2.2. La photoréception

2.2.1. La photoisomérisation

Nous le savons, le message lumineux est à l'origine de la perception des couleurs. Mais comment celui-ci interagit-il avec les éléments chimiques contenus dans les cônes? La première étape de la photoréception est l'interaction entre un photon et une molécule de iodopsine.

Nous avons vu auparavant que la lumière, à travers les propriétés corpusculaires des photons, peut interagir avec la matière. C'est donc une simple interaction photon-matière qui est à l'origine de la vision des couleurs. En effet, à l'obscurité, le rétinal existe sous sa forme 11-cis-rétinal, et est lié à l'opsine qui l'entoure. L'arrivée d'un photon a pour effet de transformer celui-ci en tout-trans-rétinal, par rotation autour de la double liaison 11-12, de la même façon que les autres interactions entre photons et matière: par interaction avec les électrons.

Figure 2-4. Photoisomérisation du 11-cis-rétinal en tout-trans-rétinal

Pour la iodopsine, ce changement va être assez important, car si le rétinal restait lié à l'opsine qui l'entourait, c'était justement à cause de sa forme 11-cis. La forme tout-trans, avec une chaîne latérale linéaire, ne présente pas la complémentarité de forme qui convient: le rétinal se trouve donc dissocié de l'opsine: c'est la décomposition du pigment. De plus, comme la spécificité de forme détermine la spécificité de fonction, l'opsine obtient donc maintenant une autre fonction, capable de déclencher une suite de réactions biochimiques qui entraîneront la formation d'un message nerveux.

Mais le processus est plus compliqué que ce que nous venons de voir, car cela ne marche pas dans tous les cas. Nous avons vu les courbes d'absorption spectrale des iodopsines S, M et L (Figure 1-5); celles-ci peuvent être interprétées comme la probabilité qu'a un photon d'une radiation de fréquence donnée d'être "piégé" par une molécule de iodopsine. Ainsi, dans certains cas, le photon sera absorbé par l'opsine, et ne pourra pas atteindre le rétinal qui y est imbriqué.

La première étape de la photoréception est donc une interaction entre lumière et rétinal, qui provoque un changement de conformation de la iodopsine. Le seul effet du photon est donc de déclencher la réaction; la suite de réaction qui suit sera assurée par la cellule elle-même: c'est la transduction.

2.2.2. La transduction

La transduction est une suite de réactions biochimiques très complexes, que nous ne pouvons pas détailler complètement ici. Mais nous essayerons d'en décrire les grandes lignes, et aussi son effet sur le plan électrophysiologique.

Figure 2-5. Le courant d'obscurité et l'hyperpolarisation du photorécepteur

2.2.2.1. Le courant d'obscurité

Regardons en premier lieu ce qui se passe dans la cellule lorsque celle-ci n'est pas éclairée. L'état des photorécepteurs est opposé à celui des neurones normaux: les cônes sont dépolarisés lorsqu'ils se trouvent à l'obscurité. Ceci signifie qu'il y a présence d'un courant permanent qui traverse les cellules photoréceptrices, le potentiel de récepteur étant de -40 mV par rapport au milieu extérieur. Celui-ci est créé par une inégalité dans la répartition de charges positives et négatives entre le milieu extracellulaire et le milieu intracellulaire.

Mais quelle est l'origine de ce courant? En fait, dans les cônes comme dans les autres cellules nerveuses, le courant est créé par un déplacement de cations, avec une prédominance de l'ion sodium Na+ pour les cônes, avec aussi un passage d'ions calcium Ca2+ et magnésium Mg2+. Ces ions proviennent du corps vitré. Pour permettre leur passage par la membrane plasmique, il est nécessaire d'avoir des pores cationiques ouverts, qui laissent passer les cations venant du milieu extérieur. Ceux-ci sont maintenus ouverts par un nucléotide cyclique, le guanosyl monophosphate cyclique (GMPc), agissant sur la face interne de la membrane plasmique. Sa concentration doit rester suffisante afin de garder les pores ouverts: sinon le courant devient plus faible. Les cations entrés dans la cellule sont ensuite évacués au niveau du segment interne, par un mécanisme de pompe pour les ions Na+ et un mécanisme d'échange de Na+ contre Ca2+ et K+. On voit donc qu'à l'obscurité, grâce au GMPc, les photorécepteurs sont traversés en permanence par un courant de cations.

2.2.2.2. L'hyperpolarisation du cône

Nous l'avons vu: l'arrivée d'un photon entraîne un changement de conformation de la iodopsine, et donc un changement de sa fonction. C'est à ce moment que commence la transduction. La iodopsine, maintenant activée, passe par un grand nombre de formes intermédiaires de dissociation. Elle peut ensuite atteindre la transducine, une protéine du groupe G, qui est capable de servir de médiateur de l'activation. Celle-ci va entraîner l'activité de la phosphodiestérase, qui hydrolyse le GMPc. La concentration en GMPc dans la cellule chute donc rapidement, ce qui entraîne la fermeture rapide des canaux d'ions.

La fermeture des canaux d'ions résulte en une augmentation de la résistance de la membrane cellulaire. Il y a donc une forte réduction du courant passant par le photorécepteur, parfois même un arrêt momentané du courant: ceci est une hyperpolarisation. Le potentiel de récepteur passe d'une valeur de -40 mV à des valeurs pouvant atteindre -80 mV, en raison d'une plus forte concentration en charges positives dans le milieu extérieur.

Nous avons donc maintenant un message nerveux: le potentiel de récepteur, qui se propagera le long de la membrane plasmique et atteindra l'extrémité synaptique. Nous observons donc un passage de message lumineux en message nerveux. Mais le photon ne joue que le rôle de déclencheur, libérant l'énergie potentielle contenue dans la cellule. Il n'y a donc pas "transformation de l'énergie lumineuse en énergie nerveuse".

Il existe un autre point important de cette transduction: l'amplification. En fait, il est difficile d'imaginer qu'un photon puisse entraîner un message nerveux assez important. Mais les mécanismes d'amplification permettent cela, grâce à deux étapes. Premièrement, une seule molécule de iodopsine activée peut activer plusieurs centaines de molécules de transducine. Puis, lors de l'hydrolyse du GMPc, une molécule de GMPc hydrolysée entraînera la fermeture de 106 canaux sodium. Le message peut donc être envoyé de façon assez forte pour produire une sensation, ce qui est important car les photorécepteurs ne reçoivent pas nécessairement plusieurs photons à la fois. Il faut noter cependant que les cônes sont beaucoup moins sensibles que les bâtonnets, un cône ne pouvant pas donner une réaction assez grande à l'arrivée d'un seul photon.