|
VeaR/JEllipse | |||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Vector3 | |
---|---|
pl.krakow.cmuj.bioinformatics.jellipse | Provides main application networking, file-handling and GUI support. |
pl.krakow.cmuj.bioinformatics.jellipse.mathtoolkit | Provides linear algebra front-end for polypeptide and scene geometry. |
Uses of Vector3 in pl.krakow.cmuj.bioinformatics.jellipse |
---|
Fields in pl.krakow.cmuj.bioinformatics.jellipse declared as Vector3 | |
---|---|
private Vector3 |
StructureRenderer.EnVec
|
private Vector3 |
StructureRenderer.StVec
|
Uses of Vector3 in pl.krakow.cmuj.bioinformatics.jellipse.mathtoolkit |
---|
Methods in pl.krakow.cmuj.bioinformatics.jellipse.mathtoolkit that return Vector3 | |
---|---|
Vector3 |
Vector3.add(Vector3 vec)
adds a vectors to the current one (doesn't alter existing vectors) |
static Vector3 |
Math3d.centerOfThreePointCircle(Vector3 v1,
Vector3 v2,
Vector3 v3)
calculates the location of a circle that intersects three points (in 3d) and is (of course) co-planar with them ============= Here comes Maple code, that produced solutions ============== restart: with(linalg): 2 equations on radii equivalence, the 3rd on coplanar location eqns :={ (r0-a0)^2 + (r1-a1)^2 + (r2-a2)^2 = (r0-b0)^2 + (r1-b1)^2 + (r2-b2)^2, (r0-a0)^2 + (r1-a1)^2 + (r2-a2)^2 = (r0-c0)^2 + (r1-c1)^2 + (r2-c2)^2, det(matrix( [ [r0-a0, r1-a1, r2-a2], [b0-a0, b1-a1, b2-a2], [c0-a0, c1-a1, c2-a2] ] ))=0 }: rcoords := solve( eqns, {r0,r1,r2} ): x := simplify(subs(rcoords,r0)); y := simplify(subs(rcoords,r1)); z := simplify(subs(rcoords,r2)); distance test randomize(123): los := rand(-100..100): a0 := los(): a1 := los(): a2 := los(): b0 := los(): b1 := los(): b2 := los(): c0 := los(): c1 := los(): c2 := los(): dista:=evalf(sqrt((a0-x)^2 + (a1-y)^2 + (a2-z)^2)); distb:=evalf(sqrt((b0-x)^2 + (b1-y)^2 + (b2-z)^2)); distc:=evalf(sqrt((c0-x)^2 + (c1-y)^2 + (c2-z)^2)); visual test PLOT3D(POINTS( [a0,a1,a2], [b0,b1,b2], [c0,c1,c2], [x, y, z], SYMBOL(DIAMOND) ) ); --------------------------------------------------------------------------- |
Vector3 |
Vector3.cross(Vector3 vec)
performs cross multiplication on current and given vectors (doesn't alter existing vectors) |
static Vector3 |
Vector3.cross(Vector3 v1,
Vector3 v2)
perform cross multiplication on vectors (and doesn't alter any existing) |
static Vector3 |
Math3d.mapToSphere(float[] NewPt,
float AdjustWidth,
float AdjustHeight)
|
static Vector3 |
Vector3.negate(Vector3 vec)
|
Vector3 |
Vector3.normalize()
normalizes current vector (doesn't alter it!) |
Vector3 |
Vector3.scale(float s)
performs multiplication of vector by number (scaling) (doesn't alter any existing vectors) |
Vector3 |
Vector3.subtr(Vector3 vec)
subtracts a given vector from the current one (doesn't alter any existing vectors) current vector is minuend |
Methods in pl.krakow.cmuj.bioinformatics.jellipse.mathtoolkit with parameters of type Vector3 | |
---|---|
Vector3 |
Vector3.add(Vector3 vec)
adds a vectors to the current one (doesn't alter existing vectors) |
void |
Vector3.addToMe(Vector3 vec)
adds a vector to the current one (and alters it!) |
static float |
Math3d.calcTorsionalAngle(Vector3 vatom1,
Vector3 vatom2,
Vector3 vatom3,
Vector3 vatom4)
Calculates torsional angle set up by four atoms |
static Vector3 |
Math3d.centerOfThreePointCircle(Vector3 v1,
Vector3 v2,
Vector3 v3)
calculates the location of a circle that intersects three points (in 3d) and is (of course) co-planar with them ============= Here comes Maple code, that produced solutions ============== restart: with(linalg): 2 equations on radii equivalence, the 3rd on coplanar location eqns :={ (r0-a0)^2 + (r1-a1)^2 + (r2-a2)^2 = (r0-b0)^2 + (r1-b1)^2 + (r2-b2)^2, (r0-a0)^2 + (r1-a1)^2 + (r2-a2)^2 = (r0-c0)^2 + (r1-c1)^2 + (r2-c2)^2, det(matrix( [ [r0-a0, r1-a1, r2-a2], [b0-a0, b1-a1, b2-a2], [c0-a0, c1-a1, c2-a2] ] ))=0 }: rcoords := solve( eqns, {r0,r1,r2} ): x := simplify(subs(rcoords,r0)); y := simplify(subs(rcoords,r1)); z := simplify(subs(rcoords,r2)); distance test randomize(123): los := rand(-100..100): a0 := los(): a1 := los(): a2 := los(): b0 := los(): b1 := los(): b2 := los(): c0 := los(): c1 := los(): c2 := los(): dista:=evalf(sqrt((a0-x)^2 + (a1-y)^2 + (a2-z)^2)); distb:=evalf(sqrt((b0-x)^2 + (b1-y)^2 + (b2-z)^2)); distc:=evalf(sqrt((c0-x)^2 + (c1-y)^2 + (c2-z)^2)); visual test PLOT3D(POINTS( [a0,a1,a2], [b0,b1,b2], [c0,c1,c2], [x, y, z], SYMBOL(DIAMOND) ) ); --------------------------------------------------------------------------- |
Vector3 |
Vector3.cross(Vector3 vec)
performs cross multiplication on current and given vectors (doesn't alter existing vectors) |
static Vector3 |
Vector3.cross(Vector3 v1,
Vector3 v2)
perform cross multiplication on vectors (and doesn't alter any existing) |
void |
Vector3.crossMe(Vector3 vec)
performs cross multiplication on current and given vectors (alters current one!) |
static float |
Math3d.distance(Vector3 v1,
Vector3 v2)
calculates the distance between two points (vectors, dim = 3) |
float |
Vector3.dot(Vector3 vec)
performs inner ("dot") multiplication on vectors |
void |
Vector3.get(Vector3 vec)
|
static Vector3 |
Vector3.negate(Vector3 vec)
|
void |
Vector3.set(Vector3 vec)
|
Vector3 |
Vector3.subtr(Vector3 vec)
subtracts a given vector from the current one (doesn't alter any existing vectors) current vector is minuend |
void |
Vector3.subtrFromMe(Vector3 vec)
subtracts a given vector from the current one (and alters it!) |
Constructors in pl.krakow.cmuj.bioinformatics.jellipse.mathtoolkit with parameters of type Vector3 | |
---|---|
Vector3(Vector3 vec)
|
|
VeaR/JEllipse | |||||||||
PREV NEXT | FRAMES NO FRAMES |