1 |
#define EXTERN extern
|
2 |
|
3 |
#include "pcwin.h"
|
4 |
#include "pcmod.h"
|
5 |
|
6 |
#include "energies.h"
|
7 |
#include "torsions.h"
|
8 |
#include "derivs.h"
|
9 |
#include "hess.h"
|
10 |
#include "pot.h"
|
11 |
|
12 |
double dihdrl(int,int,int,int);
|
13 |
void etorsion(void);
|
14 |
void etorsion1(void);
|
15 |
void etorsion2(int);
|
16 |
|
17 |
|
18 |
EXTERN struct t_minim_values {
|
19 |
int iprint, ndc, nconst;
|
20 |
float dielc;
|
21 |
} minim_values;
|
22 |
|
23 |
void etorsion()
|
24 |
{
|
25 |
int i,ia, ib, ic, id;
|
26 |
double e, rt2, ru2, rtru;
|
27 |
double xt,yt,zt,xu,yu,zu;
|
28 |
double v1,v2,v3,v4,v5,v6;
|
29 |
double s1,s2,s3,s4,s5,s6;
|
30 |
double cosine,cosine2,cosine3;
|
31 |
double cosine4,cosine5,cosine6;
|
32 |
double phi1,phi2,phi3;
|
33 |
double phi4,phi5,phi6;
|
34 |
double xia,yia,zia,xib,yib,zib;
|
35 |
double xic,yic,zic,xid,yid,zid;
|
36 |
double xba,yba,zba,xcb,ycb,zcb;
|
37 |
double xdc,ydc,zdc;
|
38 |
double xtu,ytu,ztu,rcb, angle,rdihed;
|
39 |
double width,sine,dt2;
|
40 |
int curang;
|
41 |
|
42 |
energies.etor = 0.0;
|
43 |
if (minim_values.iprint)
|
44 |
{
|
45 |
fprintf(pcmlogfile,"\nTorsion Terms\n");
|
46 |
fprintf(pcmlogfile," At1 At2 At3 At4 Types Angle V1 V2 V3 Etor\n");
|
47 |
}
|
48 |
|
49 |
width = 0.0;
|
50 |
|
51 |
for (i=0; i < torsions.ntor; i++)
|
52 |
{
|
53 |
ia = torsions.i14[i][0];
|
54 |
ib = torsions.i14[i][1];
|
55 |
ic = torsions.i14[i][2];
|
56 |
id = torsions.i14[i][3];
|
57 |
if (atom[ia].use || atom[ib].use || atom[ic].use || atom[id].use )
|
58 |
{
|
59 |
xia = atom[ia].x;
|
60 |
yia = atom[ia].y;
|
61 |
zia = atom[ia].z;
|
62 |
xib = atom[ib].x;
|
63 |
yib = atom[ib].y;
|
64 |
zib = atom[ib].z;
|
65 |
xic = atom[ic].x;
|
66 |
yic = atom[ic].y;
|
67 |
zic = atom[ic].z;
|
68 |
xid = atom[id].x;
|
69 |
yid = atom[id].y;
|
70 |
zid = atom[id].z;
|
71 |
xba = xib - xia;
|
72 |
yba = yib - yia;
|
73 |
zba = zib - zia;
|
74 |
xcb = xic - xib;
|
75 |
ycb = yic - yib;
|
76 |
zcb = zic - zib;
|
77 |
xdc = xid - xic;
|
78 |
ydc = yid - yic;
|
79 |
zdc = zid - zic;
|
80 |
xt = yba*zcb - ycb*zba;
|
81 |
yt = zba*xcb - zcb*xba;
|
82 |
zt = xba*ycb - xcb*yba;
|
83 |
xu = ycb*zdc - ydc*zcb;
|
84 |
yu = zcb*xdc - zdc*xcb;
|
85 |
zu = xcb*ydc - xdc*ycb;
|
86 |
rt2 = xt*xt + yt*yt + zt*zt;
|
87 |
ru2 = xu*xu + yu*yu + zu*zu;
|
88 |
rtru = sqrt(rt2 * ru2);
|
89 |
if (rtru != 0.0)
|
90 |
{
|
91 |
cosine = (xt*xu + yt*yu + zt*zu) / rtru;
|
92 |
|
93 |
v1 = torsions.v1[i];
|
94 |
s1 = torsions.ph1[i];
|
95 |
v2 = torsions.v2[i];
|
96 |
s2 = torsions.ph2[i];
|
97 |
v3 = torsions.v3[i];
|
98 |
s3 = torsions.ph3[i];
|
99 |
v4 = torsions.v4[i];
|
100 |
s4 = torsions.ph4[i];
|
101 |
v5 = torsions.v5[i];
|
102 |
s5 = torsions.ph5[i];
|
103 |
v6 = torsions.v6[i];
|
104 |
s6 = torsions.ph6[i];
|
105 |
|
106 |
// compute the powers of the cosine of this angle
|
107 |
|
108 |
cosine2 = cosine * cosine;
|
109 |
cosine3 = cosine2 * cosine;
|
110 |
cosine4 = cosine2 * cosine2;
|
111 |
cosine5 = cosine3 * cosine2;
|
112 |
cosine6 = cosine3 * cosine3;
|
113 |
|
114 |
phi1 = 1.0 + s1*cosine;
|
115 |
phi2 = 1.0 + s2*(2.0*cosine2 - 1.0);
|
116 |
phi3 = 1.0 + s3*(4.0*cosine3 - 3.0*cosine);
|
117 |
phi4 = 1.0 + s4*(8.0*(cosine4-cosine2) + 1.0);
|
118 |
phi5 = 1.0 + s5*(16.0*cosine5 - 20.0*cosine3 + 5.0*cosine);
|
119 |
phi6 = 1.0 + s6*(32.0*cosine6 - 48.0*cosine4 + 18.0*cosine2 - 1.0);
|
120 |
|
121 |
if (pot.use_deform)
|
122 |
{
|
123 |
phi1 = phi1*exp(-width);
|
124 |
phi2 = phi2*exp(-4.0*width);
|
125 |
phi3 = phi3*exp(-9.0*width);
|
126 |
phi4 = phi4*exp(-16.0*width);
|
127 |
phi5 = phi5*exp(-25.0*width);
|
128 |
phi6 = phi6*exp(-36.0*width);
|
129 |
}
|
130 |
e = units.torsunit * (v1*phi1 + v2*phi2 + v3*phi3
|
131 |
+ v4*phi4 + v5*phi5 + v6*phi6);
|
132 |
energies.etor += e;
|
133 |
atom[ia].energy += e;
|
134 |
atom[ib].energy += e;
|
135 |
atom[ic].energy += e;
|
136 |
atom[id].energy += e;
|
137 |
if(minim_values.iprint)
|
138 |
{
|
139 |
rdihed = dihdrl(ia,ib,ic,id);
|
140 |
fprintf(pcmlogfile,"Tor: %2s(%-3d)- %2s(%-3d)- %2s(%-3d)- %2s(%-3d) %d %d %d %d %8.2f %-8.3f %-8.3f %-8.3f = %-8.4f\n",
|
141 |
atom[ia].name,ia,atom[ib].name,ib,atom[ic].name,ic,atom[id].name,id, atom[ia].type, atom[ib].type,
|
142 |
atom[ic].type, atom[id].type, rdihed,v1,v2,v3,e);
|
143 |
}
|
144 |
}
|
145 |
}
|
146 |
}
|
147 |
}
|
148 |
// ===========================================================
|
149 |
void etorsion1()
|
150 |
{
|
151 |
int i,ia, ib, ic, id;
|
152 |
int curang;
|
153 |
double angle;
|
154 |
double e, rt2, ru2, rtru,dedphi,sine,dt2;
|
155 |
double xt,yt,zt,xu,yu,zu;
|
156 |
double v1,v2,v3,v4,v5,v6;
|
157 |
double s1,s2,s3,s4,s5,s6;
|
158 |
double cosine,cosine2,cosine3;
|
159 |
double cosine4,cosine5,cosine6;
|
160 |
double phi1,phi2,phi3;
|
161 |
double phi4,phi5,phi6;
|
162 |
double xia,yia,zia,xib,yib,zib;
|
163 |
double xic,yic,zic,xid,yid,zid;
|
164 |
double xba,yba,zba,xcb,ycb,zcb;
|
165 |
double xdc,ydc,zdc;
|
166 |
double xca,yca,zca,xdb,ydb,zdb;
|
167 |
double xtu,ytu,ztu,rcb;
|
168 |
double dphi1,dphi2,dphi3;
|
169 |
double dphi4,dphi5,dphi6;
|
170 |
double dphidxt,dphidyt,dphidzt;
|
171 |
double dphidxu,dphidyu,dphidzu;
|
172 |
double dphidxia,dphidyia,dphidzia;
|
173 |
double dphidxib,dphidyib,dphidzib;
|
174 |
double dphidxic,dphidyic,dphidzic;
|
175 |
double dphidxid,dphidyid,dphidzid;
|
176 |
double dedxia,dedyia,dedzia;
|
177 |
double dedxib,dedyib,dedzib;
|
178 |
double dedxic,dedyic,dedzic;
|
179 |
double dedxid,dedyid,dedzid;
|
180 |
double dedxt,dedyt,dedzt, dedxu,dedyu,dedzu;
|
181 |
double deform1,deform2,deform3;
|
182 |
double deform4,deform5,deform6, width;
|
183 |
|
184 |
energies.etor = 0.0;
|
185 |
for (i=0; i <= natom; i++)
|
186 |
{
|
187 |
deriv.detor[i][0] = 0.0;
|
188 |
deriv.detor[i][1] = 0.0;
|
189 |
deriv.detor[i][2] = 0.0;
|
190 |
}
|
191 |
|
192 |
width = 0.0;
|
193 |
|
194 |
for (i=0; i < torsions.ntor; i++)
|
195 |
{
|
196 |
ia = torsions.i14[i][0];
|
197 |
ib = torsions.i14[i][1];
|
198 |
ic = torsions.i14[i][2];
|
199 |
id = torsions.i14[i][3];
|
200 |
if (atom[ia].use || atom[ib].use || atom[ic].use || atom[id].use )
|
201 |
{
|
202 |
xia = atom[ia].x;
|
203 |
yia = atom[ia].y;
|
204 |
zia = atom[ia].z;
|
205 |
xib = atom[ib].x;
|
206 |
yib = atom[ib].y;
|
207 |
zib = atom[ib].z;
|
208 |
xic = atom[ic].x;
|
209 |
yic = atom[ic].y;
|
210 |
zic = atom[ic].z;
|
211 |
xid = atom[id].x;
|
212 |
yid = atom[id].y;
|
213 |
zid = atom[id].z;
|
214 |
xba = xib - xia;
|
215 |
yba = yib - yia;
|
216 |
zba = zib - zia;
|
217 |
xcb = xic - xib;
|
218 |
ycb = yic - yib;
|
219 |
zcb = zic - zib;
|
220 |
xdc = xid - xic;
|
221 |
ydc = yid - yic;
|
222 |
zdc = zid - zic;
|
223 |
xt = yba*zcb - ycb*zba;
|
224 |
yt = zba*xcb - zcb*xba;
|
225 |
zt = xba*ycb - xcb*yba;
|
226 |
xu = ycb*zdc - ydc*zcb;
|
227 |
yu = zcb*xdc - zdc*xcb;
|
228 |
zu = xcb*ydc - xdc*ycb;
|
229 |
xtu = yt*zu - yu*zt;
|
230 |
ytu = zt*xu - zu*xt;
|
231 |
ztu = xt*yu - xu*yt;
|
232 |
rt2 = xt*xt + yt*yt + zt*zt;
|
233 |
ru2 = xu*xu + yu*yu + zu*zu;
|
234 |
rtru = sqrt(rt2 * ru2);
|
235 |
if (rtru != 0.0)
|
236 |
{
|
237 |
rcb = sqrt(xcb*xcb + ycb*ycb + zcb*zcb);
|
238 |
cosine = (xt*xu + yt*yu + zt*zu) / rtru;
|
239 |
sine = (xcb*xtu + ycb*ytu + zcb*ztu) / (rcb*rtru);
|
240 |
|
241 |
v1 = torsions.v1[i];
|
242 |
s1 = torsions.ph1[i];
|
243 |
v2 = torsions.v2[i];
|
244 |
s2 = torsions.ph2[i];
|
245 |
v3 = torsions.v3[i];
|
246 |
s3 = torsions.ph3[i];
|
247 |
v4 = torsions.v4[i];
|
248 |
s4 = torsions.ph4[i];
|
249 |
v5 = torsions.v5[i];
|
250 |
s5 = torsions.ph5[i];
|
251 |
v6 = torsions.v6[i];
|
252 |
s6 = torsions.ph6[i];
|
253 |
// compute the powers of the cosine of this angle
|
254 |
|
255 |
cosine2 = cosine * cosine;
|
256 |
cosine3 = cosine2 * cosine;
|
257 |
cosine4 = cosine2 * cosine2;
|
258 |
cosine5 = cosine3 * cosine2;
|
259 |
cosine6 = cosine3 * cosine3;
|
260 |
|
261 |
phi1 = 1.0 + s1*cosine;
|
262 |
phi2 = 1.0 + s2*(2.0*cosine2 - 1.0);
|
263 |
phi3 = 1.0 + s3*(4.0*cosine3 - 3.0*cosine);
|
264 |
phi4 = 1.0 + s4*(8.0*(cosine4-cosine2) + 1.0);
|
265 |
phi5 = 1.0 + s5*(16.0*cosine5 - 20.0*cosine3 + 5.0*cosine);
|
266 |
phi6 = 1.0 + s6*(32.0*cosine6 - 48.0*cosine4 + 18.0*cosine2 - 1.0);
|
267 |
|
268 |
dphi1 = s1;
|
269 |
dphi2 = s2 * (4.0*cosine);
|
270 |
dphi3 = s3 * (12.0*cosine2 - 3.0);
|
271 |
dphi4 = s4 * (32.0*cosine3 - 16.0*cosine);
|
272 |
dphi5 = s5 * (80.0*cosine4 - 60.0*cosine2 + 5.0);
|
273 |
dphi6 = s6 * (192.0*(cosine5-cosine3) + 36.0*cosine);
|
274 |
|
275 |
if (pot.use_deform)
|
276 |
{
|
277 |
deform1 = exp(-width);
|
278 |
deform2 = exp(-4.0*width);
|
279 |
deform3 = exp(-9.0*width);
|
280 |
deform4 = exp(-16.0*width);
|
281 |
deform5 = exp(-25.0*width);
|
282 |
deform6 = exp(-36.0*width);
|
283 |
phi1 *= deform1;
|
284 |
phi2 *= deform2;
|
285 |
phi3 *= deform3;
|
286 |
phi4 *= deform4;
|
287 |
phi5 *= deform5;
|
288 |
phi6 *= deform6;
|
289 |
dphi1 *= deform1;
|
290 |
dphi2 *= deform2;
|
291 |
dphi3 *= deform3;
|
292 |
dphi4 *= deform4;
|
293 |
dphi5 *= deform5;
|
294 |
dphi6 *= deform6;
|
295 |
}
|
296 |
|
297 |
e = units.torsunit * (v1*phi1 + v2*phi2 + v3*phi3
|
298 |
+ v4*phi4 + v5*phi5 + v6*phi6);
|
299 |
dedphi = -sine * units.torsunit
|
300 |
* (v1*dphi1+v2*dphi2+v3*dphi3+v4*dphi4+v5*dphi5+v6*dphi6);
|
301 |
|
302 |
xca = xic - xia;
|
303 |
yca = yic - yia;
|
304 |
zca = zic - zia;
|
305 |
xdb = xid - xib;
|
306 |
ydb = yid - yib;
|
307 |
zdb = zid - zib;
|
308 |
dphidxt = (yt*zcb - ycb*zt) / (rt2*rcb);
|
309 |
dphidyt = (zt*xcb - zcb*xt) / (rt2*rcb);
|
310 |
dphidzt = (xt*ycb - xcb*yt) / (rt2*rcb);
|
311 |
dphidxu = -(yu*zcb - ycb*zu) / (ru2*rcb);
|
312 |
dphidyu = -(zu*xcb - zcb*xu) / (ru2*rcb);
|
313 |
dphidzu = -(xu*ycb - xcb*yu) / (ru2*rcb);
|
314 |
|
315 |
dphidxia = zcb*dphidyt - ycb*dphidzt;
|
316 |
dphidyia = xcb*dphidzt - zcb*dphidxt;
|
317 |
dphidzia = ycb*dphidxt - xcb*dphidyt;
|
318 |
dphidxib = yca*dphidzt - zca*dphidyt + zdc*dphidyu - ydc*dphidzu;
|
319 |
dphidyib = zca*dphidxt - xca*dphidzt + xdc*dphidzu - zdc*dphidxu;
|
320 |
dphidzib = xca*dphidyt - yca*dphidxt + ydc*dphidxu - xdc*dphidyu;
|
321 |
dphidxic = zba*dphidyt - yba*dphidzt + ydb*dphidzu - zdb*dphidyu;
|
322 |
dphidyic = xba*dphidzt - zba*dphidxt + zdb*dphidxu - xdb*dphidzu;
|
323 |
dphidzic = yba*dphidxt - xba*dphidyt + xdb*dphidyu - ydb*dphidxu;
|
324 |
dphidxid = zcb*dphidyu - ycb*dphidzu;
|
325 |
dphidyid = xcb*dphidzu - zcb*dphidxu;
|
326 |
dphidzid = ycb*dphidxu - xcb*dphidyu;
|
327 |
dedxia = dedphi * dphidxia;
|
328 |
dedyia = dedphi * dphidyia;
|
329 |
dedzia = dedphi * dphidzia;
|
330 |
dedxib = dedphi * dphidxib;
|
331 |
dedyib = dedphi * dphidyib;
|
332 |
dedzib = dedphi * dphidzib;
|
333 |
dedxic = dedphi * dphidxic;
|
334 |
dedyic = dedphi * dphidyic;
|
335 |
dedzic = dedphi * dphidzic;
|
336 |
dedxid = dedphi * dphidxid;
|
337 |
dedyid = dedphi * dphidyid;
|
338 |
dedzid = dedphi * dphidzid;
|
339 |
|
340 |
energies.etor += e;
|
341 |
deriv.detor[ia][0] += dedxia;
|
342 |
deriv.detor[ia][1] += dedyia;
|
343 |
deriv.detor[ia][2] += dedzia;
|
344 |
|
345 |
deriv.detor[ib][0] += dedxib;
|
346 |
deriv.detor[ib][1] += dedyib;
|
347 |
deriv.detor[ib][2] += dedzib;
|
348 |
|
349 |
deriv.detor[ic][0] += dedxic;
|
350 |
deriv.detor[ic][1] += dedyic;
|
351 |
deriv.detor[ic][2] += dedzic;
|
352 |
|
353 |
deriv.detor[id][0] += dedxid;
|
354 |
deriv.detor[id][1] += dedyid;
|
355 |
deriv.detor[id][2] += dedzid;
|
356 |
|
357 |
}
|
358 |
}
|
359 |
}
|
360 |
}
|
361 |
// ===========================================================
|
362 |
void etorsion2(iatom)
|
363 |
{
|
364 |
int i,ia,ib,ic,id;
|
365 |
int curang;
|
366 |
double agl, cosm, sinm;
|
367 |
double dot, denom, denom2, denom3;
|
368 |
double dedphi,d2edphi2,sine;
|
369 |
double term1, term2, term3;
|
370 |
double v1,v2,v3,v4,v5,v6;
|
371 |
double s1,s2,s3,s4,s5,s6;
|
372 |
double cosine,cosine2,cosine3;
|
373 |
double cosine4,cosine5,cosine6;
|
374 |
double xia,yia,zia,xib,yib,zib;
|
375 |
double xic,yic,zic,xid,yid,zid;
|
376 |
double xba,yba,zba,xcb,ycb,zcb;
|
377 |
double xdc,ydc,zdc;
|
378 |
double xca,yca,zca,xdb,ydb,zdb;
|
379 |
double xt,yt,zt,xu,yu,zu,xtu,ytu,ztu;
|
380 |
double rt2,ru2,rtru,rcb, rt2ru2;
|
381 |
double phi1,phi2,phi3;
|
382 |
double phi4,phi5,phi6;
|
383 |
double dphi1,dphi2,dphi3;
|
384 |
double dphi4,dphi5,dphi6;
|
385 |
double d2phi1,d2phi2,d2phi3;
|
386 |
double d2phi4,d2phi5,d2phi6;
|
387 |
double dphidxt,dphidyt,dphidzt;
|
388 |
double dphidxu,dphidyu,dphidzu;
|
389 |
double dphidxt1,dphidyt1,dphidzt1;
|
390 |
double dphidxu1,dphidyu1,dphidzu1;
|
391 |
double dphidxia,dphidyia,dphidzia;
|
392 |
double dphidxib,dphidyib,dphidzib;
|
393 |
double dphidxic,dphidyic,dphidzic;
|
394 |
double dphidxid,dphidyid,dphidzid;
|
395 |
double xycb2,xzcb2,yzcb2;
|
396 |
double rcbxt,rcbyt,rcbzt,rcbt2;
|
397 |
double rcbxu,rcbyu,rcbzu,rcbu2;
|
398 |
double dphidxibt,dphidyibt,dphidzibt;
|
399 |
double dphidxibu,dphidyibu,dphidzibu;
|
400 |
double dphidxict,dphidyict,dphidzict;
|
401 |
double dphidxicu,dphidyicu,dphidzicu;
|
402 |
double dxiaxia,dyiayia,dziazia,dxibxib,dyibyib,dzibzib;
|
403 |
double dxicxic,dyicyic,dziczic,dxidxid,dyidyid,dzidzid;
|
404 |
double dxiayia,dxiazia,dyiazia,dxibyib,dxibzib,dyibzib;
|
405 |
double dxicyic,dxiczic,dyiczic,dxidyid,dxidzid,dyidzid;
|
406 |
double dxiaxib,dxiayib,dxiazib,dyiaxib,dyiayib,dyiazib;
|
407 |
double dziaxib,dziayib,dziazib,dxiaxic,dxiayic,dxiazic;
|
408 |
double dyiaxic,dyiayic,dyiazic,dziaxic,dziayic,dziazic;
|
409 |
double dxiaxid,dxiayid,dxiazid,dyiaxid,dyiayid,dyiazid;
|
410 |
double dziaxid,dziayid,dziazid,dxibxic,dxibyic,dxibzic;
|
411 |
double dyibxic,dyibyic,dyibzic,dzibxic,dzibyic,dzibzic;
|
412 |
double dxibxid,dxibyid,dxibzid,dyibxid,dyibyid,dyibzid;
|
413 |
double dzibxid,dzibyid,dzibzid,dxicxid,dxicyid,dxiczid;
|
414 |
double dyicxid,dyicyid,dyiczid,dzicxid,dzicyid,dziczid;
|
415 |
double yuzab, zuydb, ytzba, rtru32, rtru322;
|
416 |
double zdcyu, xdczu, ydcxu, ycazt, zcaxt, xcayt;
|
417 |
double deform1,deform2,deform3;
|
418 |
double deform4,deform5,deform6,width;
|
419 |
|
420 |
width = 0.0;
|
421 |
|
422 |
for (i=0; i < torsions.ntor; i++)
|
423 |
{
|
424 |
ia = torsions.i14[i][0];
|
425 |
ib = torsions.i14[i][1];
|
426 |
ic = torsions.i14[i][2];
|
427 |
id = torsions.i14[i][3];
|
428 |
if (ia == iatom || ib == iatom || ic == iatom || id == iatom)
|
429 |
{
|
430 |
xia = atom[ia].x;
|
431 |
yia = atom[ia].y;
|
432 |
zia = atom[ia].z;
|
433 |
xib = atom[ib].x;
|
434 |
yib = atom[ib].y;
|
435 |
zib = atom[ib].z;
|
436 |
xic = atom[ic].x;
|
437 |
yic = atom[ic].y;
|
438 |
zic = atom[ic].z;
|
439 |
xid = atom[id].x;
|
440 |
yid = atom[id].y;
|
441 |
zid = atom[id].z;
|
442 |
xba = xib - xia;
|
443 |
yba = yib - yia;
|
444 |
zba = zib - zia;
|
445 |
xcb = xic - xib;
|
446 |
ycb = yic - yib;
|
447 |
zcb = zic - zib;
|
448 |
xdc = xid - xic;
|
449 |
ydc = yid - yic;
|
450 |
zdc = zid - zic;
|
451 |
xt = yba*zcb - ycb*zba;
|
452 |
yt = zba*xcb - zcb*xba;
|
453 |
zt = xba*ycb - xcb*yba;
|
454 |
xu = ycb*zdc - ydc*zcb;
|
455 |
yu = zcb*xdc - zdc*xcb;
|
456 |
zu = xcb*ydc - xdc*ycb;
|
457 |
xtu = yt*zu - yu*zt;
|
458 |
ytu = zt*xu - zu*xt;
|
459 |
ztu = xt*yu - xu*yt;
|
460 |
rt2 = xt*xt + yt*yt + zt*zt;
|
461 |
ru2 = xu*xu + yu*yu + zu*zu;
|
462 |
rtru = sqrt(rt2 * ru2);
|
463 |
if (rtru != 0.0)
|
464 |
{
|
465 |
rcb = sqrt(xcb*xcb + ycb*ycb + zcb*zcb);
|
466 |
cosine = (xt*xu + yt*yu + zt*zu) / rtru;
|
467 |
sine = (xcb*xtu + ycb*ytu + zcb*ztu) / (rcb*rtru);
|
468 |
|
469 |
v1 = torsions.v1[i];
|
470 |
s1 = torsions.ph1[i];
|
471 |
v2 = torsions.v2[i];
|
472 |
s2 = torsions.ph2[i];
|
473 |
v3 = torsions.v3[i];
|
474 |
s3 = torsions.ph3[i];
|
475 |
v4 = torsions.v4[i];
|
476 |
s4 = torsions.ph4[i];
|
477 |
v5 = torsions.v5[i];
|
478 |
s5 = torsions.ph5[i];
|
479 |
v6 = torsions.v6[i];
|
480 |
s6 = torsions.ph6[i];
|
481 |
|
482 |
// compute the powers of the cosine of this angle
|
483 |
|
484 |
cosine2 = cosine * cosine;
|
485 |
cosine3 = cosine2 * cosine;
|
486 |
cosine4 = cosine2 * cosine2;
|
487 |
cosine5 = cosine3 * cosine2;
|
488 |
cosine6 = cosine3 * cosine3;
|
489 |
|
490 |
phi1 = 1.0 + s1*cosine;
|
491 |
phi2 = 1.0 + s2*(2.0*cosine2 - 1.0);
|
492 |
phi3 = 1.0 + s3*(4.0*cosine3 - 3.0*cosine);
|
493 |
phi4 = 1.0 + s4*(8.0*(cosine4-cosine2) + 1.0);
|
494 |
phi5 = 1.0 + s5*(16.0*cosine5 - 20.0*cosine3 + 5.0*cosine);
|
495 |
phi6 = 1.0 + s6*(32.0*cosine6 - 48.0*cosine4 + 18.0*cosine2 - 1.0);
|
496 |
|
497 |
dphi1 = s1;
|
498 |
dphi2 = s2 * (4.0*cosine);
|
499 |
dphi3 = s3 * (12.0*cosine2 - 3.0);
|
500 |
dphi4 = s4 * (32.0*cosine3 - 16.0*cosine);
|
501 |
dphi5 = s5 * (80.0*cosine4 - 60.0*cosine2 + 5.0);
|
502 |
dphi6 = s6 * (192.0*(cosine5-cosine3) + 36.0*cosine);
|
503 |
|
504 |
d2phi1 = -s1 * cosine;
|
505 |
d2phi2 = -s2 * (8.0*cosine2 - 4.0);
|
506 |
d2phi3 = -s3 * (36.0*cosine3 - 27.0*cosine);
|
507 |
d2phi4 = -s4 * (128.0*(cosine4-cosine2) + 16.0);
|
508 |
d2phi5 = -s5 * (400.0*cosine5 - 500.0*cosine + 125.0*cosine);
|
509 |
d2phi6 = -s6 * (1152.0*cosine6 - 1728.0*cosine2 + 648.0*cosine2);
|
510 |
|
511 |
if (pot.use_deform)
|
512 |
{
|
513 |
deform1 = exp(-width);
|
514 |
deform2 = exp(-4.0*width);
|
515 |
deform3 = exp(-9.0*width);
|
516 |
deform4 = exp(-16.0*width);
|
517 |
deform5 = exp(-25.0*width);
|
518 |
deform6 = exp(-36.0*width);
|
519 |
phi1 *= deform1;
|
520 |
phi2 *= deform2;
|
521 |
phi3 *= deform3;
|
522 |
phi4 *= deform4;
|
523 |
phi5 *= deform5;
|
524 |
phi6 *= deform6;
|
525 |
dphi1 *= deform1;
|
526 |
dphi2 *= deform2;
|
527 |
dphi3 *= deform3;
|
528 |
dphi4 *= deform4;
|
529 |
dphi5 *= deform5;
|
530 |
dphi6 *= deform6;
|
531 |
d2phi1 *= deform1;
|
532 |
d2phi2 *= deform2;
|
533 |
d2phi3 *= deform3;
|
534 |
d2phi4 *= deform4;
|
535 |
d2phi5 *= deform5;
|
536 |
d2phi6 *= deform6;
|
537 |
}
|
538 |
|
539 |
|
540 |
dedphi = -sine * units.torsunit * (v1*dphi1 + v2*dphi2 + v3*dphi3
|
541 |
+ v4*dphi4 + v5*dphi5 + v6*dphi6);
|
542 |
d2edphi2 = units.torsunit * (v1*d2phi1 + v2*d2phi2 + v3*d2phi3
|
543 |
+ v4*d2phi4 + v5*d2phi5 + v6*d2phi6);
|
544 |
|
545 |
xca = xic - xia;
|
546 |
yca = yic - yia;
|
547 |
zca = zic - zia;
|
548 |
xdb = xid - xib;
|
549 |
ydb = yid - yib;
|
550 |
zdb = zid - zib;
|
551 |
dphidxt = (yt*zcb - ycb*zt) / (rt2*rcb);
|
552 |
dphidyt = (zt*xcb - zcb*xt) / (rt2*rcb);
|
553 |
dphidzt = (xt*ycb - xcb*yt) / (rt2*rcb);
|
554 |
dphidxu = -(yu*zcb - ycb*zu) / (ru2*rcb);
|
555 |
dphidyu = -(zu*xcb - zcb*xu) / (ru2*rcb);
|
556 |
dphidzu = -(xu*ycb - xcb*yu) / (ru2*rcb);
|
557 |
|
558 |
xycb2 = xcb*xcb + ycb*ycb;
|
559 |
xzcb2 = xcb*xcb + zcb*zcb;
|
560 |
yzcb2 = ycb*ycb + zcb*zcb;
|
561 |
rcbxt = -2.0 * rcb * dphidxt;
|
562 |
rcbyt = -2.0 * rcb * dphidyt;
|
563 |
rcbzt = -2.0 * rcb * dphidzt;
|
564 |
rcbt2 = rcb * rt2;
|
565 |
rcbxu = 2.0 * rcb * dphidxu;
|
566 |
rcbyu = 2.0 * rcb * dphidyu;
|
567 |
rcbzu = 2.0 * rcb * dphidzu;
|
568 |
rcbu2 = rcb * ru2;
|
569 |
dphidxibt = yca*dphidzt - zca*dphidyt;
|
570 |
dphidxibu = zdc*dphidyu - ydc*dphidzu;
|
571 |
dphidyibt = zca*dphidxt - xca*dphidzt;
|
572 |
dphidyibu = xdc*dphidzu - zdc*dphidxu;
|
573 |
dphidzibt = xca*dphidyt - yca*dphidxt;
|
574 |
dphidzibu = ydc*dphidxu - xdc*dphidyu;
|
575 |
dphidxict = zba*dphidyt - yba*dphidzt;
|
576 |
dphidxicu = ydb*dphidzu - zdb*dphidyu;
|
577 |
dphidyict = xba*dphidzt - zba*dphidxt;
|
578 |
dphidyicu = zdb*dphidxu - xdb*dphidzu;
|
579 |
dphidzict = yba*dphidxt - xba*dphidyt;
|
580 |
dphidzicu = xdb*dphidyu - ydb*dphidxu;
|
581 |
|
582 |
dphidxia = zcb*dphidyt - ycb*dphidzt;
|
583 |
dphidyia = xcb*dphidzt - zcb*dphidxt;
|
584 |
dphidzia = ycb*dphidxt - xcb*dphidyt;
|
585 |
dphidxib = dphidxibt + dphidxibu;
|
586 |
dphidyib = dphidyibt + dphidyibu;
|
587 |
dphidzib = dphidzibt + dphidzibu;
|
588 |
dphidxic = dphidxict + dphidxicu;
|
589 |
dphidyic = dphidyict + dphidyicu;
|
590 |
dphidzic = dphidzict + dphidzicu;
|
591 |
dphidxid = zcb*dphidyu - ycb*dphidzu;
|
592 |
dphidyid = xcb*dphidzu - zcb*dphidxu;
|
593 |
dphidzid = ycb*dphidxu - xcb*dphidyu;
|
594 |
|
595 |
dxiaxia = rcbxt*dphidxia;
|
596 |
dxiayia = rcbxt*dphidyia - zcb*rcb/rt2;
|
597 |
dxiazia = rcbxt*dphidzia + ycb*rcb/rt2;
|
598 |
dxiaxib = rcbxt*dphidxibt + xcb*(zca*ycb-yca*zcb)/rcbt2;
|
599 |
dxiayib = rcbxt*dphidyibt + dphidzt + (xca*zcb*xcb+zca*yzcb2)/rcbt2;
|
600 |
dxiazib = rcbxt*dphidzibt - dphidyt - (xca*ycb*xcb+yca*yzcb2)/rcbt2;
|
601 |
dxiaxic = rcbxt*dphidxict + xcb*xt/rcbt2;
|
602 |
dxiayic = rcbxt*dphidyict - dphidzt - (xba*zcb*xcb+zba*yzcb2)/rcbt2;
|
603 |
dxiazic = rcbxt*dphidzict + dphidyt + (xba*ycb*xcb+yba*yzcb2)/rcbt2;
|
604 |
dxiaxid = 0.0;
|
605 |
dxiayid = 0.0;
|
606 |
dxiazid = 0.0;
|
607 |
dyiayia = rcbyt*dphidyia;
|
608 |
dyiazia = rcbyt*dphidzia - xcb*rcb/rt2;
|
609 |
dyiaxib = rcbyt*dphidxibt - dphidzt - (yca*zcb*ycb+zca*xzcb2)/rcbt2;
|
610 |
dyiayib = rcbyt*dphidyibt + ycb*(xca*zcb-zca*xcb)/rcbt2;
|
611 |
dyiazib = rcbyt*dphidzibt + dphidxt + (yca*xcb*ycb+xca*xzcb2)/rcbt2;
|
612 |
dyiaxic = rcbyt*dphidxict + dphidzt + (yba*zcb*ycb+zba*xzcb2)/rcbt2;
|
613 |
dyiayic = rcbyt*dphidyict + ycb*yt/rcbt2;
|
614 |
dyiazic = rcbyt*dphidzict - dphidxt - (yba*xcb*ycb+xba*xzcb2)/rcbt2;
|
615 |
dyiaxid = 0.0;
|
616 |
dyiayid = 0.0;
|
617 |
dyiazid = 0.0;
|
618 |
dziazia = rcbzt*dphidzia;
|
619 |
dziaxib = rcbzt*dphidxibt + dphidyt + (zca*ycb*zcb+yca*xycb2)/rcbt2;
|
620 |
dziayib = rcbzt*dphidyibt - dphidxt - (zca*xcb*zcb+xca*xycb2)/rcbt2;
|
621 |
dziazib = rcbzt*dphidzibt + zcb*(yca*xcb-xca*ycb)/rcbt2;
|
622 |
dziaxic = rcbzt*dphidxict - dphidyt - (zba*ycb*zcb+yba*xycb2)/rcbt2;
|
623 |
dziayic = rcbzt*dphidyict + dphidxt + (zba*xcb*zcb+xba*xycb2)/rcbt2;
|
624 |
dziazic = rcbzt*dphidzict + zcb*zt/rcbt2;
|
625 |
dziaxid = 0.0;
|
626 |
dziayid = 0.0;
|
627 |
dziazid = 0.0;
|
628 |
dxibxic = -xcb*dphidxib/(rcb*rcb) - (yca*(zba*xcb+yt)-zca*(yba*xcb-zt))/rcbt2
|
629 |
- 2.0*(yt*zba-yba*zt)*dphidxibt/rt2 - (zdc*(ydb*xcb+zu)-ydc*(zdb*xcb-yu))/rcbu2
|
630 |
+ 2.0*(yu*zdb-ydb*zu)*dphidxibu/ru2;
|
631 |
dxibyic = -ycb*dphidxib/(rcb*rcb) + dphidzt + dphidzu - (yca*(zba*ycb-xt)+zca*(xba*xcb+zcb*zba))/rcbt2
|
632 |
- 2.0*(zt*xba-zba*xt)*dphidxibt/rt2 + (zdc*(xdb*xcb+zcb*zdb)+ydc*(zdb*ycb+xu))/rcbu2
|
633 |
+ 2.0*(zu*xdb-zdb*xu)*dphidxibu/ru2;
|
634 |
dxibxid = rcbxu*dphidxibu + xcb*xu/rcbu2;
|
635 |
dxibyid = rcbyu*dphidxibu - dphidzu - (ydc*zcb*ycb+zdc*xzcb2)/rcbu2;
|
636 |
dxibzid = rcbzu*dphidxibu + dphidyu + (zdc*ycb*zcb+ydc*xycb2)/rcbu2;
|
637 |
dyibzib = ycb*dphidzib/(rcb*rcb) - (xca*(xca*xcb+zcb*zca)+yca*(ycb*xca+zt))/rcbt2
|
638 |
- 2.0*(xt*zca-xca*zt)*dphidzibt/rt2 + (ydc*(xdc*ycb-zu)+xdc*(xdc*xcb+zcb*zdc))/rcbu2
|
639 |
+ 2.0*(xu*zdc-xdc*zu)*dphidzibu/ru2;
|
640 |
dyibxic = -xcb*dphidyib/(rcb*rcb) - dphidzt - dphidzu + (xca*(zba*xcb+yt)+zca*(zba*zcb+ycb*yba))/rcbt2
|
641 |
- 2.0*(yt*zba-yba*zt)*dphidyibt/rt2 - (zdc*(zdb*zcb+ycb*ydb)+xdc*(zdb*xcb-yu))/rcbu2
|
642 |
+ 2.0*(yu*zdb-ydb*zu)*dphidyibu/ru2;
|
643 |
dyibyic = -ycb*dphidyib/(rcb*rcb)- (zca*(xba*ycb+zt)-xca*(zba*ycb-xt))/rcbt2
|
644 |
- 2.0*(zt*xba-zba*xt)*dphidyibt/rt2 - (xdc*(zdb*ycb+xu)-zdc*(xdb*ycb-zu))/rcbu2
|
645 |
+ 2.0*(zu*xdb-zdb*xu)*dphidyibu/ru2;
|
646 |
dyibxid = rcbxu*dphidyibu + dphidzu + (xdc*zcb*xcb+zdc*yzcb2)/rcbu2;
|
647 |
dyibyid = rcbyu*dphidyibu + ycb*yu/rcbu2;
|
648 |
dyibzid = rcbzu*dphidyibu - dphidxu - (zdc*xcb*zcb+xdc*xycb2)/rcbu2;
|
649 |
dzibxic = -xcb*dphidzib/(rcb*rcb) + dphidyt + dphidyu - (xca*(yba*xcb-zt)+yca*(zba*zcb+ycb*yba))/rcbt2
|
650 |
- 2.0*(yt*zba-yba*zt)*dphidzibt/rt2 + (ydc*(zdb*zcb+ycb*ydb)+xdc*(ydb*xcb+zu))/rcbu2
|
651 |
+ 2.0*(yu*zdb-ydb*zu)*dphidzibu/ru2;
|
652 |
dzibzic = -zcb*dphidzib/(rcb*rcb) - (xca*(yba*zcb+xt)-yca*(xba*zcb-yt))/rcbt2
|
653 |
- 2.0*(xt*yba-xba*yt)*dphidzibt/rt2 - (ydc*(xdb*zcb+yu)-xdc*(ydb*zcb-xu))/rcbu2
|
654 |
+ 2.0*(xu*ydb-xdb*yu)*dphidzibu/ru2;
|
655 |
dzibxid = rcbxu*dphidzibu - dphidyu - (xdc*ycb*xcb+ydc*yzcb2)/rcbu2;
|
656 |
dzibyid = rcbyu*dphidzibu + dphidxu + (ydc*xcb*ycb+xdc*xzcb2)/rcbu2;
|
657 |
dzibzid = rcbzu*dphidzibu + zcb*zu/rcbu2;
|
658 |
dxicxid = rcbxu*dphidxicu - xcb*(zdb*ycb-ydb*zcb)/rcbu2;
|
659 |
dxicyid = rcbyu*dphidxicu + dphidzu + (ydb*zcb*ycb+zdb*xzcb2)/rcbu2;
|
660 |
dxiczid = rcbzu*dphidxicu - dphidyu - (zdb*ycb*zcb+ydb*xycb2)/rcbu2;
|
661 |
dyicxid = rcbxu*dphidyicu - dphidzu - (xdb*zcb*xcb+zdb*yzcb2)/rcbu2;
|
662 |
dyicyid = rcbyu*dphidyicu - ycb*(xdb*zcb-zdb*xcb)/rcbu2;
|
663 |
dyiczid = rcbzu*dphidyicu + dphidxu + (zdb*xcb*zcb+xdb*xycb2)/rcbu2;
|
664 |
dzicxid = rcbxu*dphidzicu + dphidyu + (xdb*ycb*xcb+ydb*yzcb2)/rcbu2;
|
665 |
dzicyid = rcbyu*dphidzicu - dphidxu - (ydb*xcb*ycb+xdb*xzcb2)/rcbu2;
|
666 |
dziczid = rcbzu*dphidzicu - zcb*(ydb*xcb-xdb*ycb)/rcbu2;
|
667 |
dxidxid = rcbxu*dphidxid;
|
668 |
dxidyid = rcbxu*dphidyid + zcb*rcb/ru2;
|
669 |
dxidzid = rcbxu*dphidzid - ycb*rcb/ru2;
|
670 |
dyidyid = rcbyu*dphidyid;
|
671 |
dyidzid = rcbyu*dphidzid + xcb*rcb/ru2;
|
672 |
dzidzid = rcbzu*dphidzid;
|
673 |
|
674 |
dxibxib = -dxiaxib - dxibxic - dxibxid;
|
675 |
dxibyib = -dyiaxib - dxibyic - dxibyid;
|
676 |
dxibzib = -dxiazib - dzibxic - dzibxid;
|
677 |
dxibzic = -dziaxib - dxibzib - dxibzid;
|
678 |
dyibyib = -dyiayib - dyibyic - dyibyid;
|
679 |
dyibzic = -dziayib - dyibzib - dyibzid;
|
680 |
dzibzib = -dziazib - dzibzic - dzibzid;
|
681 |
dzibyic = -dyiazib - dyibzib - dzibyid;
|
682 |
dxicxic = -dxiaxic - dxibxic - dxicxid;
|
683 |
dxicyic = -dyiaxic - dyibxic - dxicyid;
|
684 |
dxiczic = -dziaxic - dzibxic - dxiczid;
|
685 |
dyicyic = -dyiayic - dyibyic - dyicyid;
|
686 |
dyiczic = -dziayic - dzibyic - dyiczid;
|
687 |
dziczic = -dziazic - dzibzic - dziczid;
|
688 |
|
689 |
if (iatom == ia)
|
690 |
{
|
691 |
hess.hessx[ia][0] += dedphi*dxiaxia + d2edphi2*dphidxia*dphidxia;
|
692 |
hess.hessy[ia][0] += dedphi*dxiayia + d2edphi2*dphidxia*dphidyia;
|
693 |
hess.hessz[ia][0] += dedphi*dxiazia + d2edphi2*dphidxia*dphidzia;
|
694 |
hess.hessx[ia][1] += dedphi*dxiayia + d2edphi2*dphidxia*dphidyia;
|
695 |
hess.hessy[ia][1] += dedphi*dyiayia + d2edphi2*dphidyia*dphidyia;
|
696 |
hess.hessz[ia][1] += dedphi*dyiazia + d2edphi2*dphidyia*dphidzia;
|
697 |
hess.hessx[ia][2] += dedphi*dxiazia + d2edphi2*dphidxia*dphidzia;
|
698 |
hess.hessy[ia][2] += dedphi*dyiazia + d2edphi2*dphidyia*dphidzia;
|
699 |
hess.hessz[ia][2] += dedphi*dziazia + d2edphi2*dphidzia*dphidzia;
|
700 |
hess.hessx[ib][0] += dedphi*dxiaxib + d2edphi2*dphidxia*dphidxib;
|
701 |
hess.hessy[ib][0] += dedphi*dyiaxib + d2edphi2*dphidyia*dphidxib;
|
702 |
hess.hessz[ib][0] += dedphi*dziaxib + d2edphi2*dphidzia*dphidxib;
|
703 |
hess.hessx[ib][1] += dedphi*dxiayib + d2edphi2*dphidxia*dphidyib;
|
704 |
hess.hessy[ib][1] += dedphi*dyiayib + d2edphi2*dphidyia*dphidyib;
|
705 |
hess.hessz[ib][1] += dedphi*dziayib + d2edphi2*dphidzia*dphidyib;
|
706 |
hess.hessx[ib][2] += dedphi*dxiazib + d2edphi2*dphidxia*dphidzib;
|
707 |
hess.hessy[ib][2] += dedphi*dyiazib + d2edphi2*dphidyia*dphidzib;
|
708 |
hess.hessz[ib][2] += dedphi*dziazib + d2edphi2*dphidzia*dphidzib;
|
709 |
hess.hessx[ic][0] += dedphi*dxiaxic + d2edphi2*dphidxia*dphidxic;
|
710 |
hess.hessy[ic][0] += dedphi*dyiaxic + d2edphi2*dphidyia*dphidxic;
|
711 |
hess.hessz[ic][0] += dedphi*dziaxic + d2edphi2*dphidzia*dphidxic;
|
712 |
hess.hessx[ic][1] += dedphi*dxiayic + d2edphi2*dphidxia*dphidyic;
|
713 |
hess.hessy[ic][1] += dedphi*dyiayic + d2edphi2*dphidyia*dphidyic;
|
714 |
hess.hessz[ic][1] += dedphi*dziayic + d2edphi2*dphidzia*dphidyic;
|
715 |
hess.hessx[ic][2] += dedphi*dxiazic + d2edphi2*dphidxia*dphidzic;
|
716 |
hess.hessy[ic][2] += dedphi*dyiazic + d2edphi2*dphidyia*dphidzic;
|
717 |
hess.hessz[ic][2] += dedphi*dziazic + d2edphi2*dphidzia*dphidzic;
|
718 |
hess.hessx[id][0] += dedphi*dxiaxid + d2edphi2*dphidxia*dphidxid;
|
719 |
hess.hessy[id][0] += dedphi*dyiaxid + d2edphi2*dphidyia*dphidxid;
|
720 |
hess.hessz[id][0] += dedphi*dziaxid + d2edphi2*dphidzia*dphidxid;
|
721 |
hess.hessx[id][1] += dedphi*dxiayid + d2edphi2*dphidxia*dphidyid;
|
722 |
hess.hessy[id][1] += dedphi*dyiayid + d2edphi2*dphidyia*dphidyid;
|
723 |
hess.hessz[id][1] += dedphi*dziayid + d2edphi2*dphidzia*dphidyid;
|
724 |
hess.hessx[id][2] += dedphi*dxiazid + d2edphi2*dphidxia*dphidzid;
|
725 |
hess.hessy[id][2] += dedphi*dyiazid + d2edphi2*dphidyia*dphidzid;
|
726 |
hess.hessz[id][2] += dedphi*dziazid + d2edphi2*dphidzia*dphidzid;
|
727 |
}else if (iatom == ib)
|
728 |
{
|
729 |
hess.hessx[ib][0] += dedphi*dxibxib + d2edphi2*dphidxib*dphidxib;
|
730 |
hess.hessy[ib][0] += dedphi*dxibyib + d2edphi2*dphidxib*dphidyib;
|
731 |
hess.hessz[ib][0] += dedphi*dxibzib + d2edphi2*dphidxib*dphidzib;
|
732 |
hess.hessx[ib][1] += dedphi*dxibyib + d2edphi2*dphidxib*dphidyib;
|
733 |
hess.hessy[ib][1] += dedphi*dyibyib + d2edphi2*dphidyib*dphidyib;
|
734 |
hess.hessz[ib][1] += dedphi*dyibzib + d2edphi2*dphidyib*dphidzib;
|
735 |
hess.hessx[ib][2] += dedphi*dxibzib + d2edphi2*dphidxib*dphidzib;
|
736 |
hess.hessy[ib][2] += dedphi*dyibzib + d2edphi2*dphidyib*dphidzib;
|
737 |
hess.hessz[ib][2] += dedphi*dzibzib + d2edphi2*dphidzib*dphidzib;
|
738 |
hess.hessx[ia][0] += dedphi*dxiaxib + d2edphi2*dphidxib*dphidxia;
|
739 |
hess.hessy[ia][0] += dedphi*dxiayib + d2edphi2*dphidyib*dphidxia;
|
740 |
hess.hessz[ia][0] += dedphi*dxiazib + d2edphi2*dphidzib*dphidxia;
|
741 |
hess.hessx[ia][1] += dedphi*dyiaxib + d2edphi2*dphidxib*dphidyia;
|
742 |
hess.hessy[ia][1] += dedphi*dyiayib + d2edphi2*dphidyib*dphidyia;
|
743 |
hess.hessz[ia][1] += dedphi*dyiazib + d2edphi2*dphidzib*dphidyia;
|
744 |
hess.hessx[ia][2] += dedphi*dziaxib + d2edphi2*dphidxib*dphidzia;
|
745 |
hess.hessy[ia][2] += dedphi*dziayib + d2edphi2*dphidyib*dphidzia;
|
746 |
hess.hessz[ia][2] += dedphi*dziazib + d2edphi2*dphidzib*dphidzia;
|
747 |
hess.hessx[ic][0] += dedphi*dxibxic + d2edphi2*dphidxib*dphidxic;
|
748 |
hess.hessy[ic][0] += dedphi*dyibxic + d2edphi2*dphidyib*dphidxic;
|
749 |
hess.hessz[ic][0] += dedphi*dzibxic + d2edphi2*dphidzib*dphidxic;
|
750 |
hess.hessx[ic][1] += dedphi*dxibyic + d2edphi2*dphidxib*dphidyic;
|
751 |
hess.hessy[ic][1] += dedphi*dyibyic + d2edphi2*dphidyib*dphidyic;
|
752 |
hess.hessz[ic][1] += dedphi*dzibyic + d2edphi2*dphidzib*dphidyic;
|
753 |
hess.hessx[ic][2] += dedphi*dxibzic + d2edphi2*dphidxib*dphidzic;
|
754 |
hess.hessy[ic][2] += dedphi*dyibzic + d2edphi2*dphidyib*dphidzic;
|
755 |
hess.hessz[ic][2] += dedphi*dzibzic + d2edphi2*dphidzib*dphidzic;
|
756 |
hess.hessx[id][0] += dedphi*dxibxid + d2edphi2*dphidxib*dphidxid;
|
757 |
hess.hessy[id][0] += dedphi*dyibxid + d2edphi2*dphidyib*dphidxid;
|
758 |
hess.hessz[id][0] += dedphi*dzibxid + d2edphi2*dphidzib*dphidxid;
|
759 |
hess.hessx[id][1] += dedphi*dxibyid + d2edphi2*dphidxib*dphidyid;
|
760 |
hess.hessy[id][1] += dedphi*dyibyid + d2edphi2*dphidyib*dphidyid;
|
761 |
hess.hessz[id][1] += dedphi*dzibyid + d2edphi2*dphidzib*dphidyid;
|
762 |
hess.hessx[id][2] += dedphi*dxibzid + d2edphi2*dphidxib*dphidzid;
|
763 |
hess.hessy[id][2] += dedphi*dyibzid + d2edphi2*dphidyib*dphidzid;
|
764 |
hess.hessz[id][2] += dedphi*dzibzid + d2edphi2*dphidzib*dphidzid;
|
765 |
}else if (iatom == ic)
|
766 |
{
|
767 |
hess.hessx[ic][0] += dedphi*dxicxic + d2edphi2*dphidxic*dphidxic;
|
768 |
hess.hessy[ic][0] += dedphi*dxicyic + d2edphi2*dphidxic*dphidyic;
|
769 |
hess.hessz[ic][0] += dedphi*dxiczic + d2edphi2*dphidxic*dphidzic;
|
770 |
hess.hessx[ic][1] += dedphi*dxicyic + d2edphi2*dphidxic*dphidyic;
|
771 |
hess.hessy[ic][1] += dedphi*dyicyic + d2edphi2*dphidyic*dphidyic;
|
772 |
hess.hessz[ic][1] += dedphi*dyiczic + d2edphi2*dphidyic*dphidzic;
|
773 |
hess.hessx[ic][2] += dedphi*dxiczic + d2edphi2*dphidxic*dphidzic;
|
774 |
hess.hessy[ic][2] += dedphi*dyiczic + d2edphi2*dphidyic*dphidzic;
|
775 |
hess.hessz[ic][2] += dedphi*dziczic + d2edphi2*dphidzic*dphidzic;
|
776 |
hess.hessx[ia][0] += dedphi*dxiaxic + d2edphi2*dphidxic*dphidxia;
|
777 |
hess.hessy[ia][0] += dedphi*dxiayic + d2edphi2*dphidyic*dphidxia;
|
778 |
hess.hessz[ia][0] += dedphi*dxiazic + d2edphi2*dphidzic*dphidxia;
|
779 |
hess.hessx[ia][1] += dedphi*dyiaxic + d2edphi2*dphidxic*dphidyia;
|
780 |
hess.hessy[ia][1] += dedphi*dyiayic + d2edphi2*dphidyic*dphidyia;
|
781 |
hess.hessz[ia][1] += dedphi*dyiazic + d2edphi2*dphidzic*dphidyia;
|
782 |
hess.hessx[ia][2] += dedphi*dziaxic + d2edphi2*dphidxic*dphidzia;
|
783 |
hess.hessy[ia][2] += dedphi*dziayic + d2edphi2*dphidyic*dphidzia;
|
784 |
hess.hessz[ia][2] += dedphi*dziazic + d2edphi2*dphidzic*dphidzia;
|
785 |
hess.hessx[ib][0] += dedphi*dxibxic + d2edphi2*dphidxic*dphidxib;
|
786 |
hess.hessy[ib][0] += dedphi*dxibyic + d2edphi2*dphidyic*dphidxib;
|
787 |
hess.hessz[ib][0] += dedphi*dxibzic + d2edphi2*dphidzic*dphidxib;
|
788 |
hess.hessx[ib][1] += dedphi*dyibxic + d2edphi2*dphidxic*dphidyib;
|
789 |
hess.hessy[ib][1] += dedphi*dyibyic + d2edphi2*dphidyic*dphidyib;
|
790 |
hess.hessz[ib][1] += dedphi*dyibzic + d2edphi2*dphidzic*dphidyib;
|
791 |
hess.hessx[ib][2] += dedphi*dzibxic + d2edphi2*dphidxic*dphidzib;
|
792 |
hess.hessy[ib][2] += dedphi*dzibyic + d2edphi2*dphidyic*dphidzib;
|
793 |
hess.hessz[ib][2] += dedphi*dzibzic + d2edphi2*dphidzic*dphidzib;
|
794 |
hess.hessx[id][0] += dedphi*dxicxid + d2edphi2*dphidxic*dphidxid;
|
795 |
hess.hessy[id][0] += dedphi*dyicxid + d2edphi2*dphidyic*dphidxid;
|
796 |
hess.hessz[id][0] += dedphi*dzicxid + d2edphi2*dphidzic*dphidxid;
|
797 |
hess.hessx[id][1] += dedphi*dxicyid + d2edphi2*dphidxic*dphidyid;
|
798 |
hess.hessy[id][1] += dedphi*dyicyid + d2edphi2*dphidyic*dphidyid;
|
799 |
hess.hessz[id][1] += dedphi*dzicyid + d2edphi2*dphidzic*dphidyid;
|
800 |
hess.hessx[id][2] += dedphi*dxiczid + d2edphi2*dphidxic*dphidzid;
|
801 |
hess.hessy[id][2] += dedphi*dyiczid + d2edphi2*dphidyic*dphidzid;
|
802 |
hess.hessz[id][2] += dedphi*dziczid + d2edphi2*dphidzic*dphidzid;
|
803 |
}else if (iatom == id)
|
804 |
{
|
805 |
hess.hessx[id][0] += dedphi*dxidxid + d2edphi2*dphidxid*dphidxid;
|
806 |
hess.hessy[id][0] += dedphi*dxidyid + d2edphi2*dphidxid*dphidyid;
|
807 |
hess.hessz[id][0] += dedphi*dxidzid + d2edphi2*dphidxid*dphidzid;
|
808 |
hess.hessx[id][1] += dedphi*dxidyid + d2edphi2*dphidxid*dphidyid;
|
809 |
hess.hessy[id][1] += dedphi*dyidyid + d2edphi2*dphidyid*dphidyid;
|
810 |
hess.hessz[id][1] += dedphi*dyidzid + d2edphi2*dphidyid*dphidzid;
|
811 |
hess.hessx[id][2] += dedphi*dxidzid + d2edphi2*dphidxid*dphidzid;
|
812 |
hess.hessy[id][2] += dedphi*dyidzid + d2edphi2*dphidyid*dphidzid;
|
813 |
hess.hessz[id][2] += dedphi*dzidzid + d2edphi2*dphidzid*dphidzid;
|
814 |
hess.hessx[ia][0] += dedphi*dxiaxid + d2edphi2*dphidxid*dphidxia;
|
815 |
hess.hessy[ia][0] += dedphi*dxiayid + d2edphi2*dphidyid*dphidxia;
|
816 |
hess.hessz[ia][0] += dedphi*dxiazid + d2edphi2*dphidzid*dphidxia;
|
817 |
hess.hessx[ia][1] += dedphi*dyiaxid + d2edphi2*dphidxid*dphidyia;
|
818 |
hess.hessy[ia][1] += dedphi*dyiayid + d2edphi2*dphidyid*dphidyia;
|
819 |
hess.hessz[ia][1] += dedphi*dyiazid + d2edphi2*dphidzid*dphidyia;
|
820 |
hess.hessx[ia][2] += dedphi*dziaxid + d2edphi2*dphidxid*dphidzia;
|
821 |
hess.hessy[ia][2] += dedphi*dziayid + d2edphi2*dphidyid*dphidzia;
|
822 |
hess.hessz[ia][2] += dedphi*dziazid + d2edphi2*dphidzid*dphidzia;
|
823 |
hess.hessx[ib][0] += dedphi*dxibxid + d2edphi2*dphidxid*dphidxib;
|
824 |
hess.hessy[ib][0] += dedphi*dxibyid + d2edphi2*dphidyid*dphidxib;
|
825 |
hess.hessz[ib][0] += dedphi*dxibzid + d2edphi2*dphidzid*dphidxib;
|
826 |
hess.hessx[ib][1] += dedphi*dyibxid + d2edphi2*dphidxid*dphidyib;
|
827 |
hess.hessy[ib][1] += dedphi*dyibyid + d2edphi2*dphidyid*dphidyib;
|
828 |
hess.hessz[ib][1] += dedphi*dyibzid + d2edphi2*dphidzid*dphidyib;
|
829 |
hess.hessx[ib][2] += dedphi*dzibxid + d2edphi2*dphidxid*dphidzib;
|
830 |
hess.hessy[ib][2] += dedphi*dzibyid + d2edphi2*dphidyid*dphidzib;
|
831 |
hess.hessz[ib][2] += dedphi*dzibzid + d2edphi2*dphidzid*dphidzib;
|
832 |
hess.hessx[ic][0] += dedphi*dxicxid + d2edphi2*dphidxid*dphidxic;
|
833 |
hess.hessy[ic][0] += dedphi*dxicyid + d2edphi2*dphidyid*dphidxic;
|
834 |
hess.hessz[ic][0] += dedphi*dxiczid + d2edphi2*dphidzid*dphidxic;
|
835 |
hess.hessx[ic][1] += dedphi*dyicxid + d2edphi2*dphidxid*dphidyic;
|
836 |
hess.hessy[ic][1] += dedphi*dyicyid + d2edphi2*dphidyid*dphidyic;
|
837 |
hess.hessz[ic][1] += dedphi*dyiczid + d2edphi2*dphidzid*dphidyic;
|
838 |
hess.hessx[ic][2] += dedphi*dzicxid + d2edphi2*dphidxid*dphidzic;
|
839 |
hess.hessy[ic][2] += dedphi*dzicyid + d2edphi2*dphidyid*dphidzic;
|
840 |
hess.hessz[ic][2] += dedphi*dziczid + d2edphi2*dphidzid*dphidzic;
|
841 |
}
|
842 |
}
|
843 |
}
|
844 |
}
|
845 |
}
|