rotations {GPArotation}R Documentation

Rotations

Description

Optimize factor loading rotation objective.

Usage

    oblimin(L, Tmat=diag(ncol(L)), gam=0, normalize=FALSE, eps=1e-5, maxit=1000)
    quartimin(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    targetT(L, Tmat=diag(ncol(L)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000)
    targetQ(L, Tmat=diag(ncol(L)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000)
    pstT(L, Tmat=diag(ncol(L)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000)
    pstQ(L, Tmat=diag(ncol(L)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000)
    oblimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    entropy(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    quartimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    Varimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    simplimax(L, Tmat=diag(ncol(L)), k=nrow(L), normalize=FALSE, eps=1e-5, maxit=1000)
    bentlerT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    bentlerQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    tandemI(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    tandemII(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    geominT(L, Tmat=diag(ncol(L)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000)
    geominQ(L, Tmat=diag(ncol(L)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000)
    cfT(L, Tmat=diag(ncol(L)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000)
    cfQ(L, Tmat=diag(ncol(L)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000)
    infomaxT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    infomaxQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)
    mccammon(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000)

    vgQ.oblimin(L, gam=0)
    vgQ.quartimin(L)
    vgQ.target(L, Target=NULL)
    vgQ.pst(L, W=NULL, Target=NULL)
    vgQ.oblimax(L)
    vgQ.entropy(L)
    vgQ.quartimax(L)
    vgQ.varimax(L)
    vgQ.simplimax(L, k=nrow(L))
    vgQ.bentler(L)
    vgQ.tandemI(L)
    vgQ.tandemII(L)
    vgQ.geomin(L, delta=.01)
    vgQ.cf(L, kappa=0)
    vgQ.infomax(L)
    vgQ.mccammon(L)

Arguments

L a factor loading matrix
Tmat initial rotation matrix.
gam 0=Quartimin, .5=Biquartimin, 1=Covarimin.
Target rotation target for objective calculation.
W weighting of each element in target.
k number of close to zero loadings.
delta constant added to L\^2 in objective calculation.
kappa see details.
normalize parameter passed to optimization routine (GPForth or GPFoblq).
eps parameter passed to optimization routine (GPForth or GPFoblq).
maxit parameter passed to optimization routine (GPForth or GPFoblq).

Details

These functions optimize a rotation objective. They can be used directly or the function name can be passed to factor analysis functions like factanal. Several of the function names end in T or Q, which indicates if they are orthogonal or oblique rotations (using GPForth or GPFoblq respectively.

The vgQ.* versions of the code are called by the optimization routine and would typically not be used directly, so these methods are not exported from the package namespace. (They simply return the function value and gradient for a given rotation matrix.) You can print these functions, but the package name needs to be specified since they are not exported. For example, use GPArotation:::vgQ.oblimin to view the function vgQ.oblimin. The T or Q ending on function names should be omitted for the vgQ.* versions of the code so, for example, use GPArotation:::vgQ.target to view the target criterion calculation.

Rotations which are available are

oblimin

oblique oblimin family
quartimin oblique
targetT orthogonal target rotation
targetQ oblique target rotation
pstT orthogonal partially specified target rotation
pstQ oblique partially specified target rotation
oblimax oblique
entropy orthogonal minimum entropy
quartimax orthogonal
varimax orthogonal
simplimax oblique
bentlerT orthogonal Bentler's invariant pattern simplicity criterion
bentlerQ oblique Bentler's invariant pattern simplicity criterion
tandemI orthogonal Tandem Criterion
tandemII orthogonal Tandem Criterion
geominT orthogonal
geominQ oblique
cfT orthogonal Crawford-Ferguson family
cfQ oblique Crawford-Ferguson family
infomaxT orthogonal
infomaxQ oblique
mccammon orthogonal McCammon minimum entropy ratio

Also included for convenience are two analytic rotations eiv and echelon which do not require GPForth or GPFoblq.

Note that Varimax defined here uses vgQ.varimax and is not varimax defined in the stats package. stats:::varimax does Kaiser normalization by default whereas Varimax defined here does not.

The argument kappa parameterizes the family for the Crawford-Ferguson method. If m is the number of factors and p is the number of indicators then kappa values having special names are 0=Quartimax, 1/p=Varimax, m/(2*p)=Equamax, (m-1)/(p+m-2)=Parsimax, 1=Factor parsimony.

New rotation methods can be programmed with a name "vgQ.newmethod". The inputs are the matrix L, and optionally any additional arguments. The output should be a list with elements

f the value of the criterion at L.
Gq the gradient at L.
Method a string indicating the criterion.

Value

A list (which includes elements used by factanal) with:
loadings Lh from GPForth or GPFoblq.
Th Th from GPForth or GPFoblq.
Table Table from GPForth or GPFoblq.
method A string indicating the rotation objective function.
orthogonal A logical indicating if the rotation is orthogonal.
convergence Convergence indicator from GPForth or GPFoblq.
Phi t(Th) %*% Th. The covariance matrix of the rotated factors. This will be the identity matrix for orthogonal rotations so is omitted (NULL) for the result from GPForth.

Author(s)

Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert.

References

Bernaards, C.A. and Jennrich, R.I. (2005) Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement, 65, 676–696.

A discussion of rotation objectives can be found in many references, for example,

Tom Wansbeek and Erik Meijer (2000) Measurement Error and Latent Variables in Econometrics, Amsterdam: North-Holland.

See Also

GPForth, GPFoblq, WansbeekMeijer, eiv, echelon, factanal, varimax, promax

Examples

  data(ability.cov)
  factanal(factors = 2, covmat = ability.cov, rotation="oblimin")

  data("Harman", package="GPArotation")
  qHarman  <- GPForth(Harman8, Tmat=diag(2), method="quartimax")
  qHarman2 <- quartimax(Harman8) 

  data("WansbeekMeijer", package="GPArotation")
  fa.unrotated  <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none")

  fa.varimax <- factanal(factors = 2, covmat=NetherlandsTV, 
                rotation="varimax", control=list(rotate=list(normalize=TRUE)))
  fa.oblimin <- factanal(factors = 2, covmat=NetherlandsTV,
                rotation="oblimin", control=list(rotate=list(normalize=TRUE)))
  
  cbind(loadings(fa.unrotated), loadings(fa.varimax), loadings(fa.oblimin))

  

[Package GPArotation version 2009.02-1 Index]