
The 2D Graphics Library in Perl

Tutorial and Reference Manual

by

Malay K Basu <curiouser@ccmb.res.in>

Version 0.04, May 8, 2003

Copyright c©2003 Malay K Basu. All rights reserved.

This document is free; you can redistribute it and/or modify it under the terms of the Perl
Artistic license.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Contents

1 Getting Started 1

1.1 From raster to vector 1

1.2 A bit more about SVG 2

1.3 What is Pastel? 2

1.4 Requirements 3

1.5 Installation 3

1.6 Code-convention using Pastel 3

1.7 Some design decisions 4

1.7.1 Exception handling 4

1.7.2 Graphics context 4

3

Chapter 1

Getting Started

COMPUTER GRAPHICS ARE EITHER bitmapped raster format or vector format. The
former is a pixel by pixel definition of the graphics a rasterizer displays the graphics
just by just representing the pixels on screen. Vector data on the other hand is
represented by abstract object notation and a rasterizer has to calculate the pixels
to render before actually displaying the graphics.

Unfortunately, graphics over the web was traditionally of bitmap raster format (e.g.,
GIF, JPEG, PNG). These graphics formats are not difficult to create but they have
two great big flaws–the lack of scalability (i.e., they lose resolution when scaled
to a bigger size), and the text is not text (i.e., the text also becomes a bitmap).
They are also very bulky in nature, in spite of the existence of efficient compression
algorithms. Raster graphics of course has sometimes more advantages over vector
for pixel by pixel rendering. If your require tons of points you are better off using a
raster format.

1.1 From raster to vector

There was of course an alternative the traditional raster format–vector images. Vec-
tor images by definition are created as instruction sets to the display machine. The
display machine computes all the points and their attributes on the fly and gener-
ates the bitmap to show it to the users.

The advantage of this method of display is that the image immediately becomes
resolution independent. All the modern fonts are nothing but vector instructions
to the display machine, thus, text is vector display remains text.

For quite sometime there was only one dominant player for transferring vector data
over the Web. Created by Macromedia, Flash R©, became the standard for vector data
distribution over the web. The Flash file format, though open-source is controlled
by Macromedia.

The situation changed with the invention of a new file format for vector data called

1

Chapter 1. Getting Started
2

1.2. A bit more about SVG

Scalable Vector Graphics (SVG) by W3C.

1.2 A bit more about SVG

SVG is a representation of graphics in plain text, more precisely, in XML. It has all
the graphics primitives, like, line, rectangle, circle and much much more. To create
an SVG file you just write instructions like this:

<rect x="30" y="40" width="190" height="10" style="fill:#ff0000;stroke:
none"/>

The above code actually draws a rectangle 190 pixels wide starting from coordinate
(30, 40) with height 10 pixels. It also says that the rectangle should be filled with
color solid red and the outline of the rectangle should not be stroked.

To actually draw this on screen you need to wrap this line with several SVG specific
lines and then open this file into a viewer. We will not discuss this in details any
further.

1.3 What is Pastel?

Pastel is a Perl2D library written in of course, Perl. The main features of the Pastel
are:

1. Unlike the other SVG library, Pastel treats graphics object as graphics. That
means, SVG is not dealt as XML but as a collection of graphics primitives.
That means the particular file format not important to Pastel.

2. One of the very well designed 2D graphics API is Java2D graphics. Instead of
reimplementing a completely new set of API, Pastel implements Java2D API.
Pastel takes the best of Java2D API but discards the complex part of it. Pastel
API is, therefore, perlish but still well-accessible to Java programmers.

3. Programmatically generating graphics requires tons of other features; not
merely creating strings (using DOM or such API). You require at least a bare
minimum support for computational geometry. Pastel implements all re-
quired computational geometry algorithms.

4. One of the nightmares of vector graphics format designer is the font issue.
Pastel takes the full advantage any arbitrary fonts within file. Pastel also has
sophisticated font-handling features. That means Pastel is ideally suited for
server-side on-the-fly generation of SVG image that are heavily text-oriented.

http://www.w3.org/Graphics/SVG/Overview.htm8

Chapter 1. Getting Started
3

1.4. Requirements

1.4 Requirements

Pastel will work only for Perl 5.6 ans above. It takes advantage of the unicode sup-
port of Perl.

The SVG data generated by BioSVG can be viewed by any SVG viewer. The most
common viewers are: Adobe SVG viewer (ASV), available from:

http://www.adobe.com/svg/viewer/install/main.html .

ASV is just a browser plug-in. Once installed, SVG data can be viewed on your
browser. ASV is actually installed automatically with the Windows version of Acro-
bat Reader R© version 5.0 onward.

The second most common viewer is Batik SVG viewer, available from:

http://xml.apache.org/batik/index.html .

Batik is written in Java, therefore, can be run in any platform. Batik is a stand-alone
SVG viewer.

1.5 Installation

Follow the standard Perl way:

make
make test
make install

1.6 Code-convention using Pastel

A very minimal Pastel file:

#!/usr/bin/perl;
use Pastel;
my $graphics = Pastel::Graphics->new(); # create the graphics context
$graphics->show(); # to dump the output to STDOUT
$graphics->get_svg(); # to get the SVG document as strings

Note that there are two ways to get the SVG. You can dump it on STDOUT, a
method may be more preferable in case of CGI, or you can get the whole string,
may be to embed the SVG document into an HTML file.

All constructors should be called with named parameters:

my $rect =
Pastel::Geometry::Rectangle->new(

-x=>20,
- y=>30,
-width=>250,
-height=>300);

http://www.adobe.com/svg/viewer/install/main.html
http://xml.apache.org/batik/index.html

Chapter 1. Getting Started
4

1.7. Some design decisions

Note that the constructor, in this case, new() is called with named parameters. The
sequence of parameters could be interchanged.

The method calls does not require this named parameters:

Thus, you have to call this:

$object->some_method(5, 10);

1.7 Some design decisions

1.7.1 Exception handling

There are some framework in Perl where they go a roundabout way to make Perl as
close as Java. They create an elaborate framework of exception handling. I humbly
differ from their opinions and believe that Perl is not meant to be used that way.
Most of the calls in Pastel actually die in case of an internal error. Although stalwarts
might disagree but it’s my belief (a belief can’t be argued) that this is the best way.
And I have an argument for it- it actually keeps the code simple!

But it is there if one requires it. Look at documentation of Pastel::Exception for
details.

1.7.2 Graphics context

User should create an object of Pastel::Graphics class. This object is called Graph-
ics context and stores all the necessary information for correctly drawing graphics.
The context is created like this:

use Pastel;
my $graphics = Pastel::Graphics->new(-width=>800, -height=>600);

The width and the height parameters are the width and height of the SVG.

The two most important method is this class are draw() and draw_string() . Which
are used to draw classes inherited from Pastel::Shape and Pastel::String class, re-
spectively. All the classes in Pastel::Geometry are derived from Pastel::Shape . And
two classes Pastel::String and Pastel::Text::AttributedString can be drawn by
the draw_string() method.

Here, how you will draw some shapes:

my $rectangle = Pastel::Geometry::Rectangle->new(-x=>50,- y=>60,-width
=>200,-height=>300);

$graphics->draw($rectangle);

Now write the ubiquitous hello world
$graphics->draw_string("Hello world", 100, 150);

Now show the graphics
$graphics->show();

Chapter 1. Getting Started
5

1.7. Some design decisions

Note that we have used straight way a Perl string instead of Pastel::String object
as parameters to draw_string() method.

The graphics context also strore the color and the stroke. If you set the color and
the stroke of the graphics context, all the subsequent drawing will used the color
and the stroke currently set in the context.

Here we stroke a red-outlined and blue colored ellipse.

#!/usr/bin/perl -w
use Pastel;

create the graphics context
my $graphics = Pastel::Graphics->new();

#create the ellipse
my $ellipse = Pastel::Geometry::Ellipse->new(-x=>20,- y=>30,-width=>200,-

height=>150);

set color to blue
$graphics->set_paint(Pastel::Color->blue());

fill the shape with blue color
$graphics->fill($ellipse);

set the color for stroke
$graphics->set_paint(Pastel::Color->red());

set the stroke
$graphics->set_stroke(Pastel::BasicStroke->new());

Now draw the ellipse
$graphics->draw($ellipse);

create something to write
my $text = Pastel::Text::AttributedString->new("Pastel is cool!");
$text->add_attribute("ANCHOR","MIDDLE");
my $font = Pastel::Font->new("Lucida","bold",14);
$text->add_attribute("FONT", $font);
$text->add_attribute("COLOR", Pastel::Color->white());

get the centre of ellipse
my $x = $ellipse->get_x() + $ellipse->get_width() / 2;
my $y = $ellipse->get_y() + $ellipse->get_height() / 2;

draw the string in the middle of the ellipse
$graphics->draw_string($text, $x, $y);

$graphics->show();

The output is shown in Figure 1.1.

Chapter 1. Getting Started
6

1.7. Some design decisions

FIGURE 1.1

	Getting Started
	From raster to vector
	A bit more about SVG
	What is Pastel?
	Requirements
	Installation
	Code-convention using Pastel
	Some design decisions
	Exception handling
	Graphics context

