Clustering and Alignment of ChIP profiles

User Manual

Revised June 20, 2011
by Fiona Nielsen
What is it?

CATCH is a cool new tool for clustering of ChIP profile patterns

Why would I use it?

To unravel the mysteries of epigenetics, you first have to identify the epigenetic patterns!
How do I use it?

1. Collect or generate **ChIP profiling data**

 You probably already did this...

2. Identify your **genomic positions of interest**

 Which sites do you want to analyse?

3. **CATCH** your ChIP profiles!

 And let CATCH do alignment and clustering for you
The CATCH program

- **Unsupervised clustering** of ChIP profiles

Input
- A dataset of profiles, i.e. specific genome regions from your ChIP profiling experiment
 - ChIP signal (wiggle format)
 - Selected positions (bed format)

Output
- A clustering+alignment of all profiles from the dataset
The CATCH workflow
(small datasets)

1) Import profiles
2) View profiles
3) Start CATCH algorithm
4) Browse patterns in clustering tree
5) Export interesting profiles for further analysis

The import procedure has more steps when working with large datasets (1000+ profile regions) ... →
The CATCH workflow

1. **ChIP-seq**
 - Collect/generate ChIP profiling data
 - Select ChIP profiling signals to analyse
 - Convert signals and positions to ChIP profile windows
 - CATCH the ChIP profiles

2. **ChIP-on-chip**
 - Peaking calling or Genome annotation
 - Define positions of interest
The CATCH workflow

(large datasets)

1) Generate profile wiggle files (pwig)
 → Load and view dataset in CATCHprofiles
2) Make json input file from pwig files
3) Start CATCH algorithm from commandline
 → Generating json output file
4) Load json result in CATCHprofiles
Profile regions

Example workflow 1. make a bed file of your regions of interest

You decide which areas are interesting to you:

- Regions of annotation (TSS, CPG islands etc)
- Peak regions
- Other
Example workflow

1. make a bed file of your regions of interest

e.g. TSS profiles in ChIP-on-chip
2. import your wiggle files and bed file using File → 'Import Profiles'
View profiles

3. Examine your data
Start CATCH

4. Click 'CATCH selected tracks' and wait..
Examine profile clusters 4. Browse results interactively

Mouse-over clusters to view profile below
interactive browsing

• Browse clustering tree:
 – Zoom: + and –
 – Collapse subtree: ctrl + leftclick
 – Highlight: leftclick

• Right-click to:
 – Open subtree
 – Export results
Save & Export

• CATCH clustering result (.catch)
 – To browse later or share results

• Use the export menu or right click to export:
 – Profile patterns (.csv)
 – Positions (.bed)
 – Cluster tree (.newick)
Quick Start Guide

1. Ensure JAVA 1.6 is installed
 (follow link from http://catch.cmbi.ru.nl)

2. Prepare your data
 - ChIP profiling tracks in wiggle format
 - Your chosen peaks/positions in .bed format

3. Start CATCH

4. Import files or load dataset

5. CATCH your ChIP profiles!
Java memory issues

➢ Run CATCH from the commandline:
 - `Java -Xmx1000m -Xss2000k -jar CATCH3v513.jar`

➢ If you get errors of insufficient Java memory:
 ➢ Heapsize: increase `-Xmx` value
 ➢ Stacksize: increase `-Xss` value

➢ If 'Import files' fails on big files:
 ➢ Use script to generate datasets (.pwig)
 ➢ Use script to generate CATCH input file (.json)
Big datasets?

➢ Use scripts to generate input files in JSON format

➢ Execute CATCH from the commandline

 - ./execute.sh catch jobin.json jobout.json

 - Where second argument is the name of the executable

 win: catch

 linux: catch-linux-static-x86

 mac: catch-macOSX

➢ Load json result in CATCHprofiles
More information

- Go to the CATCH homepage: http://catch.cmbi.ru.nl
 - User manual, examples and links

- Updates?
 - Subscribe to: CATCH-updates@bioinformatics.org

- Questions?
 - Send them to: CATCH-users@bioinformatics.org
Load files
File formats

- Import files: wiggle and bed
- Import dataset: pwig
- CATCH cluster: catch
- JSON result: json
Change settings

- Check and save your default settings before starting the CATCH clustering
- Settings are written to the json-formatted input file before executing the CATCH core algorithm
The CATCH source code is maintained in an SVN repository (http://subversion.tigris.org/) hosted by bioinformatics.org.

To browse the repository and the code, you can use the SVN web interface by pointing your browser to:

To download the source code from the CATCH svn, you can use anonymous checkout (after installing SVN on your system):

svn checkout svn://bioinformatics.org/svnroot/catch/branches/CATCH\3/trunk/CATCH\3/
Compile executables

- The catch core algorithm (catch-engine) and the CATCHprofiles user interface are compiled separately.

- To compile the catch core algorithm, download the “catch-engine” branch from svn and compile use the accompanying makefile:

  ```
  catch:~/catch-engine> make
  gcc-4.3 -static  catch.o JSON_parser.o ConvertUTF.o -lm -lgomp -lpthread -o catch-linux-static-x86
  ```

- The CATCHprofiles Java GUI can be compiled using a development tool like Eclipse (http://www.eclipse.org/):
 - Import the “CATCH 3” directory from the “CATCH 3/trunk” branch from CATCH svn
 - Export the main program programControllers.CATCH.java as a “runnable jar file”

- For any further questions concerning CATCH development, please send your question to the CATCH mailinglist: CATCH-dev@bioinformatics.org
Acknowledgements

IMADA, Odense:
- Kasper Markus
 first implementation of CATCH
- Lene Favrholdt

Nijmegen:
- Moniek Riemersma
- GiPCATCH team
- Maarten Kooyman
 The PinkThing

Supervisors:
- Henk Stunnenberg
 Molecular Biology
- Martijn Huynen
 CMBI
Acknowledgements

CATCH users:
Hendrik Marks
Rasa Jurgelenaite

Copenhagen:
Rune Friborg

Funding:
HEROIC – mouse epigenetics
Thank you for using CATCHprofiles

http://catch.cmbi.ru.nl

fnielsen@cmbi.ru.nl