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Abstract

This April, in Cambridge (UK), principal investigators from the Mathematical

Biology Group of the Medical Research Council�s National Institute of Medical

Research organized a workshop in structural bioinformatics at the Centre for

Mathematical Sciences. Bioinformatics researchers of several nationalities from

labs around the country presented and discussed their computational work in

biomolecular structure prediction and analysis, and in protein evolution. The meeting

was intensive and lively and gave attendees an overview of the healthy state of protein

bioinformatics in the UK. Copyright  2004 John Wiley & Sons, Ltd.
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This workshop was organized by members of

the Computational Biology Group at the UK

Medical Research Council�s National Institute for

Medical Research (http://mb2.nimr.mrc.ac.uk/),
Franca Fraternali, Richard Goldstein and Willie

Taylor. It was a low-key affair, organized late, yet it

was probably the best scientiÞc meeting I have ever

attended; I was interested in advance in the content

of practically every session. Most of the seminars

were well-prepared, clear, relevant and refreshingly

concise. Even allowing for usually well-informed

questions and interruptions, sessions rarely over-

ran (or if they did, it didn�t feel that way). Unfor-

tunately, because I heard about the meeting only

shortly before it took place, I was unable to attend

every presentation in full. Although the speakers

and attendees were of many nationalities, they are

all currently working in the UK.

After Willie Taylor�s introduction it was appro-

priate that Cyrus Chothia (Laboratory of Molec-

ular Biology, Cambridge, UK; http://www.mrc-
lmb.cam.ac.uk/genomes/Cyrus.html), one of the

most prominent and longstanding researchers in
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the Þeld of protein structure bioinformatics in

Cambridge, should open proceedings. In his talk,

�Structural constraints on protein mutations�, he

described his work with Rajkumar Sasidharan

(http://www.mrc-lmb.cam.ac.uk/genomes/sraj/).
It was good for the rest of the meeting that, regard-

less of Chothia�s standing, there was no reluctance

to challenge his arguments and his contribution

provoked the Þrst of many stimulating discussions

that took place both during and after presenta-

tions.

When questioned, Chothia admitted to an inten-

tional looseness with the term �positive selection�

in his description of the degree and type of residue

type conservation in different locations in protein

structures. He outlined how residue conservation

varied with degree of site exposure and summa-

rized the residue properties most likely to be shared

in the same sites across homologues. Among the

intriguing statistics he presented, Chothia noted

that the normalized frequency of changes in sur-

face residues was Þve to six times higher than core

residues. The most �selected� (conserved) residue

Copyright  2004 John Wiley & Sons, Ltd.
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positions were least likely to vary in their size

Þrst, followed by their physicochemical character.

For the least �selected� positions, the priorities were

reversed.

In summary: average selectivity values for given

sites in proteins are calculable, the frequency of

variation can be explained in terms of the prop-

erties and locations of the analysed sites, and the

frequency with which residues vary at given sites

had a medium correlation with the overall under-

lying frequency of random mutations. Richard

Goldstein asked if Sasidharan and Chothia�s study

showed that proteins tended towards robustness

and Chothia admitted not. Willie Taylor asked

about possible resemblances between the substitu-

tion matrix derived from Chothia�s structure-based

alignments and the Dayhoff matrix. Chothia said

that the two were similar.

Juan Fernandez-Recio (Crystallography and

Biocomputing Unit, Department of Biochemistry,

University of Cambridge; http://www-cryst.bioc.
cam.ac.uk/∼juan/) next presented �Protein

�protein docking by global energy minimization�,

work that he began in Ruben Abagyan�s lab at the

Scripps Institute [9]. He aims to Þnd general meth-

ods for predicting the structures of protein�protein

complexes based solely on the structures of the

members of those complexes. Useful because struc-

tures of complexes are hard to determine, this

has increased in importance as lower-resolution

structure determination methods have become more

powerful and generated more data.

While cheaper analyses treating docking part-

ners as rigid bodies are easier to calculate, they

produce unrealistic energy landscapes, unlikely to

lead to even approximately correct solutions. Mod-

els including fully ßexible protein structure require

the exploration of huge conformational spaces.

Fernandez-Recio and co-workers seek a compro-

mise: the Þrst step is to treat structures as rigid

bodies with �soft� van der Waals� radii permitting

atomic overlap; the second step is to permit ßex-

ibility elsewhere. Other efÞciencies come through

representing molecules in terms of their internal,

rather than Cartesian, coordinates. This combina-

tion resulted in one of the top �blind� performers in

the (CASP-like) CAPRI protein docking prediction

competition (http://capri.ebi.ac.uk/). Unlike many

reviews of bioinformatics methods by their devel-

opers, Fernandez-Recio went on to give examples
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of both the successful and unsuccessful applica-
tions of his approach. He also discussed some of
the other uses for the output of his docking sim-
ulations � they can be used, for example, in the
prediction of binding patches on proteins.

Everyone I spoke to was especially impressed
with the volume and depth of analysis that had been
performed by Sanne Abeln (http://www.stats.ox.
ac.uk/people/students.htm), still a Þrst-year stu-
dent in Charlotte Deane�s bioinformatics group in
the Statistics Department at Oxford University. In
�Fold usage on genomes and protein structure evo-
lution� she described her huge survey of protein
structures across species. She compared the num-
ber of distinct folds with genome size, examined
the number of occurrences of folds, �duplications�
of folds, and families per fold and related them.
She had asked what these data could say about
the �ages� of folds, evolutionary mechanisms and
evolutionary relationships between folds. By tak-
ing large sequence sets (150 + genomes from all
kingdoms) and widely used bioinformatics tools
(PSI-BLAST and SCOP), and applying them on
a large scale, she not only made too many interest-
ing observations to list here, but had already begun
to devise plausible explanations for many of the
phenomena she observed.

It seems that distributions of the popularity of
folds are often described by power laws. Some
folds at least appear to be missing in certain
genomes. The data she collected for αβ proteins
are different from folds in the other fold classes
(similar comparisons against αβ proteins were
made at several points over the course of the
meeting). Abeln cautioned that it is very difÞcult
to make phylogenetic trees from this kind of data
since:

• There are no clear relations between the different
measures of fold usage (i.e. occurrences of
folds across genomes, duplications of folds on
a genome, and families per fold).

• When a fold diverges to a new fold on one
genome, occurrence and duplications are set
back to one, and it is therefore difÞcult to obtain
evolutionary relations between folds from these
measures.

Interesting power law-based relations also emer-
ged from their analyses of fold distributions across
families and superfamilies. Just as there had been
discussion of Chothia�s use of the term �positive

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.



U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F
S

Meeting Review 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

selection�, there was some debate over Abeln�s
allusions to �old folds� in her discussion of the
possible evolution of folds. The idea of �trapped
folds� having difÞculty evolving was another theme
which re-emerged later in the week, when Ben
Blackburne described his hugely simpliÞed in silico

minimal proteins.
The second day was chaired by Richard Gold-

stein and the Þrst speaker, Kenji Mizuguchi
(Department of Biochemistry, University of Cam-
bridge, UK, http://www-cryst.bioc.cam.ac.uk/∼
kenji/), addressed �Sequence�structure homology
recognition�. Mizuguchi Þrst clearly described the
central problems of homology modelling: identify-
ing the best structural templates against which to
model the sequence of an unknown fold and Þnd-
ing the best alignment between that sequence and
its target. He was classically biological in his use of
terminology, distinguishing between the identiÞca-
tion of analogous (corresponding, but not related)
and truly homologous (corresponding and related)
folds.

After an overview of existing methods for fold
recognition and alignment he outlined FUGUE
(http://www-cryst.bioc.cam.ac.uk/fugue/), a sys-
tem he developed along with Jiye Shi and Tom
Blundell [18]. FUGUE exploits structural data
in the form of environment-speciÞc substitution
tables � 64 of them � and gap penalties. These
are applied alongside modern sequence align-
ment techniques and reÞned by testing to see
how the environment deÞnitions affect perfor-
mance. Mizuguchi claimed 70�100 hits/day on
the FUGUE Website and that the method out-
performs other blind prediction servers in align-
ment/assignment. Unfortunately, Mizuguchi�s clear
explanation of the problems and approach didn�t
leave him time to discuss other applications, but
I look forward to reading about them elsewhere
[19,20,22]. It was also satisfying during question-
ing afterwards to hear him be sensibly dismissive of
any attempt to attach statistical conÞdence values
to FUGUE�s output, given the absence of an under-
lying mathematical model. For a wider view of the
importance of fold recognition, he recommended
his review in Drug Discovery Today [17].

Franca Fraternali (http://mathbio.nimr.mrc.
ac.uk/taylor/members/ffranca/) was the Þrst of
the organizers to lead a seminar. She described the
parametrization of a simple and easy-to-derive ana-
lytical formula for taking account of solvent effects
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in molecular dynamics simulations, using acces-

sible surface areas. The method, parametrically
optimised surfaces (POPS) [10], has already been
integrated into GROMOS96, and demonstrated to

be only about 30% slower than vacuum meth-

ods � orders of magnitude cheaper than explicit

water molecular dynamic simulations.

In order to obtain an energy term to add the sol-

vent contribution to the force Þeld, one needs to

have solvation parameters that, multiplied with the

surface terms, give the free energy of solvation.

So far, theoreticians have used experimentally-

obtained solvation energies of transfer of atoms

from water to vapour. Fraternali sketched out a

new approach to the calculation of these param-

eters that makes use of explicit water simulations

on a selected number of conformations of differ-

ent peptides and proteins. From solute-restrained

MD simulations of these conformers, calculated

in explicit water, it is possible to obtain distribu-

tions of the atomic forces exerted by that water and

thereby parametrize the POPS forces accordingly.

For the second part of her talk, Fraternali con-

centrated on more bioinformatic analysis of struc-

tural data using POPS. The method has been

parametrized in order to reproduce solvent accessi-

bilities at atomic level (POPSA) and at the residue

level (POPSR), based on a training set of about

100 proteins of different sizes and topologies. The

formula reproduces accessibilities calculated with

the program NACESS with less than 10% error.

Fraternali has shown how the formula proved

useful in identifying protein�protein and pro-

tein�RNA interactions in large macromolecular

assemblies like the ribosome � even based on low

resolution structures (C-α and P atoms only) like

the 70S ribosome. Differences between the 30S as

a separate subunit and as part of the 70S complex

(with the 50S subunit) have been highlighted in

this way. Because of the presence of the P-tRNA

in the 70S ribosome, localized conformational rear-

rangements occurring within the subunits, exposing

Arg and Lys residues to negatively charged binding

sites of P-tRNA, can be identiÞed. POPSR can also

be used to estimate the loss of free energy of sol-

vation upon complex formation, particularly useful

in designing new protein�RNA complexes and in

suggesting more focused experimental work.

Like many of the most effective bioinformatic

approaches, POPS is an approximation to make

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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large-scale problems tractable. In this case, Frater-

nali used it to tackle the problem of the large multi-

component ribosome structures and to produce

illuminating data. A POPS web server has been

made available at http://ibivu.cs.vu.nl/programs/
popswww/ [6].

Michele Vendruscolo�s (http://www.ch.cam.ac.
uk/CUCL/staff/mv.html) group, in Cambridge�s

Chemistry Department, studies non-native struc-

tures of proteins and uses molecular dynamics

to translate experimental measurements into struc-

tures. Vendruscolo made the important point that

we know far less about the cellular states of pro-

teins than about their crystal states, as determined

by X-ray crystallography. We urgently need to

understand the forms proteins take when they form

aggregates, intermediates, assemblies, or when they

are the nuclei of misfolded forms.

Vendruscolo outlined his group�s use of rest-

rained simulations to investigate such problems.

The approach generates an ensemble of struc-

tures for study for which speciÞc experimentally-

measured restraints are satisÞed. Various exper-

imental techniques can be used to obtain the

restraints. Vendruscolo outlined the technique with

an example of three amino acids for which a dozen

or so interactions and speciÞc bonds had to be satis-

Þed. Once an experimental technique and a struc-

tural interpretation of the derived data have been

chosen, the model for the interactions emerges and

a pseudo-energy function penalizes deviations from

the experimentally derived restraints. Vendruscolo

argued that these were essential because molecu-

lar dynamics simulations cannot entirely replace

experiments in structure determination problems.

He then detailed some speciÞc case studies of

published applications of the restrained simula-

tion technique, beginning with a 2004 JACS paper

[15] using data from site-directed spin-labelling

of acyl co-enzyme A binding protein (ACBP)

to investigate the residual structure present in

the unfolded protein. Restraints were imposed

on the average over a set of copies (replicas)

of the molecule and the technique was imple-

mented through 25 different non-interacting models

of the molecule � multiple simulations increased

the accuracy of the back-calculation of non-

restrained values. Not all of several hundred pos-

sible restraints are used in any given model, but

those used have to be mutually consistent.
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Vendruscolo showed contact maps of the native

and denatured states, maps of the average dis-

tances between pairs of residues (these were, in

fact, based on the probabilities of the interactions

between pairs of residues). Although denatured

ACBP molecules are highly heterogeneous, Ven-

druscolo claimed that the sensitivity of the compu-

tational technique allowed him and his co-workers

to identify long-range conformational tendencies.

He also gave other example applications: the

identiÞcation of rare (e.g. once a day) but large

structural ßuctuations from the native state [26],

based on hydrogen exchange with solvent; the

investigation of transition states too short-lived to

be investigated properly experimentally; and the

modelling of amyloid Þbres using solid-state NMR-

derived distance restraints.

José Saldanha (http://mathbio.nimr.mrc.ac.
uk/taylor/members/jsaldan/) of Willie Taylor�s

lab then led us through a rich case history of the

application of comparative modelling to the anal-

ysis of a therapeutic target molecule. Although a

useful technique, comparative modelling can be

difÞcult to present scientiÞcally because its applica-

tion rarely makes a good �story�. It is often a step

in a larger process or a door to a wider biologi-

cal question. Saldanha had worked in collaboration

with Daruka Mahadevan, a consultant oncologist at

the University of Arizona. Saldanha did bioinfor-

matics to analyse targets proposed by his collabo-

rator; Mahadevan performed expression studies.

Saldanha Þrst provided some background on

prostate cancer, the second most common form of

death in males, and on prostate-speciÞc membrane

antigen (PSMA), the main target for his investi-

gations, giving reasons why it might well be a

better marker for prostate disease than the widely-

known prostate-speciÞc antigen (PSA). PSMA is

a 750 amino acid protein, implicated in many

body functions � questions were later asked about

the wisdom of choosing such a widely-used tar-

get. Saldanha�s choice rested on several bases:

there are several isoforms of PSMA, and the form

expressed in prostate cancer is distinct from the

others; tumour endothelial cells express it, but not

normal endothelial cells; and other researchers are

targeting PSMA in prostate cancer. There is also

good clinical evidence from early trials that PSMA

can be manipulated speciÞcally and safely.

Saldanha ran through the range of bioinformatics

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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programs that were applied to the problem, includ-

ing BLAST (sequence search), PSIPRED (sec-

ondary structure prediction), THREADER (fold

recognition), SAP (a structure-based sequence

alignment program) and QUANTA (a commer-

cial modelling suite). This process of bioinformatic

characterization ran from determining its domain

boundaries to alignment to structure prediction.

It turned out that the transferring receptor was

likely to be the best template. Although distantly

related to PSMA, it has a similar domain structure.

The two molecules may share similar properties

of dimerization and a similar binding�recycling

model.

Saldanha�s model(s) proved consistent with mut-

agenesis data and suggested an apical domain that

might be involved in substrate binding. Docking of

the natural dipeptide substrate, NAAG, hinted that

the speciÞcity pocket might be distinctive enough

to help in the design of inhibitors, but a full 3-D

structure is yet to be experimentally determined.

Workers in Janet Thornton�s large group at

the European Bioinformatics Institute (EBI) have

been seeking to infer function from structural

information for some time now. James Watson
(http://www.ebi.ac.uk/Information/Staff/person
maint.php?person id=345) outlined their efforts

to obtain functional assignments within struc-

tural genomics work, particularly in collaboration

with the Midwest Center for Structural Genomics

(http://www.mcsg.anl.gov/).
Watson pointed out that, when it works, func-

tional assignment from three-dimensional structure

is more appropriate to the identiÞcation of bio-

chemical rather than biological function. Currently

sequence methods are the most successful way to

assign function, but structure-based methods can

provide additional functional information. There

are still plenty of occasions when no bioinformatic

methods work and function can only be identiÞed

by direct experiment.

Watson described ProFunc, a bioinformatics

pipeline combining a variety of methods [13].

The structural contributions come from match-

ing homologous folds, a variety of 3-D template

methods, binding site identiÞcation and structure

motif (for example helix�turn�helix) conservation.

Databases of 3-D templates describe enzyme active

sites, ligand binding sites and DNA binding sites.

Hits to these templates are ranked by comparing
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the surrounding environment of the match and cal-
culating a similarity score. He also described the
use of �nests�, small structural motifs involving
protein backbones that are commonly found to sta-
bilize some secondary structures and can also stabi-
lize ligand binding. The structural alignments come
from Þrstly centring on the 3-D template match
(e.g. enzyme active site) then expanding the align-
ment based on sections considered �Þttable� (within
an RMSD cut-off) that consist of at least seven
consecutive residues.

Sadly, I was only able to catch the end of David
Burke�s (http://www-cryst.bioc.cam.ac.uk/∼
dave/) presentation, �Ab initio structure predic-
tion� [2,4], and the subsequent discussion. When
I arrived, Burke was addressing the question of
how to Þlter tens of thousands of models of loops.
Currently, van der Waals� overlap was the main cri-
terion, but he suggested that molecular dynamics
force Þelds, solvent accessibility and comparison
with known structures could all be applied to win-
now the output from modelling programs. Burke
also summarized the questions that still concerned
him � and concern many structural bioinformati-
cians:

• Is it best to separate the selection of the models
from the generation of models?

• Has the majority of the reasonable peptide con-
formations in the protein universe been observed
in the structures deposited in the PDB to date?

• How can distantly related molecules be mod-
elled?

Many of us had heard Willie Taylor (http://math
bio.nimr.mrc.ac.uk/taylor/members/wtaylor/)
talk before, but he promised us that �Folds, knots
and tangles� would include both �something old
and something new� amongst a collection of meth-
ods which, although apparently disconnected, all
could contribute towards ab initio structure pre-
diction. He began by describing the universe of
non-redundant folds by type (α, αβ and β) and
pointed out that this division of foldspace, while
superÞcially illuminating, says less about deep sim-
ilarities between fold classes, than about how we
look at proteins.

Now that Taylor and his co-workers are actively
interested in model �proteins� (i.e. non-biological
structures devised in silico), he has found that they
are difÞcult to classify by eye and they have used
Ptitisyn and Finkelstein�s concept of structural

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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layers to Þnd a way to compare them without the

perennial problems of using, say, RMS deviations

between α and β proteins.

Taylor�s talks beneÞt from being supported by

live demos of actual programs running on a

Linux laptop, rather than static computer slides.

He Þrst used RasMol to show the cell matrices

he plots from the distribution of his fold types

along axes of complexity, and �curl and stag-

ger�. He has described this classiÞcation and its

sub-classiÞcations as a �Periodic Table� of protein

structures [25]. In his demonstration this repre-

sentation was completely dynamic, with individual

spheres being clickable to give the SAP represen-

tation of each protein fold�s superimposed struc-

tures � colour-coded by their strength of mutual

correspondence [23].

He now uses this scheme for the classiÞcation

of model proteins. When asked about the RasMol

renderings of such elements, Taylor pointed out

that these projections represent the architecture of

the protein, failing to discriminate, for example,

between parallel and anti-parallel β-strands, but

the full topology for each protein is recorded in

a �topology-string� and can be used if needed

[11]. Taylor then moved on to questions of ab

initio protein structure prediction and contrasted

his whole-structure interests with the loop-focused

work of David Burke, who had preceded him.

Taylor used a constrained random walk to gen-

erate structures, along the way occasionally gen-

erating secondary structure elements � sometimes

domains. A random walk combined with a sys-

tem for the generation of layers produces struc-

tures which are more protein-like. Occasionally

this approach results in the production of knots.

This behaviour had to be suppressed with �smooth-

ing�. Some real proteins in the PDB could not be

smoothed down to a line. It turned out that these

special cases are knotted. This curious, almost-

incidental discovery led to a publication in Nature

[24].

Smoothing can be used to compare the complex-

ity of proteins. According to the number of self-hits

of smoothed proteins, TIM barrels are simpler than

Rossman folds, for example. It is possible to grow

protein traces in silico through the building of local

contacts and plot the ease of building a given fold

making only local connections from a speciÞed

point in its structure.
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Finally, Taylor ran through some of the elements
used in his ab initio folding experiments:

• Secondary structure predicted with PSI-PRED.
• Random walks generated with RAMBLE.
• Filtering performed using radius of gyration.
• Filtering for knots.
• Filtering for complexity.
• Folds scored (of the order of 105 in number) with

CAO (Contact Accepted MutatiOn) [14].
• POPS (the solvent accessibility algorithm des-

cribed by Fraternali) and SPREK.

Alternative structures produced using his group�s
ab initio methods can be ranked in order by fold
and clustered. He hoped to have a comprehensive
system using these or similar techniques up and
running in time for the next CASP meeting.

Another local speaker, Vijayalakshmi Chelliah
of Cambridge University�s Biochemistry Depart-
ment, moved us on from protein structure determi-
nation to protein function determination with her
talk on �The identiÞcation of interacting sites in
protein families�. She started from the reasonable
premise that critically important residues tend to
be conserved by the members of protein fami-
lies. She had used HOMSTRAD to generate 96
environment-speciÞc substitution tables for pro-
tein residues and taken these as a background
against which to detect important sites, those where
residues are more conserved in families than would
be expected from the tables.

The method is simple and logical:

• Make a structure-based alignment of family
members.

• Compare the observed and expected substitution
patterns.

• Measure the informational difference between
the two.

The higher the score, the more distant the two
distributions are. High-scoring positions identiÞed
in this way are those considered most likely to be
functional. These scores can then be mapped onto
structures to Þnd high-scoring clusters. For this last
stage, Chelliah used Kin3Dcont, part of the kin-
contour program (http://kinemage.biochem.duke.
edu/index.php) produced by the Richardson Lab
at Duke University, North Carolina.

Chelliah was careful to ignore large gaps when
making alignments and to restrict her analysis

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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to sequences with less than 80% mutual identity
in order to minimize the noise from �brießy�
conserved, but functionally unimportant, residues.

In most of around 250 families the �averaged
out� active site predicted was between 0 ûA and 9 ûA
from the true active site, but the method missed
functional sites that were indirectly involved in
the activity of proteins and sites that were buried.
Along the way to these results she made some
interesting observations:

• Critical residues that were also structurally
important did not score as highly as might have
been expected by this method.

• Even inaccessible residues turned out to be very
highly conserved � Chelliah put this down to
their being important to the structural integrity
of active sites in the molecule.

• She felt that this might have been countered by
looking for sites retained in both orthologues
and paralogues and tested this by adding in
phylogenetic information. As it turned out, the
addition of close homologues generated more
noise.

She observed, as people often do with methods
like this, that the predictions were best when
residues were in truly equivalent positions within
similar structures.

Returning to structure prediction, �Conforma-
tional sampling for protein structure determination
and prediction� was the title of Mark DePristo�s
talk. DePristo is another member of Cambridge�s
Biochemistry Department (http://raven.bioc.cam.
ac.uk/∼mdepristo/). He described a method devel-
oped (and now used) to check protein models,
but which turns out to have a range of useful
structure-related applications. He introduced his
hybrid approach by summarizing the problem in
a series of simple Þgures. If the solution of a pro-
tein structure is a global minimum on an energy
(or other scoring function) landscape, then our aim
should be to smooth out that landscape to avoid
local minima and sample enough of it to Þnd the
true minimum. Since there is no deÞnitive solu-
tion, we must carefully choose heuristics. DePristo
explained the advantages of molecular dynam-
ics/simulated annealing approaches over conjugate
gradient/steepest descent ones.

His framework for such investigations, RAP-
PER, avoids optimizing a non-linear function.
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Instead it chooses many starting points and applies
local minimum-Þnding methods. Once a general
class of structures has been speciÞed, the poten-
tial energies of those structures can be compared.
Because small deviations from ideal geometry are
allowed in the real world and ßexibility comes at
computational cost, RAPPER Þxes many param-
eters (bond lengths, angles) and samples residue-
speciÞc propensity tables and hand-curated con-
formation libraries. The algorithm constructs rea-
sonable 3-D models consistent with prior structural
constraints and additional arbitrary ones, and pro-
gresses from the N- to C-terminus of a structure,
pruning additions in the wrong conformation.

RAPPER has been applied to loop modelling [2],
(re)construction of native ensembles [7], compar-
ative modelling, and crystallographic model gen-
eration [8]. More details of the program and its
variants are available from the RAPPER Website:
http://raven.bioc.cam.ac.uk/index.php

David Jones (Department of Computer Sci-
ence, Bioinformatics Unit, University College Lon-
don, http://www.cs.ucl.ac.uk/staff/D.Jones/index.
html) spoke on the �Detection of native disorder
in proteins�. To begin, he joked about the irony of
his spending years trying to predict structure from
sequence before trying to predict �non-structure�
from sequence. He also graciously credited
Jon Ward (http://www.cs.ucl.ac.uk/staff/J.Ward/)
with having done most of the work. After running
through the basic assumptions of sequence�stru-
cture interdependency, he discussed the various
kinds of disordered proteins that were known to
exist. Some proteins are partially or completely
unfolded yet remain functional, and we assume that
this is because their molecules form an ensemble of
states, rather than a unique structure. These disor-
dered states could be compact or extended molten
globules or random coils and, interestingly, can
fold fully on binding.

Jones talked about the blurry line between true
disorder and experimental uncertainty in determin-
ing protein structures as well as the experimen-
tal methods which can be used to detect disor-
der. He proposed functional classes of disordered
regions in proteins: �springs and linkers�, modi-
Þcation sites, regions important to the timing of
complex assembly and molecular recognition sites.
Functional importance is often assumed to corre-
late with evolutionary conservation and the work
on predicting disorder seems to produce results

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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consistent with this. He also outlined some pre-

vious work to identify signals of disorder in pro-

teins.

Ward and Jones had trained a support vector

machine (SVM) on a non-redundant set of crys-

tal structures and found that they could use it

to identify 40% of disordered residues with a

1% error rate. The performance was better for

longer regions � over 30 amino acid residues

in length � for which the detection fraction and

error rates were 80% and 0.1%, respectively. The

SVM was then applied across genomes and detec-

tion rates compared with biological function (as

assigned by gene ontology classiÞcations) [27].

He believed other workers� predictions of dis-

order in prokaryotic proteins were likely to be

overestimates. In eukaryotes, molecules associ-

ated with the actin cytoskeleton scored highly,

while the bacteria-like environment of mitochon-

dria seemed to contain few disordered protein

components. There was also high correlation with

DNA-transposition and development and mor-

phogenesis. Molecular functions more likely to

be associated with protein disorder predictions

included transcription regulators, protein kinases

and transcription factors. Metabolic and biosyn-

thetic protein functions scored low. The disor-

der prediction server, DISOPRED, is available at

http://bioinf.cs.ucl.ac.uk/disopred/disopred.html
Another Chothia group member, Martin Mad-

era (http://stash.mrc-lmb.cam.ac.uk/mm238/)
talked about his work on �Comparisons of sequence

families� and his responsibility for the Chothia

group�s �Superfamily� database at the LMB [16].

This is a library of HMM models for all proteins

of known 3-D structure. He recounted a history

of protein sequence comparison methods, of the

problems of characterizing more distantly related

protein groupings, and he detailed more recent

improvements in this resource. He gave a clear

overview of pairwise vs. sequence proÞle vs. HMM

methods and, having made the case for HMMs, he

discussed the reÞnements implemented in Super-

family, which relies on the segmentation of PDB

structures into domains and the combination of

multiple HMMs to represent its groupings. The

domain-based analysis of Superfamily can now be

used to compare whole genomes for their domain

composition.

We moved from better models of real, stable,
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folded proteins, to predictions of disordered pro-

teins to completely imaginary proteins. Benjamin
Blackburne (http://slater.chem.nott.ac.uk/∼
bpb/), formerly of Jonathan Hirst�s group at Not-

tingham University and now a member of Richard

Goldstein�s group, talked about the properties of his

phylogenies of minimalist proteins [3]. Blackburne

had explored the relationships between hypotheti-

cal 2-D proteins catalogued in the sort of protein

database the inhabitants of �Flatland� [1] might rec-

ognize. In Blackburne�s planar protein universe,

residues are of only two types, hydrophobic or

hydrophilic. Proteins fold when strings of such

residues arranged on a square or tetrahedral lat-

tice of available points turn in on themselves in

a plausible way. Folds that arrange those residues

with the lowest energy are �native�. A �Þt� pro-

tein is one which has a pocket � i.e. two external

residues around a hole that could be �functional�.

With so few degrees of freedom, all sequences

of given short lengths and all structures derived

from them can be known. The proteins can be

arranged in families, where a family is a group

in which all the possible relatives can be generated

from another by mutation and yet still meet the

rules for the formation of viable structures; the

relationships between the model structures can be

visualized in graphs, whose nodes are the structures

and whose edges are point mutations between

them. There are outliers, and some families are

more weakly connected to related families than

others. There are �bottlenecks� where there are few

evolutionary routes from one family to another.

�Hubs� bridge multiple families. �Funnels� form

when the structures are arranged such that the

nodes radiate out to variants of decreasing stability.

Some phenomena can be compared in an illu-

minating way with the evolution of real proteins.

For example, in Blackburne�s world neutral evo-

lution seems necessary for minimal proteins to

reach functional states and longer chains offer more

potential for such noisy change. Other characteris-

tics of these artiÞcial proteins are more problem-

atic: their sequences are not directional and inser-

tions and deletions cannot have the same meaning

when there are so few residue types.

Of course, much of the subsequent discus-

sion was about the relevance of such evolu-

tionary landscapes to real proteins, whether the

graphs had scale-free properties, other aspects of

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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real protein behaviour which ought to be mod-
elled (Cyrus Chothia), and the correspondence
between Blackburne�s neutral mutation-tolerant
proteins and Chothia�s stable-to-mutation proteins
(Willie Taylor).

Richard Goldstein�s (http://mathbio.nimr.
mrc.ac.uk/goldstein/members/rgoldstein/) talk,
�Modelling molecular evolution�, covered an area
of growing interest, the effort to combine sequence
and structural analysis to investigate the evolution
and function of proteins. He described methods
aimed at increasing our understanding of the struc-
tural basis for variations in amino acid residue
substitution rates, identifying functional sites and,
in particular, for characterizing members of the
large and pharmacologically important family of
G protein-coupled receptors (GPCRs).

First, he highlighted a central ßaw in com-
parative sequence analysis: most approaches are
based on a model that assumes positions in
sequences represent independent samplings from
all possible sequences and ignore the phyloge-
netic relationships between related proteins. He
also reminded us � as molecular phylogeneticists
often have to remind biochemists and molecu-
lar biologists � that residues �conserved� between
closely related sequences are not as signiÞcant as
investigators often believe.

Rather than ignore these problems or devise
ad hoc Þxes, Goldstein, Goldman and others have
more recently attempted to model evolution explic-
itly. To begin, Goldstein developed substitution
matrices for different types of local structure, but
has since devised a more general approach. Each
protein can be divided up into zones, without mak-
ing assumptions about which models apply where;
the probability of any given location belonging
to a particular site class is a parameter which is
itself optimized by an expectation maximization
algorithm.

Once a set of environment categories has emer-
ged, Goldstein and co-workers assign qualitative
labels to them (e.g. �hydrophilic�), and the a pos-

teriori probabilities of each position belonging to
class can be estimated. By applying this approach
to large enough families of aligned sequences with
structural information, he claimed, it is possible to
identify locations where different types of selective
pressure have been operating and obtain insights
into the underlying basis of such selective pres-
sure, e.g. how physicochemical properties such as
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size and hydrophobicity are differentially important

in different classes of site.

This approach can be used to identify function-

ally important locations � sites belonging to the

slowest evolving rate classes � and different over-

all probabilities that a position is involved in gen-

eral function, stabilization, dimerization, packing,

structure, or the extent to which a position con-

strained [21].

Goldstein then focused on the application of

this general approach to the speciÞc question of

the GPCRs. Despite representing only 1% of the

genome, they are estimated to be the target of

almost half all drugs and only one signalling

process does not involve a member of this family.

Although only one known high-resolution structure

is available, Goldstein�s group worked with a

dataset of about 200 GPCRs, and analysed them

to produce patchworks of model assignments along

the lengths of sequences.

Some properties of these molecules gave a strong

signal. It is harder, for example, to identify the

inner and outer surface of transmembrane (TM)

helices, such as those in the 7-TM structure of

the GPCRs, than it is to identify the inner and

outer faces of �normal� protein structure helices.

Goldstein et al.�s site classes correlate with the

�innerness� and �outerness� of these helices. Also,

a propensity to involvement in dimerization seems

to correlate with slowly varying sites.

The European Bioinformatics Institute�s Hugh

Shanahan (http://www.biochem.ucl.ac.uk/∼

shanahan/) described more function-from-structure

work, this time targeted at predicting DNA-binding

proteins from 3-D motifs and electrostatic infor-

mation. There is no shortage of important DNA-

binding proteins and a huge and growing inter-

est in the regulation of transcription. Shanahan

quoted estimates of up to 7% of eukaryotic and

3% of prokaryotic genes coding for DNA bind-

ing proteins. Equally, structural genomics projects

will generate many uncharacterized structures.

Although he acknowledged the importance and

utility of sequence-based approaches, he argued

that function varies signiÞcantly as sequence iden-

tity between unknown and known (template) pro-

tein sequences falls below 40%. He pointed out

that, although at least one neural net-based method

exists for identifying DNA binding proteins, it

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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has a high false-positive rate and requires high-
resolution atomic data, and claimed that homology-
based modelling produces lower false-positive
scores.

Shanahan further contended that, of the four
main known classes of structural motif:

• Helix�turn�helix.
• Helix�hairpin�helix.
• Helix�loop�helix.
• Zinc Þnger.

the middle two are more easily identiÞed with
Hidden Markov Model (HMM) methods; zinc Þn-
ger proteins are too structurally variable. Shanahan
concentrated on the Þrst, helix�turn�helix (H�T-
H) structures. He began by summarizing the pro-
cedure to identify structural templates:

• Search the literature for H-T-H motifs.
• Identify HMMs in Pfam or SMART.
• Identify structural templates from domains using

the CATH super-structural family (the H-level of
that database).

• Scan the Protein DataBank with templates.
• Add any new H�T�H DNA-binding proteins to

the list.
• Repeat until no other structures are found.

The group obtained 90 non-redundant structures
in the PDB and generated seven structural tem-
plates to cover that set, applying an accessibility
criterion. At Þrst the results didn�t seem much bet-
ter than those obtained with HMMs: 0.5% false
positives. Then they reÞned the method by inte-
grating the potential over a region close to the
accessible surface of motifs and tested this by using
the electrostatic data to attempt to identify the bind-
ing region in known DNA-binding proteins [12].

A method to detect DNA-binding sites on the
surface of a protein structure is important for func-
tional annotation. They analysed residue patches
on the surface of DNA-binding proteins and pre-
dicted DNA-binding sites using a single feature
of these surface patches. They Þrst surveyed sur-
face patches and DNA-binding sites for accessi-
bility, electrostatic potential, residue propensity,
hydrophobicity and residue conservation. From
this, they observed that the DNA-binding sites usu-
ally fell in the top 10% of patches with the largest
positive electrostatic scores. This knowledge led to
their development of a prediction method in which
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patches of surface residues were selected such that

they excluded residues with negative electrostatic

scores.

They used this method to make predictions for a

dataset of 56 non-homologous DNA-binding pro-

teins and identiÞed 68% of the dataset correctly.

Using this data, they improved the false-positive

score to 0.02%. Shanahan added that the hybrid

method involves fewer parameters than sequence

homology, does not require full electrostatic calcu-

lations to be performed and that it might be possible

to use data from homology models to provide a

cross-check for HMM searches.

The Þnal talk of the meeting rounded the

event off perfectly. Chris Calladine (http://www-
civ.eng.cam.ac.uk/crc/crc web.htm), who retired

only a couple of years ago from the Cambridge

University Department of Structural Engineering,

dazzled us with a multidisciplinary, multimedia

presentation on the �Mechanics of interfaces in α-

helical supercoils�. He used overheads, animation

and a succession of cork-and-cardboard models to

show how juxtaposed helices could abut in diverse

ways, interlocking the �knobs� of their respective

sidechains. The knobs of one helix Þt into the

�holes� between the knobs of the other when they

pack. For simple superhelices and four-helix bun-

dles � as distinct from the helix-built cylinders

Calladine later touched on [5] � there were three

standard modes of knobs-into-holes packing, which

he illustrated with overlaid interface Þgures pro-

duced as overheads, as simple Þgures and as clev-

erly constructed three-dimensional models.

One of the most pleasing things about structural

bioinformatics is that its practitioners collaborate

across specialisms to tackle difÞcult, interesting

and messy problems out of both curiosity and

necessity � not merely to meet the conditions of

interdisciplinary funding programmes. Calladine�s

work exempliÞed this beautifully. He has worked

in this area in collaboration with Charlie Laughton

(molecular dynamics) at Nottingham University

and Ben Luisi and Venkatash Pratap (structural

biology) at Cambridge. Pratap wrote software that

Þnds α-helices and their neighbours, identiÞes the

local superhelical angle of their arrangement and

categorizes those arrangements according to those

angles. Pratap�s animation of a bistable �switch� in

the packing of a right-handed, four-helix bundle

of α-helices in one of the three main classes

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 000–000.
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of arrangement formed the Þnale of Calladine�s
presentation.
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