 6-12 mos). OTOH, serving over AFP, Apple's native filesharing protocol, I have gotten excellent speeds. I understand that's not an option most of the time, but when it is feasible it's recommended. On Jul 10, 2004, at 12:01 PM, bioclusters-request@bioinformatics.org wrote: > The original query was on NFS, and how the Xserves were getting 12ish > MB/s on GB. This sounds suspiciously like someone somewhere is locked > into 100 Mb/s mode on a port they think is 1000 Mb/s. When running at > full tilt, a good NFS server implementation on 100 Mb links can source > about 11.7 - 12 MB/s. You would see similar performance from rcp in > this case. > -- mdinsmor@mail.nih.gov Michael Dinsmore--Macintosh Specialist Contractor for Digicon, supporting the National Human Genome Research Institute/NIH lan--301 402 7408 }{ desk--301 435 6161 -- Michael Dinsmore mdinsmore@mac.com Macintosh setup, configuration, support serving MD DC VA --Apple-Mail-7--406696190 Content-Transfer-Encoding: base64 Content-Type: application/pkcs7-signature; name=smime.p7s Content-Disposition: attachment; filename=smime.p7s MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIGFjCCAs8w ggI4oAMCAQICAwxkuDANBgkqhkiG9w0BAQQFADBiMQswCQYDVQQGEwJaQTElMCMGA1UEChMcVGhh d3RlIENvbnN1bHRpbmcgKFB0eSkgTHRkLjEsMCoGA1UEAxMjVGhhd3RlIFBlcnNvbmFsIEZyZWVt YWlsIElzc3VpbmcgQ0EwHhcNMDQwNTI3MTYxMjI2WhcNMDUwNTI3MTYxMjI2WjBDMR8wHQYDVQQD ExZUaGF3dGUgRnJlZW1haWwgTWVtYmVyMSAwHgYJKoZIhvcNAQkBFhFtZGluc21vcmVAbWFjLmNv bTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAKhIgACXhPPOMmcoFv0o1goTia/prE0O TiumJb0Sn+XCK0JhaDpXRji0i4XD665TtC58qpv3hdkDlHIwL45S4d/vcszZMf0DkWeGaNzJvwFJ jVO9Y3e9IHl7lGC1xPwaxXACc2jQmAaVgYGhE5cfZNysB8xDf8C1lEO4R+m5yXBqQG/7ck3HHQ+3 ZzaoO5XqGIfJCoUqMzbbqKYeK9arbv/LQRyYZ5wO6ZWcY+RC1UJV/5Ht4+rBkl0FHbibuXQ2DYzU lLdy5jolgYr9Ra0A/mjee6Hq6IlXK514vFye9Xf1grZy8TUgWKEmdi+mBdRvHkz4L7glMLOjfNsv TQreNOUCAwEAAaMuMCwwHAYDVR0RBBUwE4ERbWRpbnNtb3JlQG1hYy5jb20wDAYDVR0TAQH/BAIw ADANBgkqhkiG9w0BAQQFAAOBgQCpirhRC5ci4W176QWYPizx6dPhhHHtGhslTF0I0wZAUTA4m4PR nYkdfpvydoV2J9OUeV5zHlsJXQ0nPaNhhhjq11zZJgRpHEnQpXe6HXnU+KY2AD4LQ1QU27/BbOpp 16PfZNwLK/VwcSOjFG2dmTmLiSLZVy2kfw8SKxfbk3dgkzCCAz8wggKooAMCAQICAQ0wDQYJKoZI hvcNAQEFBQAwgdExCzAJBgNVBAYTAlpBMRUwEwYDVQQIEwxXZXN0ZXJuIENhcGUxEjAQBgNVBAcT CUNhcGUgVG93bjEaMBgGA1UEChMRVGhhd3RlIENvbnN1bHRpbmcxKDAmBgNVBAsTH0NlcnRpZmlj YXRpb24gU2VydmljZXMgRGl2aXNpb24xJDAiBgNVBAMTG1RoYXd0ZSBQZXJzb25hbCBGcmVlbWFp bCBDQTErMCkGCSqGSIb3DQEJARYccGVyc29uYWwtZnJlZW1haWxAdGhhd3RlLmNvbTAeFw0wMzA3 MTcwMDAwMDBaFw0xMzA3MTYyMzU5NTlaMGIxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3dGUg Q29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVyc29uYWwgRnJlZW1haWwg SXNzdWluZyBDQTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAxKY8VXNV+065yplaHmjAdQRw nd/p/6Me7L3N9VvyGna9fww6YfK/Uc4B1OVQCjDXAmNaLIkVcI7dyfArhVqqP3FWy688Cwfn8R+R NiQqE88r1fOCdz0Dviv+uxg+B79AgAJk16emu59l0cUqVIUPSAR/p7bRPGEEQB5kGXJgt/sCAwEA AaOBlDCBkTASBgNVHRMBAf8ECDAGAQH/AgEAMEMGA1UdHwQ8MDowOKA2oDSGMmh0dHA6Ly9jcmwu dGhhd3RlLmNvbS9UaGF3dGVQZXJzb25hbEZyZWVtYWlsQ0EuY3JsMAsGA1UdDwQEAwIBBjApBgNV HREEIjAgpB4wHDEaMBgGA1UEAxMRUHJpdmF0ZUxhYmVsMi0xMzgwDQYJKoZIhvcNAQEFBQADgYEA SIzRUIPqCy7MDaNmrGcPf6+svsIXoUOWlJ1/TCG4+DYfqi2fNi/A9BxQIJNwPP2t4WFiw9k6GX6E sZkbAMUaC4J0niVQlGLH2ydxVyWN3amcOY6MIE9lX5Xa9/eH1sYITq726jTlEBpbNU1341YheILc IRk13iSx0x1G/11fZU8xggLnMIIC4wIBATBpMGIxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3 dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVyc29uYWwgRnJlZW1h aWwgSXNzdWluZyBDQQIDDGS4MAkGBSsOAwIaBQCgggFTMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0B BwEwHAYJKoZIhvcNAQkFMQ8XDTA0MDcxMTE4MTQxM1owIwYJKoZIhvcNAQkEMRYEFDbOQckV/iOj L++vCLHj9zHGMbKiMHgGCSsGAQQBgjcQBDFrMGkwYjELMAkGA1UEBhMCWkExJTAjBgNVBAoTHFRo YXd0ZSBDb25zdWx0aW5nIChQdHkpIEx0ZC4xLDAqBgNVBAMTI1RoYXd0ZSBQZXJzb25hbCBGcmVl bWFpbCBJc3N1aW5nIENBAgMMZLgwegYLKoZIhvcNAQkQAgsxa6BpMGIxCzAJBgNVBAYTAlpBMSUw IwYDVQQKExxUaGF3dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVy c29uYWwgRnJlZW1haWwgSXNzdWluZyBDQQIDDGS4MA0GCSqGSIb3DQEBAQUABIIBABB55oBaCGMe cTaIwUEV+b6P+vsX+tlv5o6nkQcNbIc8f50jjv+oP5Zrki+VHrSZZ1xvvDar+S/UBmJQI1bRwdJM 5ltPr2dm9JFPmHyu7Mrm+bteAbcB0SVCRssadccWCvLV7LqxKbMwNcD7P8uQghHU2EPKi0xuIjRD QivJB3ho0zJhInR86AbrDeNu4u4NGL8HbCSamP6yVWYAdoJDwFe4ZjQd7PIJ3sqzDoJHiiArqDT7 WTYOva+RSYH/6bKGsJdZe5UnJrVjwBfSJu3SLSwopVaqLPmySFEnyjpfaKlWrOqkUuZfhB+a+noo afdGlxjo+my5IhGKQHhFt2dAv6AAAAAAAAA= --Apple-Mail-7--406696190-- From bioclusters@bioinformatics.org Mon Jul 12 01:55:45 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Mon, 12 Jul 2004 08:55:45 +0800 Subject: [Bioclusters] OS X and NFS In-Reply-To: <1D06B946-D366-11D8-A04B-000A95BE1014@mac.com> References: <20040710160126.936F2D1F21@www.bioinformatics.org> <1D06B946-D366-11D8-A04B-000A95BE1014@mac.com> Message-ID: <350C5DE8-D39E-11D8-94E8-000A95770F28@alumni.nus.edu.sg> --Apple-Mail-1--382604071 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed Agree with that. NFS is more or less troublesome in OSX, especially in 10.2, where the average speed is below 2-3 MB/s for our system. 10.3 has improved a lot already, but it is still not good enough as the main file sharing mechanism for OSX. AFP has some function limitations, as compared with NFS. For example, IP based authentication. Anyone with a valid account can mount the AFP shared volume and see the first level of file system, even they may not be able to enter it. -- Chen Peng Senior System Engineer Temasek Life Sciences Laboratory On Jul 12, 2004, at 2:14 AM, Michael Dinsmore wrote: > > An Apple Systems Engineer has expressed to me that Apple is aware that > their implementation of NFS is lackluster, esp wrt to speed; and that > they expect to improve it in 10.4 (due in 6-12 mos). > > OTOH, serving over AFP, Apple's native filesharing protocol, I have > gotten excellent speeds. I understand that's not an option most of > the time, but when it is feasible it's recommended. > > > \ --Apple-Mail-1--382604071 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII Agree with that. NFS is more or less troublesome in OSX, especially in 10.2, where the average speed is below 2-3 MB/s for our system. 10.3 has improved a lot already, but it is still not good enough as the main file sharing mechanism for OSX. AFP has some function limitations, as compared with NFS. For example, IP based authentication. Anyone with a valid account can mount the AFP shared volume and see the first level of file system, even they may not be able to enter it. -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory On Jul 12, 2004, at 2:14 AM, Michael Dinsmore wrote: An Apple Systems Engineer has expressed to me that Apple is aware that their implementation of NFS is lackluster, esp wrt to speed; and that they expect to improve it in 10.4 (due in 6-12 mos). OTOH, serving over AFP, Apple's native filesharing protocol, I have gotten excellent speeds. I understand that's not an option most of the time, but when it is feasible it's recommended. \ --Apple-Mail-1--382604071-- From bioclusters@bioinformatics.org Mon Jul 12 08:08:36 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 12 Jul 2004 03:08:36 -0400 Subject: [Bioclusters] Bioinformatics Benchmark System version 3 release candidate 1 ready Message-ID: <1089616116.27012.135.camel@protein.scalableinformatics.com> Folks: Much delayed as version 2 went through many rewrites, and we did not release early or often. This will be corrected. http://scalableinformatics.com/BBS/ and http://bioinformatics.org/bbs (they are identical) Much is new in version 3. 1) You no longer need to modify program source to setup your benchmark. A simple XML input file will do. 2) A number of examples are included. We need to document the format better, though if you read the format, you will see that it really isn't complex (this is what took so long oddly enough) 3) A bbsv1.xml input deck that replicates the original benchmarks from last year is included. 4) New baseline example tests have been created using HMMer, multiple BLAST runs, and others. Further baseline tests will be added (and suggestions are always welcome). We are looking at a number of codes including ClustalW, and various chemistry and proteomics codes. 5) Output in multiple formats: plain text, csv (comma separated values), and XML. 6) A dryrun option. Does everything but the final execution. Uses a random sleep rather than a run. Much more code, some of it hinting at things to come. Quite scalable: we ran 100 simultaneous tests on a laptop (learning some surprising things about DBM and performance loss in the process). Documentation has been created at least in the form of man pages. More documentation should be available soon, with details of the formats, configuration, and so forth The code is heavily commented. It is GPLed for GPL projects/products. For commercial products which need to be non-GPL and supported efforts, please contact us. Please give it a spin, and send us a note as to how you found it, what else you might like on it, and what tests you would like to see. If you want to contribute an idea for a test, or even better, a test, please send a note. If you want to help out on coding, please send a note as well. Thanks! -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Mon Jul 12 09:02:35 2004 From: bioclusters@bioinformatics.org (Tim Cutts) Date: Mon, 12 Jul 2004 09:02:35 +0100 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <1089560600.2792.68.camel@protein.scalableinformatics.com> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> <1089560600.2792.68.camel@protein.scalableinformatics.com> Message-ID: On 11 Jul 2004, at 4:43 pm, Joe Landman wrote: > You might get "faster" performance using a "kerberized" rcp, which will > encrypt the login portion but not the data. You might also look at > rsync and other methods as well, though if security is the primary > concern on the nodes, you probably want to stick with ssh. > You can, of course, also compile SSH to allow: -c none which gets you much the same effect. It removes a lot of the point of having ssh in the first place, though. :-) Tim -- Dr Tim Cutts Informatics Systems Group, Wellcome Trust Sanger Institute GPG: 1024D/E3134233 FE3D 6C73 BBD6 726A A3F5 860B 3CDD 3F56 E313 4233 From bioclusters@bioinformatics.org Mon Jul 12 19:36:18 2004 From: bioclusters@bioinformatics.org (Doug Shubert) Date: Mon, 12 Jul 2004 14:36:18 -0400 Subject: [Bioclusters] Bioinformatics Benchmark System version 3 release candidate 1 ready In-Reply-To: <1089616116.27012.135.camel@protein.scalableinformatics.com> References: <1089616116.27012.135.camel@protein.scalableinformatics.com> Message-ID: <40F2DA22.8010407@accessgate.net> Hello Joe, Getting a Module error. [root@opteron bbsv3rc1]# bbsrun --help Can't locate Object/MultiType.pm in ....... Was this Module compiled with bbs3? Doug Joe Landman wrote: >Folks: > > Much delayed as version 2 went through many rewrites, and we did not >release early or often. This will be corrected. > > http://scalableinformatics.com/BBS/ > >and > > http://bioinformatics.org/bbs > >(they are identical) > > Much is new in version 3. > >1) You no longer need to modify program source >to setup your benchmark. A simple XML input file will do. > >2) A number of examples are included. We need to document the >format better, though if you read the format, you will see >that it really isn't complex (this is what took so long >oddly enough) > >3) A bbsv1.xml input deck that replicates the original benchmarks from >last year is included. > >4) New baseline example tests have been created using HMMer, multiple >BLAST runs, and others. Further baseline tests will be added (and >suggestions are always welcome). We are looking at a number of codes >including ClustalW, and various chemistry and proteomics codes. > >5) Output in multiple formats: plain text, csv (comma separated values), >and XML. > >6) A dryrun option. Does everything but the final execution. Uses a >random sleep rather than a run. > >Much more code, some of it hinting at things to come. Quite scalable: >we ran 100 simultaneous tests on a laptop (learning some surprising >things about DBM and performance loss in the process). Documentation >has been created at least in the form of man pages. More documentation >should be available soon, with details of the formats, configuration, >and so forth > >The code is heavily commented. It is GPLed for GPL projects/products. >For commercial products which need to be non-GPL and supported efforts, >please contact us. > >Please give it a spin, and send us a note as to how you found it, what >else you might like on it, and what tests you would like to see. If you >want to contribute an idea for a test, or even better, a test, please >send a note. If you want to help out on coding, please send a note as >well. > >Thanks! > > > From bioclusters@bioinformatics.org Mon Jul 12 19:42:02 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 12 Jul 2004 14:42:02 -0400 Subject: [Bioclusters] Bioinformatics Benchmark System version 3 release candidate 1 ready In-Reply-To: <40F2DA22.8010407@accessgate.net> References: <1089616116.27012.135.camel@protein.scalableinformatics.com> <40F2DA22.8010407@accessgate.net> Message-ID: <40F2DB7A.1060808@scalableinformatics.com> Doug Shubert wrote: > Hello Joe, > Getting a Module error. > > [root@opteron bbsv3rc1]# bbsrun --help > Can't locate Object/MultiType.pm in ....... > > Was this Module compiled with bbs3? Hi Doug: Updated tarball fixed this. This module is a dependancy of XML::Smart, and was not caught on my initial pass. New tarball has it. Joe > > Doug > > Joe Landman wrote: > >> Folks: >> >> Much delayed as version 2 went through many rewrites, and we did not >> release early or often. This will be corrected. >> >> http://scalableinformatics.com/BBS/ >> >> and >> >> http://bioinformatics.org/bbs >> >> (they are identical) >> >> Much is new in version 3. >> >> 1) You no longer need to modify program source >> to setup your benchmark. A simple XML input file will do. >> 2) A number of examples are included. We need to document the >> format better, though if you read the format, you will see that it >> really isn't complex (this is what took so long >> oddly enough) >> >> 3) A bbsv1.xml input deck that replicates the original benchmarks from >> last year is included. >> >> 4) New baseline example tests have been created using HMMer, multiple >> BLAST runs, and others. Further baseline tests will be added (and >> suggestions are always welcome). We are looking at a number of codes >> including ClustalW, and various chemistry and proteomics codes. >> >> 5) Output in multiple formats: plain text, csv (comma separated values), >> and XML. >> >> 6) A dryrun option. Does everything but the final execution. Uses a >> random sleep rather than a run. >> Much more code, some of it hinting at things to come. Quite scalable: >> we ran 100 simultaneous tests on a laptop (learning some surprising >> things about DBM and performance loss in the process). Documentation >> has been created at least in the form of man pages. More documentation >> should be available soon, with details of the formats, configuration, >> and so forth >> >> The code is heavily commented. It is GPLed for GPL >> projects/products. For commercial products which need to be non-GPL >> and supported efforts, >> please contact us. >> >> Please give it a spin, and send us a note as to how you found it, what >> else you might like on it, and what tests you would like to see. If you >> want to contribute an idea for a test, or even better, a test, please >> send a note. If you want to help out on coding, please send a note as >> well. >> >> Thanks! >> >> >> > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Mon Jul 12 16:36:08 2004 From: bioclusters@bioinformatics.org (Jon Bernard) Date: Mon, 12 Jul 2004 10:36:08 -0500 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <51451B1C-D34F-11D8-935E-000A95770F28@tll.org.sg> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> <51451B1C-D34F-11D8-935E-000A95770F28@tll.org.sg> Message-ID: <40F2AFE8.7090904@uab.edu> Something like pax -w | ssh somehost 'pax -r' has the same effect as scp, but transfers files much more quickly. My quick testing has also shown pax to be somewhat faster than tar in this case. Jon Bernard Peng Chen wrote: > Surprisingly, the SCP performance is heavily bound to CPU power. In > the following table we compared performance among four different > machines. Note that this is NOT benchmark, we use this table only to > understand where is the bottleneck. From bioclusters@bioinformatics.org Mon Jul 12 16:36:34 2004 From: bioclusters@bioinformatics.org (Rene Storm) Date: Mon, 12 Jul 2004 17:36:34 +0200 Subject: [Bioclusters] Ethernet Performance Message-ID: <200407121736.34360.rene.storm@emplics.com> Hi Bioclusters, maybe http://www.theether.org/pcp/ is a solution for you. It's very good for distributing files to a whole cluster. copy a testfile (1GB) from one frontend to 32 Nodes with gigaethernet (e1000) real 0m46.179s datasize 32x1024MB ------------------------- ~ 709 MB/sec copy a testfile (1GB) from one frontend to 32 Nodes with myrinet2k real 0m23.202s datasize 32x1024MB ------------------------- ~1423 MB/sec With pcp it is important to have a real good gigabit backplane or if you got an even better a full-crossbar myrinet switch. Overview pcp is a system for replicating files on multiple nodes of a PC cluster. Replication is done by building an n-ary tree of TCP sockets and using parallelized, pipelined data transfers which use RSA authentication. For large file transfers or replication on many nodes, pcp provides highly efficient data transfers when compared to existing alternatives (e.g., NFS). -- Regards, Rene Storm emplics AG From bioclusters@bioinformatics.org Mon Jul 12 20:49:09 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 12 Jul 2004 15:49:09 -0400 Subject: [Bioclusters] gigabit ethernet performance In-Reply-To: <40F2AFE8.7090904@uab.edu> References: <200407091657.i69Gvu6c010282@biochem.uthscsa.edu> <20040710094039.T49319@ns1.aldrich.com.my> <1089426814.4561.31.camel@protein.scalableinformatics.com> <8F24F8C0-D24A-11D8-8D5B-000A95770F28@alumni.nus.edu.sg> <3FA325E3-D27C-11D8-BD57-0003934BB33A@umich.edu> <51451B1C-D34F-11D8-935E-000A95770F28@tll.org.sg> <40F2AFE8.7090904@uab.edu> Message-ID: <40F2EB35.1030904@scalableinformatics.com> Jon Bernard wrote: > Something like > > pax -w | ssh somehost 'pax -r' > > has the same effect as scp, but transfers files much more quickly. Thats odd, as scp and ssh both share the same encryption engines, and encrypt all traffic. May I ask how you measured this? > > My quick testing has also shown pax to be somewhat faster than tar in > this case. > > Jon Bernard > > Peng Chen wrote: > >> Surprisingly, the SCP performance is heavily bound to CPU power. In >> the following table we compared performance among four different >> machines. Note that this is NOT benchmark, we use this table only to >> understand where is the bottleneck. > > > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Mon Jul 12 21:51:33 2004 From: bioclusters@bioinformatics.org (Doug Shubert) Date: Mon, 12 Jul 2004 16:51:33 -0400 Subject: [Bioclusters] Bioinformatics Benchmark System version 3 release candidate 1 ready In-Reply-To: <40F2DB7A.1060808@scalableinformatics.com> References: <1089616116.27012.135.camel@protein.scalableinformatics.com> <40F2DA22.8010407@accessgate.net> <40F2DB7A.1060808@scalableinformatics.com> Message-ID: <40F2F9D5.9090902@accessgate.net> ok the latest 'bbsv3rc1.tar.gz' installed without an error. running the 'bbsv1.xml' benchmark now and will post the results. which file(s) are of interest to the list? Thanks Doug Joe Landman wrote: > Doug Shubert wrote: > >> Hello Joe, >> Getting a Module error. >> >> [root@opteron bbsv3rc1]# bbsrun --help >> Can't locate Object/MultiType.pm in ....... >> >> Was this Module compiled with bbs3? > > > From bioclusters@bioinformatics.org Mon Jul 12 22:47:41 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 12 Jul 2004 17:47:41 -0400 Subject: [Bioclusters] Bioinformatics Benchmark System version 3 release candidate 1 ready In-Reply-To: <40F2F9D5.9090902@accessgate.net> References: <1089616116.27012.135.camel@protein.scalableinformatics.com> <40F2DA22.8010407@accessgate.net> <40F2DB7A.1060808@scalableinformatics.com> <40F2F9D5.9090902@accessgate.net> Message-ID: <40F306FD.3060607@scalableinformatics.com> Hi Doug: All of them of course :). More exactly, could you use the optimized HMMer and BLAST code from http://downloads.scalableinformatics.com/, and compare to locally compiled versions, and to "vendor" provided versions (e.g. from Professor Eddy's and the NCBI site respectively) ? Also, could you let me know how hard/easy it is to tweak tests to your liking? We are working on documentation, and have feedback from at least one person who doesn't like XML. The idea is that good constructive criticism (and contribution) will help improve the tool, so if you have an idea on how to improve the input formatting, this would help everyone. Even better is if you have some code to implement the idea :) The HMMer tests need relabeling (my bad, I forgot to do this), and the long one takes about 18000 seconds on a 2.6 GHz P4 Xeon. Somewhat less on the Opteron. Would like to see it on the G5 with and without vectorization :) Joe Doug Shubert wrote: > ok the latest 'bbsv3rc1.tar.gz' installed without an error. > running the 'bbsv1.xml' benchmark now and will post the results. > which file(s) are of interest to the list? > > Thanks > Doug > -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Mon Jul 12 23:52:02 2004 From: bioclusters@bioinformatics.org (Michael Gutteridge) Date: Mon, 12 Jul 2004 15:52:02 -0700 Subject: [Bioclusters] web based bioinformatics application interface Message-ID: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> Hi all... Hopefully this isn't too far off the charter... my apologies if it is, but this seems to be a good community for this question. One of the services I'd like to be able to provide to our users is a web-based front end to many of the different applications (blast, clustal*, etc. running on our Torque/Maui cluster) to allow greater access to those in the community that are intimidated by the Unix shell. I'm thinking of a web page that allows a user to log in, choose an application, and fill in a form (containing arguments, options, and filenames) to have a job run on the cluster. On a one-by-one basis, this isn't a huge deal, but it got me to thinking about generalizing the problem. What I think would be Really Cool (tm) is to have a web-based application that would read a configuration file that "knows" how the underlying application functions, present various form elements as appropriate for the options & arguments of the underlying application, then handle wrapping in a qsub to the cluster. So, for application "foo" taking options "bar" and "baz " you'd write something that had information about those options: foo Some application ( Yeah- really poor approximation of XML there, but hopefully that gives the general gist. Wouldn't need to be XML, either, just seemed apropos) Anyway, the web-application reads that and generates a page with a checkbox for the "bar" option, a checkbox and text-input box for the "baz" option, etc. So the web-application does some input validation before the commands are generated. Any suggestions here? Anyone used or seen something like this? Even some google search words would be helpful (haven't found the combination of words that return anything useful so far). Thanks much! Michael Michael Gutteridge Fred Hutchinson Cancer Research Ctr. System Administrator mgutteri@fhcrc.org From bioclusters@bioinformatics.org Tue Jul 13 00:29:24 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 12 Jul 2004 19:29:24 -0400 Subject: [Bioclusters] web based bioinformatics application interface In-Reply-To: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> References: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> Message-ID: <40F31ED4.2070405@scalableinformatics.com> Hi Michael: Such a thing exists and it is called Pise. See http://www.pasteur.fr/recherche/unites/sis/Pise/ and in short order (hopefully) you will be able to pull a nice RPM for it from Luc's page http://www.biolinux.org/ . If you don't like this interface, have a look at http://genome.tugraz.at/Software/ClusterControl/ . There are other under development including http://www.mygrid.org.uk/ and various portal based things about. There are even a few commercial implementations of the above, though the original open source codes are evolving rapidly. Joe Michael Gutteridge wrote: > Hi all... > > Hopefully this isn't too far off the charter... my apologies if it is, > but this seems to be a good community for this question. > > One of the services I'd like to be able to provide to our users is a > web-based front end to many of the different applications (blast, > clustal*, etc. running on our Torque/Maui cluster) to allow greater > access to those in the community that are intimidated by the Unix > shell. I'm thinking of a web page that allows a user to log in, > choose an application, and fill in a form (containing arguments, > options, and filenames) to have a job run on the cluster. > > On a one-by-one basis, this isn't a huge deal, but it got me to > thinking about generalizing the problem. > > What I think would be Really Cool (tm) is to have a web-based > application that would read a configuration file that "knows" how the > underlying application functions, present various form elements as > appropriate for the options & arguments of the underlying application, > then handle wrapping in a qsub to the cluster. > > So, for application "foo" taking options "bar" and "baz " > you'd write something that had information about those options: > > > foo > Some application > > > > > ( Yeah- really poor approximation of XML there, but hopefully that > gives the general gist. Wouldn't need to be XML, either, just seemed > apropos) > > Anyway, the web-application reads that and generates a page with a > checkbox for the "bar" option, a checkbox and text-input box for the > "baz" option, etc. So the web-application does some input validation > before the commands are generated. > > Any suggestions here? Anyone used or seen something like this? Even > some google search words would be helpful (haven't found the > combination of words that return anything useful so far). > > Thanks much! > > Michael > > Michael Gutteridge Fred Hutchinson Cancer Research Ctr. > System Administrator mgutteri@fhcrc.org > > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Tue Jul 13 02:27:08 2004 From: bioclusters@bioinformatics.org (J.W. Bizzaro) Date: Mon, 12 Jul 2004 21:27:08 -0400 Subject: [Bioclusters] web based bioinformatics application interface In-Reply-To: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> References: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> Message-ID: <40F33A6C.8020309@bioinformatics.org> Hi Michael. As Joe has done, I would point you to Pise, perhaps the best known Web interface for bioinformatic applications. And I will add BioMOBY to that (http://www.biomoby.org/), which is more infrastructure-related. Catherine Letondal is involved in both projects, BTW. I'll also mention my own project, since it matches your description. Piper (http://bioinformatics.org/piper/) began back in 1998 with a lot of the same goals as BioMOBY and MyGrid. I gave a presentation about it at BOSC 2000. The original concept also very closely matches that of SciCraft (http://www.scicraft.org/), Taverna (http://taverna.sourceforge.net/) (part of MyGrid) and the commercial application VIBE, from Incogen. But, these are native desktop applications. Scaled-back goals will make the new Piper (to be renamed "Pipet") a Web-based system. Please see the website for more information. Cheers. Jeff -- J.W. Bizzaro Bioinformatics Organization, Inc. (Bioinformatics.Org) E-mail: jeff@bioinformatics.org Phone: +1 508 890 8600 -- From bioclusters@bioinformatics.org Tue Jul 13 03:00:49 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Tue, 13 Jul 2004 10:00:49 +0800 Subject: [Bioclusters] Ethernet Performance In-Reply-To: <200407121736.34360.rene.storm@emplics.com> References: <200407121736.34360.rene.storm@emplics.com> Message-ID: <7689B35B-D470-11D8-8080-000A95770F28@alumni.nus.edu.sg> --Apple-Mail-12--292299884 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed This seems to be an interesting software. We in TLL implemented a similar solution for parallel data synchronization, but your statistics is really surprising to us. For a gigabit ethernet, the switch can handle at most 100MB/s (~=1000mbps) in theory. How can it achieve 709MB/s with PCP? -- Chen Peng Senior System Engineer Temasek Life Sciences Laboratory On 12-Jul-04, at PM 11:36, Rene Storm wrote: > Hi Bioclusters, > > maybe > http://www.theether.org/pcp/ > is a solution for you. > It's very good for distributing files to a whole cluster. > > copy a testfile (1GB) from one frontend to 32 Nodes with gigaethernet > (e1000) > real 0m46.179s > datasize 32x1024MB > ------------------------- > ~ 709 MB/sec > > copy a testfile (1GB) from one frontend to 32 Nodes with myrinet2k > real 0m23.202s > datasize 32x1024MB > ------------------------- > ~1423 MB/sec > > With pcp it is important to have a real good gigabit backplane or if > you got > an even better a full-crossbar myrinet switch. > > Overview > pcp is a system for replicating files on multiple nodes of a PC > cluster. > Replication is done by building an n-ary tree of TCP sockets and using > parallelized, pipelined data transfers which use RSA authentication. > For > large file transfers or replication on many nodes, pcp provides highly > efficient data transfers when compared to existing alternatives (e.g., > NFS). > -- > > Regards, > > Rene Storm > emplics AG > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > -- > This message has been scanned for viruses and > dangerous content by MailScanner, and is > believed to be clean. > --Apple-Mail-12--292299884 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII This seems to be an interesting software. We in TLL implemented a similar solution for parallel data synchronization, but your statistics is really surprising to us. For a gigabit ethernet, the switch can handle at most 100MB/s (~=1000mbps) in theory. How can it achieve 709MB/s with PCP? -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory On 12-Jul-04, at PM 11:36, Rene Storm wrote: Hi Bioclusters, maybe http://www.theether.org/pcp/ is a solution for you. It's very good for distributing files to a whole cluster. copy a testfile (1GB) from one frontend to 32 Nodes with gigaethernet (e1000) real 0m46.179s datasize 32x1024MB ------------------------- ~ 709 MB/sec copy a testfile (1GB) from one frontend to 32 Nodes with myrinet2k real 0m23.202s datasize 32x1024MB ------------------------- ~1423 MB/sec With pcp it is important to have a real good gigabit backplane or if you got an even better a full-crossbar myrinet switch. Overview pcp is a system for replicating files on multiple nodes of a PC cluster. Replication is done by building an n-ary tree of TCP sockets and using parallelized, pipelined data transfers which use RSA authentication. For large file transfers or replication on many nodes, pcp provides highly efficient data transfers when compared to existing alternatives (e.g., NFS). -- Regards, Rene Storm emplics AG _______________________________________________ Bioclusters maillist - Bioclusters@bioinformatics.org https://bioinformatics.org/mailman/listinfo/bioclusters -- This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean. --Apple-Mail-12--292299884-- From bioclusters@bioinformatics.org Tue Jul 13 04:11:10 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 12 Jul 2004 23:11:10 -0400 Subject: [Bioclusters] Ethernet Performance In-Reply-To: <7689B35B-D470-11D8-8080-000A95770F28@alumni.nus.edu.sg> References: <200407121736.34360.rene.storm@emplics.com> <7689B35B-D470-11D8-8080-000A95770F28@alumni.nus.edu.sg> Message-ID: <40F352CE.1050709@scalableinformatics.com> PCP and similar codes build tree structures out of their connections. Each node in the tree has an incoming connection to its parent, and outgoing connections (2 or possibly more) to neighbors. Each bucket (not packet, but container of data), is moved along the tree, stored at a node, and retransmitted to its leaves (if any). This code and similar codes effectively diffuse the data to the edges of the tree. If you measure the total amount of data moved to the nodes of the network, and divide by the total transfer (or diffusion) time, you will get the transfer rate. This rate increases as the size of the network increases. At some point, the rate of data transfer may become comparible to the switch backplane bandwidth( the amount of data you can push through the switch per unit time). Joe Chen Peng wrote: > This seems to be an interesting software. > > We in TLL implemented a similar solution for parallel data > synchronization, but your statistics is really surprising to us. For a > gigabit ethernet, the switch can handle at most 100MB/s (~=1000mbps) > in theory. How can it achieve 709MB/s with PCP? > > -- > Chen Peng > Senior System Engineer > Temasek Life Sciences Laboratory > On 12-Jul-04, at PM 11:36, Rene Storm wrote: > > Hi Bioclusters, > > maybe > http://www.theether.org/pcp/ > is a solution for you. > It's very good for distributing files to a whole cluster. > > copy a testfile (1GB) from one frontend to 32 Nodes with > gigaethernet (e1000) > real 0m46.179s > datasize 32x1024MB > ------------------------- > ~ 709 MB/sec > > copy a testfile (1GB) from one frontend to 32 Nodes with myrinet2k > real 0m23.202s > datasize 32x1024MB > ------------------------- > ~1423 MB/sec > > With pcp it is important to have a real good gigabit backplane or > if you got > an even better a full-crossbar myrinet switch. > > Overview > pcp is a system for replicating files on multiple nodes of a PC > cluster. > Replication is done by building an n-ary tree of TCP sockets and > using > parallelized, pipelined data transfers which use RSA > authentication. For > large file transfers or replication on many nodes, pcp provides > highly > efficient data transfers when compared to existing alternatives > (e.g., NFS). > -- > > Regards, > > Rene Storm > emplics AG > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > -- > This message has been scanned for viruses and > dangerous content by MailScanner, and is > believed to be clean. > -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Tue Jul 13 04:39:13 2004 From: bioclusters@bioinformatics.org (Chen Peng) Date: Tue, 13 Jul 2004 11:39:13 +0800 Subject: [Bioclusters] Ethernet Performance In-Reply-To: <40F352CE.1050709@scalableinformatics.com> References: <200407121736.34360.rene.storm@emplics.com> <7689B35B-D470-11D8-8080-000A95770F28@alumni.nus.edu.sg> <40F352CE.1050709@scalableinformatics.com> Message-ID: <35B2DCD2-D47E-11D8-8080-000A95770F28@alumni.nus.edu.sg> --Apple-Mail-13--286395712 Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII; format=flowed -- Chen Peng Senior System Engineer Temasek Life Sciences Laboratory On 13-Jul-04, at AM 11:11, Joe Landman wrote: > PCP and similar codes build tree structures out of their connections. > Each node in the tree has an incoming connection to its parent, and > outgoing connections (2 or possibly more) to neighbors. Each bucket > (not packet, but container of data), is moved along the tree, stored > at a node, and retransmitted to its leaves (if any). This code and > similar codes effectively diffuse the data to the edges of the tree. > That's exactly what we did for our cluster. However, we made it at at higher leverl with rsync. Basically when a node finishes synchronization, it can serve others as the golden copy. We automated the process and paralleled rysnc across the cluster. For our 64 nodes cluster, it generally speeds up by 800% - 900%. As you have explained, there is a limitation set by the switch. We are using gigabit ethernet and one 700 MB file can be "parallel sync-ed" to the 64-node cluster in 10-12 minutes, where the average speed is 70-80MB/sec. > If you measure the total amount of data moved to the nodes of the > network, and divide by the total transfer (or diffusion) time, you > will get the transfer rate. This rate increases as the size of the > network increases. At some point, the rate of data transfer may > become comparible to the switch backplane bandwidth( the amount of > data you can push through the switch per unit time). > Joe --Apple-Mail-13--286395712 Content-Transfer-Encoding: 7bit Content-Type: text/enriched; charset=US-ASCII -- Chen Peng < Senior System Engineer Temasek Life Sciences Laboratory On 13-Jul-04, at AM 11:11, Joe Landman wrote: PCP and similar codes build tree structures out of their connections. Each node in the tree has an incoming connection to its parent, and outgoing connections (2 or possibly more) to neighbors. Each bucket (not packet, but container of data), is moved along the tree, stored at a node, and retransmitted to its leaves (if any). This code and similar codes effectively diffuse the data to the edges of the tree. That's exactly what we did for our cluster. However, we made it at at higher leverl with rsync. Basically when a node finishes synchronization, it can serve others as the golden copy. We automated the process and paralleled rysnc across the cluster. For our 64 nodes cluster, it generally speeds up by 800% - 900%. As you have explained, there is a limitation set by the switch. We are using gigabit ethernet and one 700 MB file can be "parallel sync-ed" to the 64-node cluster in 10-12 minutes, where the average speed is 70-80MB/sec. If you measure the total amount of data moved to the nodes of the network, and divide by the total transfer (or diffusion) time, you will get the transfer rate. This rate increases as the size of the network increases. At some point, the rate of data transfer may become comparible to the switch backplane bandwidth( the amount of data you can push through the switch per unit time). Joe --Apple-Mail-13--286395712-- From bioclusters@bioinformatics.org Tue Jul 13 08:56:55 2004 From: bioclusters@bioinformatics.org (Tim Cutts) Date: Tue, 13 Jul 2004 08:56:55 +0100 Subject: [Bioclusters] Ethernet Performance In-Reply-To: <35B2DCD2-D47E-11D8-8080-000A95770F28@alumni.nus.edu.sg> References: <200407121736.34360.rene.storm@emplics.com> <7689B35B-D470-11D8-8080-000A95770F28@alumni.nus.edu.sg> <40F352CE.1050709@scalableinformatics.com> <35B2DCD2-D47E-11D8-8080-000A95770F28@alumni.nus.edu.sg> Message-ID: <35627D7C-D4A2-11D8-8BFD-000A95B2B140@sanger.ac.uk> On 13 Jul 2004, at 4:39 am, Chen Peng wrote: > That's exactly what we did for our cluster. However, we made it at at > higher leverl with rsync. Basically when a node finishes > synchronization, it can serve others as the golden copy. We automated > the process and paralleled rysnc across the cluster. For our 64 nodes > cluster, it generally speeds up by 800% - 900%. > > As you have explained, there is a limitation set by the switch. We > are using gigabit ethernet and one 700 MB file can be "parallel > sync-ed" to the 64-node cluster in 10-12 minutes, where the average > speed is 70-80MB/sec. We use tree-based rsync as well, to our 1000 node cluster, but it still takes an age, especially since almost 800 of the nodes are only 100 MBit connected, and even that is oversubscribed -- each chassis of 24 RLX blades only has a single 100 MBit uplink to the rest of the network, so we do as you do, and push to one node within each chassis, and then have that node rsync to the others in its chassis. But a full update of the complete 70 GB local data filesystem still takes a couple of days. However, due to the nature of the code, we don't have total downtime for those two days - our rsync scripts open each node to jobs as it completes receiving its data, so we always have *some* machines available for work. As some of you will have seen from Guy's presentation at the Bioclusters workshop, we're moving towards the use of cluster filesystems like GPFS, GFS or Lustre to get around this problem. Tim -- Dr Tim Cutts Informatics Systems Group, Wellcome Trust Sanger Institute GPG: 1024D/E3134233 FE3D 6C73 BBD6 726A A3F5 860B 3CDD 3F56 E313 4233 From bioclusters@bioinformatics.org Tue Jul 13 12:11:47 2004 From: bioclusters@bioinformatics.org (Chris Dagdigian) Date: Tue, 13 Jul 2004 07:11:47 -0400 Subject: [Bioclusters] web based bioinformatics application interface In-Reply-To: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> References: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> Message-ID: <40F3C373.9010902@sonsorol.org> PISE does exactly what you are thinking about :) http://www.pasteur.fr/recherche/unites/sis/Pise/ Regards, Chris Michael Gutteridge wrote: > Hi all... > > Hopefully this isn't too far off the charter... my apologies if it is, > but this seems to be a good community for this question. > > One of the services I'd like to be able to provide to our users is a > web-based front end to many of the different applications (blast, > clustal*, etc. running on our Torque/Maui cluster) to allow greater > access to those in the community that are intimidated by the Unix > shell. I'm thinking of a web page that allows a user to log in, choose > an application, and fill in a form (containing arguments, options, and > filenames) to have a job run on the cluster. > > On a one-by-one basis, this isn't a huge deal, but it got me to thinking > about generalizing the problem. > > What I think would be Really Cool (tm) is to have a web-based > application that would read a configuration file that "knows" how the > underlying application functions, present various form elements as > appropriate for the options & arguments of the underlying application, > then handle wrapping in a qsub to the cluster. > > So, for application "foo" taking options "bar" and "baz " > you'd write something that had information about those options: > > > foo > Some application > > > > > ( Yeah- really poor approximation of XML there, but hopefully that gives > the general gist. Wouldn't need to be XML, either, just seemed apropos) > > Anyway, the web-application reads that and generates a page with a > checkbox for the "bar" option, a checkbox and text-input box for the > "baz" option, etc. So the web-application does some input validation > before the commands are generated. > > Any suggestions here? Anyone used or seen something like this? Even > some google search words would be helpful (haven't found the combination > of words that return anything useful so far). > > Thanks much! > > Michael > > Michael Gutteridge Fred Hutchinson Cancer Research Ctr. > System Administrator mgutteri@fhcrc.org > > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters From bioclusters@bioinformatics.org Tue Jul 13 08:51:26 2004 From: bioclusters@bioinformatics.org (Rene Storm) Date: Tue, 13 Jul 2004 09:51:26 +0200 Subject: [Bioclusters] Ethernet Performance Message-ID: <200407130951.26505.rene.storm@emplics.com> HI, First to the 709 MB/sec. Please read the answer from joe, there is nothing more to say about it. But tree-copy-rsync sounds very interesting. We have tested stuff like msync, a multicast rsync tool, but it seems msync does loose to many connections and you got trouble with corupt data. We also played around with mpi I/O to copy files, but this seems to be very slow. Is there someone brave out there with pvfs2 performance results? Regards -- Rene Storm software engineer From bioclusters@bioinformatics.org Tue Jul 13 14:55:21 2004 From: bioclusters@bioinformatics.org (Juan Perin) Date: Tue, 13 Jul 2004 09:55:21 -0400 Subject: [Bioclusters] web based bioinformatics application interface In-Reply-To: <16FFCC80-D456-11D8-9D90-000D93283324@fhcrc.org> Message-ID: Micheal, I'm sure most people are now aware of Bioteams Inquiry package. It is being sold as a commercial package, but at a very discounted rate for academic and non-profit institutions. http://www.bioteam.net/inquiry is the link to their site. They actually implement PISE along with an XML definition configuration, as you imagined, and include a large number of all the most popular Bioinformatics tools. We currently purchased this with an Apple cluster and... So far so good. They also vectorize much of the source code for the PPC chips, and whenever possible they are made to take advantage of 'grid engine' and the ability to run these programs across a cluster or several machines within the 'grid'. -juan On 7/12/04 6:52 PM, "Michael Gutteridge" wrote: > Hi all... > > Hopefully this isn't too far off the charter... my apologies if it is, > but this seems to be a good community for this question. > > One of the services I'd like to be able to provide to our users is a > web-based front end to many of the different applications (blast, > clustal*, etc. running on our Torque/Maui cluster) to allow greater > access to those in the community that are intimidated by the Unix > shell. I'm thinking of a web page that allows a user to log in, choose > an application, and fill in a form (containing arguments, options, and > filenames) to have a job run on the cluster. > > On a one-by-one basis, this isn't a huge deal, but it got me to > thinking about generalizing the problem. > > What I think would be Really Cool (tm) is to have a web-based > application that would read a configuration file that "knows" how the > underlying application functions, present various form elements as > appropriate for the options & arguments of the underlying application, > then handle wrapping in a qsub to the cluster. > > So, for application "foo" taking options "bar" and "baz " > you'd write something that had information about those options: > > > foo > Some application > > > > > ( Yeah- really poor approximation of XML there, but hopefully that > gives the general gist. Wouldn't need to be XML, either, just seemed > apropos) > > Anyway, the web-application reads that and generates a page with a > checkbox for the "bar" option, a checkbox and text-input box for the > "baz" option, etc. So the web-application does some input validation > before the commands are generated. > > Any suggestions here? Anyone used or seen something like this? Even > some google search words would be helpful (haven't found the > combination of words that return anything useful so far). > > Thanks much! > > Michael > > Michael Gutteridge Fred Hutchinson Cancer Research Ctr. > System Administrator mgutteri@fhcrc.org > > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > From bioclusters@bioinformatics.org Tue Jul 13 15:15:37 2004 From: bioclusters@bioinformatics.org (Tim Cutts) Date: Tue, 13 Jul 2004 15:15:37 +0100 Subject: [Bioclusters] Ethernet Performance In-Reply-To: <200407130951.26505.rene.storm@emplics.com> References: <200407130951.26505.rene.storm@emplics.com> Message-ID: <1CB4247B-D4D7-11D8-9D75-000A95B2B140@sanger.ac.uk> On 13 Jul 2004, at 8:51 am, Rene Storm wrote: > > Is there someone brave out there with pvfs2 performance results? > No, but Guy's talk from Bioclusters will tell you our experiences with IBM's GPFS. Each chassis of 14 blades has its blastable data on a 600 GB GPFS filesystem shared across all the machines. Performance often actually exceeds that of the local disks that contribute to the filesystem (gigabit ethernet has better bandwidth than a local 2.5" IDE disk, after all) Here's his talk: http://labs.bioinformatics.org/bioclusters/2004/coates-bioclusters- talk.pdf Tim -- Dr Tim Cutts Informatics Systems Group, Wellcome Trust Sanger Institute GPG: 1024D/E3134233 FE3D 6C73 BBD6 726A A3F5 860B 3CDD 3F56 E313 4233 From bioclusters@bioinformatics.org Wed Jul 14 04:59:01 2004 From: bioclusters@bioinformatics.org (Vo Cam Quy) Date: Wed, 14 Jul 2004 10:59:01 +0700 Subject: [Bioclusters] Help about mpiBLAST install Message-ID: <20040714035659.M1013@hcmuns.edu.vn> When I install mpiBLAST, i get this error: > /bin/sh: line 1: mpiCC: command not found I don't know how to setup PATH to be able to locate mpiCC. Could you help me? Thank you, -- Vo Cam Quy Vietnam National University - Ho Chi Minh city University of Natural Sciences - http://www.hcmuns.edu.vn/ From bioclusters@bioinformatics.org Wed Jul 14 16:16:14 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Wed, 14 Jul 2004 11:16:14 -0400 Subject: [Bioclusters] Help about mpiBLAST install In-Reply-To: <20040714035659.M1013@hcmuns.edu.vn> References: <20040714035659.M1013@hcmuns.edu.vn> Message-ID: <1089818174.2798.53.camel@protein.scalableinformatics.com> Your mpicc or mpiCC should be installed with your mpich or LAM package. If you want binary RPMs (precompiled) for mpiBLAST, you may download them from http://downloads.scalableinformatics.com/downloads/mpiblast If you want to build it yourself, make sure you have mpich or LAM installed. Once you have a working MPI installed, the mpicc and mpiCC should be in your mpich/LAM binary path. If you are using SuSE, it will be in something like /opt/mpich/bin/, if you are using RedHat or a variant, it could be in a number of places, usually /usr/local/bin. If you are using another distribution, you might try locate mpicc and locate mpiCC if you have a working install of slocate. Joe On Tue, 2004-07-13 at 23:59, Vo Cam Quy wrote: > When I install mpiBLAST, i get this error: > > /bin/sh: line 1: mpiCC: command not found > I don't know how to setup PATH to be able to locate mpiCC. > > Could you help me? > Thank you, > -- > Vo Cam Quy > Vietnam National University - Ho Chi Minh city > University of Natural Sciences - http://www.hcmuns.edu.vn/ > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Thu Jul 15 04:25:07 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Thu, 15 Jul 2004 11:25:07 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: Hi, I tried to run mpiblast with this command : mpirun -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d ecoli.nt -i /root/test.fas -o blast_results.txt But it gave me this error: mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or directory cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': Permission denied Error opening /root/blast/ecoli.ntChNsWp.nal With mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d ecoli.nt -i /root/test.fas -o blast_results.txt 24491 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n0 (o) 18435 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n1 blastall -p blastn -i /root/test.fas -o blast_test.txt -d /mnt/pvfs/ecoli.nt [blastall] FATAL ERROR: blast: Unable to open output file blast_results.txt Temp name base: /tmp/blast/ecoli.ntXXXXXX Got temp name: /tmp/blast/ecoli.ntrZvzGm mv: Cannot stat '/tmp/blast/ecoli.ntrZvzGm': No such file or directory Temp name base: /tmp/blast/blast_results.txt.1XXXXXX Got temp name: /tmp/blast/blast_results.txt.1E6sMMp Temp name base: /tmp/blast/test.fas.XXXXXX Got temp name: /tmp/blast/test.fas.B9Y1Ss blastall -p blastn -z 4652914 -i /tmp/blast/test.fasB9Y1Ss -0 /tmp/blast/blast_results.txt.1E6sMMp -d /tmp/blast/ecoli.ntrZvzGm -J -o /dev/null Sending 0 fragments. Fragment list sent. waiting for file size broadcast MPI_Recv: process in local group is dead (rank 1, MPI_COMM_WORLD) RANK ( 1, MPI_COMM_WORLD): call stack withinLAM: RANK ( 1, MPI_COMM_WORLD): - MPI_Recv() RANK ( 1, MPI_COMM_WORLD): - MPI_BCast() RANK ( 1, MPI_COMM_WORLD): - main() Does anyone knows what is the problem with it? Thank you _________________________________________________________________ Get 10mb of inbox space with MSN Hotmail Extra Storage http://join.msn.com/?pgmarket=en-sg From bioclusters@bioinformatics.org Thu Jul 15 04:44:14 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Wed, 14 Jul 2004 23:44:14 -0400 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: References: Message-ID: <1089863053.2798.149.camel@protein.scalableinformatics.com> You might want to use our run_mpiblast script. It handles the details of existence and permissions testing, and could help you debug this better. Looking at the output, I would guess: 1) write permissions. It looks like you should probably be running this as a user, and not as root. 2) You should probably be working in a temporary directory. What basically happened is a typical error cascade. When you get these, ignore the ones at the end. They are the result of the ones at the beginning. I would suggest running this as a user, and not as root. I would also suggest getting http://scalableinformatics.com/run_mpiblast.html and the script http://downloads.scalableinformatics.com/downloads/run_mpiblast and the rc file http://downloads.scalableinformatics.com/downloads/run_mpiblastrc . Joe On Wed, 2004-07-14 at 23:25, kenix y wrote: > Hi, I tried to run mpiblast with this command : > mpirun -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > ecoli.nt -i /root/test.fas -o blast_results.txt > > But it gave me this error: > mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or directory > cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': Permission > denied > Error opening /root/blast/ecoli.ntChNsWp.nal > > With mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > ecoli.nt -i /root/test.fas -o blast_results.txt > > 24491 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n0 (o) > 18435 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n1 > blastall -p blastn -i /root/test.fas -o blast_test.txt -d /mnt/pvfs/ecoli.nt > [blastall] FATAL ERROR: blast: Unable to open output file blast_results.txt > > Temp name base: /tmp/blast/ecoli.ntXXXXXX > Got temp name: /tmp/blast/ecoli.ntrZvzGm > mv: Cannot stat '/tmp/blast/ecoli.ntrZvzGm': No such file or directory > Temp name base: /tmp/blast/blast_results.txt.1XXXXXX > Got temp name: /tmp/blast/blast_results.txt.1E6sMMp > Temp name base: /tmp/blast/test.fas.XXXXXX > Got temp name: /tmp/blast/test.fas.B9Y1Ss > blastall -p blastn -z 4652914 -i /tmp/blast/test.fasB9Y1Ss -0 > /tmp/blast/blast_results.txt.1E6sMMp -d /tmp/blast/ecoli.ntrZvzGm -J -o > /dev/null Sending 0 fragments. > Fragment list sent. > waiting for file size broadcast > MPI_Recv: process in local group is dead (rank 1, MPI_COMM_WORLD) > RANK ( 1, MPI_COMM_WORLD): call stack withinLAM: > RANK ( 1, MPI_COMM_WORLD): - MPI_Recv() > RANK ( 1, MPI_COMM_WORLD): - MPI_BCast() > RANK ( 1, MPI_COMM_WORLD): - main() > > Does anyone knows what is the problem with it? > Thank you > > _________________________________________________________________ > Get 10mb of inbox space with MSN Hotmail Extra Storage > http://join.msn.com/?pgmarket=en-sg > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Thu Jul 15 05:03:20 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Thu, 15 Jul 2004 12:03:20 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: Hi, Thanks for your reply. I'm running this as a user, and not as root. And I am using /tmp/blast, this is my confg file. /mnt/pvfs /tmp/blast /opt/BioBrew/NCBI/6.1.0/data Anything else that I can try? As for the links you had provided me with, I've been to http://scalableinformatics.com/run_mpiblast.html just that I have not really been able to understand what it means. Thanks alot. >From: Joe Landman >Reply-To: bioclusters@bioinformatics.org >To: biocluster >Subject: Re: [Bioclusters] re: how to run mpiblast >Date: Wed, 14 Jul 2004 23:44:14 -0400 > >You might want to use our run_mpiblast script. It handles the details >of existence and permissions testing, and could help you debug this >better. > >Looking at the output, I would guess: > >1) write permissions. It looks like you should probably be running this >as a user, and not as root. > >2) You should probably be working in a temporary directory. > >What basically happened is a typical error cascade. When you get these, >ignore the ones at the end. They are the result of the ones at the >beginning. > >I would suggest running this as a user, and not as root. I would also >suggest getting http://scalableinformatics.com/run_mpiblast.html and the >script http://downloads.scalableinformatics.com/downloads/run_mpiblast >and the rc file >http://downloads.scalableinformatics.com/downloads/run_mpiblastrc . > >Joe > >On Wed, 2004-07-14 at 23:25, kenix y wrote: > > Hi, I tried to run mpiblast with this command : > > mpirun -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > But it gave me this error: > > mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or directory > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': Permission > > denied > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': Permission > > denied > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': Permission > > denied > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': Permission > > denied > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': Permission > > denied > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': Permission > > denied > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': Permission > > denied > > Error opening /root/blast/ecoli.ntChNsWp.nal > > > > With mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > 24491 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n0 (o) > > 18435 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n1 > > blastall -p blastn -i /root/test.fas -o blast_test.txt -d >/mnt/pvfs/ecoli.nt > > [blastall] FATAL ERROR: blast: Unable to open output file >blast_results.txt > > > > Temp name base: /tmp/blast/ecoli.ntXXXXXX > > Got temp name: /tmp/blast/ecoli.ntrZvzGm > > mv: Cannot stat '/tmp/blast/ecoli.ntrZvzGm': No such file or directory > > Temp name base: /tmp/blast/blast_results.txt.1XXXXXX > > Got temp name: /tmp/blast/blast_results.txt.1E6sMMp > > Temp name base: /tmp/blast/test.fas.XXXXXX > > Got temp name: /tmp/blast/test.fas.B9Y1Ss > > blastall -p blastn -z 4652914 -i /tmp/blast/test.fasB9Y1Ss -0 > > /tmp/blast/blast_results.txt.1E6sMMp -d /tmp/blast/ecoli.ntrZvzGm -J -o > > /dev/null Sending 0 fragments. > > Fragment list sent. > > waiting for file size broadcast > > MPI_Recv: process in local group is dead (rank 1, MPI_COMM_WORLD) > > RANK ( 1, MPI_COMM_WORLD): call stack withinLAM: > > RANK ( 1, MPI_COMM_WORLD): - MPI_Recv() > > RANK ( 1, MPI_COMM_WORLD): - MPI_BCast() > > RANK ( 1, MPI_COMM_WORLD): - main() > > > > Does anyone knows what is the problem with it? > > Thank you > > > > _________________________________________________________________ > > Get 10mb of inbox space with MSN Hotmail Extra Storage > > http://join.msn.com/?pgmarket=en-sg > > > > _______________________________________________ > > Bioclusters maillist - Bioclusters@bioinformatics.org > > https://bioinformatics.org/mailman/listinfo/bioclusters >-- >Joseph Landman, Ph.D >Scalable Informatics LLC, >email: landman@scalableinformatics.com >web : http://scalableinformatics.com >phone: +1 734 612 4615 > >_______________________________________________ >Bioclusters maillist - Bioclusters@bioinformatics.org >https://bioinformatics.org/mailman/listinfo/bioclusters _________________________________________________________________ Download games, logos, wallpapers and lots more at MSN Mobile! http://www.msn.com.sg/mobile/ From bioclusters@bioinformatics.org Thu Jul 15 05:43:52 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Thu, 15 Jul 2004 00:43:52 -0400 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: References: Message-ID: <1089866631.2798.152.camel@protein.scalableinformatics.com> Try moving your data out of ~root. All your input and output is being done there: -i /root/test.fas -o blast_results.txt Regular users do not have read or write permission to /root unless something is badly broken. On Thu, 2004-07-15 at 00:03, kenix y wrote: > Hi, > > Thanks for your reply. > I'm running this as a user, and not as root. > And I am using /tmp/blast, this is my confg file. > /mnt/pvfs > /tmp/blast > /opt/BioBrew/NCBI/6.1.0/data > Anything else that I can try? > > As for the links you had provided me with, I've been to > http://scalableinformatics.com/run_mpiblast.html > just that I have not really been able to understand what it means. > > Thanks alot. > > >From: Joe Landman > >Reply-To: bioclusters@bioinformatics.org > >To: biocluster > >Subject: Re: [Bioclusters] re: how to run mpiblast > >Date: Wed, 14 Jul 2004 23:44:14 -0400 > > > >You might want to use our run_mpiblast script. It handles the details > >of existence and permissions testing, and could help you debug this > >better. > > > >Looking at the output, I would guess: > > > >1) write permissions. It looks like you should probably be running this > >as a user, and not as root. > > > >2) You should probably be working in a temporary directory. > > > >What basically happened is a typical error cascade. When you get these, > >ignore the ones at the end. They are the result of the ones at the > >beginning. > > > >I would suggest running this as a user, and not as root. I would also > >suggest getting http://scalableinformatics.com/run_mpiblast.html and the > >script http://downloads.scalableinformatics.com/downloads/run_mpiblast > >and the rc file > >http://downloads.scalableinformatics.com/downloads/run_mpiblastrc . > > > >Joe > > > >On Wed, 2004-07-14 at 23:25, kenix y wrote: > > > Hi, I tried to run mpiblast with this command : > > > mpirun -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast > > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > > > But it gave me this error: > > > mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or directory > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': Permission > > > denied > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': Permission > > > denied > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': Permission > > > denied > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': Permission > > > denied > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': Permission > > > denied > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': Permission > > > denied > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': Permission > > > denied > > > Error opening /root/blast/ecoli.ntChNsWp.nal > > > > > > With mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug > > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > > > 24491 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n0 (o) > > > 18435 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n1 > > > blastall -p blastn -i /root/test.fas -o blast_test.txt -d > >/mnt/pvfs/ecoli.nt > > > [blastall] FATAL ERROR: blast: Unable to open output file > >blast_results.txt > > > > > > Temp name base: /tmp/blast/ecoli.ntXXXXXX > > > Got temp name: /tmp/blast/ecoli.ntrZvzGm > > > mv: Cannot stat '/tmp/blast/ecoli.ntrZvzGm': No such file or directory > > > Temp name base: /tmp/blast/blast_results.txt.1XXXXXX > > > Got temp name: /tmp/blast/blast_results.txt.1E6sMMp > > > Temp name base: /tmp/blast/test.fas.XXXXXX > > > Got temp name: /tmp/blast/test.fas.B9Y1Ss > > > blastall -p blastn -z 4652914 -i /tmp/blast/test.fasB9Y1Ss -0 > > > /tmp/blast/blast_results.txt.1E6sMMp -d /tmp/blast/ecoli.ntrZvzGm -J -o > > > /dev/null Sending 0 fragments. > > > Fragment list sent. > > > waiting for file size broadcast > > > MPI_Recv: process in local group is dead (rank 1, MPI_COMM_WORLD) > > > RANK ( 1, MPI_COMM_WORLD): call stack withinLAM: > > > RANK ( 1, MPI_COMM_WORLD): - MPI_Recv() > > > RANK ( 1, MPI_COMM_WORLD): - MPI_BCast() > > > RANK ( 1, MPI_COMM_WORLD): - main() > > > > > > Does anyone knows what is the problem with it? > > > Thank you > > > > > > _________________________________________________________________ > > > Get 10mb of inbox space with MSN Hotmail Extra Storage > > > http://join.msn.com/?pgmarket=en-sg > > > > > > _______________________________________________ > > > Bioclusters maillist - Bioclusters@bioinformatics.org > > > https://bioinformatics.org/mailman/listinfo/bioclusters > >-- > >Joseph Landman, Ph.D > >Scalable Informatics LLC, > >email: landman@scalableinformatics.com > >web : http://scalableinformatics.com > >phone: +1 734 612 4615 > > > >_______________________________________________ > >Bioclusters maillist - Bioclusters@bioinformatics.org > >https://bioinformatics.org/mailman/listinfo/bioclusters > > _________________________________________________________________ > Download games, logos, wallpapers and lots more at MSN Mobile! > http://www.msn.com.sg/mobile/ > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Thu Jul 15 06:26:16 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Thu, 15 Jul 2004 13:26:16 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: Hi, I've moved my data out of /root. Now my command looks like this : mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d ecoli.nt -i /tmp/blast/test.fas -o /tmp/blast/blast_results.txt The output is : Master got message with tag -32766 from node -32766 And it goes on till I ctrl c it. Is there something wrong with my command? Without the -v and --debug all it shows is : mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or directory cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': Permission denied cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': Permission denied Error opening /root/blast/ecoli.ntChNsWp.nal What else can I do? >From: Joe Landman >Reply-To: bioclusters@bioinformatics.org >To: biocluster >Subject: Re: [Bioclusters] re: how to run mpiblast >Date: Thu, 15 Jul 2004 00:43:52 -0400 > >Try moving your data out of ~root. All your input and output is being >done there: -i /root/test.fas -o blast_results.txt > >Regular users do not have read or write permission to /root unless >something is badly broken. > > >On Thu, 2004-07-15 at 00:03, kenix y wrote: > > Hi, > > > > Thanks for your reply. > > I'm running this as a user, and not as root. > > And I am using /tmp/blast, this is my confg file. > > /mnt/pvfs > > /tmp/blast > > /opt/BioBrew/NCBI/6.1.0/data > > Anything else that I can try? > > > > As for the links you had provided me with, I've been to > > http://scalableinformatics.com/run_mpiblast.html > > just that I have not really been able to understand what it means. > > > > Thanks alot. > > > > >From: Joe Landman > > >Reply-To: bioclusters@bioinformatics.org > > >To: biocluster > > >Subject: Re: [Bioclusters] re: how to run mpiblast > > >Date: Wed, 14 Jul 2004 23:44:14 -0400 > > > > > >You might want to use our run_mpiblast script. It handles the details > > >of existence and permissions testing, and could help you debug this > > >better. > > > > > >Looking at the output, I would guess: > > > > > >1) write permissions. It looks like you should probably be running >this > > >as a user, and not as root. > > > > > >2) You should probably be working in a temporary directory. > > > > > >What basically happened is a typical error cascade. When you get >these, > > >ignore the ones at the end. They are the result of the ones at the > > >beginning. > > > > > >I would suggest running this as a user, and not as root. I would also > > >suggest getting http://scalableinformatics.com/run_mpiblast.html and >the > > >script http://downloads.scalableinformatics.com/downloads/run_mpiblast > > >and the rc file > > >http://downloads.scalableinformatics.com/downloads/run_mpiblastrc . > > > > > >Joe > > > > > >On Wed, 2004-07-14 at 23:25, kenix y wrote: > > > > Hi, I tried to run mpiblast with this command : > > > > mpirun -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast > > > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > > > > > But it gave me this error: > > > > mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or >directory > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': >Permission > > > > denied > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': >Permission > > > > denied > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': >Permission > > > > denied > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': >Permission > > > > denied > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': >Permission > > > > denied > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': >Permission > > > > denied > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': >Permission > > > > denied > > > > Error opening /root/blast/ecoli.ntChNsWp.nal > > > > > > > > With mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug > > > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > > > > > 24491 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n0 (o) > > > > 18435 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n1 > > > > blastall -p blastn -i /root/test.fas -o blast_test.txt -d > > >/mnt/pvfs/ecoli.nt > > > > [blastall] FATAL ERROR: blast: Unable to open output file > > >blast_results.txt > > > > > > > > Temp name base: /tmp/blast/ecoli.ntXXXXXX > > > > Got temp name: /tmp/blast/ecoli.ntrZvzGm > > > > mv: Cannot stat '/tmp/blast/ecoli.ntrZvzGm': No such file or >directory > > > > Temp name base: /tmp/blast/blast_results.txt.1XXXXXX > > > > Got temp name: /tmp/blast/blast_results.txt.1E6sMMp > > > > Temp name base: /tmp/blast/test.fas.XXXXXX > > > > Got temp name: /tmp/blast/test.fas.B9Y1Ss > > > > blastall -p blastn -z 4652914 -i /tmp/blast/test.fasB9Y1Ss -0 > > > > /tmp/blast/blast_results.txt.1E6sMMp -d /tmp/blast/ecoli.ntrZvzGm -J >-o > > > > /dev/null Sending 0 fragments. > > > > Fragment list sent. > > > > waiting for file size broadcast > > > > MPI_Recv: process in local group is dead (rank 1, MPI_COMM_WORLD) > > > > RANK ( 1, MPI_COMM_WORLD): call stack withinLAM: > > > > RANK ( 1, MPI_COMM_WORLD): - MPI_Recv() > > > > RANK ( 1, MPI_COMM_WORLD): - MPI_BCast() > > > > RANK ( 1, MPI_COMM_WORLD): - main() > > > > > > > > Does anyone knows what is the problem with it? > > > > Thank you > > > > > > > > _________________________________________________________________ > > > > Get 10mb of inbox space with MSN Hotmail Extra Storage > > > > http://join.msn.com/?pgmarket=en-sg > > > > > > > > _______________________________________________ > > > > Bioclusters maillist - Bioclusters@bioinformatics.org > > > > https://bioinformatics.org/mailman/listinfo/bioclusters > > >-- > > >Joseph Landman, Ph.D > > >Scalable Informatics LLC, > > >email: landman@scalableinformatics.com > > >web : http://scalableinformatics.com > > >phone: +1 734 612 4615 > > > > > >_______________________________________________ > > >Bioclusters maillist - Bioclusters@bioinformatics.org > > >https://bioinformatics.org/mailman/listinfo/bioclusters > > > > _________________________________________________________________ > > Download games, logos, wallpapers and lots more at MSN Mobile! > > http://www.msn.com.sg/mobile/ > > > > _______________________________________________ > > Bioclusters maillist - Bioclusters@bioinformatics.org > > https://bioinformatics.org/mailman/listinfo/bioclusters >-- >Joseph Landman, Ph.D >Scalable Informatics LLC, >email: landman@scalableinformatics.com >web : http://scalableinformatics.com >phone: +1 734 612 4615 > >_______________________________________________ >Bioclusters maillist - Bioclusters@bioinformatics.org >https://bioinformatics.org/mailman/listinfo/bioclusters _________________________________________________________________ Get 10mb of inbox space with MSN Hotmail Extra Storage http://join.msn.com/?pgmarket=en-sg From bioclusters@bioinformatics.org Thu Jul 15 06:35:08 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Thu, 15 Jul 2004 01:35:08 -0400 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: References: Message-ID: <1089869707.2921.155.camel@protein.scalableinformatics.com> What does your .ncbirc look like? Somewhere you are getting a /root/blast in there, and that might be it. Joe On Thu, 2004-07-15 at 01:26, kenix y wrote: > Hi, > > I've moved my data out of /root. > Now my command looks like this : > mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > ecoli.nt -i /tmp/blast/test.fas -o /tmp/blast/blast_results.txt > > The output is : > Master got message with tag -32766 from node -32766 > > And it goes on till I ctrl c it. > > Is there something wrong with my command? > > Without the -v and --debug all it shows is : > > mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or directory > cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': Permission > denied > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': Permission > denied > Error opening /root/blast/ecoli.ntChNsWp.nal > > What else can I do? > > >From: Joe Landman > >Reply-To: bioclusters@bioinformatics.org > >To: biocluster > >Subject: Re: [Bioclusters] re: how to run mpiblast > >Date: Thu, 15 Jul 2004 00:43:52 -0400 > > > >Try moving your data out of ~root. All your input and output is being > >done there: -i /root/test.fas -o blast_results.txt > > > >Regular users do not have read or write permission to /root unless > >something is badly broken. > > > > > >On Thu, 2004-07-15 at 00:03, kenix y wrote: > > > Hi, > > > > > > Thanks for your reply. > > > I'm running this as a user, and not as root. > > > And I am using /tmp/blast, this is my confg file. > > > /mnt/pvfs > > > /tmp/blast > > > /opt/BioBrew/NCBI/6.1.0/data > > > Anything else that I can try? > > > > > > As for the links you had provided me with, I've been to > > > http://scalableinformatics.com/run_mpiblast.html > > > just that I have not really been able to understand what it means. > > > > > > Thanks alot. > > > > > > >From: Joe Landman > > > >Reply-To: bioclusters@bioinformatics.org > > > >To: biocluster > > > >Subject: Re: [Bioclusters] re: how to run mpiblast > > > >Date: Wed, 14 Jul 2004 23:44:14 -0400 > > > > > > > >You might want to use our run_mpiblast script. It handles the details > > > >of existence and permissions testing, and could help you debug this > > > >better. > > > > > > > >Looking at the output, I would guess: > > > > > > > >1) write permissions. It looks like you should probably be running > >this > > > >as a user, and not as root. > > > > > > > >2) You should probably be working in a temporary directory. > > > > > > > >What basically happened is a typical error cascade. When you get > >these, > > > >ignore the ones at the end. They are the result of the ones at the > > > >beginning. > > > > > > > >I would suggest running this as a user, and not as root. I would also > > > >suggest getting http://scalableinformatics.com/run_mpiblast.html and > >the > > > >script http://downloads.scalableinformatics.com/downloads/run_mpiblast > > > >and the rc file > > > >http://downloads.scalableinformatics.com/downloads/run_mpiblastrc . > > > > > > > >Joe > > > > > > > >On Wed, 2004-07-14 at 23:25, kenix y wrote: > > > > > Hi, I tried to run mpiblast with this command : > > > > > mpirun -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast > > > > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > > > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > > > > > > > But it gave me this error: > > > > > mv: cannot stat '/root/blast/ecoli.ntChNsWp': No such file or > >directory > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nhr': > >Permission > > > > > denied > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nin': > >Permission > > > > > denied > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsq': > >Permission > > > > > denied > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nnd': > >Permission > > > > > denied > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nni': > >Permission > > > > > denied > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsd': > >Permission > > > > > denied > > > > > cp: cannot create regular file '/root/blast/ecoli.nt.00.nsi': > >Permission > > > > > denied > > > > > Error opening /root/blast/ecoli.ntChNsWp.nal > > > > > > > > > > With mpirun -v -np 2 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast --debug > > > > > --config-file=/opt/BioBrew/NCBI/6.1.0/etc/mpiblast.conf -p blastn -d > > > > > ecoli.nt -i /root/test.fas -o blast_results.txt > > > > > > > > > > 24491 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n0 (o) > > > > > 18435 /opt/BioBrew/NCBI/6.1.0/bin/mpiblast running on n1 > > > > > blastall -p blastn -i /root/test.fas -o blast_test.txt -d > > > >/mnt/pvfs/ecoli.nt > > > > > [blastall] FATAL ERROR: blast: Unable to open output file > > > >blast_results.txt > > > > > > > > > > Temp name base: /tmp/blast/ecoli.ntXXXXXX > > > > > Got temp name: /tmp/blast/ecoli.ntrZvzGm > > > > > mv: Cannot stat '/tmp/blast/ecoli.ntrZvzGm': No such file or > >directory > > > > > Temp name base: /tmp/blast/blast_results.txt.1XXXXXX > > > > > Got temp name: /tmp/blast/blast_results.txt.1E6sMMp > > > > > Temp name base: /tmp/blast/test.fas.XXXXXX > > > > > Got temp name: /tmp/blast/test.fas.B9Y1Ss > > > > > blastall -p blastn -z 4652914 -i /tmp/blast/test.fasB9Y1Ss -0 > > > > > /tmp/blast/blast_results.txt.1E6sMMp -d /tmp/blast/ecoli.ntrZvzGm -J > >-o > > > > > /dev/null Sending 0 fragments. > > > > > Fragment list sent. > > > > > waiting for file size broadcast > > > > > MPI_Recv: process in local group is dead (rank 1, MPI_COMM_WORLD) > > > > > RANK ( 1, MPI_COMM_WORLD): call stack withinLAM: > > > > > RANK ( 1, MPI_COMM_WORLD): - MPI_Recv() > > > > > RANK ( 1, MPI_COMM_WORLD): - MPI_BCast() > > > > > RANK ( 1, MPI_COMM_WORLD): - main() > > > > > > > > > > Does anyone knows what is the problem with it? > > > > > Thank you > > > > > > > > > > _________________________________________________________________ > > > > > Get 10mb of inbox space with MSN Hotmail Extra Storage > > > > > http://join.msn.com/?pgmarket=en-sg > > > > > > > > > > _______________________________________________ > > > > > Bioclusters maillist - Bioclusters@bioinformatics.org > > > > > https://bioinformatics.org/mailman/listinfo/bioclusters > > > >-- > > > >Joseph Landman, Ph.D > > > >Scalable Informatics LLC, > > > >email: landman@scalableinformatics.com > > > >web : http://scalableinformatics.com > > > >phone: +1 734 612 4615 > > > > > > > >_______________________________________________ > > > >Bioclusters maillist - Bioclusters@bioinformatics.org > > > >https://bioinformatics.org/mailman/listinfo/bioclusters > > > > > > _________________________________________________________________ > > > Download games, logos, wallpapers and lots more at MSN Mobile! > > > http://www.msn.com.sg/mobile/ > > > > > > _______________________________________________ > > > Bioclusters maillist - Bioclusters@bioinformatics.org > > > https://bioinformatics.org/mailman/listinfo/bioclusters > >-- > >Joseph Landman, Ph.D > >Scalable Informatics LLC, > >email: landman@scalableinformatics.com > >web : http://scalableinformatics.com > >phone: +1 734 612 4615 > > > >_______________________________________________ > >Bioclusters maillist - Bioclusters@bioinformatics.org > >https://bioinformatics.org/mailman/listinfo/bioclusters > > _________________________________________________________________ > Get 10mb of inbox space with MSN Hotmail Extra Storage > http://join.msn.com/?pgmarket=en-sg > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Thu Jul 15 06:45:56 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Thu, 15 Jul 2004 13:45:56 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: Regarding .ncbirc, where can I find it? As I can't seems to find it. _________________________________________________________________ Download games, logos, wallpapers and lots more at MSN Mobile! http://www.msn.com.sg/mobile/ From bioclusters@bioinformatics.org Thu Jul 15 06:51:47 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Thu, 15 Jul 2004 01:51:47 -0400 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: References: Message-ID: <1089870706.2920.160.camel@protein.scalableinformatics.com> On Thu, 2004-07-15 at 01:45, kenix y wrote: > Regarding .ncbirc, where can I find it? > As I can't seems to find it. You will need to create one where you run mpiblast, and in your home directory. Here is an example: [NCBI] Data=../data [BLAST] BLASTDB=../db edit the Data=../data line to point to the weight matrices. Glen, if you are listening, are these already in biobrew? Then edit the BLASTDB=../db line to point to the database (ecoli.nt in your case). You will need a copy of this in you home directory and in the directory you run the mpiblast code. Joe ps: signing off for the night, will answer as I can in the morning. > > _________________________________________________________________ > Download games, logos, wallpapers and lots more at MSN Mobile! > http://www.msn.com.sg/mobile/ > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Thu Jul 15 07:28:57 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Thu, 15 Jul 2004 14:28:57 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: >You will need to create one where you run mpiblast, and in your home >directory. Meaning that I need to create .ncbirc in /root, is that right? [NCBI] Data=../data [BLAST] BLASTDB=../db Er, I'm not too sure where the weight matrices are, any way I can find out? >Then edit the BLASTDB=../db line to point to the database (ecoli.nt in your >case). As for ecoli.nt, I've just moved it to /tmp/blast So the line should be [BLAST] BLASTDB=/tmp/blast/ecoli.nt? >You will need a copy of this in you home directory and in the directory you >run the mpiblast code. As for the directory to run my mpiblast code, it can be anywhere? Or is there a specific location? Thanks for all your help _________________________________________________________________ Find it on the web with MSN Search. http://search.msn.com.sg/ From bioclusters@bioinformatics.org Thu Jul 15 07:36:22 2004 From: bioclusters@bioinformatics.org (Glen Otero) Date: Wed, 14 Jul 2004 23:36:22 -0700 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: <1089870706.2920.160.camel@protein.scalableinformatics.com> References: <1089870706.2920.160.camel@protein.scalableinformatics.com> Message-ID: <495FD82E-D629-11D8-8AE0-000A95CD8EC8@linuxprophet.com> On Jul 14, 2004, at 10:51 PM, Joe Landman wrote: > On Thu, 2004-07-15 at 01:45, kenix y wrote: >> Regarding .ncbirc, where can I find it? >> As I can't seems to find it. > > You will need to create one where you run mpiblast, and in your home > directory. > > Here is an example: > > > [NCBI] > Data=../data > [BLAST] > BLASTDB=../db > > > edit the Data=../data line to point to the weight matrices. Glen, if > you are listening, are these already in biobrew? ,ncbirc is not set up in BioBrew, so you need to create that file. Here is how I typically set it up: [glen@frontend-0 glen]$ more .ncbirc [NCBI] Data=/opt/BioBrew/NCBI/6.1.0/data > > Then edit the BLASTDB=../db line to point to the database (ecoli.nt in > your case). > > You will need a copy of this in you home directory and in the directory > you run the mpiblast code. > > Joe > > ps: signing off for the night, will answer as I can in the morning. > >> >> _________________________________________________________________ >> Download games, logos, wallpapers and lots more at MSN Mobile! >> http://www.msn.com.sg/mobile/ >> >> _______________________________________________ >> Bioclusters maillist - Bioclusters@bioinformatics.org >> https://bioinformatics.org/mailman/listinfo/bioclusters > -- > Joseph Landman, Ph.D > Scalable Informatics LLC, > email: landman@scalableinformatics.com > web : http://scalableinformatics.com > phone: +1 734 612 4615 > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > Glen Otero, Ph.D. Linux Prophet 619.917.1772 From bioclusters@bioinformatics.org Thu Jul 15 07:46:27 2004 From: bioclusters@bioinformatics.org (Glen Otero) Date: Wed, 14 Jul 2004 23:46:27 -0700 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: References: Message-ID: On Jul 14, 2004, at 11:28 PM, kenix y wrote: > >> You will need to create one where you run mpiblast, and in your home >> directory. > Meaning that I need to create .ncbirc in /root, is that right? There's a problem with running things out of the /root directory, as Joe mentioned, because that directory isn't NFS mounted over the whole cluster in BioBrew. You need to get into a user directory under /home to make mpiBLAST work. > > [NCBI] > Data=../data > [BLAST] > BLASTDB=../db > > Er, I'm not too sure where the weight matrices are, any way I can find > out? The matrices are here: /opt/BioBrew/NCBI/6.1.0/data So an .ncbirc file that looks like this: [NCBI] Data=/opt/BioBrew/NCBI/6.1.0/data will do the trick. > >> Then edit the BLASTDB=../db line to point to the database (ecoli.nt >> in your case). > As for ecoli.nt, I've just moved it to /tmp/blast > So the line should be > [BLAST] > BLASTDB=/tmp/blast/ecoli.nt? Yep. >> You will need a copy of this in you home directory and in the >> directory you run the mpiblast code. > As for the directory to run my mpiblast code, it can be anywhere? Or > is there a specific location? I typically run mpiBLAST from my home directory, after creating the mpiblast.conf file there. Here's an mpiblast.conf example: [glen@frontend-0 glen]$ more mpiblast.conf /home/glen/data /tmp /opt/BioBrew/NCBI/6.1.0/bin This dictates that all the input data files for mpiBLAST are stored in /home/glen/data, they will be stored in /tmp on the compute nodes, and that the mpiBLAST binary lives in /opt/BioBrew/NCBI/6.1.0/bin (with the rest of the blastall binaries). Glen > > Thanks for all your help > > _________________________________________________________________ > Find it on the web with MSN Search. http://search.msn.com.sg/ > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > Glen Otero, Ph.D. Linux Prophet 619.917.1772 From bioclusters@bioinformatics.org Thu Jul 15 12:19:02 2004 From: bioclusters@bioinformatics.org (Rose Williams) Date: Thu, 15 Jul 2004 07:19:02 -0400 Subject: [Bioclusters] UNSUBSCRIBE ME Message-ID: Please remove my name from the mailing list. User: rosemw, email: rosemw@us.ibm.com Thanks, Rose Williams ----------------- Rose Williams on Blackberry From bioclusters@bioinformatics.org Thu Jul 15 12:22:35 2004 From: bioclusters@bioinformatics.org (Rose Williams) Date: Thu, 15 Jul 2004 07:22:35 -0400 Subject: [Bioclusters] UNSUBSCRIBE ME Message-ID: ----------------- Rose Williams on Blackberry From: bioclusters-admin Sent: 07/15/2004 07:19 AM To: Bioclusters@bioinformatics.org Subject: [Bioclusters] UNSUBSCRIBE ME Please remove my name from the mailing list. User: rosemw, email: rosemw@us.ibm.com Thanks, Rose Williams ----------------- Rose Williams on Blackberry _______________________________________________ Bioclusters maillist - Bioclusters@bioinformatics.org https://bioinformatics.org/mailman/listinfo/bioclusters From bioclusters@bioinformatics.org Thu Jul 15 12:55:39 2004 From: bioclusters@bioinformatics.org (Nicolas Jungers) Date: Thu, 15 Jul 2004 13:55:39 +0200 Subject: [Bioclusters] UNSUBSCRIBE ME In-Reply-To: References: Message-ID: <1089892539.30886.3.camel@nicolas> couldn't you read the unsuscription information instead of spamming a=20 whole innocent list? The infos are in the headers and again in the footers On Thu, 2004-07-15 at 13:22, Rose Williams wrote: List-Unsubscribe: , List-Id: Clustering, compute farming & distributed computing in life science informatics List-Post: List-Help: List-Subscribe: , List-Archive: From: bioclusters-admin Sent: 07/15/2004 07:19 AM To: Bioclusters@bioinformatics.org Subject: [Bioclusters] UNSUBSCRIBE ME Please remove my name from the mailing list. User: rosemw, email: rosemw@us.ibm.com Thanks, Rose Williams ----------------- Rose Williams on Blackberry _______________________________________________ Bioclusters maillist - Bioclusters@bioinformatics.org https://bioinformatics.org/mailman/listinfo/bioclusters _______________________________________________ Bioclusters maillist - Bioclusters@bioinformatics.org https://bioinformatics.org/mailman/listinfo/bioclusters >=20 >=20 > ----------------- > Rose Williams on Blackberry >=20 >=20 > From: bioclusters-admin > Sent: 07/15/2004 07:19 AM > To: Bioclusters@bioinformatics.org > Subject: [Bioclusters] UNSUBSCRIBE ME >=20 >=20 >=20 >=20 >=20 >=20 > Please remove my name from the mailing list. User: rosemw, email: > rosemw@us.ibm.com >=20 > Thanks, Rose Williams > ----------------- > Rose Williams on Blackberry >=20 > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters >=20 > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters --=20 Nicolas Jungers T=C3=A9l +32 2 289 51 44 Fax: +32 2 289 51 40 Many sa - Hemeris Computing Ch. d'Ixelles 29-31, box 17 1050 Brussels Belgium From bioclusters@bioinformatics.org Fri Jul 16 18:03:26 2004 From: bioclusters@bioinformatics.org (Josh Goodman) Date: Fri, 16 Jul 2004 12:03:26 -0500 (EST) Subject: [Bioclusters] Citrina 0.5 Released Message-ID: I apologize in advance to those of you who are on the biodev list and are seeing this for a second time. Citrina 0.5 has been released. This release includes many bug fixes, performance, and reliability improvements. I encourage all users of Citrina to upgrade to this existing version. Download here: http://prdownloads.sourceforge.net/gmod/citrina-0.5.tar.gz?download About Citrina ---------------- Citrina is a GMOD (www.gmod.org) tool that allows you to easily manage the downloading and processing of biological databases such as Genbank, EMBL, PDB, etc... Citrina currently has support for over 40 public databases and can easily be customized to support your own. Citrina uses Ant and custom Ant tasks written in Java to manage the mirroring of data. For more information on Citrina: http://gmod.sourceforge.net/citrina/ Cheers, Josh Goodman Indiana University Department of Biology From bioclusters@bioinformatics.org Sat Jul 17 02:22:02 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Sat, 17 Jul 2004 09:22:02 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: mpiBLAST is ready to run in BioBrew. 1)I had set up .ncbirc [NCBI] Data=/opt/BioBrew/NCBI/6.1.0/data [BLAST] BLASTDB=/tmp/blast 2) and mpiblast.conf /mnt/pvfs /tmp/blast /opt/BioBrew/NCBI/6.1.0/bin 3) edit my /etc/profile export BLASTPATH=/opt/BioBrew/NCBI/6.1.0/bin export MPIBLASTCONFIG=/home/bigcpuguest/mpiblast.conf export MPIRUN=/usr/bin/mpirun 4) my $HOME/machines contains comp-pvfs-0-0 Can anyone tell me what is the correct command if I want to run mpiblast against ecoli.nt? _________________________________________________________________ Get 10mb of inbox space with MSN Hotmail Extra Storage http://join.msn.com/?pgmarket=en-sg From bioclusters@bioinformatics.org Sat Jul 17 03:23:33 2004 From: bioclusters@bioinformatics.org (Glen Otero) Date: Fri, 16 Jul 2004 19:23:33 -0700 Subject: [Bioclusters] re: how to run mpiblast In-Reply-To: References: Message-ID: <4CD814E2-D798-11D8-9B73-000A95CD8EC8@linuxprophet.com> On Jul 16, 2004, at 6:22 PM, kenix y wrote: > mpiBLAST is ready to run in BioBrew. > > 1)I had set up .ncbirc > > [NCBI] > Data=/opt/BioBrew/NCBI/6.1.0/data > [BLAST] > BLASTDB=/tmp/blast > > 2) and mpiblast.conf > > /mnt/pvfs > /tmp/blast > /opt/BioBrew/NCBI/6.1.0/bin > > 3) edit my /etc/profile > export BLASTPATH=/opt/BioBrew/NCBI/6.1.0/bin > export MPIBLASTCONFIG=/home/bigcpuguest/mpiblast.conf > export MPIRUN=/usr/bin/mpirun > > 4) my $HOME/machines contains > comp-pvfs-0-0 > > Can anyone tell me what is the correct command if I want to run > mpiblast against ecoli.nt? We have to know what directory you keep the input file and the db in on the frontend, but here is the general idea: $MPIRUN -np -machinefile $ /path/to/file/with/nodelist $BLASTPATH/mpiblast --config-file=$MPIBLASTCONFIG -p blastn -i /path/to/query -d /path/to/ecoli.nt -o /path/to/results_file > > _________________________________________________________________ > Get 10mb of inbox space with MSN Hotmail Extra Storage > http://join.msn.com/?pgmarket=en-sg > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > Glen Otero, Ph.D. Linux Prophet 619.917.1772 From bioclusters@bioinformatics.org Sat Jul 17 04:01:33 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Sat, 17 Jul 2004 11:01:33 +0800 Subject: [Bioclusters] re: how to run mpiblast Message-ID: >We have to know what directory you keep the input file and the db in on the >frontend, but here is the general idea: I keep them in /mnt/pvfs. Sorry, I'm not too sure about what should i add to the -i /path/to/query. >$MPIRUN -np -machinefile $ /path/to/file/with/nodelist >$BLASTPATH/mpiblast --config-file=$MPIBLASTCONFIG -p blastn -i >/path/to/query -d /path/to/ecoli.nt -o /path/to/results_file >> >>_________________________________________________________________ >>Get 10mb of inbox space with MSN Hotmail Extra Storage >>http://join.msn.com/?pgmarket=en-sg >> >>_______________________________________________ >>Bioclusters maillist - Bioclusters@bioinformatics.org >>https://bioinformatics.org/mailman/listinfo/bioclusters >> >> >Glen Otero, Ph.D. >Linux Prophet >619.917.1772 > >_______________________________________________ >Bioclusters maillist - Bioclusters@bioinformatics.org >https://bioinformatics.org/mailman/listinfo/bioclusters _________________________________________________________________ Get MSN Hotmail alerts on your mobile. http://en-asiasms.mobile.msn.com/ac.aspx?cid=1002 From bioclusters@bioinformatics.org Mon Jul 19 07:32:29 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Mon, 19 Jul 2004 14:32:29 +0800 Subject: [Bioclusters] (no subject) Message-ID: It seems that my earlier error was due to the fact that I forgot to change the permission of /tmp/blast of my compute node, sorry for my absent-mindedness. After I did, I got this: [blastall] WARNING: ftsYRP,: Could not find index files for database /mnt/pvfs/ecoli.nt [blastall] WARNING: ftsYRP,: polARP,: Could not find index files for database /mnt/pvfs/ecoli.nt [blastall] WARNING: ftsYRP,: polARP,: metKRPB,: Could not find index files for database /mnt/pvfs/ecoli.nt [blastall] WARNING: ftsYRP,: polARP,: metKRPB,: dnaERP,: Could not find index files for database /mnt/pvfs/ecoli.nt I do have the index files (.nhr, .nin, .nsq, .nsd, .nsi, .nni, .nnd) in /mnt/pvfs, what else can I do? Thank you. _________________________________________________________________ Get 10mb of inbox space with MSN Hotmail Extra Storage http://join.msn.com/?pgmarket=en-sg From bioclusters@bioinformatics.org Mon Jul 19 14:18:23 2004 From: bioclusters@bioinformatics.org (Jeremy Mann) Date: Mon, 19 Jul 2004 08:18:23 -0500 (CDT) Subject: [Bioclusters] Opterons and Linux Message-ID: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> I'm curious if there are people on this list that use dual Opterons for their processing. We are in the process of trying to purchase several dual Opterons to replace our aging P3 cluster and we have a few questions regarding the upgrade. First, do you know if the opteron kernel will allow larger memory for user space in 64bit mode that just 4 GB? We have two dual Xeon's with 4gb of memory which we could never get more than 3.5 GB recognized by the 2.4 kernel. Second, regrading power and heat, what steps have you taken to remedy the heat generated by the Opterons and what kind of electrical upgrades have you done? We have a VA Linux rack with about 20U's left which will house the Opterons. It has 2 220 volt power rails (we only use one) that delivers power to a 4U APC (I forget the model number) unit, a 4U quad Xeon server, 2 switches and a 4U RAID array. Thanks for any suggestions you may provide. -- Jeremy Mann jeremy@biochem.uthscsa.edu University of Texas Health Science Center Bioinformatics Core Facility http://www.bioinformatics.uthscsa.edu Phone: (210) 567-2672 -- Jeremy Mann jeremy@biochem.uthscsa.edu University of Texas Health Science Center Bioinformatics Core Facility http://www.bioinformatics.uthscsa.edu Phone: (210) 567-2672 From bioclusters@bioinformatics.org Mon Jul 19 14:34:32 2004 From: bioclusters@bioinformatics.org (LAI Loong Fong) Date: Mon, 19 Jul 2004 21:34:32 +0800 Subject: [Bioclusters] Opterons and Linux In-Reply-To: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> Message-ID: If you are running a 64bit OS, then you can definitely see more than 4GB in the user space. A dual Opteron with 2x HDD, 1x PCI card and 8x memory DIMM will draw about 1.4A or about 336W in our environment. So you can pack in about 10 dual Opteron on a 16A power source. Regards LAI Loong-Fong On 19/7/04 9:18 PM, "Jeremy Mann" wrote: > > I'm curious if there are people on this list that use dual Opterons for > their processing. We are in the process of trying to purchase several dual > Opterons to replace our aging P3 cluster and we have a few questions > regarding the upgrade. > > First, do you know if the opteron kernel will allow larger memory for user > space in 64bit mode that just 4 GB? We have two dual Xeon's with 4gb of > memory which we could never get more than 3.5 GB recognized by the 2.4 > kernel. > > Second, regrading power and heat, what steps have you taken to remedy the > heat generated by the Opterons and what kind of electrical upgrades have > you done? We have a VA Linux rack with about 20U's left which will house > the Opterons. It has 2 220 volt power rails (we only use one) that > delivers power to a 4U APC (I forget the model number) unit, a 4U quad > Xeon server, 2 switches and a 4U RAID array. > > Thanks for any suggestions you may provide. > > > From bioclusters@bioinformatics.org Mon Jul 19 15:08:05 2004 From: bioclusters@bioinformatics.org (Farul M. Ghazali) Date: Mon, 19 Jul 2004 22:08:05 +0800 (MYT) Subject: [Bioclusters] Opterons and Linux In-Reply-To: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> References: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> Message-ID: <20040719220200.W63166@ns1.aldrich.com.my> On Mon, 19 Jul 2004, Jeremy Mann wrote: > First, do you know if the opteron kernel will allow larger memory for user > space in 64bit mode that just 4 GB? We have two dual Xeon's with 4gb of > memory which we could never get more than 3.5 GB recognized by the 2.4 > kernel. If your user-space app is compiled as a 64-bit binary, it will see >4GB of RAM (or whatever your RAM + swap is). If your app is a 32-bit binary, it will see al the 4GB of RAM it can actually address, but nothing more. However, the 32-bit binaries don't have to share the 4GB address space wih other processes unlike what you're seeing with a 32-bit kernel/machine now. Note that this is assuming you're running a 64-bit kernel of course. Cmpiling 64-bit apps was a bit confusing at first (mixing 32-bit and 64-bit libs during linking, etc.) but we got the hang of it after a while. Someone else will have to answer the power question, I only have a measly half dozen Opterons (a mix of IBM x325 and home-made ones) at the moment. :-) From bioclusters@bioinformatics.org Mon Jul 19 15:26:58 2004 From: bioclusters@bioinformatics.org (Jeremy Mann) Date: Mon, 19 Jul 2004 09:26:58 -0500 (CDT) Subject: [Bioclusters] Opterons and Linux In-Reply-To: <20040719220200.W63166@ns1.aldrich.com.my> References: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> <20040719220200.W63166@ns1.aldrich.com.my> Message-ID: <49419.129.111.175.204.1090247218.squirrel@biochem.uthscsa.edu> Farul M. Ghazali said: > If your user-space app is compiled as a 64-bit binary, it will see >4GB of > RAM (or whatever your RAM + swap is). If your app is a 32-bit binary, it > will see al the 4GB of RAM it can actually address, but nothing more. > However, the 32-bit binaries don't have to share the 4GB address space wih > other processes unlike what you're seeing with a 32-bit kernel/machine > now. Note that this is assuming you're running a 64-bit kernel of course. > Cmpiling 64-bit apps was a bit confusing at first (mixing 32-bit and > 64-bit libs during linking, etc.) but we got the hang of it after a while. Do you think you can share your compiling tips? We most run Slackware on all our machines and there is no 64bit port as of yet. I'm playing around with SuSE 9.1 64bit and will want to port Slackware to 64bit. What kind of things should I try to make the compilation's work? -- Jeremy Mann jeremy@biochem.uthscsa.edu University of Texas Health Science Center Bioinformatics Core Facility http://www.bioinformatics.uthscsa.edu Phone: (210) 567-2672 From bioclusters@bioinformatics.org Mon Jul 19 15:39:59 2004 From: bioclusters@bioinformatics.org (Jeremy Mann) Date: Mon, 19 Jul 2004 09:39:59 -0500 (CDT) Subject: [Bioclusters] Opterons and Linux In-Reply-To: <20040719220200.W63166@ns1.aldrich.com.my> References: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> <20040719220200.W63166@ns1.aldrich.com.my> Message-ID: <49478.129.111.175.204.1090247999.squirrel@biochem.uthscsa.edu> Farul M. Ghazali said: > If your user-space app is compiled as a 64-bit binary, it will see >4GB of > RAM (or whatever your RAM + swap is). If your app is a 32-bit binary, it > will see al the 4GB of RAM it can actually address, but nothing more. > However, the 32-bit binaries don't have to share the 4GB address space wih > other processes unlike what you're seeing with a 32-bit kernel/machine > now. Note that this is assuming you're running a 64-bit kernel of course. > Cmpiling 64-bit apps was a bit confusing at first (mixing 32-bit and > 64-bit libs during linking, etc.) but we got the hang of it after a while. What OS are you using? I have SuSE 9.1 64bit on a dual Opteron with 4 gigs of RAM. BIOS *sees* all 4 gigs, but SuSE with the 2.6.4 64bit kernel only sees 3.19 gigs. -- Jeremy Mann jeremy@biochem.uthscsa.edu University of Texas Health Science Center Bioinformatics Core Facility http://www.bioinformatics.uthscsa.edu Phone: (210) 567-2672 From bioclusters@bioinformatics.org Mon Jul 19 15:48:35 2004 From: bioclusters@bioinformatics.org (Farul M. Ghazali) Date: Mon, 19 Jul 2004 22:48:35 +0800 (MYT) Subject: [Bioclusters] Opterons and Linux In-Reply-To: <49478.129.111.175.204.1090247999.squirrel@biochem.uthscsa.edu> References: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> <20040719220200.W63166@ns1.aldrich.com.my> <49478.129.111.175.204.1090247999.squirrel@biochem.uthscsa.edu> Message-ID: <20040719224221.U63166@ns1.aldrich.com.my> On Mon, 19 Jul 2004, Jeremy Mann wrote: > Farul M. Ghazali said: > > > If your user-space app is compiled as a 64-bit binary, it will see >4GB of > > RAM (or whatever your RAM + swap is). If your app is a 32-bit binary, it > > will see al the 4GB of RAM it can actually address, but nothing more. > > However, the 32-bit binaries don't have to share the 4GB address space wih > > other processes unlike what you're seeing with a 32-bit kernel/machine > > now. Note that this is assuming you're running a 64-bit kernel of course. > > Cmpiling 64-bit apps was a bit confusing at first (mixing 32-bit and > > 64-bit libs during linking, etc.) but we got the hang of it after a while. > > What OS are you using? I have SuSE 9.1 64bit on a dual Opteron with 4 gigs > of RAM. BIOS *sees* all 4 gigs, but SuSE with the 2.6.4 64bit kernel only > sees 3.19 gigs. I'm using gentoo, no problems there from the start. Haven't downloaded Suse yet, next on my list is Rocks for the small cluster we have. Have you tried rebuilding the kernel manually, a random guess is maybe the highmem support isn't enabled? From bioclusters@bioinformatics.org Mon Jul 19 16:11:03 2004 From: bioclusters@bioinformatics.org (Glen Otero) Date: Mon, 19 Jul 2004 08:11:03 -0700 Subject: [Bioclusters] (no subject) In-Reply-To: References: Message-ID: Did you run formatdb (mpiformatdb) in /mtn/pvfs? That will create the index files. On Jul 18, 2004, at 11:32 PM, kenix y wrote: > It seems that my earlier error was due to the fact that I forgot to > change the permission of /tmp/blast of my compute node, sorry for my > absent-mindedness. > After I did, I got this: > > [blastall] WARNING: ftsYRP,: Could not find index files for database > /mnt/pvfs/ecoli.nt > [blastall] WARNING: ftsYRP,: polARP,: Could not find index files for > database /mnt/pvfs/ecoli.nt > [blastall] WARNING: ftsYRP,: polARP,: metKRPB,: Could not find index > files for database /mnt/pvfs/ecoli.nt > [blastall] WARNING: ftsYRP,: polARP,: metKRPB,: dnaERP,: Could not > find index files for database /mnt/pvfs/ecoli.nt > > I do have the index files (.nhr, .nin, .nsq, .nsd, .nsi, .nni, .nnd) > in /mnt/pvfs, what else can I do? > > > Thank you. > > _________________________________________________________________ > Get 10mb of inbox space with MSN Hotmail Extra Storage > http://join.msn.com/?pgmarket=en-sg > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > Glen Otero, Ph.D. Linux Prophet 619.917.1772 From bioclusters@bioinformatics.org Sat Jul 17 15:32:26 2004 From: bioclusters@bioinformatics.org (Jeremy Mann) Date: Sat, 17 Jul 2004 09:32:26 -0500 (CDT) Subject: [Bioclusters] Opterons and Linux Message-ID: <33022.66.69.86.170.1090074746.squirrel@biochem.uthscsa.edu> I'm curious if there are people on this list that use dual Opterons for their processing. We are in the process of trying to purchase several dual Opterons to replace our aging P3 cluster and we have a few questions regarding the upgrade. First, do you know if the opteron kernel will allow larger memory for user space in 64bit mode that just 4 GB? We have two dual Xeon's with 4gb of memory which we could never get more than 3.5 GB recognized by the 2.4 kernel. Second, regrading power and heat, what steps have you taken to remedy the heat generated by the Opterons and what kind of electrical upgrades have you done? We have a VA Linux rack with about 20U's left which will house the Opterons. It has 2 220 volt power rails (we only use one) that delivers power to a 4U APC (I forget the model number) unit, a 4U quad Xeon server, 2 switches and a 4U RAID array. Thanks for any suggestions you may provide. -- Jeremy Mann jeremy@biochem.uthscsa.edu University of Texas Health Science Center Bioinformatics Core Facility http://www.bioinformatics.uthscsa.edu Phone: (210) 567-2672 From bioclusters@bioinformatics.org Mon Jul 19 17:44:24 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 19 Jul 2004 12:44:24 -0400 (EDT) Subject: [Bioclusters] Opterons and Linux In-Reply-To: <33022.66.69.86.170.1090074746.squirrel@biochem.uthscsa.edu> References: <33022.66.69.86.170.1090074746.squirrel@biochem.uthscsa.edu> Message-ID: On Sat, 17 Jul 2004, Jeremy Mann wrote: > I'm curious if there are people on this list that use dual Opterons for > their processing. We are in the process of trying to purchase several dual > Opterons to replace our aging P3 cluster and we have a few questions > regarding the upgrade. > > First, do you know if the opteron kernel will allow larger memory for user > space in 64bit mode that just 4 GB? We have two dual Xeon's with 4gb of > memory which we could never get more than 3.5 GB recognized by the 2.4 > kernel. Yes, though I would recommend a 2.6 based kernel (SuSE 9.1 or similar) > Second, regrading power and heat, what steps have you taken to remedy the > heat generated by the Opterons and what kind of electrical upgrades have > you done? We have a VA Linux rack with about 20U's left which will house > the Opterons. It has 2 220 volt power rails (we only use one) that > delivers power to a 4U APC (I forget the model number) unit, a 4U quad > Xeon server, 2 switches and a 4U RAID array. Assume about 200-250 W under full load per unit. Quads might consume about 500 W. > Thanks for any suggestions you may provide. > > > > > From bioclusters@bioinformatics.org Mon Jul 19 22:46:57 2004 From: bioclusters@bioinformatics.org (Dow Hurst) Date: Mon, 19 Jul 2004 17:46:57 -0400 Subject: [Bioclusters] Opterons and Linux In-Reply-To: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> References: <49322.129.111.175.204.1090243103.squirrel@biochem.uthscsa.edu> Message-ID: <40FC4151.2080605@kennesaw.edu> If you can afford it, you should look at the quad Opterons. Your interconnects will be less expensive for the same number of CPUs. Others have already answered your question, but I thought you might be interested. Look at the Tyan quad motherboard. Here is a review to look at: http://www.aceshardware.com/read.jsp?id=60000275 Here are specs for power for a quad Opteron cluster we are getting quoted on: Quad 846 Opteron Slave Node at 120V 5A, 575Watts, 1962BTUs/hr I've gotten quotes from Microway, Aspen, and PSSC so far on quad Opteron based clusters so the hardware is available from vendors. Hope that helps! Dow -- __________________________________________________________ Dow Hurst Office: 770-499-3428 * Systems Support Specialist Fax: 770-423-6744 * 1000 Chastain Rd. Bldg. 12 * Chemistry Department SC428 Email: dhurst@kennesaw.edu * Kennesaw State University Dow.Hurst@mindspring.com * Kennesaw, GA 30144 * ************************************************************ This message (including any attachments) contains * confidential information intended for a specific individual* and purpose, and is protected by law. If you are not the * intended recipient, you should delete this message and are * hereby notified that any disclosure, copying, distribution * of this message, or the taking of any action based on it, * is strictly prohibited. * ************************************************************ From bioclusters@bioinformatics.org Tue Jul 20 02:21:17 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Tue, 20 Jul 2004 09:21:17 +0800 Subject: [Bioclusters] (no subject) Message-ID: Yes, I did. I ran /opt/BioBrew/NCBI/6.1.0/bin/mpiformatdb -f /home/bigcpuguest/mpiblast.conf -N 2 -i ecoli.nt -o T -p F Trying to break ecoli.nt (5MB) into 3 fragments of 2 MB Executing: formatdb -i ecoli.nt -o T -p F -v 2 Moving fragments to /mnt/pvfs mv: cannot stat 'ecoli.nt.nal': No such file or directory Created and moved 3 fragments. The only files produced in /mnt/pvfs is ecoli.nt.00.nhr ecoli.nt.01.nhr ecoli.nt.02.nhr ecoli.nt.00.nin ecoli.nt.01.nin ecoli.nt.02.nin ecoli.nt.00.nnd ecoli.nt.01.nnd ecoli.nt.02.nnd ecoli.nt.00.nni ecoli.nt.01.nni ecoli.nt.02.nni ecoli.nt.00.nsd ecoli.nt.01.nsd ecoli.nt.02.nsd ecoli.nt.00.nsi ecoli.nt.01.nsi ecoli.nt.02.nsi ecoli.nt.00.nsq ecoli.nt.01.nsq ecoli.nt.02.nsq ecoli.nt.dbs (null).nal The index files are in /mnt/pvfs, seven of them. I do not know what else is missing, is it something to do with ecoli.nt.nal? >From: Glen Otero >Reply-To: bioclusters@bioinformatics.org >To: bioclusters@bioinformatics.org >Subject: Re: [Bioclusters] (no subject) >Date: Mon, 19 Jul 2004 08:11:03 -0700 > >Did you run formatdb (mpiformatdb) in /mtn/pvfs? That will create the index >files. > >On Jul 18, 2004, at 11:32 PM, kenix y wrote: > >>It seems that my earlier error was due to the fact that I forgot to change >>the permission of /tmp/blast of my compute node, sorry for my >>absent-mindedness. >>After I did, I got this: >> >>[blastall] WARNING: ftsYRP,: Could not find index files for database >>/mnt/pvfs/ecoli.nt >>[blastall] WARNING: ftsYRP,: polARP,: Could not find index files for >>database /mnt/pvfs/ecoli.nt >>[blastall] WARNING: ftsYRP,: polARP,: metKRPB,: Could not find index files >>for database /mnt/pvfs/ecoli.nt >>[blastall] WARNING: ftsYRP,: polARP,: metKRPB,: dnaERP,: Could not find >>index files for database /mnt/pvfs/ecoli.nt >> >>I do have the index files (.nhr, .nin, .nsq, .nsd, .nsi, .nni, .nnd) in >>/mnt/pvfs, what else can I do? >> >> >>Thank you. >> _________________________________________________________________ Download games, logos, wallpapers and lots more at MSN Mobile! http://www.msn.com.sg/mobile/ From bioclusters@bioinformatics.org Tue Jul 20 03:09:03 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Tue, 20 Jul 2004 10:09:03 +0800 Subject: [Bioclusters] Is this output correct? Message-ID: This is a multi-part message in MIME format. ------=_NextPart_000_5589_4b18_45b8 Content-Type: text/plain; format=flowed Hi, For some reason unknown to me, mpiformatdb always gives me (null).nal instead of ecoli.nt.nal. After making some changes to the DBLIST line, I got this output with no error message. Does this means my mpiblast is finally working? Thank you. _________________________________________________________________ Get 10mb of inbox space with MSN Hotmail Extra Storage http://join.msn.com/?pgmarket=en-sg ------=_NextPart_000_5589_4b18_45b8 Content-Type: application/octet-stream; name="newtest.out" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="newtest.out" QkxBU1ROIDIuMi42IFtBcHItMDktMjAwM10KCgpSZWZlcmVuY2U6IEFsdHNj aHVsLCBTdGVwaGVuIEYuLCBUaG9tYXMgTC4gTWFkZGVuLCBBbGVqYW5kcm8g QS4gU2NoYWZmZXIsIApKaW5naHVpIFpoYW5nLCBaaGVuZyBaaGFuZywgV2Vi YiBNaWxsZXIsIGFuZCBEYXZpZCBKLiBMaXBtYW4gKDE5OTcpLCAKIkdhcHBl ZCBCTEFTVCBhbmQgUFNJLUJMQVNUOiBhIG5ldyBnZW5lcmF0aW9uIG9mIHBy b3RlaW4gZGF0YWJhc2Ugc2VhcmNoCnByb2dyYW1zIiwgIE51Y2xlaWMgQWNp ZHMgUmVzLiAyNTozMzg5LTM0MDIuCgpRdWVyeT0gVGVzdAogICAgICAgICAo NTYwIGxldHRlcnMpCgpEYXRhYmFzZTogL2hvbWUvYmlnY3B1Z3Vlc3QvZWNv bGkubnQgCiAgICAgICAgICAgNDAwIHNlcXVlbmNlczsgNCw2NjIsMjM5IHRv dGFsIGxldHRlcnMKCgoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTY29yZSAgICBF ClNlcXVlbmNlcyBwcm9kdWNpbmcgc2lnbmlmaWNhbnQgYWxpZ25tZW50czog ICAgICAgICAgICAgICAgICAgICAgKGJpdHMpIFZhbHVlCgpnYnxBRTAwMDEx MS4xfEFFMDAwMTExIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2Vj dGlvbiAxIG9mLi4uICAgNTg5ICAgZS0xNjgKZ2J8QUUwMDAxMzIuMXxBRTAw MDEzMiBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMjIg by4uLiAgICAzMiAgIDAuNTEgCmdifEFFMDAwNDQwLjF8QUUwMDA0NDAgRXNj aGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDMzMCAuLi4gICAg MzIgICAwLjUxIApnYnxBRTAwMDI3OS4xfEFFMDAwMjc5IEVzY2hlcmljaGlh IGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAxNjkgLi4uICAgIDMwICAgMi4w ICAKZ2J8QUUwMDAxNjcuMXxBRTAwMDE2NyBFc2NoZXJpY2hpYSBjb2xpIEst MTIgTUcxNjU1IHNlY3Rpb24gNTcgby4uLiAgICAzMCAgIDIuMCAgCmdifEFF MDAwMTE3LjF8QUUwMDAxMTcgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1 NSBzZWN0aW9uIDcgb2YuLi4gICAgMzAgICAyLjAgIApnYnxBRTAwMDExNS4x fEFFMDAwMTE1IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlv biA1IG9mLi4uICAgIDMwICAgMi4wICAKZ2J8QUUwMDAzODcuMXxBRTAwMDM4 NyBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMjc3IC4u LiAgICAzMCAgIDIuMCAgCmdifEFFMDAwMjk1LjF8QUUwMDAyOTUgRXNjaGVy aWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDE4NSAuLi4gICAgMzAg ICAyLjAgIApnYnxBRTAwMDI4MS4xfEFFMDAwMjgxIEVzY2hlcmljaGlhIGNv bGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAxNzEgLi4uICAgIDI4ICAgOC4wICAK Z2J8QUUwMDAyNjkuMXxBRTAwMDI2OSBFc2NoZXJpY2hpYSBjb2xpIEstMTIg TUcxNjU1IHNlY3Rpb24gMTU5IC4uLiAgICAyOCAgIDguMCAgCmdifEFFMDAw MjY2LjF8QUUwMDAyNjYgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBz ZWN0aW9uIDE1NiAuLi4gICAgMjggICA4LjAgIApnYnxBRTAwMDI1MC4xfEFF MDAwMjUwIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAx NDAgLi4uICAgIDI4ICAgOC4wICAKZ2J8QUUwMDAyMzAuMXxBRTAwMDIzMCBF c2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMTIwIC4uLiAg ICAyOCAgIDguMCAgCmdifEFFMDAwMjEyLjF8QUUwMDAyMTIgRXNjaGVyaWNo aWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDEwMiAuLi4gICAgMjggICA4 LjAgIApnYnxBRTAwMDE5MC4xfEFFMDAwMTkwIEVzY2hlcmljaGlhIGNvbGkg Sy0xMiBNRzE2NTUgc2VjdGlvbiA4MCBvLi4uICAgIDI4ICAgOC4wICAKZ2J8 QUUwMDAxODMuMXxBRTAwMDE4MyBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcx NjU1IHNlY3Rpb24gNzMgby4uLiAgICAyOCAgIDguMCAgCmdifEFFMDAwMTYx LjF8QUUwMDAxNjEgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0 aW9uIDUxIG8uLi4gICAgMjggICA4LjAgIApnYnxBRTAwMDE1NS4xfEFFMDAw MTU1IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiA0NSBv Li4uICAgIDI4ICAgOC4wICAKZ2J8QUUwMDA0NDEuMXxBRTAwMDQ0MSBFc2No ZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMzMxIC4uLiAgICAy OCAgIDguMCAgCmdifEFFMDAwNDI2LjF8QUUwMDA0MjYgRXNjaGVyaWNoaWEg Y29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDMxNiAuLi4gICAgMjggICA4LjAg IApnYnxBRTAwMDQwNy4xfEFFMDAwNDA3IEVzY2hlcmljaGlhIGNvbGkgSy0x MiBNRzE2NTUgc2VjdGlvbiAyOTcgLi4uICAgIDI4ICAgOC4wICAKZ2J8QUUw MDAzOTkuMXxBRTAwMDM5OSBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1 IHNlY3Rpb24gMjg5IC4uLiAgICAyOCAgIDguMCAgCmdifEFFMDAwMzgwLjF8 QUUwMDAzODAgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9u IDI3MCAuLi4gICAgMjggICA4LjAgIApnYnxBRTAwMDM3MS4xfEFFMDAwMzcx IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAyNjEgLi4u ICAgIDI4ICAgOC4wICAKZ2J8QUUwMDAzMzYuMXxBRTAwMDMzNiBFc2NoZXJp Y2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMjI2IC4uLiAgICAyOCAg IDguMCAgCmdifEFFMDAwMzMyLjF8QUUwMDAzMzIgRXNjaGVyaWNoaWEgY29s aSBLLTEyIE1HMTY1NSBzZWN0aW9uIDIyMiAuLi4gICAgMjggICA4LjAgIApn YnxBRTAwMDMwMy4xfEFFMDAwMzAzIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBN RzE2NTUgc2VjdGlvbiAxOTMgLi4uICAgIDI4ICAgOC4wICAKZ2J8QUUwMDAy OTguMXxBRTAwMDI5OCBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNl Y3Rpb24gMTg4IC4uLiAgICAyOCAgIDguMCAgCmdifEFFMDAwMjkzLjF8QUUw MDAyOTMgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDE4 MyAuLi4gICAgMjggICA4LjAgIApnYnxBRTAwMDUxMC4xfEFFMDAwNTEwIEVz Y2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiA0MDAgLi4uICAg IDI4ICAgOC4wICAKZ2J8QUUwMDA0OTYuMXxBRTAwMDQ5NiBFc2NoZXJpY2hp YSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMzg2IC4uLiAgICAyOCAgIDgu MCAgCmdifEFFMDAwNDk0LjF8QUUwMDA0OTQgRXNjaGVyaWNoaWEgY29saSBL LTEyIE1HMTY1NSBzZWN0aW9uIDM4NCAuLi4gICAgMjggICA4LjAgIApnYnxB RTAwMDQ4OC4xfEFFMDAwNDg4IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2 NTUgc2VjdGlvbiAzNzggLi4uICAgIDI4ICAgOC4wICAKZ2J8QUUwMDA0ODMu MXxBRTAwMDQ4MyBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rp b24gMzczIC4uLiAgICAyOCAgIDguMCAgCmdifEFFMDAwNDY3LjF8QUUwMDA0 NjcgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDM1NyAu Li4gICAgMjggICA4LjAgIApnYnxBRTAwMDQ2My4xfEFFMDAwNDYzIEVzY2hl cmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAzNTMgLi4uICAgIDI4 ICAgOC4wICAKCj5nYnxBRTAwMDExMS4xfEFFMDAwMTExIEVzY2hlcmljaGlh IGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAxIG9mIDQwMCBvZiB0aGUgY29t cGxldGUKICAgICAgICAgICBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEw NTk2CgogU2NvcmUgPSAgNTg5IGJpdHMgKDI5NyksIEV4cGVjdCA9IGUtMTY4 CiBJZGVudGl0aWVzID0gMzI0LzMyNCAoMTAwJSkKIFN0cmFuZCA9IFBsdXMg LyBQbHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTogMjM3 IGFnZ3RhYWNnZ3RnY2dnZ2N0Z2FjZ2NndGFjYWdnYWFhY2FjYWdhYWFhYWFn Y2NjZ2NhY2N0Z2FjYWd0ZyAyOTYKICAgICAgICAgICB8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHwKU2JqY3Q6IDIzNyBhZ2d0YWFjZ2d0Z2NnZ2djdGdhY2djZ3RhY2FnZ2Fh YWNhY2FnYWFhYWFhZ2NjY2djYWNjdGdhY2FndGcgMjk2CgogICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgIApRdWVyeTogMjk3IGNnZ2djdHR0dHR0dHR0Y2dh Y2NhYWFnZ3RhYWNnYWdndGFhY2FhY2NhdGdjZ2FndGd0dGdhYWd0dGNnZyAz NTYKICAgICAgICAgICB8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDI5NyBjZ2dn Y3R0dHR0dHR0dGNnYWNjYWFhZ2d0YWFjZ2FnZ3RhYWNhYWNjYXRnY2dhZ3Rn dHRnYWFndHRjZ2cgMzU2CgogICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIApR dWVyeTogMzU3IGNnZ3RhY2F0Y2FndGdnY2FhYXRnY2FnYWFjZ3R0dHRjdGdj Z3RndHRnY2NnYXRhdHRjdGdnYWFhZ2NhYSA0MTYKICAgICAgICAgICB8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHwKU2JqY3Q6IDM1NyBjZ2d0YWNhdGNhZ3RnZ2NhYWF0Z2Nh Z2FhY2d0dHR0Y3RnY2d0Z3R0Z2NjZ2F0YXR0Y3RnZ2FhYWdjYWEgNDE2Cgog ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTogNDE3IHRnY2NhZ2dj YWdnZ2djYWdndGdnY2NhY2NndGNjdGN0Y3RnY2NjY2NnY2NhYWFhdGNhY2Nh YWNjYWNjdCA0NzYKICAgICAgICAgICB8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6 IDQxNyB0Z2NjYWdnY2FnZ2dnY2FnZ3RnZ2NjYWNjZ3RjY3RjdGN0Z2NjY2Nj Z2NjYWFhYXRjYWNjYWFjY2FjY3QgNDc2CgogICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgIApRdWVyeTogNDc3IGdndGdnY2dhdGdhdHRnYWFhYWFhY2NhdHRh Z2NnZ2NjYWdnYXRnY3R0dGFjY2NhYXRhdGNhZ2NnYXRnYyA1MzYKICAgICAg ICAgICB8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDQ3NyBnZ3RnZ2NnYXRnYXR0 Z2FhYWFhYWNjYXR0YWdjZ2djY2FnZ2F0Z2N0dHRhY2NjYWF0YXRjYWdjZ2F0 Z2MgNTM2CgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIApR dWVyeTogNTM3IGNnYWFjZ3RhdHR0dHRnY2NnYWFjdHR0dCA1NjAKICAgICAg ICAgICB8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDUzNyBjZ2Fh Y2d0YXR0dHR0Z2NjZ2FhY3R0dHQgNTYwCgoKCiBTY29yZSA9ICAzNjEgYml0 cyAoMTgyKSwgRXhwZWN0ID0gZS0xMDAKIElkZW50aXRpZXMgPSAyMDMvMjAz ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIFBsdXMKCiAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgClF1ZXJ5OiAxICAgYWdjdHR0dGNhdHRjdGdhY3RnY2Fh Y2dnZ2NhYXRhdGd0Y3RjdGd0Z3RnZ2F0dGFhYWFhYWFnYWd0Z3RjIDYwCiAg ICAgICAgICAgfHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8ClNiamN0OiAxICAgYWdjdHR0dGNh dHRjdGdhY3RnY2FhY2dnZ2NhYXRhdGd0Y3RjdGd0Z3RnZ2F0dGFhYWFhYWFn YWd0Z3RjIDYwCgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTog NjEgIHRnYXRhZ2NhZ2N0dGN0Z2FhY3RnZ3R0YWNjdGdjY2d0Z2FndGFhYXR0 YWFhYXR0dHRhdHRnYWN0dGFnZyAxMjAKICAgICAgICAgICB8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHwKU2JqY3Q6IDYxICB0Z2F0YWdjYWdjdHRjdGdhYWN0Z2d0dGFjY3Rn Y2NndGdhZ3RhYWF0dGFhYWF0dHR0YXR0Z2FjdHRhZ2cgMTIwCgogICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgIApRdWVyeTogMTIxIHRjYWN0YWFhdGFjdHR0 YWFjY2FhdGF0YWdnY2F0YWdjZ2NhY2FnYWNhZ2F0YWFhYWF0dGFjYWdhZ3Rh YyAxODAKICAgICAgICAgICB8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8 fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDEyMSB0 Y2FjdGFhYXRhY3R0dGFhY2NhYXRhdGFnZ2NhdGFnY2djYWNhZ2FjYWdhdGFh YWFhdHRhY2FnYWd0YWMgMTgwCgogICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgClF1ZXJ5OiAxODEgYWNhYWNhdGNjYXRnYWFhY2djYXR0YWcg MjAzCiAgICAgICAgICAgfHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6 IDE4MSBhY2FhY2F0Y2NhdGdhYWFjZ2NhdHRhZyAyMDMKCgoKIFNjb3JlID0g MjguMiBiaXRzICgxNCksIEV4cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0 LzE0ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIE1pbnVzCgogICAgICAgICAg ICAgICAgICAgICAgICAgClF1ZXJ5OiAyNzQgYWFhYWFhZ2NjY2djYWMgMjg3 CiAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDMwNyBhYWFhYWFn Y2NjZ2NhYyAyOTQKCgo+Z2J8QUUwMDAxMzIuMXxBRTAwMDEzMiBFc2NoZXJp Y2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMjIgb2YgNDAwIG9mIHRo ZSBjb21wbGV0ZSBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEwMTY3Cgog U2NvcmUgPSAzMi4yIGJpdHMgKDE2KSwgRXhwZWN0ID0gMC41MQogSWRlbnRp dGllcyA9IDE2LzE2ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIFBsdXMKCiAg ICAgICAgICAgICAgICAgICAgICAgICAgICAKUXVlcnk6IDUyOSAgYWdjZ2F0 Z2NjZ2FhY2d0YSA1NDQKICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHx8fApT YmpjdDogMzQ2OCBhZ2NnYXRnY2NnYWFjZ3RhIDM0ODMKCgo+Z2J8QUUwMDA0 NDAuMXxBRTAwMDQ0MCBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNl Y3Rpb24gMzMwIG9mIDQwMCBvZiB0aGUgY29tcGxldGUKICAgICAgICAgICAg Z2Vub21lCiAgICAgICAgICBMZW5ndGggPSAxNTUyOQoKIFNjb3JlID0gMzIu MiBiaXRzICgxNiksIEV4cGVjdCA9IDAuNTEKIElkZW50aXRpZXMgPSAxNi8x NiAoMTAwJSkKIFN0cmFuZCA9IFBsdXMgLyBNaW51cwoKICAgICAgICAgICAg ICAgICAgICAgICAgICAgIApRdWVyeTogNDk2ICBhY2NhdHRhZ2NnZ2NjYWdn IDUxMQogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fHx8ClNiamN0OiAyNjg5 IGFjY2F0dGFnY2dnY2NhZ2cgMjY3NAoKCj5nYnxBRTAwMDI3OS4xfEFFMDAw Mjc5IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAxNjkg b2YgNDAwIG9mIHRoZSBjb21wbGV0ZQogICAgICAgICAgICBnZW5vbWUKICAg ICAgICAgIExlbmd0aCA9IDEwODU1CgogU2NvcmUgPSAzMC4yIGJpdHMgKDE1 KSwgRXhwZWN0ID0gMi4wCiBJZGVudGl0aWVzID0gMTUvMTUgKDEwMCUpCiBT dHJhbmQgPSBQbHVzIC8gTWludXMKCiAgICAgICAgICAgICAgICAgICAgICAg ICAgIApRdWVyeTogNDcyICBjYWNjdGdndGdnY2dhdGcgNDg2CiAgICAgICAg ICAgIHx8fHx8fHx8fHx8fHx8fApTYmpjdDogMjkwNSBjYWNjdGdndGdnY2dh dGcgMjg5MQoKCj5nYnxBRTAwMDE2Ny4xfEFFMDAwMTY3IEVzY2hlcmljaGlh IGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiA1NyBvZiA0MDAgb2YgdGhlIGNv bXBsZXRlIGdlbm9tZQogICAgICAgICAgTGVuZ3RoID0gMTAyNjQKCiBTY29y ZSA9IDMwLjIgYml0cyAoMTUpLCBFeHBlY3QgPSAyLjAKIElkZW50aXRpZXMg PSAxNS8xNSAoMTAwJSkKIFN0cmFuZCA9IFBsdXMgLyBNaW51cwoKICAgICAg ICAgICAgICAgICAgICAgICAgICAgClF1ZXJ5OiA5ICAgIGF0dGN0Z2FjdGdj YWFjZyAyMwogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDc2 MTQgYXR0Y3RnYWN0Z2NhYWNnIDc2MDAKCgoKIFNjb3JlID0gMjguMiBiaXRz ICgxNCksIEV4cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0LzE0ICgxMDAl KQogU3RyYW5kID0gUGx1cyAvIE1pbnVzCgogICAgICAgICAgICAgICAgICAg ICAgICAgIApRdWVyeTogMjczICBnYWFhYWFhZ2NjY2djYSAyODYKICAgICAg ICAgICAgfHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDc2ODYgZ2FhYWFhYWdjY2Nn Y2EgNzY3MwoKCj5nYnxBRTAwMDExNy4xfEFFMDAwMTE3IEVzY2hlcmljaGlh IGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiA3IG9mIDQwMCBvZiB0aGUgY29t cGxldGUgZ2Vub21lCiAgICAgICAgICBMZW5ndGggPSAxMzQxNgoKIFNjb3Jl ID0gMzAuMiBiaXRzICgxNSksIEV4cGVjdCA9IDIuMAogSWRlbnRpdGllcyA9 IDE1LzE1ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIFBsdXMKCiAgICAgICAg ICAgICAgICAgICAgICAgICAgIApRdWVyeTogNDU2ICBjZ2NjYWFhYXRjYWNj YWEgNDcwCiAgICAgICAgICAgIHx8fHx8fHx8fHx8fHx8fApTYmpjdDogMjkw MCBjZ2NjYWFhYXRjYWNjYWEgMjkxNAoKCj5nYnxBRTAwMDExNS4xfEFFMDAw MTE1IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiA1IG9m IDQwMCBvZiB0aGUgY29tcGxldGUgZ2Vub21lCiAgICAgICAgICBMZW5ndGgg PSAxMDEwMgoKIFNjb3JlID0gMzAuMiBiaXRzICgxNSksIEV4cGVjdCA9IDIu MAogSWRlbnRpdGllcyA9IDE1LzE1ICgxMDAlKQogU3RyYW5kID0gUGx1cyAv IFBsdXMKCiAgICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTogNDc1 ICBjdGdndGdnY2dhdGdhdHQgNDg5CiAgICAgICAgICAgIHx8fHx8fHx8fHx8 fHx8fApTYmpjdDogMTA5MCBjdGdndGdnY2dhdGdhdHQgMTEwNAoKCj5nYnxB RTAwMDM4Ny4xfEFFMDAwMzg3IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2 NTUgc2VjdGlvbiAyNzcgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZSBnZW5vbWUK ICAgICAgICAgIExlbmd0aCA9IDExMzA3CgogU2NvcmUgPSAzMC4yIGJpdHMg KDE1KSwgRXhwZWN0ID0gMi4wCiBJZGVudGl0aWVzID0gMTUvMTUgKDEwMCUp CiBTdHJhbmQgPSBQbHVzIC8gTWludXMKCiAgICAgICAgICAgICAgICAgICAg ICAgICAgICAKUXVlcnk6IDUxOSAgIGFjY2NhYXRhdGNhZ2NnYSA1MzMKICAg ICAgICAgICAgIHx8fHx8fHx8fHx8fHx8fApTYmpjdDogMTA5NDUgYWNjY2Fh dGF0Y2FnY2dhIDEwOTMxCgoKPmdifEFFMDAwMjk1LjF8QUUwMDAyOTUgRXNj aGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDE4NSBvZiA0MDAg b2YgdGhlIGNvbXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQogICAgICAgICAg TGVuZ3RoID0gMjAyNTQKCiBTY29yZSA9IDMwLjIgYml0cyAoMTUpLCBFeHBl Y3QgPSAyLjAKIElkZW50aXRpZXMgPSAxOC8xOSAoOTQlKQogU3RyYW5kID0g UGx1cyAvIE1pbnVzCgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ClF1ZXJ5OiA0ODkgIHRnYWFhYWFhY2NhdHRhZ2NnZ2MgNTA3CiAgICAgICAg ICAgIHx8fHx8fHx8fHx8fCB8fHx8fHwKU2JqY3Q6IDY5MzAgdGdhYWFhYWFj Y2F0Y2FnY2dnYyA2OTEyCgoKPmdifEFFMDAwMjgxLjF8QUUwMDAyODEgRXNj aGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDE3MSBvZiA0MDAg b2YgdGhlIGNvbXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQogICAgICAgICAg TGVuZ3RoID0gMTE4NTUKCiBTY29yZSA9IDI4LjIgYml0cyAoMTQpLCBFeHBl Y3QgPSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkKIFN0cmFuZCA9 IFBsdXMgLyBQbHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVy eTogNDA5ICBnYWFhZ2NhYXRnY2NhZyA0MjIKICAgICAgICAgICAgfHx8fHx8 fHx8fHx8fHwKU2JqY3Q6IDQ5ODEgZ2FhYWdjYWF0Z2NjYWcgNDk5NAoKCj5n YnxBRTAwMDI2OS4xfEFFMDAwMjY5IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBN RzE2NTUgc2VjdGlvbiAxNTkgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZSBnZW5v bWUKICAgICAgICAgIExlbmd0aCA9IDExMDA3CgogU2NvcmUgPSAyOC4yIGJp dHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0aWVzID0gMTQvMTQgKDEw MCUpCiBTdHJhbmQgPSBQbHVzIC8gUGx1cwoKICAgICAgICAgICAgICAgICAg ICAgICAgICAgClF1ZXJ5OiAxODggICBjY2F0Z2FhYWNnY2F0dCAyMDEKICAg ICAgICAgICAgIHx8fHx8fHx8fHx8fHx8ClNiamN0OiAxMDMzOCBjY2F0Z2Fh YWNnY2F0dCAxMDM1MQoKCj5nYnxBRTAwMDI2Ni4xfEFFMDAwMjY2IEVzY2hl cmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAxNTYgb2YgNDAwIG9m IHRoZSBjb21wbGV0ZQogICAgICAgICAgICBnZW5vbWUKICAgICAgICAgIExl bmd0aCA9IDEwNTU4CgogU2NvcmUgPSAyOC4yIGJpdHMgKDE0KSwgRXhwZWN0 ID0gOC4wCiBJZGVudGl0aWVzID0gMTQvMTQgKDEwMCUpCiBTdHJhbmQgPSBQ bHVzIC8gUGx1cwoKICAgICAgICAgICAgICAgICAgICAgICAgICAKUXVlcnk6 IDM3OSAgZ2FhY2d0dHR0Y3RnY2cgMzkyCiAgICAgICAgICAgIHx8fHx8fHx8 fHx8fHx8ClNiamN0OiA2MjczIGdhYWNndHR0dGN0Z2NnIDYyODYKCgo+Z2J8 QUUwMDAyNTAuMXxBRTAwMDI1MCBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcx NjU1IHNlY3Rpb24gMTQwIG9mIDQwMCBvZiB0aGUgY29tcGxldGUKICAgICAg ICAgICAgZ2Vub21lCiAgICAgICAgICBMZW5ndGggPSAxMDQ4MAoKIFNjb3Jl ID0gMjguMiBiaXRzICgxNCksIEV4cGVjdCA9IDguMAogSWRlbnRpdGllcyA9 IDE0LzE0ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIE1pbnVzCgogICAgICAg ICAgICAgICAgICAgICAgICAgIApRdWVyeTogNDEyICBhZ2NhYXRnY2NhZ2dj YSA0MjUKICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDcxMzYg YWdjYWF0Z2NjYWdnY2EgNzEyMwoKCj5nYnxBRTAwMDIzMC4xfEFFMDAwMjMw IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiAxMjAgb2Yg NDAwIG9mIHRoZSBjb21wbGV0ZQogICAgICAgICAgICBnZW5vbWUKICAgICAg ICAgIExlbmd0aCA9IDEwMTE4CgogU2NvcmUgPSAyOC4yIGJpdHMgKDE0KSwg RXhwZWN0ID0gOC4wCiBJZGVudGl0aWVzID0gMTQvMTQgKDEwMCUpCiBTdHJh bmQgPSBQbHVzIC8gUGx1cwoKICAgICAgICAgICAgICAgICAgICAgICAgICAK UXVlcnk6IDE4NiAgYXRjY2F0Z2FhYWNnY2EgMTk5CiAgICAgICAgICAgIHx8 fHx8fHx8fHx8fHx8ClNiamN0OiA0MjA0IGF0Y2NhdGdhYWFjZ2NhIDQyMTcK Cgo+Z2J8QUUwMDAyMTIuMXxBRTAwMDIxMiBFc2NoZXJpY2hpYSBjb2xpIEst MTIgTUcxNjU1IHNlY3Rpb24gMTAyIG9mIDQwMCBvZiB0aGUgY29tcGxldGUg Z2Vub21lCiAgICAgICAgICBMZW5ndGggPSAxMTc0OQoKIFNjb3JlID0gMjgu MiBiaXRzICgxNCksIEV4cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0LzE0 ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIE1pbnVzCgogICAgICAgICAgICAg ICAgICAgICAgICAgICAKUXVlcnk6IDM3MCAgIGdjYWFhdGdjYWdhYWNnIDM4 MwogICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDExMDQ1IGdj YWFhdGdjYWdhYWNnIDExMDMyCgoKPmdifEFFMDAwMTkwLjF8QUUwMDAxOTAg RXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDgwIG9mIDQw MCBvZiB0aGUgY29tcGxldGUgZ2Vub21lCiAgICAgICAgICBMZW5ndGggPSAx MDA1MQoKIFNjb3JlID0gMjguMiBiaXRzICgxNCksIEV4cGVjdCA9IDguMAog SWRlbnRpdGllcyA9IDE0LzE0ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIFBs dXMKCiAgICAgICAgICAgICAgICAgICAgICAgICAgClF1ZXJ5OiAxNTUgIGFj YWdhY2FnYXRhYWFhIDE2OAogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fApT YmpjdDogMzUyNiBhY2FnYWNhZ2F0YWFhYSAzNTM5CgoKPmdifEFFMDAwMTgz LjF8QUUwMDAxODMgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0 aW9uIDczIG9mIDQwMCBvZiB0aGUgY29tcGxldGUgZ2Vub21lCiAgICAgICAg ICBMZW5ndGggPSAxMTAyOQoKIFNjb3JlID0gMjguMiBiaXRzICgxNCksIEV4 cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0LzE0ICgxMDAlKQogU3RyYW5k ID0gUGx1cyAvIE1pbnVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApR dWVyeTogMjc0ICBhYWFhYWFnY2NjZ2NhYyAyODcKICAgICAgICAgICAgfHx8 fHx8fHx8fHx8fHwKU2JqY3Q6IDM5OTcgYWFhYWFhZ2NjY2djYWMgMzk4NAoK Cj5nYnxBRTAwMDE2MS4xfEFFMDAwMTYxIEVzY2hlcmljaGlhIGNvbGkgSy0x MiBNRzE2NTUgc2VjdGlvbiA1MSBvZiA0MDAgb2YgdGhlIGNvbXBsZXRlIGdl bm9tZQogICAgICAgICAgTGVuZ3RoID0gMTYxNzAKCiBTY29yZSA9IDI4LjIg Yml0cyAoMTQpLCBFeHBlY3QgPSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAo MTAwJSkKIFN0cmFuZCA9IFBsdXMgLyBNaW51cwoKICAgICAgICAgICAgICAg ICAgICAgICAgICAgClF1ZXJ5OiAxNiAgICBjdGdjYWFjZ2dnY2FhdCAyOQog ICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDEzMjcwIGN0Z2Nh YWNnZ2djYWF0IDEzMjU3CgoKPmdifEFFMDAwMTU1LjF8QUUwMDAxNTUgRXNj aGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDQ1IG9mIDQwMCBv ZiB0aGUgY29tcGxldGUgZ2Vub21lCiAgICAgICAgICBMZW5ndGggPSAxMTU5 MwoKIFNjb3JlID0gMjguMiBiaXRzICgxNCksIEV4cGVjdCA9IDguMAogSWRl bnRpdGllcyA9IDE0LzE0ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIE1pbnVz CgogICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTogMzI1ICBnYWdn dGFhY2FhY2NhdCAzMzgKICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwKU2Jq Y3Q6IDk1ODEgZ2FnZ3RhYWNhYWNjYXQgOTU2OAoKCj5nYnxBRTAwMDQ0MS4x fEFFMDAwNDQxIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlv biAzMzEgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZSBnZW5vbWUKICAgICAgICAg IExlbmd0aCA9IDEwNTYyCgogU2NvcmUgPSAyOC4yIGJpdHMgKDE0KSwgRXhw ZWN0ID0gOC4wCiBJZGVudGl0aWVzID0gMTQvMTQgKDEwMCUpCiBTdHJhbmQg PSBQbHVzIC8gUGx1cwoKICAgICAgICAgICAgICAgICAgICAgICAgICAgClF1 ZXJ5OiAxNjQgICB0YWFhYWF0dGFjYWdhZyAxNzcKICAgICAgICAgICAgIHx8 fHx8fHx8fHx8fHx8ClNiamN0OiAxMDQ1NyB0YWFhYWF0dGFjYWdhZyAxMDQ3 MAoKCj5nYnxBRTAwMDQyNi4xfEFFMDAwNDI2IEVzY2hlcmljaGlhIGNvbGkg Sy0xMiBNRzE2NTUgc2VjdGlvbiAzMTYgb2YgNDAwIG9mIHRoZSBjb21wbGV0 ZQogICAgICAgICAgICBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEwMjQw CgogU2NvcmUgPSAyOC4yIGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVu dGl0aWVzID0gMTQvMTQgKDEwMCUpCiBTdHJhbmQgPSBQbHVzIC8gTWludXMK CiAgICAgICAgICAgICAgICAgICAgICAgICAgClF1ZXJ5OiA2NyAgIGNhZ2N0 dGN0Z2FhY3RnIDgwCiAgICAgICAgICAgIHx8fHx8fHx8fHx8fHx8ClNiamN0 OiA3MDE4IGNhZ2N0dGN0Z2FhY3RnIDcwMDUKCgo+Z2J8QUUwMDA0MDcuMXxB RTAwMDQwNyBFc2NoZXJpY2hpYSBjb2xpIEstMTIgTUcxNjU1IHNlY3Rpb24g Mjk3IG9mIDQwMCBvZiB0aGUgY29tcGxldGUKICAgICAgICAgICAgZ2Vub21l CiAgICAgICAgICBMZW5ndGggPSAxMDYwMQoKIFNjb3JlID0gMjguMiBiaXRz ICgxNCksIEV4cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0LzE0ICgxMDAl KQogU3RyYW5kID0gUGx1cyAvIE1pbnVzCgogICAgICAgICAgICAgICAgICAg ICAgICAgIApRdWVyeTogNzIgICB0Y3RnYWFjdGdndHRhYyA4NQogICAgICAg ICAgICB8fHx8fHx8fHx8fHx8fApTYmpjdDogNDgxNCB0Y3RnYWFjdGdndHRh YyA0ODAxCgoKPmdifEFFMDAwMzk5LjF8QUUwMDAzOTkgRXNjaGVyaWNoaWEg Y29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDI4OSBvZiA0MDAgb2YgdGhlIGNv bXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQogICAgICAgICAgTGVuZ3RoID0g MTc4MDEKCiBTY29yZSA9IDI4LjIgYml0cyAoMTQpLCBFeHBlY3QgPSA4LjAK IElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkKIFN0cmFuZCA9IFBsdXMgLyBQ bHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTogMzc5ICBn YWFjZ3R0dHRjdGdjZyAzOTIKICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwK U2JqY3Q6IDkwNDggZ2FhY2d0dHR0Y3RnY2cgOTA2MQoKCgogU2NvcmUgPSAy OC4yIGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0aWVzID0gMTQv MTQgKDEwMCUpCiBTdHJhbmQgPSBQbHVzIC8gTWludXMKCiAgICAgICAgICAg ICAgICAgICAgICAgICAgClF1ZXJ5OiAzOTMgIHRndHRnY2NnYXRhdHRjIDQw NgogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fApTYmpjdDogMjM5OCB0Z3R0 Z2NjZ2F0YXR0YyAyMzg1CgoKPmdifEFFMDAwMzgwLjF8QUUwMDAzODAgRXNj aGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDI3MCBvZiA0MDAg b2YgdGhlIGNvbXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQogICAgICAgICAg TGVuZ3RoID0gMTM2OTAKCiBTY29yZSA9IDI4LjIgYml0cyAoMTQpLCBFeHBl Y3QgPSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkKIFN0cmFuZCA9 IFBsdXMgLyBQbHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVy eTogNjAgICBjdGdhdGFnY2FnY3R0YyA3MwogICAgICAgICAgICB8fHx8fHx8 fHx8fHx8fApTYmpjdDogODUyNiBjdGdhdGFnY2FnY3R0YyA4NTM5CgoKPmdi fEFFMDAwMzcxLjF8QUUwMDAzNzEgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1H MTY1NSBzZWN0aW9uIDI2MSBvZiA0MDAgb2YgdGhlIGNvbXBsZXRlCiAgICAg ICAgICAgIGdlbm9tZQogICAgICAgICAgTGVuZ3RoID0gMTE3OTUKCiBTY29y ZSA9IDI4LjIgYml0cyAoMTQpLCBFeHBlY3QgPSA4LjAKIElkZW50aXRpZXMg PSAxNC8xNCAoMTAwJSkKIFN0cmFuZCA9IFBsdXMgLyBQbHVzCgogICAgICAg ICAgICAgICAgICAgICAgICAgIApRdWVyeTogMjAgICBhYWNnZ2djYWF0YXRn dCAzMwogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fApTYmpjdDogMTEwMCBh YWNnZ2djYWF0YXRndCAxMTEzCgoKPmdifEFFMDAwMzM2LjF8QUUwMDAzMzYg RXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDIyNiBvZiA0 MDAgb2YgdGhlIGNvbXBsZXRlCiAgICAgICAgICAgZ2Vub21lCiAgICAgICAg ICBMZW5ndGggPSAxMzE4NQoKIFNjb3JlID0gMjguMiBiaXRzICgxNCksIEV4 cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0LzE0ICgxMDAlKQogU3RyYW5k ID0gUGx1cyAvIFBsdXMKCiAgICAgICAgICAgICAgICAgICAgICAgICAKUXVl cnk6IDEwMyBhYWF0dHR0YXR0Z2FjdCAxMTYKICAgICAgICAgICB8fHx8fHx8 fHx8fHx8fApTYmpjdDogODU4IGFhYXR0dHRhdHRnYWN0IDg3MQoKCj5nYnxB RTAwMDMzMi4xfEFFMDAwMzMyIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2 NTUgc2VjdGlvbiAyMjIgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZQogICAgICAg ICAgICBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEyNjk4CgogU2NvcmUg PSAyOC4yIGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0aWVzID0g MTQvMTQgKDEwMCUpCiBTdHJhbmQgPSBQbHVzIC8gTWludXMKCiAgICAgICAg ICAgICAgICAgICAgICAgICAgClF1ZXJ5OiAyNDggIGNnZ2djdGdhY2djZ3Rh IDI2MQogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fApTYmpjdDogNTk5NCBj Z2dnY3RnYWNnY2d0YSA1OTgxCgoKPmdifEFFMDAwMzAzLjF8QUUwMDAzMDMg RXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDE5MyBvZiA0 MDAgb2YgdGhlIGNvbXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQogICAgICAg ICAgTGVuZ3RoID0gMTE3MTgKCiBTY29yZSA9IDI4LjIgYml0cyAoMTQpLCBF eHBlY3QgPSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkKIFN0cmFu ZCA9IFBsdXMgLyBQbHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApR dWVyeTogMzYwICB0YWNhdGNhZ3RnZ2NhYSAzNzMKICAgICAgICAgICAgfHx8 fHx8fHx8fHx8fHwKU2JqY3Q6IDM5MDQgdGFjYXRjYWd0Z2djYWEgMzkxNwoK Cj5nYnxBRTAwMDI5OC4xfEFFMDAwMjk4IEVzY2hlcmljaGlhIGNvbGkgSy0x MiBNRzE2NTUgc2VjdGlvbiAxODggb2YgNDAwIG9mIHRoZSBjb21wbGV0ZQog ICAgICAgICAgICBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEyMzQzCgog U2NvcmUgPSAyOC4yIGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0 aWVzID0gMTcvMTggKDk0JSkKIFN0cmFuZCA9IFBsdXMgLyBNaW51cwoKICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgClF1ZXJ5OiAzNzAgIGdjYWFh dGdjYWdhYWNndHR0dCAzODcKICAgICAgICAgICAgfHx8fHx8fHx8fHwgfHx8 fHx8ClNiamN0OiA3MTc2IGdjYWFhdGdjYWdhZ2NndHR0dCA3MTU5CgoKPmdi fEFFMDAwMjkzLjF8QUUwMDAyOTMgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1H MTY1NSBzZWN0aW9uIDE4MyBvZiA0MDAgb2YgdGhlIGNvbXBsZXRlCiAgICAg ICAgICAgIGdlbm9tZQogICAgICAgICAgTGVuZ3RoID0gMTE3MTcKCiBTY29y ZSA9IDI4LjIgYml0cyAoMTQpLCBFeHBlY3QgPSA4LjAKIElkZW50aXRpZXMg PSAxNC8xNCAoMTAwJSkKIFN0cmFuZCA9IFBsdXMgLyBQbHVzCgogICAgICAg ICAgICAgICAgICAgICAgICAgIApRdWVyeTogMzQyICBhZ3RndHRnYWFndHRj ZyAzNTUKICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDEwMDgg YWd0Z3R0Z2FhZ3R0Y2cgMTAyMQoKCj5nYnxBRTAwMDUxMC4xfEFFMDAwNTEw IEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2VjdGlvbiA0MDAgb2Yg NDAwIG9mIHRoZSBjb21wbGV0ZQogICAgICAgICAgICBnZW5vbWUKICAgICAg ICAgIExlbmd0aCA9IDYzMDkKCiBTY29yZSA9IDI4LjIgYml0cyAoMTQpLCBF eHBlY3QgPSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkKIFN0cmFu ZCA9IFBsdXMgLyBQbHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApR dWVyeTogNDc2ICB0Z2d0Z2djZ2F0Z2F0dCA0ODkKICAgICAgICAgICAgfHx8 fHx8fHx8fHx8fHwKU2JqY3Q6IDQyOTEgdGdndGdnY2dhdGdhdHQgNDMwNAoK Cj5nYnxBRTAwMDQ5Ni4xfEFFMDAwNDk2IEVzY2hlcmljaGlhIGNvbGkgSy0x MiBNRzE2NTUgc2VjdGlvbiAzODYgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZQog ICAgICAgICAgICBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDExOTI5Cgog U2NvcmUgPSAyOC4yIGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0 aWVzID0gMTQvMTQgKDEwMCUpCiBTdHJhbmQgPSBQbHVzIC8gTWludXMKCiAg ICAgICAgICAgICAgICAgICAgICAgICAgClF1ZXJ5OiAzMTMgIGFjY2FhYWdn dGFhY2dhIDMyNgogICAgICAgICAgICB8fHx8fHx8fHx8fHx8fApTYmpjdDog ODc0MSBhY2NhYWFnZ3RhYWNnYSA4NzI4CgoKPmdifEFFMDAwNDk0LjF8QUUw MDA0OTQgRXNjaGVyaWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDM4 NCBvZiA0MDAgb2YgdGhlIGNvbXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQog ICAgICAgICAgTGVuZ3RoID0gMTExMDAKCiBTY29yZSA9IDI4LjIgYml0cyAo MTQpLCBFeHBlY3QgPSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkK IFN0cmFuZCA9IFBsdXMgLyBNaW51cwoKICAgICAgICAgICAgICAgICAgICAg ICAgICAKUXVlcnk6IDM2MiAgY2F0Y2FndGdnY2FhYXQgMzc1CiAgICAgICAg ICAgIHx8fHx8fHx8fHx8fHx8ClNiamN0OiA1MjkzIGNhdGNhZ3RnZ2NhYWF0 IDUyODAKCgo+Z2J8QUUwMDA0ODguMXxBRTAwMDQ4OCBFc2NoZXJpY2hpYSBj b2xpIEstMTIgTUcxNjU1IHNlY3Rpb24gMzc4IG9mIDQwMCBvZiB0aGUgY29t cGxldGUKICAgICAgICAgICAgZ2Vub21lCiAgICAgICAgICBMZW5ndGggPSAx MDAwMwoKIFNjb3JlID0gMjguMiBiaXRzICgxNCksIEV4cGVjdCA9IDguMAog SWRlbnRpdGllcyA9IDE0LzE0ICgxMDAlKQogU3RyYW5kID0gUGx1cyAvIE1p bnVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTogNDAyICB0 YXR0Y3RnZ2FhYWdjYSA0MTUKICAgICAgICAgICAgfHx8fHx8fHx8fHx8fHwK U2JqY3Q6IDgxNzYgdGF0dGN0Z2dhYWFnY2EgODE2MwoKCj5nYnxBRTAwMDQ4 My4xfEFFMDAwNDgzIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2NTUgc2Vj dGlvbiAzNzMgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZQogICAgICAgICAgICBn ZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEwNDg0CgogU2NvcmUgPSAyOC4y IGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0aWVzID0gMTQvMTQg KDEwMCUpCiBTdHJhbmQgPSBQbHVzIC8gTWludXMKCiAgICAgICAgICAgICAg ICAgICAgICAgICAgClF1ZXJ5OiAzMzkgIGdjZ2FndGd0dGdhYWd0IDM1Mgog ICAgICAgICAgICB8fHx8fHx8fHx8fHx8fApTYmpjdDogMzcwMCBnY2dhZ3Rn dHRnYWFndCAzNjg3CgoKPmdifEFFMDAwNDY3LjF8QUUwMDA0NjcgRXNjaGVy aWNoaWEgY29saSBLLTEyIE1HMTY1NSBzZWN0aW9uIDM1NyBvZiA0MDAgb2Yg dGhlIGNvbXBsZXRlCiAgICAgICAgICAgIGdlbm9tZQogICAgICAgICAgTGVu Z3RoID0gMTU2MzMKCiBTY29yZSA9IDI4LjIgYml0cyAoMTQpLCBFeHBlY3Qg PSA4LjAKIElkZW50aXRpZXMgPSAxNC8xNCAoMTAwJSkKIFN0cmFuZCA9IFBs dXMgLyBQbHVzCgogICAgICAgICAgICAgICAgICAgICAgICAgIApRdWVyeTog MzYyICBjYXRjYWd0Z2djYWFhdCAzNzUKICAgICAgICAgICAgfHx8fHx8fHx8 fHx8fHwKU2JqY3Q6IDExMzQgY2F0Y2FndGdnY2FhYXQgMTE0NwoKCj5nYnxB RTAwMDQ2My4xfEFFMDAwNDYzIEVzY2hlcmljaGlhIGNvbGkgSy0xMiBNRzE2 NTUgc2VjdGlvbiAzNTMgb2YgNDAwIG9mIHRoZSBjb21wbGV0ZQogICAgICAg ICAgICBnZW5vbWUKICAgICAgICAgIExlbmd0aCA9IDEwMTU5CgogU2NvcmUg PSAyOC4yIGJpdHMgKDE0KSwgRXhwZWN0ID0gOC4wCiBJZGVudGl0aWVzID0g MTQvMTQgKDEwMCUpCiBTdHJhbmQgPSBQbHVzIC8gUGx1cwoKICAgICAgICAg ICAgICAgICAgICAgICAgICAKUXVlcnk6IDM5NiAgdGdjY2dhdGF0dGN0Z2cg NDA5CiAgICAgICAgICAgIHx8fHx8fHx8fHx8fHx8ClNiamN0OiA5NTg3IHRn Y2NnYXRhdHRjdGdnIDk2MDAKCgoKIFNjb3JlID0gMjguMiBiaXRzICgxNCks IEV4cGVjdCA9IDguMAogSWRlbnRpdGllcyA9IDE0LzE0ICgxMDAlKQogU3Ry YW5kID0gUGx1cyAvIE1pbnVzCgogICAgICAgICAgICAgICAgICAgICAgICAg IApRdWVyeTogMjcwICBhY2FnYWFhYWFhZ2NjYyAyODMKICAgICAgICAgICAg fHx8fHx8fHx8fHx8fHwKU2JqY3Q6IDIwOTIgYWNhZ2FhYWFhYWdjY2MgMjA3 OQoKCg== ------=_NextPart_000_5589_4b18_45b8-- From bioclusters@bioinformatics.org Tue Jul 20 03:15:10 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 19 Jul 2004 22:15:10 -0400 Subject: [Bioclusters] Is this output correct? In-Reply-To: References: Message-ID: <40FC802E.2060307@scalableinformatics.com> kenix y wrote: > Hi, > > For some reason unknown to me, mpiformatdb always gives me (null).nal > instead of ecoli.nt.nal. > After making some changes to the DBLIST line, I got this output with > no error message. > Does this means my mpiblast is finally working? No. This means that you are running into some bugs. Last I remember, the (null).nal problem has to do with a version problem. Did you compile mpiBLAST yourself? > > > Thank you. > > _________________________________________________________________ > Get 10mb of inbox space with MSN Hotmail Extra Storage > http://join.msn.com/?pgmarket=en-sg -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Tue Jul 20 03:25:05 2004 From: bioclusters@bioinformatics.org (kenix y) Date: Tue, 20 Jul 2004 10:25:05 +0800 Subject: [Bioclusters] Is this output correct? Message-ID: >From: Joe Landman >Reply-To: bioclusters@bioinformatics.org >To: bioclusters@bioinformatics.org >Subject: Re: [Bioclusters] Is this output correct? >Date: Mon, 19 Jul 2004 22:15:10 -0400 > >kenix y wrote: > >>Hi, >> >>For some reason unknown to me, mpiformatdb always gives me (null).nal >>instead of ecoli.nt.nal. >>After making some changes to the DBLIST line, I got this output with no >>error message. >>Does this means my mpiblast is finally working? > > >No. This means that you are running into some bugs. Last I remember, the >(null).nal problem has to do with a version problem. > >Did you compile mpiBLAST yourself? > >> >> >>Thank you. >> No, it came with BioBrew. _________________________________________________________________ Find it on the web with MSN Search. http://search.msn.com.sg/ From bioclusters@bioinformatics.org Tue Jul 20 03:33:51 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Mon, 19 Jul 2004 22:33:51 -0400 Subject: [Bioclusters] Is this output correct? In-Reply-To: References: Message-ID: <40FC848F.700@scalableinformatics.com> kenix y wrote: > >> >> >> Did you compile mpiBLAST yourself? >> (...) > > No, it came with BioBrew. Ok. I had seen this with NCBI toolkit 2.2.5, and 2.2.6. As I remember 2.2.7 fixed it. I don't know which version is built into BioBrew's mpiBLAST. -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Tue Jul 20 04:05:22 2004 From: bioclusters@bioinformatics.org (elijah wright) Date: Mon, 19 Jul 2004 22:05:22 -0500 (CDT) Subject: [Bioclusters] Opterons and Linux In-Reply-To: References: <33022.66.69.86.170.1090074746.squirrel@biochem.uthscsa.edu> Message-ID: > > Second, regrading power and heat, what steps have you taken to remedy > > the heat generated by the Opterons and what kind of electrical > > upgrades have you done? We have a VA Linux rack with about 20U's left > > which will house the Opterons. It has 2 220 volt power rails (we only > > use one) that delivers power to a 4U APC (I forget the model number) > > unit, a 4U quad Xeon server, 2 switches and a 4U RAID array. > > Assume about 200-250 W under full load per unit. Quads might consume > about 500 W. that rack will definitely need bigger/more UPSen in it. we never run ours at more than ~50% (or 33% if we can get away with it...) capacity - a nice fat server can take a stout 4U ups to ~25%. elijah From bioclusters@bioinformatics.org Tue Jul 20 06:49:01 2004 From: bioclusters@bioinformatics.org (Glen Otero) Date: Mon, 19 Jul 2004 22:49:01 -0700 Subject: [Bioclusters] Is this output correct? In-Reply-To: <40FC848F.700@scalableinformatics.com> References: <40FC848F.700@scalableinformatics.com> Message-ID: <80513CB6-DA10-11D8-A14B-000A95CD8EC8@linuxprophet.com> On Jul 19, 2004, at 7:33 PM, Joe Landman wrote: > kenix y wrote: > >> >>> >>> >>> Did you compile mpiBLAST yourself? >>> > > (...) > >> >> No, it came with BioBrew. > > > > Ok. I had seen this with NCBI toolkit 2.2.5, and 2.2.6. As I > remember 2.2.7 fixed it. I don't know which version is built into > BioBrew's mpiBLAST. NCBI toolkit 2.2.6 is the version in BioBrew. I've seen this index problem before, but I can't remember what the issue was. Can you try to put the fragments somewhere else other than /mtn/pvfs? > > > > -- > Joseph Landman, Ph.D > Scalable Informatics LLC, > email: landman@scalableinformatics.com > web : http://scalableinformatics.com > phone: +1 734 612 4615 > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > > Glen Otero, Ph.D. Linux Prophet 619.917.1772 From bioclusters@bioinformatics.org Tue Jul 20 12:18:36 2004 From: bioclusters@bioinformatics.org (David Lapointe) Date: Tue, 20 Jul 2004 07:18:36 -0400 Subject: [Bioclusters] Is this output correct? In-Reply-To: <40FC802E.2060307@scalableinformatics.com> References: <40FC802E.2060307@scalableinformatics.com> Message-ID: <200407200718.37064.david.lapointe@umassmed.edu> Hi, There's a command line argument for formatdb that forces a name of your choice onto the blast database files. I have found that this avoids the (null).nal and (null).pal problem. -n Base name for BLAST files [String] Optional David On Monday 19 July 2004 10:15 pm, Joe Landman wrote: > kenix y wrote: > > Hi, > > > > For some reason unknown to me, mpiformatdb always gives me (null).nal > > instead of ecoli.nt.nal. > > After making some changes to the DBLIST line, I got this output with > > no error message. > > Does this means my mpiblast is finally working? > > No.  This means that you are running into some bugs.  Last I remember, > the (null).nal problem has to do with a version problem. > > > Did you compile mpiBLAST yourself? > > > Thank you. > > > > _________________________________________________________________ > > Get 10mb of inbox space with MSN Hotmail Extra Storage > > http://join.msn.com/?pgmarket=en-sg From bioclusters@bioinformatics.org Tue Jul 20 21:36:11 2004 From: bioclusters@bioinformatics.org (David Adelson) Date: Tue, 20 Jul 2004 15:36:11 -0500 Subject: [Bioclusters] SGE/MPI on OS X Message-ID: <6FB99046-DA8C-11D8-AB21-0003939117DA@tamu.edu> Does anyone on this listserv have any experience integrating SGE and MPI within an OS X cluster? Specifically we have user who wants to run the mpi parallelized version of tree-puzzle on our OS X cluster that is currently managed using SGE. While I have seen a preliminary integration of LAM-MPI and SGE on http://gridengine.sunsource.net/project/gridengine/howto/lam/ SGE_LAM_Integration.html it is not clear how straightforward this might be in the real world. Any firsthand info and experience you want to share would be welcome. Cheers, Dave Adelson Texas A&M University From bioclusters@bioinformatics.org Tue Jul 20 21:45:54 2004 From: bioclusters@bioinformatics.org (Joe Landman) Date: Tue, 20 Jul 2004 16:45:54 -0400 Subject: [Bioclusters] SGE/MPI on OS X In-Reply-To: <6FB99046-DA8C-11D8-AB21-0003939117DA@tamu.edu> References: <6FB99046-DA8C-11D8-AB21-0003939117DA@tamu.edu> Message-ID: <1090356353.7357.69.camel@protein.scalableinformatics.com> Hi David: SGE has an mpich parallel environment you can use. It should be included in the base install. Basically it generates the machinefile and tmp paths from SGE, and you need to script up your call to mpirun. That is, you want to create a script which uses the mpich parallel environment. The script then runs mpirun using the environment variables. I have an example somewhere if you want to see the script you submit. Joe On Tue, 2004-07-20 at 16:36, David Adelson wrote: > Does anyone on this listserv have any experience integrating SGE and > MPI within an OS X cluster? > > Specifically we have user who wants to run the mpi parallelized version > of tree-puzzle on our OS X cluster that is currently managed using SGE. > While I have seen a preliminary integration of LAM-MPI and SGE on > http://gridengine.sunsource.net/project/gridengine/howto/lam/ > SGE_LAM_Integration.html it is not clear how straightforward this might > be in the real world. > > Any firsthand info and experience you want to share would be welcome. > > Cheers, > > Dave Adelson > Texas A&M University > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Joseph Landman, Ph.D Scalable Informatics LLC, email: landman@scalableinformatics.com web : http://scalableinformatics.com phone: +1 734 612 4615 From bioclusters@bioinformatics.org Tue Jul 20 21:53:41 2004 From: bioclusters@bioinformatics.org (Chris Dagdigian) Date: Tue, 20 Jul 2004 16:53:41 -0400 Subject: [Bioclusters] SGE/MPI on OS X In-Reply-To: <6FB99046-DA8C-11D8-AB21-0003939117DA@tamu.edu> References: <6FB99046-DA8C-11D8-AB21-0003939117DA@tamu.edu> Message-ID: <40FD8655.8080802@sonsorol.org> { My $.02 } SGE comes with preconfigured "example" templates for both mpich and pvm integration. Take a look in $SGE_ROOT/examples/mpi/ for the MPI files. My experience with parallel environments within grid engine is that they are largely application specific in that most times you need to configure a discrete parallel environment within Grid Engine for each app you hope to run in the cluster. The reason for this is that each app often needs customized start/stop/cleanup commands that often don't generalize all that well. Your best bet initially is to take things in phases, First: get your MPI application running on the cluster outside of Grid Engine Next: Go for "loose integration" of a parallel environment with SGE With "loose" integration all SGE is responsible for is finding the correct number of host and job slots and then generating a custom mpi hostsfile that your app must "honor" when it runs. The nice thing about loose integration is that it is easy to set up -- SGE may output the hostfile in a format that your app can recognize and use right away or you may have to take the simple extra step of writing a prolog method script in your PE that handles the task of "translating" the machinefile format into one that is recognized by the applications. The usage is pretty simple: $ qsub -pe myParallelEnvironment 10 ./my-10-CPU-parallel-job.sh When SGE launches the job the location of the custom hostfile will be visible as an environment variable. Your script then takes that file and passes it to mpirun or the equiv parallel program launcher. The downside to loose integration is that SGE does not manage or deal with the parallel job at all and thus can't get good accounting stats or cleanup the aftermath of runaway jobs. That is why people often try to achieve "tight integration" which is when SGE is responsible for actually launching and managing the parallel job and all it's children. Tight integration is often pretty hard to get going robustly. -Chris David Adelson wrote: > Does anyone on this listserv have any experience integrating SGE and > MPI within an OS X cluster? > > Specifically we have user who wants to run the mpi parallelized version > of tree-puzzle on our OS X cluster that is currently managed using SGE. > While I have seen a preliminary integration of LAM-MPI and SGE on > http://gridengine.sunsource.net/project/gridengine/howto/lam/ > SGE_LAM_Integration.html it is not clear how straightforward this might > be in the real world. > > Any firsthand info and experience you want to share would be welcome. > > Cheers, > > Dave Adelson > Texas A&M University > > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters -- Chris Dagdigian, Independent life science IT & informatics consulting Office: 617-666-6454, Mobile: 617-877-5498, Fax: 425-699-0193 PGP KeyID: 83D4310E Yahoo IM: craffi Web: http://bioteam.net From bioclusters@bioinformatics.org Tue Jul 20 22:19:50 2004 From: bioclusters@bioinformatics.org (Bernard Li) Date: Tue, 20 Jul 2004 14:19:50 -0700 Subject: [Bioclusters] SGE/MPI on OS X Message-ID: <36BEEFA2DF192944BF71E072F7A5F4650A4091@xchange1.phage.bcgsc.ca> Hi Dave: I have been using the SGE-LAM tight integration for a while now and have good results with it. This integration is done by Chris Duncan and he has recently posted an updated version on the SGE mailing-list. If you want, I can forward you the files. Tight integration does require quite a bit of tweaking, but it is definitely achievable. Cheers, Bernard > -----Original Message----- > From: bioclusters-admin@bioinformatics.org=20 > [mailto:bioclusters-admin@bioinformatics.org] On Behalf Of=20 > David Adelson > Sent: Tuesday, July 20, 2004 13:36 > To: bioclusters@bioinformatics.org > Subject: [Bioclusters] SGE/MPI on OS X >=20 > Does anyone on this listserv have any experience integrating=20 > SGE and MPI within an OS X cluster? >=20 > Specifically we have user who wants to run the mpi=20 > parallelized version of tree-puzzle on our OS X cluster that=20 > is currently managed using SGE. =20 > While I have seen a preliminary integration of LAM-MPI and=20 > SGE on http://gridengine.sunsource.net/project/gridengine/howto/lam/ > SGE_LAM_Integration.html it is not clear how straightforward=20 > this might be in the real world. >=20 > Any firsthand info and experience you want to share would be welcome. >=20 > Cheers, >=20 > Dave Adelson > Texas A&M University >=20 > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org=20 > https://bioinformatics.org/mailman/listinfo/bioclusters >=20 >=20 From bioclusters@bioinformatics.org Tue Jul 20 22:20:37 2004 From: bioclusters@bioinformatics.org (David Adelson) Date: Tue, 20 Jul 2004 16:20:37 -0500 Subject: [Bioclusters] SGE/MPI on OS X In-Reply-To: <40FD8655.8080802@sonsorol.org> References: <6FB99046-DA8C-11D8-AB21-0003939117DA@tamu.edu> <40FD8655.8080802@sonsorol.org> Message-ID: Thanks Chris, It is the start,stop, cleanup business that worries me, and the fact that in loose integration mode SGE won't be able to relaunch a job segment should a compute element hang. I guess the first thing to do is install the mpi libraries so that tree-puzzle compiles in parallel mode and then proceed through the phases that you outlined. Cheers, Dave On Jul 20, 2004, at 3:53 PM, Chris Dagdigian wrote: > { My $.02 } > > SGE comes with preconfigured "example" templates for both mpich and > pvm integration. Take a look in $SGE_ROOT/examples/mpi/ for the MPI > files. > > My experience with parallel environments within grid engine is that > they are largely application specific in that most times you need to > configure a discrete parallel environment within Grid Engine for each > app you hope to run in the cluster. The reason for this is that each > app often needs customized start/stop/cleanup commands that often > don't generalize all that well. > > Your best bet initially is to take things in phases, > > First: get your MPI application running on the cluster outside of Grid > Engine > > Next: Go for "loose integration" of a parallel environment with SGE > > With "loose" integration all SGE is responsible for is finding the > correct number of host and job slots and then generating a custom mpi > hostsfile that your app must "honor" when it runs. > > The nice thing about loose integration is that it is easy to set up -- > SGE may output the hostfile in a format that your app can recognize > and use right away or you may have to take the simple extra step of > writing a prolog method script in your PE that handles the task of > "translating" the machinefile format into one that is recognized by > the applications. > > The usage is pretty simple: > > $ qsub -pe myParallelEnvironment 10 ./my-10-CPU-parallel-job.sh > > When SGE launches the job the location of the custom hostfile will be > visible as an environment variable. Your script then takes that file > and passes it to mpirun or the equiv parallel program launcher. > > The downside to loose integration is that SGE does not manage or deal > with the parallel job at all and thus can't get good accounting stats > or cleanup the aftermath of runaway jobs. > > That is why people often try to achieve "tight integration" which is > when SGE is responsible for actually launching and managing the > parallel job and all it's children. > > Tight integration is often pretty hard to get going robustly. > > > -Chris > > > > > > > > David Adelson wrote: > >> Does anyone on this listserv have any experience integrating SGE and >> MPI within an OS X cluster? >> Specifically we have user who wants to run the mpi parallelized >> version of tree-puzzle on our OS X cluster that is currently managed >> using SGE. While I have seen a preliminary integration of LAM-MPI >> and SGE on >> http://gridengine.sunsource.net/project/gridengine/howto/lam/ >> SGE_LAM_Integration.html it is not clear how straightforward this >> might be in the real world. >> Any firsthand info and experience you want to share would be welcome. >> Cheers, >> Dave Adelson >> Texas A&M University >> _______________________________________________ >> Bioclusters maillist - Bioclusters@bioinformatics.org >> https://bioinformatics.org/mailman/listinfo/bioclusters > > -- > Chris Dagdigian, > Independent life science IT & informatics consulting > Office: 617-666-6454, Mobile: 617-877-5498, Fax: 425-699-0193 > PGP KeyID: 83D4310E Yahoo IM: craffi Web: http://bioteam.net > _______________________________________________ > Bioclusters maillist - Bioclusters@bioinformatics.org > https://bioinformatics.org/mailman/listinfo/bioclusters > From bioclusters@bioinformatics.org Sat Jul 31 04:15:41 2004 From: bioclusters@bioinformatics.org (Bertil Schmidt (Dr)) Date: Sat, 31 Jul 2004 11:15:41 +0800 Subject: [Bioclusters] Cluster2004 Call for Participation Message-ID: <7CD06E15ADF4104A9F2E4DC2DE678F897E29CF@EXCHANGE21.staff.main.ntu.edu.sg> This is a multi-part message in MIME format. ------_=_NextPart_001_01C476AC.A9215680 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable =20 =20 *************************************************************************= ******* **** = **** ** CALL FOR PARTICIPATION = ** **** = **** *************************************************************************= ******* =20 Cluster 2004 The 2004 IEEE International Conference on Cluster Computing September 20-23, 2004 Town and Country Hotel, San Diego, California, USA http://grail.sdsc.edu/cluster2004/ =20 =20 *************************************************************************= ******* **** = **** ** EARLY REGISTRATION DEADLINE: August 23, 2004 = ** ** Register online at = http://grail.sdsc.edu/cluster2004/registration.html = ** **** = **** *************************************************************************= ******* =20 The Cluster 2004 conference, to be held in beautiful San Diego, provides = an open forum for researchers, practitioners, and users to present and = discuss issues, directions, and results that will shape the future of = cluster computing. The Cluster series of conferences is one of the = flagship events sponsored by the IEEE Task Force on Cluster Computing = (TFCC) since its inception in 1999. The competition among refereed = papers was particularly strong this year, with 48 papers being selected = as full papers from the 150 submitted papers. Besides the technical = paper presentation, there will be three exciting keynote speakers, four = tutorials, one workshop and exhibits to be arranged during the = conference period. =20 San Diego is California's second largest city and the United States' = seventh largest, San Diego boasts a citywide population of nearly 1.3 = million residents and more than 2.8 million residents countywide. Within = its borders of 4,200 sq. miles, San Diego County encompasses 18 = incorporated cities and numerous other charming neighborhoods and = communities, including downtown's historic Gaslamp Quarter, Little = Italy, Coronado, La Jolla, Del Mar, Carlsbad, Escondido, La Mesa, = Hillcrest, Barrio Logan, Chula Vista and more. Known for its = near-idyllic climate, 70 miles of pristine beaches and dazzling array of = world-class family attractions, including the World-Famous San Diego Zoo = and Wild Animal Park = , SeaWorld San Diego = and LEGOLAND California = , San Diego offers a wide = variety of things to see and do, appealing to guests from around the = world. =20 Cluster 2004 will be held at the Town and Country Resort = , located in Mission Valley, just 10 = minutes from the airport, right next to the San Diego Trolley, the = Fashion Valley Mall, and the Riverwalk Golf course. Reservations should = be made with the hotel directly. The conference rate of US$129.00 (which = you can obtain by mentioning the "IEEE Cluster 2004" conference) will be = guaranteed until August 28, 5PM PST. After this date rooms reserved for = Cluster'04 will be given to anyone on a first-come first-serve basis. = The Hotel online registration is available from = http://grail.sdsc.edu/cluster2004/ = where you can also find the online conference registration and the = Cluster 2004 advanced program. =20 We look forward meeting you in San Diego! =20 =20 =20 *************************************************************************= ******* **** = **** ** PROGRAM HIGHLIGHTS = ** **** = **** *************************************************************************= ******* KEYNOTES -------- * Using Clusters in Biomedical Image Analysis -- S. Pieper (Harvard = University, USA) * The decision to migrate Riken's Vector Supercomputing Facility to = Clusters -- R. Himeno(Riken, Japan) * The Cluster Agenda: first Achieve World Domination, then Kick Ass, T. = Sterling (Caltech, USA) =20 =20 TUTORIALS --------- * Parallel I/O: Lessons learnt in the last 20 years -- Toni Cortes, = Universitat Polit=E8cnica de Catalunya (UPC, CEPBA-IBM Research = Institute (CIRI) * Building Highly Available HPC Clusters with HA-OSCAR -- Chokchai = Leangsuksun, Louisana Tech University, and Ibrahim Haddad, Ericsson = Research * State of InfiniBand in Designing HPC Clusters, Storage/File Systems, = and Datacenters -- D.K. Panda, Ohio State University * MPI Tuning with Intel=A9 Trace Analyzer and Intel=A9 Trace Collector = -- Ray Asbury and Michael Wrinn, Intel =20 WORKSHOP -------- * Workshop on Remote Direct Memory Access (RDMA): Application, = Implementation, and Technologies (RAIT) =20 TECHNCIAL SESSIONS ------------------- * Optimizing with MPI * Scheduling * Parallel I/O and Efficient Communications * Fault Tolerance=20 * Collective Communication Optimizations * Novel Storage Architectures * Networking * Distributed Shared Memory * SSI and Location Aware Algorithms * Systems Analysis * Grid Systems * Performance Analysis * Visualization and Simulation * Systems Management * Application Techniques =20 -------------------------------------------------------------------------= --- =20 =20 ------_=_NextPart_001_01C476AC.A9215680 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Cluster2004 Call for Participation

 

 

*******************************************************************= *************

****          &nb= sp;                &= nbsp;           &n= bsp;           &nb= sp;           &nbs= p;        ****

**           = ;            =      CALL FOR PARTICIPATION          =                 **

****          &nb= sp;           &nbs= p;            = ;            =             &= nbsp;            ****

*******************************************************************= *************

 

Cluster 2004

The 2004 IEEE International Conference on Cluster = Computing

September 20-23, 2004

Town and Country Hotel, San Diego, California, USA

http://grail.sdsc.edu/cluster2004/<= /p>

 

*******************************************************************= *************

****          &nb= sp;           &nbs= p;            = ;            =             &= nbsp;            ****

**             EARLY REGISTRATION = DEADLINE: August 23, = 2004         &nbs= p;         **

**   Register online at http://grail.sdsc.edu/cluster2004/registration.html   **

****                     &= nbsp;           &n= bsp;           &nb= sp;           &nbs= p;            = ;  ****

*******************************************************************= *************

 

The Cluster 2004 conference, to be held in = beautiful San Diego, provides an open forum for researchers, practitioners, and = users to present and discuss issues, directions, and results that will shape the = future of cluster computing. The Cluster series of conferences is one of the = flagship events sponsored by the IEEE Task Force on Cluster Computing (TFCC) = since its inception in 1999. The competition among refereed papers was = particularly strong this year, with 48 papers being selected as full papers from the = 150 submitted papers. Besides the technical paper presentation, there will = be three exciting keynote speakers, four tutorials, one workshop and exhibits to = be arranged during the conference period.

 

San Diego is California's second largest city = and the United States' seventh largest, San Diego boasts a citywide = population of nearly 1.3 million residents and more than 2.8 million residents = countywide. Within its borders of 4,200 sq. miles, San Diego County encompasses 18 incorporated cities and numerous other charming neighborhoods and = communities, including downtown's historic Gaslamp Quarter, Little Italy, Coronado, = La Jolla, Del Mar, Carlsbad, Escondido, La Mesa, Hillcrest, Barrio Logan, = Chula Vista and more. Known for its near-idyllic climate, 70 miles of pristine beaches and dazzling array of world-class family attractions, including = the World-Famous San Diego = Zoo = and Wild Animal = Park, SeaWorld San = Diego = and LEGOLAND = California, San = Diego offers a wide variety of things to see and do, appealing to guests from around = the world.

 

Cluster 2004 will be held at = the Town and Country = Resort, located = in Mission Valley, just 10 minutes from the airport, right next to the San Diego = Trolley, the Fashion Valley Mall, and the Riverwalk Golf course. Reservations = should be made with the hotel directly. The conference rate of US$129.00 (which = you can obtain by mentioning the "IEEE Cluster 2004" conference) will = be guaranteed until August 28, 5PM PST. After this date rooms reserved for Cluster'04 will be given to anyone on a first-come first-serve basis. = The Hotel online registration is available from http://grail.sdsc.edu/cluster2004/ where = you can also find the online conference registration and the Cluster 2004 advanced = program.

 

We look forward meeting you in San = Diego!

 

 

 

*******************************************************************= *************

****          &nb= sp;           &nbs= p;            = ;            =             &= nbsp;            ****

**           = ;            =      PROGRAM HIGHLIGHTS                &= nbsp;           &n= bsp; **

****          &nb= sp;           &nbs= p;            = ;            =             &= nbsp;            ****

*******************************************************************= *************

KEYNOTES

--------

* Using = Clusters in Biomedical Image Analysis -- S. Pieper (Harvard University, USA)

* The = decision to migrate Riken's Vector Supercomputing Facility to = Clusters -- R. Himeno(Riken, = Japan)

* The = Cluster Agenda: first Achieve World Domination, then Kick = Ass, T. Sterling (Caltech, = USA)

 

        

TUTORIALS

---------

* = Parallel I/O: Lessons learnt in the last 20 years -- Toni Cortes, = Universitat Polit=E8cnica de Catalunya (UPC, CEPBA-IBM Research Institute = (CIRI)

* = Building Highly Available HPC Clusters with HA-OSCAR -- Chokchai Leangsuksun, Louisana Tech University, and Ibrahim Haddad, Ericsson = Research

* State = of InfiniBand in Designing HPC Clusters, Storage/File Systems, and = Datacenters -- D.K. Panda, Ohio State University

* MPI = Tuning with Intel=A9 Trace Analyzer and Intel=A9 Trace Collector -- Ray = Asbury and Michael Wrinn, Intel

          

WORKSHOP

--------

=B7        Workshop = on Remote Direct Memory Access (RDMA): Application, Implementation, and = Technologies (RAIT)

 

TECHNCIAL SESSIONS

-------------------

* Optimizing with MPI

* Scheduling

* Parallel I/O and Efficient = Communications

* Fault Tolerance

* Collective Communication = Optimizations

* Novel Storage = Architectures

* Networking

* Distributed Shared Memory

* SSI and Location Aware = Algorithms

* Systems Analysis

* Grid Systems

* Performance Analysis

* Visualization and = Simulation

* Systems Management

* Application Techniques =  

-------------------------------------------------------------------= ---------    

 

------_=_NextPart_001_01C476AC.A9215680--