How can we build a bioinformatics programme that works?

Damian Counsell UK Medical Research Council Human Genome Mapping Project Resource Centre Cambridge

The Main Questions

- What should be in our syllabus?
- How should we teach it?
- What kind of bioinformaticists do we want?
- What about those who won't (or can't) do bioinformatics afterwards?

Syllabus: The Core

- molecular biologystructural biology
- cell biology
- genetics

basic mathsstatisticscomputing

Syllabus: The Emphasis

Bioinformatics changes rapidly: Moore's Law novel computing physics Biological problems change rapidly: genomes mammalian cloning ...therefore we should emphasize approach over content.

Bioinformatics Education Now

mostly graduate mostly cross-training biologists->maths and computing computer scientists->molecular biology applications vs. theory much professional development learning to use new tools

Future Bioinformatics Training

full undergraduate programmes enough time to learn the *discipline* of programming enough time to grasp the complexity of biology We need tool-users who are informed and discriminating.

The "Bio"

- Bioinformatics is our chance to put the "bio" back in biomedicine.
 - Biologists are not doctors.
- Our emphasis should be on:
 - the power of the neo-Darwinian view of life,
 - sub-systems biology, and
 - the importance of new techniques.

The "Informatics"

- EMBOSS-based C, Python or object-oriented Perl as languages of first training
 - Re-usability is crucial in team-based biological research.
- a solid grounding in elementary probability and statistics
 - emphasis of correct application of techniques over theoretical detail

The Economics

- Today's shortage of bioinformaticists will become tomorrow's glut.
- Bioinformaticists must therefore gain generally useful talents:
 - programming (discipline)
 - rigorous problem-solving
 - intellectual "good taste"---a well-developed, high-tech bullsh*t detector