1 |
#define EXTERN extern
|
2 |
|
3 |
#include "pcwin.h"
|
4 |
#include "pcmod.h"
|
5 |
#include "utility.h"
|
6 |
|
7 |
// mode
|
8 |
#define NONE 0
|
9 |
#define Failure 6
|
10 |
|
11 |
double energy(void);
|
12 |
void tncg(int,int,int *,double *,double *, double, double (*)(), void (*)());
|
13 |
void mqn(int , int, int *,double *,double *, double *, double (*)() );
|
14 |
void search(int,double *,double *,double *,double *,double,double *,int *,double (*)(),int *);
|
15 |
void newton2(int, double *,double *,int *, int *, int *, double *);
|
16 |
void hessian(int, double *, int *, int *, int *,double *);
|
17 |
void gradient(void);
|
18 |
double minimiz1(double *, double *);
|
19 |
void minimize(int natom,int *use,double *x,double *y,double *z);
|
20 |
double get_total_energy(void);
|
21 |
double get_total_deriv_x(int i);
|
22 |
double get_total_deriv_y(int i);
|
23 |
double get_total_deriv_z(int i);
|
24 |
|
25 |
struct t_minvar{
|
26 |
double cappa, stpmin, stpmax, angmax;
|
27 |
int intmax;
|
28 |
} minvar;
|
29 |
|
30 |
EXTERN struct t_minim_control {
|
31 |
int type, method, field, added_const;
|
32 |
char added_path[256],added_name[256];
|
33 |
} minim_control;
|
34 |
|
35 |
EXTERN struct t_minim_values {
|
36 |
int iprint, ndc, nconst;
|
37 |
float dielc;
|
38 |
} minim_values;
|
39 |
|
40 |
double scale2;
|
41 |
|
42 |
// =====================================
|
43 |
void minimize(int natom,int *use,double *x,double *y,double *z)
|
44 |
{
|
45 |
int i,nvar, iter, icount;
|
46 |
double minimum,grdmin;
|
47 |
double minimiz1();
|
48 |
double etot;
|
49 |
double *xx; // xx[maxvar];
|
50 |
int method, maxvar;
|
51 |
|
52 |
maxvar = 3*natom;
|
53 |
xx = dvector(0,maxvar);
|
54 |
|
55 |
grdmin = 1.0;
|
56 |
scale2 = 12.0; // bfgs 12.0
|
57 |
|
58 |
if (minim_control.method == 1 || minim_control.method == 3 || minim_control.method == 4)
|
59 |
{
|
60 |
nvar = 0;
|
61 |
icount = 0;
|
62 |
for (i=1; i <= natom; i++)
|
63 |
{
|
64 |
if (use[i])
|
65 |
{
|
66 |
xx[nvar] = x[i]*scale2;
|
67 |
nvar++;
|
68 |
xx[nvar] = y[i]*scale2;
|
69 |
nvar++;
|
70 |
xx[nvar] = z[i]*scale2;
|
71 |
nvar++;
|
72 |
}
|
73 |
}
|
74 |
|
75 |
method = 1;
|
76 |
grdmin = 0.5;
|
77 |
if (minim_control.method == 1)
|
78 |
grdmin = 0.1;
|
79 |
else
|
80 |
grdmin = 0.5;
|
81 |
|
82 |
mqn(nvar,method, &iter,xx, &minimum, &grdmin, minimiz1 );
|
83 |
}
|
84 |
|
85 |
if (grdmin > 1.00)
|
86 |
{
|
87 |
free_dvector(xx, 0, maxvar);
|
88 |
return;
|
89 |
}
|
90 |
if (minim_control.method == 2 || minim_control.method == 3 || minim_control.method == 4)
|
91 |
{
|
92 |
scale2 = 1.0; // tcng
|
93 |
grdmin = 0.0001;
|
94 |
nvar = 0;
|
95 |
icount = 0;
|
96 |
for (i=1; i <= natom; i++)
|
97 |
{
|
98 |
if (use[i])
|
99 |
{
|
100 |
xx[nvar] = x[i]*scale2;
|
101 |
nvar++;
|
102 |
xx[nvar] = y[i]*scale2;
|
103 |
nvar++;
|
104 |
xx[nvar] = z[i]*scale2;
|
105 |
nvar++;
|
106 |
}
|
107 |
}
|
108 |
tncg(nvar,method,&iter, xx, &minimum, grdmin,minimiz1, newton2);
|
109 |
|
110 |
|
111 |
nvar = 0;
|
112 |
for (i=1; i <= natom; i++)
|
113 |
{
|
114 |
if (use[i])
|
115 |
{
|
116 |
x[i] = xx[nvar]/scale2;
|
117 |
nvar++;
|
118 |
y[i] = xx[nvar]/scale2;
|
119 |
nvar++;
|
120 |
z[i] = xx[nvar]/scale2;
|
121 |
nvar++;
|
122 |
}
|
123 |
}
|
124 |
}
|
125 |
|
126 |
if (minimum < -1000.0)
|
127 |
{
|
128 |
|
129 |
etot = energy();
|
130 |
free_dvector(xx, 0, maxvar);
|
131 |
return;
|
132 |
}
|
133 |
free_dvector(xx, 0, maxvar);
|
134 |
}
|
135 |
// ======================================
|
136 |
void mqn(int nvar,int method,int *iter, double *x, double *minimum, double *grdmin, double (*fgvalue) ())
|
137 |
{
|
138 |
int i,ncalls,nerror;
|
139 |
int niter,period,nstart;
|
140 |
double fast,slow,epsln,d1temp,d2temp;
|
141 |
double f,f_old,f_new,f_move;
|
142 |
double rms,beta,x_move,g_norm,g_rms;
|
143 |
double gg,gg_old;
|
144 |
double sg,dg,sd,dd,angle;
|
145 |
double *g, *p; // g[maxvar];
|
146 |
double *x_old, *g_old; // x_old[maxvar],g_old[maxvar];
|
147 |
double *s, *d; // p[maxvar],s[maxvar],d[maxvar];
|
148 |
double fctmin;
|
149 |
int restart, terminate;
|
150 |
int maxiter, nextiter,status, maxvar;
|
151 |
|
152 |
maxvar = 3*natom;
|
153 |
x_old = dvector(0,maxvar);
|
154 |
g_old = dvector(0,maxvar);
|
155 |
g = dvector(0,maxvar);
|
156 |
p = dvector(0,maxvar);
|
157 |
s = dvector(0,maxvar);
|
158 |
d = dvector(0,maxvar);
|
159 |
|
160 |
ncalls = 0;
|
161 |
rms = sqrt((float)nvar)/ sqrt(3.0);
|
162 |
restart = TRUE;
|
163 |
terminate = FALSE;
|
164 |
status = 0;
|
165 |
nerror = 0;
|
166 |
|
167 |
fctmin = -10000.0;
|
168 |
maxiter = 1000;
|
169 |
nextiter = 1;
|
170 |
fast = 0.5;
|
171 |
slow = 0.0;
|
172 |
epsln = 1.0e-16;
|
173 |
if (nvar > 200)
|
174 |
period = nvar;
|
175 |
else
|
176 |
period = 200;
|
177 |
minvar.cappa = .1;
|
178 |
minvar.stpmin = 1.0e-20;
|
179 |
minvar.stpmax = 5.0;
|
180 |
minvar.angmax = 100.0;
|
181 |
minvar.intmax = 5;
|
182 |
|
183 |
niter = nextiter -1;
|
184 |
maxiter = niter + maxiter;
|
185 |
ncalls = ncalls + 1;
|
186 |
f = fgvalue(x, g); // get function and first deriv at original point
|
187 |
g_norm = 0.0;
|
188 |
for (i=0; i < nvar; i++)
|
189 |
{
|
190 |
x_old[i] = x[i];
|
191 |
g_old[i] = g[i];
|
192 |
g_norm += g[i]*g[i];
|
193 |
}
|
194 |
g_norm = sqrt(g_norm);
|
195 |
f_move = 0.5*minvar.stpmax*g_norm;
|
196 |
g_rms = g_norm*scale2/rms;
|
197 |
|
198 |
|
199 |
if (niter > maxiter)
|
200 |
terminate = TRUE;
|
201 |
if (f < fctmin)
|
202 |
terminate = TRUE;
|
203 |
if (g_rms < *grdmin)
|
204 |
terminate = TRUE;
|
205 |
|
206 |
while ( ! terminate)
|
207 |
{
|
208 |
niter++;
|
209 |
status = 0;
|
210 |
|
211 |
|
212 |
if (restart || method == 0)
|
213 |
{
|
214 |
for (i=0; i < nvar; i++)
|
215 |
p[i] = -g[i];
|
216 |
nstart = niter;
|
217 |
restart = FALSE;
|
218 |
} else if (method == 1) // BFGS method
|
219 |
{
|
220 |
sg = 0.0;
|
221 |
dg = 0.0;
|
222 |
dd = 0.0;
|
223 |
sd = 0.0;
|
224 |
for (i=0; i < nvar; i++)
|
225 |
{
|
226 |
sg += s[i]*g[i];
|
227 |
dg += d[i]*g[i];
|
228 |
dd += d[i]*d[i];
|
229 |
sd += s[i]*d[i];
|
230 |
}
|
231 |
for (i=0; i < nvar; i++)
|
232 |
{
|
233 |
d1temp = (d[i]*sg + s[i]*dg)/sd;
|
234 |
d2temp = (1.0+dd/sd)*(s[i]*sg/sd);
|
235 |
p[i] = -g[i] + d1temp - d2temp;
|
236 |
}
|
237 |
} else if (method == 2) // Fletcher Reeves
|
238 |
{
|
239 |
gg = 0.0;
|
240 |
gg_old = 0.0;
|
241 |
for (i=0; i < nvar; i++)
|
242 |
{
|
243 |
gg += g[i]*g[i];
|
244 |
gg_old += g_old[i]*g_old[i];
|
245 |
}
|
246 |
beta = gg/gg_old;
|
247 |
for (i=0; i < nvar; i++)
|
248 |
p[i] = -g[i] + beta*p[i];
|
249 |
} else if (method == 3) // Polak Ribere
|
250 |
{
|
251 |
dg = 0.0;
|
252 |
gg_old = 0.0;
|
253 |
for (i=0; i < nvar; i++)
|
254 |
{
|
255 |
dg += d[i]*g[i];
|
256 |
gg_old += g_old[i]*g_old[i];
|
257 |
}
|
258 |
beta = dg/gg_old;
|
259 |
for (i=0; i < nvar; i++)
|
260 |
p[i] = -g[i] + beta*p[i];
|
261 |
}
|
262 |
|
263 |
// do a line search
|
264 |
f_old = f;
|
265 |
search(nvar,&f,g,x,p,f_move,&angle,&ncalls,fgvalue,&status);
|
266 |
if (status == Failure)
|
267 |
{
|
268 |
g_rms = 1000.0;
|
269 |
terminate = TRUE;
|
270 |
goto L_DONE;
|
271 |
}
|
272 |
f_new = f;
|
273 |
|
274 |
f_move = f_old - f_new;
|
275 |
x_move = 0.0;
|
276 |
g_norm = 0.0;
|
277 |
for (i=0; i < nvar; i++)
|
278 |
{
|
279 |
s[i] = x[i] - x_old[i];
|
280 |
d[i] = g[i] - g_old[i];
|
281 |
x_move += s[i]*s[i];
|
282 |
g_norm += g[i]*g[i];
|
283 |
x_old[i] = x[i];
|
284 |
g_old[i] = g[i];
|
285 |
}
|
286 |
x_move = sqrt(x_move) / (scale2 * rms);
|
287 |
g_norm = sqrt(g_norm);
|
288 |
g_rms = g_norm * scale2/rms;
|
289 |
|
290 |
// function increase
|
291 |
if (f_move <= 0.0)
|
292 |
{
|
293 |
// status = Increase;
|
294 |
nerror = nerror + 1;
|
295 |
if (nerror == 3)
|
296 |
terminate = TRUE;
|
297 |
else
|
298 |
restart = TRUE;
|
299 |
|
300 |
for(i=0; i < nvar; i++)
|
301 |
{
|
302 |
x[i] = x_old[i];
|
303 |
g[i] = g_old[i];
|
304 |
}
|
305 |
}
|
306 |
if (x_move < epsln)
|
307 |
{
|
308 |
nerror++;
|
309 |
if (nerror > 3)
|
310 |
terminate = TRUE;
|
311 |
else
|
312 |
restart = TRUE;
|
313 |
}
|
314 |
// normal termination
|
315 |
if (f < fctmin)
|
316 |
{
|
317 |
// status = SmallFct;
|
318 |
terminate = TRUE;
|
319 |
}
|
320 |
if (g_rms < *grdmin)
|
321 |
{
|
322 |
// status = SmallGrad;
|
323 |
nerror++;
|
324 |
if (nerror > 1)
|
325 |
terminate = TRUE;
|
326 |
else
|
327 |
restart = TRUE;
|
328 |
}
|
329 |
|
330 |
}
|
331 |
L_DONE:
|
332 |
*minimum = f;
|
333 |
*grdmin = g_rms;
|
334 |
*iter = niter;
|
335 |
free_dvector(x_old ,0,maxvar);
|
336 |
free_dvector(g_old,0,maxvar);
|
337 |
free_dvector( g ,0,maxvar);
|
338 |
free_dvector( p ,0,maxvar);
|
339 |
free_dvector( s ,0,maxvar);
|
340 |
free_dvector( d ,0,maxvar);
|
341 |
}
|
342 |
// ==============================
|
343 |
double minimiz1(double *xx, double *g)
|
344 |
{
|
345 |
int i,nvar;
|
346 |
double e_min;
|
347 |
|
348 |
nvar = 0;
|
349 |
for (i = 1; i <= natom; i++)
|
350 |
{
|
351 |
if (atom.use[i])
|
352 |
{
|
353 |
atom.x[i] = xx[nvar]/scale2;
|
354 |
nvar++;
|
355 |
atom.y[i] = xx[nvar]/scale2;
|
356 |
nvar++;
|
357 |
atom.z[i] = xx[nvar]/scale2;
|
358 |
nvar++;
|
359 |
}
|
360 |
}
|
361 |
|
362 |
gradient();
|
363 |
e_min = get_total_energy();
|
364 |
|
365 |
nvar = 0;
|
366 |
for (i=1; i <= natom; i++)
|
367 |
{
|
368 |
if (atom.use[i])
|
369 |
{
|
370 |
xx[nvar] = atom.x[i]*scale2;
|
371 |
g[nvar] = get_total_deriv_x(i)/scale2;
|
372 |
nvar++;
|
373 |
xx[nvar] = atom.y[i]*scale2;
|
374 |
g[nvar] = get_total_deriv_y(i)/scale2;
|
375 |
nvar++;
|
376 |
xx[nvar] = atom.z[i]*scale2;
|
377 |
g[nvar] = get_total_deriv_z(i)/scale2;
|
378 |
nvar++;
|
379 |
}
|
380 |
}
|
381 |
return(e_min);
|
382 |
}
|
383 |
// =====================
|
384 |
void newton2(int mode, double *xx,double *h,int *hinit,
|
385 |
int *hstop, int *hindex, double *hdiag)
|
386 |
{
|
387 |
int i,j,k,nvar, maxvar, nuse, maxhess;
|
388 |
int *hvar, *huse; // hvar[maxvar],huse[maxvar];
|
389 |
|
390 |
if (mode == NONE)
|
391 |
return;
|
392 |
|
393 |
maxvar = 3*natom;
|
394 |
hvar = ivector(0,maxvar);
|
395 |
huse = ivector(0,maxvar);
|
396 |
|
397 |
nvar = 0;
|
398 |
nuse = TRUE;
|
399 |
for (i=1; i <= natom; i++)
|
400 |
{
|
401 |
if (atom.use[i])
|
402 |
{
|
403 |
atom.x[i] = xx[nvar];
|
404 |
nvar++;
|
405 |
atom.y[i] = xx[nvar];
|
406 |
nvar++;
|
407 |
atom.z[i] = xx[nvar];
|
408 |
nvar++;
|
409 |
} else
|
410 |
nuse = FALSE;
|
411 |
}
|
412 |
|
413 |
if (natom < 300)
|
414 |
maxhess = (3*natom*(3*natom-1))/2;
|
415 |
else if (natom < 800)
|
416 |
maxhess = (3*natom*(3*natom-1))/3;
|
417 |
else
|
418 |
maxhess = (3*natom*(3*natom-1))/20;
|
419 |
|
420 |
hessian(maxhess, h,hinit,hstop,hindex,hdiag);
|
421 |
|
422 |
nvar = 0;
|
423 |
if (nuse == FALSE)
|
424 |
{
|
425 |
for (i=1; i <= natom; i++)
|
426 |
{
|
427 |
k = 3*(i-1);
|
428 |
if (atom.use[i])
|
429 |
{
|
430 |
for (j=0; j < 3; j++)
|
431 |
{
|
432 |
hvar[nvar] = j+k;
|
433 |
huse[j+k] = nvar;
|
434 |
nvar++;
|
435 |
}
|
436 |
} else
|
437 |
{
|
438 |
for (j=0; j < 3; j++)
|
439 |
huse[j+k] = 0;
|
440 |
}
|
441 |
}
|
442 |
for (i=0; i < nvar; i++)
|
443 |
{
|
444 |
k = hvar[i];
|
445 |
hinit[i] = hinit[k];
|
446 |
hstop[i] = hstop[k];
|
447 |
hdiag[i] = hdiag[k];
|
448 |
for (j=hinit[i]; j < hstop[i]; j++)
|
449 |
hindex[j] = huse[hindex[j]];
|
450 |
}
|
451 |
}
|
452 |
//
|
453 |
nvar = 0;
|
454 |
for (i=1; i <= natom; i++)
|
455 |
{
|
456 |
if (atom.use[i])
|
457 |
{
|
458 |
xx[nvar] = atom.x[i];
|
459 |
nvar++;
|
460 |
xx[nvar] = atom.y[i];
|
461 |
nvar++;
|
462 |
xx[nvar] = atom.z[i];
|
463 |
nvar++;
|
464 |
}
|
465 |
}
|
466 |
free_ivector(hvar ,0,maxvar);
|
467 |
free_ivector(huse ,0,maxvar);
|
468 |
|
469 |
}
|
470 |
|
471 |
|
472 |
|