qpoistweedie {poistweedie} | R Documentation |
Quantile function for the Poisson-Tweedie family of distributions
qpoistweedie(p1, p, mu, lambda, theta0, lower.tail, log.p)
p1 |
vector of probabilities. |
p |
is a real index related to a precise model. |
mu |
the mean. |
lambda |
the dispersion parameter. |
theta0 |
the canonical parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
The Poisson-Tweedie family of distributions belong to the class of exponential dispersion models (EDMs), famous for their role in generalized linear models. T
quantile (qpoistweedie
)
for the given Poisson-Tweedie distribution with parameters
Cactha David Pechel, Laure Pauline Fotso and Celestin C Kokonendji Maintainer: Cactha David Pechel ( <davidpechel@yahoo.fr>)
## function qpoistweedie(p, power, mu,lambda,theta0, ## lower.tail = TRUE, log.p = FALSE) ## Plot qpois() and qpoistweedie() with log.p=FALSE layout(matrix(1 :1, 1, 1)) layout.show(1) power<-exp(30) mu<-10 lambda <- 10 theta0<--10 prob<-1-(mu/(1+mu)) lambda1<-100 p <- runif(50) p ## plot of qpoistweedie function with log=FALSE d1<-ppoistweedie(p,power,mu,lambda,theta0,lower.tail=TRUE,log.p=FALSE) d2<-ppois(p,lambda1,lower.tail=TRUE,log.p=FALSE) erreure<- d1-d2 plot (p,d1,col='blue', type='h',xlab="p avec p=runif(50), power=exp(30),mu=10, lambda=10, theta0=-10, lambda1=100, lower.tail=TRUE", ylab="quantile function P(100)",main = "qpoistweedie(*,col='blue' log.p=FALSE) et qpois(*,col='red' log.p=FALSE)") lines(p,d2,type ="p",col='red',lwd=2) sum(abs(erreure))