Contemplating on an Algorithm to “Reverse”
a(n) (NCIl ((incomplete) collapse of
Independent insertions)

By Kiyoshi Ezawa
From: Sep 20, 2019,
Till: Sep 22, 2019

© 2019 Kiyoshi Ezawa. Open Access This file is distributed
under the terms of the

Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and reproduction
In any medium,

provided you give appropriate credit to the original author (K.
Ezawa) and the source

(https://www.bioinformatics.org/ftp/pub/anex/Documents/Blu
eprints/
sppl_sppl_algorithm_to_reverse Cll.draftl0 CC4.pdf),

provide a link to the Creative Commons license (above), and
Indicate if changes were made.



(1-i) To Detect a candidate (complete) CII,
let’s examine the characteristic features of c-CII (i).

(a) True MSA (b) MSA wi/ complete CII
1 NNNNNNNNNN====NN 1 NNNNNNNNNNNN
2 NNNNNN-----——--~NN 2 NNNNNN----NN
3 NNNNNN--—--—- 4NN 3 NNNNNN---5NN
4 NNNNNN----——-—-=NN 4 NNNNNN----NN
5 NNNNNN----——-—--=NN 5 NNNNNN----NN
6 NNNNNN--—-NNNINN 6 NNNNNNNNNNNN

(1-i) To Detect a candidate (complete) CII,

let’s examine the characteristic features of c-CII (i).
When two (or more) independent “insertion”s (yellow & cyan) in the
true MSA (a) collapse completely,
the resulting MSA (b) should typically contain two or more
“deletion”’s (red, green & purple) that are horizontally overlapping
but NOT interfering with each other.

In each panel, the gap-blocks are separated from each other with the
red nodes and edges.

(1) A notable point is that the *“neighboring’ non-interfering gap-
blocks in panel b are intervened by (either) TWO tri-valent nodes
plus an edge (or one higher-valent node).

(2) Another notable point is that there are at least two overlapping
gap-blocks (in panel b), each of which has NO “sibling” gap-
block that horizontally overlaps with it (in the region under
consideration).



(1-ii) To Detect a candidate (complete) CII,
let’s examine the characteristic features of c-CII (ii).

(a) True MSA (b) MSA wi/ complete CII
1 NNNNNNNNNN====NN 1 NNNNNNNNNNNN
2 NNNN‘I::::--— —-—=NN 2 NNNN-----=NN
3 NNNNNN------- -I+NN 3 NNNNNN----NN
4 NNNNNN ——————— NN 4 NNNNNN----NN
5 NNNNNN--- -——{ -N 5 NNNNNN=----N
6 NNNNNN-—— N1 iNN 6 NNNNNNNNNNNN

(1-i1) To Detect a candidate (complete) CII,

let’s examine the characteristic features of c-CII (ii).

It should be noted that

the resulting non-interfering horizontally overlapping “deletion”s
(red, green & purple (in panel b)) may overlap each other
INcompletely:

In such a case, the true MSA (panel a) should contain (a) shorter
“deletion”(s) (red & purple in this case).

The notable points apply to this case, as well.



(1-iii) To Detect a candidate (complete) CII,
let’s examine the characteristic features of c-CII (iii).

(a) True MSA (b) MSA w/ complete CII
1 NNNNNNNNNN====NN 1 NNNNNNNNNNNN
2 NNNNNN-----—--~NN 2 NNNNNN----NN
3 NNNN==f--~——- ~NN 3 NNNN-=---=NN
4 NNNNN—-———-——- N 4 NNNNN---——2N
5 NNNNNN-----——- NN 5 NNNNNN----NN
6 NNNNNN-——-NNNINN 6 NNNNNNNNNNNN

(1-i1i) To Detect a candidate (complete) CII,
let’s examine the characteristic features of c-CII (iii).
In some cases,
some of the resulting horizontally overlapping “deletion”s (in this
case, green & (in panel b)) may be “siblings” to each other;

In such a case, too, the true MSA (panel a) should contain some
shorter “deletion”s (green & in this case).

The notable points apply to this case, as well,

PROVIDED THAT the overlapping ‘“sibling’’ gap-blocks are
lumped together to give a “parent” gap-block, which will replace
the “siblings”™ in the set of overlapping “deletion’s.




(2-i) To Detect a candidate (INcomplete) CII,
let’s examine the characteristic features of i-CII (i).

(a) True MSA (b) MSA w/ INcomplete CII
1 NNNNNNNNN=-==5NN 1 NNNNNNNNN=ZNN
2 NNNNNN--------NN 2 NNNNNN’I_::;"—aNN
3 NNNNNN--——-—-- NN 3 NNNNNN--—--NN
4 NNNNNN———‘—————NN 4 NNNNNN:__—_:I——|NN
5 NNNNNN———‘————~NN 5 NNNNNN-----NN
6 NNNNNN--—NNNNINN 6 NNNNNNNNNNNNN

(2-1) To Detect a candidate (INcomplete) CII,

let’s examine the characteristic features of i-CII (i).

When independent “insertion”s (yellow & cyan) in the true MSA (a)
collapse INcompletely,

the resulting MSA (b) should typically contain (a) left-over part(s)
of the collapsed “insertion”(s) (cyan this time), in addition to two
or more “deletion”s (red, green & purple) that are horizontally
overlapping but NOT interfering with each other (as resulting
from a complete CII).

The notable points apply to this case, as well,
IF we focus on the “deletion”s

* The argument extends also to the situations with IN-completely
overlapping “deletion’s, as in (1-11) and (1-111).



(2-ii) To Detect a candidate (INcomplete) CII,
let’s examine the characteristic features of i-CII (ii).

(a) True MSA (b) MSA wi/ INcomplete CII
1 NNNNNNNNN:::::NN NNNNNN—NNNF—NN
2 NNNNNN———————qNN NNNNNN-u-a——NN
3 NNNNNNr-i ----- NN
4 NNNNNN———;————NN
5 NNNNNN——ﬁr———~NN
6 NNNNNN-——NNNITNNN NNNNNN\‘HI \NN

(2-i1) To Detect a candidate (INcomplete) CII,

let’s examine the characteristic features of i-CII (ii).
In (2-1), the left-over part of the collapsed ‘““insertion”s was very
simple, representing only a single (shorter) “insertion”.
In real life, however, we may encounter more complex situations,
as exemplified here.

Here in (2-11), the left-over parts occur at multiple positions and on
BOTH “insertion”s.

EVEN with such a complex MSA, the problem should be handled
lust as in the simple case,

PROVIDED THAT we first focus only on the ‘““deletion’’s;

Just merge the left-over “insertions” to the resulting “insertions”
AFTER removing the spurious “deletion’s

(This can be done because the “deletion’s are vertically included in
BOTH the “insertion’s.)

The notable points apply to this case, as well,

IF we focus on the “deletion”s

* The argument extends also to the situations with IN-completely
overlapping “deletion’s, as in (1-11) and (1-111).



(3) An Algorithm to detect candidates of (c/i)-ClIs (1/2)

1. At each column, identify the set of MSA rows with the *“‘presence” state; if
the set is full, empty, or monophyletic (i.e., delimited by a single branch),
mark it as “F”, “E”, or “Mono”, respectively; otherwise, mark it as *““CII-
cand’’;

2. Cluster neighboring columns with the same “presence” set, to form a cluster
of columns;

3. Merge clusters with the same “presence” set (marked as “Cll-cand”), if the
“presence” set(s) of all mediating columns (or cluster(s)) is/are included in
that of the subject clusters; The maximum region spanned by the clusters thus
merged (as well as the mediating columns (or cluster(s))) will define a *“CII-
candidate region”;

4. For each “ClI-candidate region”, the “presence” set will be divided into
maximum monophyletic sets, as follows (see next slide):




(3) An Algorithm to detect candidates of (c/i)-Clls (2/2)

1. Examine whether the current “presence” set is delimited by a single branch; if
s0, put the branch into the output list, and end the algorithm;

i1. Pick an MSA row from the “presence” set, and identify the “subject” branch
delimiting the row;

ii1. If the branch has an effective parent branch, get a set of rows delimited by the
“parent”’; Otherwise, (A) remove the set of rows delimited by the subject
branch from the current “presence” set, put the subject branch (actually, its
uniquely chosen equivalent) into the output list, and return to (i);

iv. Examine whether the set of rows delimited by the “parent” branch is included
in the current “presence” set; IF SO, make the “parent” be the “subject” branch,
and return to (ii1); Otherwise, perform (A) in (ii1);

v. Thus, each “ClI-candidate” region is defined with the left- and right-end
columns, and the set of maximum monophyletic sets of ‘“‘presence” rows
(and their (uniquely chosen) delimiting branches).



(5) An Algorithm to “reverse” the (c/i)-Cll. (1/2)

o Input: A “CII-candidate” region, defined with the left- and right-end
columns, and a set of maximum monophyletic sets of “presence”
rows; A set of columns in the input MSA, each of whose cell is
occupied by either the site (or residue) number of each sequence or a

gap;
1. Prepare a set of new columns for each maximum monophyletic set;
each set is initialized as empty;

2. From the left-end to the right-end of the region, “(vertically) split”
each column into “new”’ columns, each of which inherits the sites
corresponding to its associated maximum monophyletic set of rows,
and fills the remaining rows with gaps; if the “new” column is null,
discard it; otherwise, append it into the corresponding set of new
columns;



(5) An Algorithm to “reverse” the (c/i)-Cll. (2/2)

3. Create an output MSA (actually the set of its columns) by merging (1)
input columns on the left, (2) the sets of new columns created as in 1 &
2, (3) input columns on the right; (it would be better to remove null
columns, if any);

4. If a resulting set and/or (a) flanking set(s) of columns have the same
(uniquely defined) delimiting branch, make them contiguous by
altering the order among the new component sets; (it would be better to
DEFINE the order according to the branch IDs);

5. Regarding the output MSA, compute the new set of gap-blocks, etc. by
returning to their basic definitions (i.e., by performing the subroutines
intended for the input MSA).

NOTE: In the future, also modify the “purge’’-candidate regions so
that they will reflect the changes caused by “‘reverse”ing the CII.




